
Removing the gauge parameter dependence of the effective potential
by a field redefinition

N. K. Nielsen*

Center of Cosmology and Particle Physics Phenomenology (CP3-Origins),
University of Southern Denmark, DK 5230 Odense M, Denmark

(Received 8 June 2014; published 27 August 2014)

The gauge parameter dependence of the effective potential is determined by partial differential equations
involving also the Higgs boson field expectation value. Solving these equations by the method of
characteristics leads to elimination of the gauge parameter dependence of the effective potential. The
construction is carried out in the case of the standardmodel of electroweak unification for the renormalization
group improved effective potential up to the next-leading logarithmic order.
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I. INTRODUCTION

With the discovery of the Higgs boson [1,2] the
theoretical determination of its lower mass bound by means
of the renormalization group method improved effective
potential [3,4] has gained new prominence [5]. The stability
analysis of [3–5] takes place in a specific gauge (the
Landau gauge).
It was pointed out some time ago by Loinaz and Willey

[6] that the gauge dependence of the effective potential
could make the lower bound of the Higgs boson mass
gauge dependent. They used an Abelian truncation of the
standard model of electroweak unification, which in the
bosonic sector is identical to the Abelian Higgs model, to
make their point, working to one-loop and leading loga-
rithmic order. A recent study by Andreassen [7] gives a
very useful review of this difficulty. It is a problem of both
phenomenological and conceptual importance, considering
the fact that the observed Higgs mass is very close to
the stability limit of the standard model of electroweak
unification. It has been shown that the same problem
arises in the context of Higgs inflation [8]. Quite recently
the problem has been dealt with in connection with the
so-called instability scale [9].
It will be shown in this paper that the gauge dependence

of the effective potential can be removed by solving a set
of homogeneous first order partial differential equation
obeyed by the effective potential and involving the gauge
parameters and the Higgs boson field expectation value.
The validity of these equations was established many years
ago by the author [10] and independently by Fukuda and
Kugo [11] (see also [12–14]). Solving the differential
equations leads to a field redefinition that eliminates the
gauge dependence from the effective potential. The analysis
is carried out in the context of the SUð2Þ ⊗ Uð1Þ standard
model of electroweak unification for the renormalization

group improved effective potential at the leading and next-
leading logarithmic order.
Suppressing in the effective potential V all variables

except the Higgs field expectation value ϕ and a gauge
parameter ξ, the partial differential equations found in [10]
and [11] have the form

�
ξ
∂
∂ξþ Cðϕ; ξÞ ∂

∂ϕ
�
Vðϕ; ξÞ ¼ 0 ð1Þ

with Cðϕ; ξÞ a calculable function. Equation (1) can, as
pointed out in [10] and [14], be solved by the method of
characteristics. It is an obvious consequence of (1) that the
potential V is unchanged if the gauge parameter ξ and the
field ϕ are subject to the following changes,

ξ → ξþ Δξ; ϕ → ϕþ Cðϕ; ξÞΔξ
ξ

ð2Þ

withΔξ infinitesimal. Taking this argument one step further,
one can introduce a new field variable Φðϕ; ξ; ξ0Þ that is a
solution of the partial differential equation,

�
ξ
∂
∂ξþ Cðϕ; ξÞ ∂

∂ϕ
�
Φðϕ; ξ; ξ0Þ ¼ 0; ð3Þ

with the boundary condition,

Φðϕ; ξ; ξ0Þ∣ξ¼ξ0 ¼ ϕ; ð4Þ

with ξ0 a specific value of the gauge parameter ξ. Expressing
the effective potential in terms of the new field variable one
can now eliminate the dependence of the effective potential
on the gauge parameter ξ altogether since Φðϕ; ξ; ξ0Þ is
invariant under (2) and thus is equal to the field variable at
ξ ¼ ξ0, and (3) and (4) imply

Vðϕ; ξÞ ¼ VðΦðϕ; ξ; ξ0Þ; ξ0Þ: ð5Þ*nkn@cp3‑origins.net
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What has been achieved by this construction is to show
that the effective potential at an arbitrary value ξ of the
gauge parameter is equal to the potential at a preferrred
value of the gauge parameter ξ0 by introducing a mapping
through the solution of (3)–(4):

ϕ → Φðϕ; ξ; ξ0Þ: ð6Þ

The inverse mapping is obviously obtained by interchang-
ing ξ and ξ0 in Φðϕ; ξ; ξ0Þ. As mentioned above the
stability analysis giving the Higgs boson mass lower
bound [3–5] takes place in the Landau gauge, and the
construction described above makes it possible to extend
this analysis to arbitrary gauges; this is the problem raised
in [6–9]. Our approach to this problem should be con-
trasted to that of [15] and [16], who suggested using
instead a gauge-independent effective potential con-
structed either by a Hamiltonian method or by the
Vilkovisky-DeWitt formalism [17], working in an
Abelian model similar to the model used in [6] to leading
logarithmic order.
The Higgs boson mass defined by the propagator pole

is independent of the gauge parameters at all values of the
quartic coupling λ entering the tree approximation poten-
tial term 1

4
λϕ4, provided one takes into account that the

field value at the electroweak potential minimum is gauge
parameter dependent; this statement was proven in [10]
sec. IV and also verified in [12] (these proofs were carried
out for the Abelian Higgs model but are easily extended
to the standard model of electroweak unification).
However, use of the gauge-dependent effective potential
is necessary in order to determine the value of λ that leads
to the lower bound on the Higgs mass such that the
electroweak vacuum is stable. Extension of the analysis
of this problem in [3–5] beyond the Landau gauge can be
carried out by (6) or its inverse, which relate the field
value at one set of values of the gauge parameters to the
field value at another set of values of the gauge param-
eters, such that the value of the effective potential is
unchanged.
In order to make (5) useful one has to provide a

solution of (3)–(4). Usually the effective potential is
found in the context of some approximation scheme,
where it is obtained order by order. It is rather straight-
forward to find approximate solutions of (3)–(4) in the
context of the loop expansion. In connection with the
lower bound of the Higgs boson mass one is, however,
dealing with the renormalization group improved effec-
tive potential, which involves a resummation of the
effective potential at infinite loop order. Explicit solutions
of (3)–(4) are, as mentioned above, obtained in this paper
in the leading and next-leading logarithmic order for
the standard model of electroweak unification, though
there seems no reason why it should not be extended to
arbitrary orders in this expansion. Only the bosonic part

of the standard model of electroweak unification is
considered here since this is where complications involv-
ing gauge parameter dependence occurs; it is trivial to
include also the fermionic part.
The outline of this paper is the following: Sec. II

reviews ingredients necessary for the construction, where
in Sec. II. A material on the standard model of electroweak
unification is collected and in Sec. II. B the one-loop
effective potential is briefly reviewed, while Sec. II. C
deals with renormalization group improvement of the
effective potential. Here the leading and next-leading
approximations of the renormalization group solutions
are defined, and it is noticed that different solutions of the
renormalization group equation of the effective potential
may have different orderings in this approximation
scheme. In Sec. III the leading and next-leading loga-
rithmic approximations of the effective potential are
constructed, and (1) is verified and the relevant functions
Cðϕ; ξÞ are determined. Finally in Sec. IV these functions
are used to solve (3)–(4) and to check (5), such that the
field redefinition alluded to in the title of the paper is
achieved. An Appendix lists the renormalization group
functions used.

II. PRELIMINARIES

A. SUð2Þ ⊗ Uð1Þ electroweak theory

With ϕ the expectation value of the Higgs boson field,
the effective potential of the SUð2Þ ⊗ Uð1Þ standard model
of electroweak unification is in the tree approximation:

V ½0�ðϕÞ ¼ 1

2
μ2ϕ2 þ 1

4
λϕ4; μ2 < 0; λ > 0: ð7Þ

The theory contains the gauge fieldsW�
μ ;W3

μ and Bμ and
in a renormalizable gauge the Goldstone boson fields χ�
and χ3. A possible and rather general gauge fixing term of
the Lagrangian is

Lgf ¼−
1

ξ

�
∂μWþ;μ−

gu
2
χþ
��

∂νW−;ν−
gu
2
χ−
�

−
1

2ξ

�
∂μW3μ−

gu
2
χ3
�

2

−
1

2ξ0

�
∂μBμþg0u0

2
χ3
�

2

; ð8Þ

with ξ; ξ0; u and u0 gauge parameters and where g and g0
are the SUð2Þ and Uð1Þ coupling constants. This
leads to the following ghost Lagrangian in the bilinear
approximation,

LFP ¼ −c̄þ
�
∂ −

g2uϕ
4

�
cþ − c̄−

�
∂2 −

g2uϕ
4

�
c−

− c̄3∂2c3 − c̄0∂2c0 þ ϕ

4
ðguc̄3 − g0u0c̄0Þðgc3 − g0c0Þ;

ð9Þ
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with cþ; c̄þ; c−; c̄−; c3; c̄3; c0 and c̄0 Faddeev-Popov
ghost fields. The gauge parameters u and u0 should be
treated as independent variables in the context of the
renormalization group since the gauge fixing Lagrangian
is not renormalized [18] and the combinations guχ� and
guχ3 are thus renormalized by the same multiplicative
renormalization as W�

μ and W3
μ, while g0u0χ3 is renormal-

ized like Bμ. At general values of u and u0 the vector and
Goldstone boson fields mix in the bilinear approximation
of the Lagrangian.
Consider first the charged vector fields. They are

Stückelberg decomposed,

W�
μ ¼ W�

tr;μ þ
1ffiffiffiffiffi∂2

p ∂μω
�; ð10Þ

where

∂μW
�;μ
tr ¼ 0: ð11Þ

In momentum space with k a momentum variable this gives
the following Lagrangian bilinear in the charged vector and
Goldstone boson fields:

L ¼ −Wþμ
tr ð−kÞ

�
k2 −

g2ϕ2

4

�
W−

tr;μðkÞ

− ðχþð−kÞ;ωþð−kÞÞ
�
a11ðkÞ a12ðkÞ
a12ðkÞ a22ðkÞ

��
χ− ðkÞ
ω− ðkÞ

�
;

ð12Þ

where

a11ðkÞ¼−k2þμ2þ λϕ2þg2u2

4ξ
;

a22ðkÞ¼−
k2

ξ
þM2

W; a12ðkÞ¼−
g
2

�
ϕþu

ξ

� ffiffiffiffiffiffiffiffi
−k2

p
ð13Þ

with M2
W ¼ g2ϕ2

4
and with the determinant

Det

�
a11ðkÞ a12ðkÞ
a12ðkÞ a22ðkÞ

�
¼ 1

ξ
ðk2−k2þ;WÞðk2−k2−;WÞ; ð14Þ

where k�;W are defined by

k2�;W ¼ 1

2

�
μ2 þ λϕ2 −

1

2
g2uϕ

�

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2 þ λϕ2Þðμ2 þ λϕ2 − g2ϕðuþ ξϕÞÞ

q
: ð15Þ

The neutral vector fields are also Stückelberg
decomposed,

W3
μ ¼W3

tr;μþ
1ffiffiffiffiffi∂2

p ∂μω
3; Bμ ¼Btr;μþ

1ffiffiffiffiffi∂2
p ∂μω

0; ð16Þ

where

∂μW
3;μ
tr ¼ ∂μB

μ
tr ¼ 0; ð17Þ

leading to the quadratic Lagrangian in momentum space,

L ¼ 1

2

�
ðW3

tr;μð−kÞ; Btr;μð−kÞÞ
 
−k2 þ g2ϕ2

4
− gg0ϕ2

4

− gg0ϕ2

4
−k2 þ g02ϕ2

4

!�
W3μ

tr ðkÞ
Bμ
trðkÞ

�

− ðχ3ð−kÞ;ω3ð−kÞ;ω0ð−kÞÞ

0
B@

b11ðkÞ b12ðkÞ b13ðkÞ
b12ðkÞ b22ðkÞ b23ðkÞ
b13ðkÞ b23ðkÞ b33ðkÞ

1
CA
0
B@

χ3ðkÞ
ω3ðkÞ
ω0ðkÞ

1
CA
1
CA; ð18Þ

with

b11ðkÞ ¼ −k2 þ μ2 þ λϕ2 þ g2u2

4ξ
þ g02u02

4ξ0
ð19Þ

b12ðkÞ¼−
g
2

�
ϕþu

ξ

� ffiffiffiffiffiffiffiffi
−k2

p
; b13ðkÞ¼

g0

2

�
ϕþu0

ξ0

� ffiffiffiffiffiffiffiffi
−k2

p
;

ð20Þ

b22ðkÞ ¼ −
k2

ξ
þ g2ϕ2

4
; b33ðkÞ ¼ −

k2

ξ0
þ g02ϕ2

4
;

b23ðkÞ ¼ −
gg0ϕ2

4
ð21Þ

and

Det

0
B@

b11ðkÞ b12ðkÞ b13ðkÞ
b12ðkÞ b22ðkÞ b23ðkÞ
b13ðkÞ b23ðkÞ b33ðkÞ

1
CA

¼ −
1

ξξ0
k2ðk2 − k2þ;ZÞðk2 − k2−;ZÞ: ð22Þ

Here was introduced

k2�;Z ¼
1

2

�
μ2þ λϕ2 −

1

2
ðg2þ g02ÞuZϕ

�

� 1

2
ððμ2þ λϕ2Þðμ2þ λϕ2− ðg2þ g02ÞϕðuZ þ ξZϕÞÞ12

ð23Þ
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cf. (15), with the definitions,

ξZ ¼ ξg2 þ ξ0g02

g2 þ g02
; uZ ¼ g2uþ g02u0

g2 þ g02
: ð24Þ

B. One-loop effective potential

In one-loop order the effective potential corresponding to
the gauge fixing (8) can be seen from [4–9], using also (9),
(12), (14), (18) and (22). It has inD ¼ 4 − ϵ dimensions the
following contribution from the Higgs field,

V ½1�
H ¼ −

i
2

Z
dDk
ð2πÞD log

k2 − μ2 − 3λϕ2 þ iϵ
k2 þ iϵ

≃ −
9λ2ϕ4

64π2

�
2

ϵ
− log

3λϕ2

M2
þ 3

2

�
; ð25Þ

where in the last step the asymptotic part at large values of ϕ
was kept. The contribution from the W� field with asso-
ciated Goldstone bosons and ghosts is by means of (12)
and (14),

V ½1�
W� ¼ −i

Z
dDk
ð2πÞD

�
ðD − 1Þ log k

2 −M2
W þ iϵ

k2 þ iϵ
þ log

ðk2 − k2þ;W þ iϵÞðk2 − k2−;W þ iϵÞ
ðk2 þ iϵÞ2 − 2 log

k2 þ g2uϕ
4

þ iϵ

k2 þ iϵ

�

≃ −
3M4

W

32π2

�
2

ϵ
− log

M2
W

M2
þ 5

6

�
−
λðλ − 1

2
ξg2Þϕ4

32π2

�
2

ϵ
−
1

2
log

1
4
ξg2λϕ4

M4
þ 3

2

�
þ λϕ4

64π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξg2Þ

q
log

λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξg2Þ

p
λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξg2Þ

p ;

ð26Þ
where in the last step again only the asymptotic part at large values of ϕ was kept, with the gauge parameter u kept fixed.
Also we get from the A− and Z0 -fields with associated Goldstone boson and ghosts by (18) and (22),

V ½1�
Z0 ¼ −

i
2

Z
dDk
ð2πÞD

�
ðD − 1Þ log k

2 −M2
Z þ iϵ

k2 þ iϵ
þ log

ðk2 − k2þ;Z þ iϵÞðk2 − k2−;Z þ iϵÞ
ðk2 þ iϵÞ2 − 2 log

k2 þ ðg2þg02ÞuZϕ
4

þ iϵ

k2 þ iϵ

�

≃ −
3M4

Z

64π2

�
2

ϵ
− log

M2
Z

M2
þ 5

6

�
−
λðλ − 1

2
ξZðg2 þ g02Þϕ4

64π2

�
2

ϵ
−
1

2
log

1
4
ξZðg2 þ g02Þλϕ4

M4
þ 3

2

�

þ λϕ4

128π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξZðg2 þ g02ÞÞ

q
log

λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξZðg2 þ g02Þ

p
Þ

λ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξZðg2 þ g02Þ

p
Þ ; ð27Þ

where again only the asymptotic part, with ϕ >> u; u0, was kept, and with M2
Z ¼ ðg2þg02Þϕ2

4
.

The infinite parts of (25), (26) and (27) are canceled by the standard one-loop counterterms, and collecting the asymptotic
part one gets, with β½1�λ and γ½1�ϕ one-loop renormalization groop functions [see (A3)],

V ½1�
ren ≃ 1

4
ðβ½1�λ − 4λγ½1�ϕ Þϕ4 log

ϕ

M
þ 1

4
Δλϕ4; ð28Þ

where

Δλ≃ 1

16π2

�
3

8
g4
�
log

�
g2

4

�
−
5

6

�
þ 3

16
ðg2 þ g02Þ2

�
log

�
g2 þ g02

4

�
−
5

6

�
þ 9λ2

�
logð3λÞ − 3

2

�

þ 2λ

�
λ −

1

2
ξg2
��

1

2
log

�
1

4
ξg2λ

�
−
3

2

�
þ λ

�
λ −

1

2
ξZðg2 þ g02Þ

��
1

2
log

�
1

4
ξZðg2 þ g02Þλ

�
−
3

2

�

þ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξg2Þ

q
log

λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξg2Þ

p
λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξg2Þ

p þ λ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξZðg2 þ g02ÞÞ

q
log

λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξZðg2 þ g02ÞÞ

p
λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ − ξZðg2 þ g02ÞÞ

p �
: ð29Þ

The important point concerning this expression is that it has
a nontrivial dependence on the gauge parameters ξ and ξ0.
Its value at ξ ¼ ξ0 and ξ0 ¼ ξ00, with ξ0 and ξ00 specific
values of the gauge parameters, is denoted Δλ0.

C. Renormalization group improved effective potential

The effective potential is a solution of the renormaliza-
tion group equation,

�
M

∂
∂M þ

X
i

βgi
∂
∂gi − γϕϕ

∂
∂ϕ
�
Vðϕ;M; giÞ ¼ 0; ð30Þ

where M denotes the renormalization scale and gi are
coupling constants and dimensionless gauge fixing param-
eters (we only consider the renormalization group asymp-
totically such that the dependence of the effective potential
on μ2 and the gauge parameters u; u0 can be disregarded).
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Ford, Jones, Stephenson and Einhorn [19] have found the
following solution of this equation,

Vðϕ;M; giÞ ¼ VðϕðtÞ;MðtÞ; giðtÞÞ; ð31Þ
with

ϕðtÞ ¼ ϕηðtÞ; ηðtÞ ¼ exp

�
−
Z

t

0

dt0γϕðgiðt0ÞÞ
�
;

MðtÞ ¼ etM; ð32Þ

and

dgiðtÞ
dt

¼ βiðgjðtÞÞ: ð33Þ

In (31) one conveniently chooses ϕðtÞ ¼ MðtÞ, which by
(32) is the same as

t ¼ log
ϕ

M
−
Z

t

0

dt0γϕðt0Þ: ð34Þ

This choice of t makes terms involving logarithmic factors,

log
ϕðtÞ
MðtÞ ;

disappear on the right-hand side of (31).
Another solution of (30) was obtained by Coleman and

Weinberg [20]. From dimensional considerations it follows
that �

M
∂
∂M þ ϕ

∂
∂ϕ
�
V ¼ 4V ð35Þ

which is combined with (30) and becomes by elimination
of ϕ, �

M
∂
∂M þ β̄i

∂
∂gi − 4γ̄ϕ

�
Vðϕ;M; giÞ ¼ 0; ð36Þ

with β̄i ¼ βi
1þγϕ

; γ̄ϕ ¼ γϕ
1þγϕ

and with solution

Vðϕ;M; giÞ ¼ η̄ðt̄Þ4Vðϕ;Mðt̄Þ; ḡiðt̄ÞÞ; ð37Þ
where η̄ðt̄Þ and ḡiðt̄Þ are defined by (32) and (33) with the
γ̄ϕ and β̄i, and with a new running variable t̄. Here we take

t̄ ¼ log
ϕ

M
ð38Þ

and thusMðt̄Þ ¼ ϕ. This choice of t̄ makes terms involving
logarithmic factors,

log
ϕ

Mðt̄Þ ;

disappear on the right-hand side of (37). The two solutions
(31) and (37) of (30) are equivalent.
The renormalization group equations (33) are solved in

the leading and next-leading logarithmic approximation,
where for g2i ¼ ðλ; g2; g02Þ; i ¼ 1; 2; 3,

ðg2i Þf0gðtÞ ¼ g2i þ
X

m1þm2þm3¼n>1

am1;m2;m2
g2m1

1 g2m2

2 g2m3

3 tn−1;

ð39Þ

where the coefficients am1;m2;m3
are determined by (33) and

the leading logarithmic approximation is indicated by a
superscript f0g. In next-leading logarithmic order one gets,
with the next-leading logarithmic approximation indicated
by a superscript f1g, instead of (39),

ðg2i Þf1gðtÞ ¼
X

m1þm2þm3¼n>1

bm1;m2;m2
g2m1

1 g2m2

2 g2m3

3 tn−2; ð40Þ

with new coefficients bm1;m2;m3
.

For the gauge parameter ξ one also has a renormalization
group equation with a solution ξðtÞ that also depends on ξ,
and ξðtÞ also has a leading and next-leading logarithmic
approximation given by a power series like (39) and (40)
(more details are given in the Appendix). In an expansion
involving leading and next-leading logarithms one also has
the running Higgs boson field expectation value,

ϕf0gðtÞ≃ ϕ exp

�
−
Z

t

0

dt0γf0gϕ ðt0Þ
�
;

ϕf1gðtÞ≃ −
Z

t

0

dt0γf1gϕ ðt0Þϕf0gðtÞ; ð41Þ

where γϕ is the anomalous dimension of the scalar field,
and details on γf0gϕ ðtÞ and γf1gϕ ðtÞ can be found in the
Appendix.
Equation (34) reduces to

t≃ log
ϕ

M
ð42Þ

in the leading logarithmic approximation, and in the next-
leading logarithmic approximation one gets

t≃ log
ϕ

M
−
Z

logϕ
M

0

dt0γf0gϕ ðt0Þ: ð43Þ

Inserting here (38) one gets (43) in the form

t≃ t̄ −
Z

t̄

0

dt0γf0gϕ ðt0Þ; dt≃ dt̄ð1 − γf0gðt̄ÞÞ: ð44Þ

Combining (41) with (43) one finds in the next-leading
logarithmic order
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ϕf0gðtÞþϕf1gðtÞ≃
�
1−
Z

logϕ
M

0

dt0γf1gϕ ðt0Þþγf0g
�
log

ϕ

M

�

×
Z

logϕ
M

0

dt0γf0gϕ ðt0Þ
�
ϕf0g

�
log

ϕ

M

�
: ð45Þ

This equation should be compared with the next-leading
logarithmic approximation of the quantity η̄ðt̄Þ obtained
from Coleman and Weinberg’s solution (37):

η̄f0gðt̄Þ þ η̄f1gðt̄Þ≃
�
1 −

Z
t̄

0

dt̄0ðγf1gðt̄0Þ − ðγf0gðt̄0ÞÞ2Þ
�

× exp

�
−
Z

t̄

0

dt̄0γf0gϕ ðt̄0Þ
�
: ð46Þ

The discrepancy between (45) and (46) is caused by the fact
that the two integration variables t and t̄ are related by the
transformation (44), which mixes different orders in the
expansion in leading and next-leading logarithms, and it is
removed by carrying out in (41) a change of integration
variable by (44).
Similarly one gets the quartic coupling constant λ in the

leading and next-leading logarithmic order,

λf0gðtÞ þ λf1gðtÞ − λ≃
Z

t

0

dt0ðβf0gλ ðt0Þ þ βf1gλ ðt0ÞÞ

≃
Z

logϕ
M

0

dt0ðβf0gλ ðt0Þ þ βf1gλ ðt0ÞÞ

− βf0gλ

�
log

ϕ

M

�Z
logϕ

M

0

dt0γf0gϕ ðt0Þ;

ð47Þ

and

λ̄f0gðt̄Þ þ λ̄f1gðt̄Þ − λ≃
Z

t̄

0

dt̄0ðβf0gλ ðt̄0Þ þ βf1gλ ðt̄0Þ

− γf0gϕ ðt̄0Þβf0gλ ðt̄0ÞÞ; ð48Þ

where (47) is converted into (48) through the
transformation (44).

III. LEADING AND NEXT-LEADING
LOGARITHMIC APPROXIMATION
OF THE EFFECTIVE POTENTIAL

The renormalization group improved potential is in the
leading logarithmic approximation by (7),

Vf0g ≃ 1

4
λf0gðtÞϕf0gðtÞ4∣t¼logϕ

M
; ð49Þ

where λf0gðtÞ and ϕf0gðtÞ only include leading logarithms.
Equation (49) follows immediately from both the renorm-
alization group equation solutions (31) and (37). Since the

anomalous dimension, in contrast to the running coupling
constant, is gauge parameter dependent, one gets from (49)

ξ
∂
∂ξV

f0g ≃ −4
Z

t

0

dt0ξ
∂γf0gϕ ðt0Þ

∂ξ ∣t¼logϕ
M
Vf0g;

ξ0
∂
∂ξ0 V

f0g ≃ −4
Z

t

0

dt0ξ0
∂γf0gϕ ðt0Þ

∂ξ0 ∣t¼logϕ
M
Vf0g: ð50Þ

These relations are consistent with the partial differential
equations (1) in the context of the leading logarithms,

ξ
∂
∂ξV

f0g≃−Cf0g ∂
∂ϕV

f0g; ξ 0
∂
∂ξ 0V

f0g≃−C0f0g ∂
∂ϕV

f0g;

ð51Þ
with

Cf0g ¼ ϕξ
∂
∂ξ
Z

logϕ
M

0

dt0γf0gϕ ðt0Þ;

C0f0g ¼ ϕξ0
∂
∂ξ0
Z

logϕ
M

0

dt0γf0gϕ ðt0Þ ð52Þ

valid since the differentiation of the logarithms in (49)
convert leading logarithmic terms into next-leading loga-
rithmic terms that are neglected in this approximation.
Including next-leading logarithms one gets from (7) and

(28) combined with (31) and using (43) the asymptotic
effective potential

Vf0g þ Vf1g ≃
�
1

4
λf0gðtÞϕf0gðtÞ4 þ 1

4
λf1gðtÞϕf0gðtÞ4

þ λf0gðtÞϕf0gðtÞ3ϕf1gðtÞ

þ 1

4
Δλf0gðtÞϕf0gðtÞ4

�
∣
t¼logϕ

M−
R

logϕM
0

dt0γf0gϕ ðt0Þ
:

ð53Þ
Here the coupling constants as well as the field are taken
only to the leading logarithmic approximation in the last
term, but in the first three terms both leading and next-
leading logarithms are included. This is because the
expression Δλ as seen from (29) has two extra powers
of g or g0 or one extra power of λ in front and hence the
leading logarithmic approximation of this term matches the
next-leading logarithmic approximation of the renormali-
zation group improved tree potential.
Carrying out an expansion of the first term on the right-

hand side of (53), one obtains in this approximation

Vf1g ≃
�
1

4
λf1gðtÞϕf0gðtÞ4 þ λf0gðtÞϕf0gðtÞ3ϕf1gðtÞ

−
1

4
ðβf0gλ ðtÞ− 4λf0gðtÞγf0gϕ ðtÞÞϕf0gðtÞ4

Z
t

0

dt0γf0gϕ ðt0Þ

þ 1

4
Δλf0gðtÞϕf0gðtÞ4

�
∣t¼logϕ

M
: ð54Þ
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Using the solution (37) of the renormalization group
equation one obtains a different result:

Vf1g≃
�
1

4
λf1gðtÞϕf0gðtÞ4þ λf0gðtÞϕf0gðtÞ3ϕf1gðtÞ

−
1

4

Z
t

0

dt0ðβf0gλ ðt0Þ−4λf0gðtÞγf0gϕ ðt0ÞÞγf0gϕ ðt0Þϕf0gðtÞ4

þ1

4
Δλf0gðtÞϕf0gðtÞ4

�
∣t¼logϕ

M
: ð55Þ

From (54) one gets, using (41),

ξ
∂
∂ξV

f1g ≃ −4
Z

t

0

dt0ξ
∂γf0gϕ ðt0Þ

∂ξ ∣t¼logϕ
M
Vf1g

þ
�
−4
Z

t

0

dt0ξ
∂γf1gϕ ðt0Þ

∂ξ

þ 4ξ
∂γf0gϕ ðtÞ

∂ξ
Z

t

0

dt0γf0gϕ ðt0Þ

−
Z

t

0

dt0ξ
∂γf0gϕ ðt0Þ

∂ξ
�
βf0gλ ðtÞ
λf0gðtÞ − 4γf0gϕ ðtÞ

�

þ ξ
∂
∂ξ

Δλf0gðtÞ
λf0gðtÞ

�
∣t¼logϕ

M
Vf0g: ð56Þ

Equations (50) and (56) are combined with

ϕ
∂
∂ϕVf0g ≃ 4Vf0g þ

�
βf0gλ ðtÞ
λf0gðtÞ − 4γf0gϕ ðtÞ

�
∣t¼logϕ

M
Vf0g;

ð57Þ

correct to the next-leading logarithmic approximation.
Thus (50) implies in this approximation

ξ
∂
∂ξV

f0g

≃ −Cf0g ∂
∂ϕVf0g

þ
Z

t

0

dt0ξ
∂γf0gϕ ðt0Þ

∂ξ
�
βf0gλ ðtÞ
λf0gðtÞ − 4γf0gϕ ðtÞ

�
∣t¼logϕ

M
Vf0g;

ð58Þ

and adding (56) and (58), using again (57), one obtains

ξ
∂
∂ξ ðV

f0g þ Vf1gÞ≃ −Cf0g ∂
∂ϕ ðVf0g þ Vf1gÞ

− Cf1g ∂
∂ϕVf0g; ð59Þ

correct to the next-leading logarithmic approximation, with

Cf1g ¼ ϕ

�Z
t

0

dt0ξ
∂γf1gϕ ðt0Þ

∂ξ − ξ
∂γf0gϕ ðtÞ

∂ξ
Z

t

0

dt0γf0gϕ ðt0Þ

−
1

4
ξ
∂
∂ξ

Δλf0gðtÞ
λf0gðtÞ

�
∣t¼logϕ

M
: ð60Þ

A similar construction leads to

C0f1g ¼ −ϕ
�
ξ0
∂γf0gϕ ðtÞ
∂ξ0

Z
t

0

dt0γf0gϕ ðt0Þ

þ 1

4
ξ0

∂
∂ξ0

Δλf0gðtÞ
λf0gðtÞ

�
∣t¼logϕ

M
; ð61Þ

where it should be kept in mind that γf1gϕ ðtÞ does not depend
on ξ0 since the anomalous dimension is independent of ξ0 at
two-loop order and at one-loop order it only depends on ξ0

in the renormalization group invariant combination ξ0g02

which only contributes to γf0gϕ ðtÞ.
Using (55) as the next-leading logarithmic approxima-

tion of the effective potential one gets instead of (59)

ξ
∂
∂ξ ðV

f0g þ Vf1gÞ≃ −Cf0g ∂
∂ϕ ðVf0g þ Vf1gÞ

− ðCf1g þ ΔCf1gÞ ∂
∂ϕVf0g; ð62Þ

where

ΔCf1g ¼ ϕξ
∂
∂ξ
�Z

t

0

dt0γf0gϕ ðt0Þð1
4

βf0gλ ðt0Þ − βf0gλ ðtÞ
λf0gðtÞ

− ðγf0gϕ ðt0Þ − γf0gϕ ðtÞÞ
�
∣t¼logϕ

M
; ð63Þ

with similar equations involving the gauge parameter ξ0.

IV. FIELD REDEFINITION

All ingredients are now available to solve (3)–(4) in the
context of the renormalization group improved effective
potential in the leading and next-leading logarithmic
approximation.
The leading logarithmic approximation of the effective

potential is given by (49). Here a solution of (3)–(4) is

Φf0g ≃ ϕ exp

�
−
Z

logϕ
M

0

dt0ðγf0gϕ ðt0Þ − γf0gϕ;0 ðt0ÞÞ
�

ð64Þ

with

ξ
∂Φf0g

∂ξ ≃ −Cð0Þ Φ
f0g

ϕ
≃ −Cð0Þ ∂Φf0g

∂ϕ ; ð65Þ
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where Cf0g is given in (52), and with a similar equation for
ξ0, and where γϕ;0 denotes the value of the anomalous
dimension γϕ at the specific values ξ0 and ξ00 of the gauge
parameters. Here it was used that differentiation of the
exponential of (42) with respect to ϕ only gives a non-
vanishing contribution in the next-leading logarithmic
approximation.
The new running variable is

τ≃ log
Φ½0�

M
≃ log

ϕ

M
−
Z

logϕ
M

0

dt0ðγf0gϕ ðt0Þ − γf0gϕ;0 ðt0ÞÞ
ð66Þ

according to (42), using also (64). The second term of (66)
is of next-leading logarithmic order, and thus

τ≃ t ð67Þ

at leading logarithmic order. Using the anomalous dimen-
sion γϕ;0 corresponding to the gauge parameters ξ0 and ξ00,
one next gets the new running field variable Φf0gðtÞ
from (41),

Φf0gðtÞ ¼ Φf0g exp
�
−
Z

t

0

dt0γf0gϕ;0 ðt0Þ
�

¼ ϕf0gðtÞ; ð68Þ

with t≃ log ϕ
M, and with ϕf0gðtÞ given in (41). Eliminating

ϕ and introducing insteadΦf0g in (49) one thus gets, correct
to the leading logarithmic approximation,

1

4
λf0gðtÞϕf0gðtÞ4∣t≃logϕ

M
≃ 1

4
λf0gðtÞΦf0gðtÞ4∣

t≃logΦ
f0g
M
; ð69Þ

and this establishes the invariance of the effective potential
under a change of the gauge parameters at leading
logarithmic order in agreement with (5).
At next-leading logarithmic order the solution of (3)–(4)

is instead of (64) for the renormalization group solu-
tion (31),

Φf0g þ Φf1g ≃ Φf0g
�
1þ ðγf0gϕ ðtÞ − γf0gϕ;0 ðtÞÞ

Z
t

0

dt0γf0gϕ ðt0Þ

−
Z

t

0

dt0ðγf1gϕ ðt0Þ − γf1gϕ;0 ðt0ÞÞ

þ 1

4

Δλf0gðtÞ − Δλf0g0 ðtÞ
λf0gðtÞ

�
∣t≃logϕ

M
; ð70Þ

since

ξ
∂
∂ξðΦ

f0g þΦf1gÞ≃−Cf0g ∂
∂ϕðΦ

f0g þΦf1gÞ−Cf1g ∂
∂ϕΦ

f0g;

ð71Þ

by (52) and (60), with a similar equation for ξ0, and with

ϕ
∂
∂ϕ ðΦf0g þ Φf1gÞ≃ ð1 − ðγf0gϕ ðtÞ − γf0gϕ;0 ðtÞÞÞΦf0g þ Φf1g

ð72Þ

by (64) and (70), correct at next-leading logarithmic order.
It is next verified that the effective potential in the next-

leading logarithmic approximation (54) is obtained also
from the new field (70). First it is shown that the new
running variable still obeys (67). From (64) and (70) it
follows that

log
Φf0gþΦf1g

M
≃ log

ϕ

M
þ
�
ðγf0gϕ ðtÞ−γf0gϕ;0 ðtÞÞ

Z
t

0

dt0γf0gϕ ðt0Þ

−
Z

t

0

dt0ðγf0gϕ ðt0Þþγf1gϕ ðt0Þ

−γf0gϕ;0 ðt0Þ−γf1gϕ;0 ðt0ÞÞ

þ1

4

Δλf0gðtÞ−Δλf0g0 ðtÞ
λf0gðtÞ

�
∣t≃logϕ

M
; ð73Þ

correct in the next-leading logarithmic approximation, and
thus the new running variable τ replacing t is by (43),

τ≃ log
Φf0g þ Φf1g

M
−
Z

logΦ
f0gþΦf1g

M

0

dt0γf0gϕ;0 ðt0Þ

≃ t −
Z

logΦ
f0gþþΦf1g

M

logϕ
M

dt0γf0gϕ;0 ðt0Þ

þ
�
ðγf0gϕ ðtÞ − γf0gϕ;0 ðtÞÞ

Z
t

0

dt0γf0gϕ ðt0Þ

−
Z

t

0

dt0ðγf1gϕ ðt0Þ − γf1gϕ;0 ðt0ÞÞ

þ 1

4

Δλf0gðtÞ − Δλf0g0 ðtÞ
λf0gðtÞ

�
∣t≃logϕ

M
; ð74Þ

with the quantity t given by (43), and the other terms on the
right-hand side are only nonvanishing at next-next-leading
logarithmic order, and so (67) holds true also at next-
leading logarithmic order.
The running field variable is thus instead of (68), keeping

in mind that the anomalous dimension γϕ;0 should be
used,

ðΦf0g þ Φf1gÞðtÞ ¼ ðΦf0g þ Φf1gÞ

× exp

�
−
Z

t

0

dt0ðγf0gϕ;0 ðt0Þ þ γf1gϕ;0 ðt0ÞÞ
�
;

ð75Þ

where t is given by (43), with
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exp

�
−
Z

t

0

dt0ðγf0gϕ;0 ðt0Þ þ γf1gϕ;0 ðt0ÞÞ
�
∣
t¼logϕ

M−
R

logϕM
0

dt0γf0gϕ ðt0Þ
≃ exp

�
−
Z

t

0

dt0γf0gϕ;0 ðt0Þ
��

1þ γf0gϕ;0 ðtÞ
Z

t

0

dt0γf0gϕ ðt0Þ

−
Z

t

0

dt0γf1gϕ;0 ðt0Þ
�
∣t≃logϕ

M
: ð76Þ

Inserting (64), (70) and (76) into (75) one then finds

ðΦf0g þ Φf1gÞðtÞ≃ ϕf0gðtÞ
�
1þ 1

4

Δλf0gðtÞ − Δλf0g0 ðtÞ
λf0gðtÞ

�
þ ϕf1gðtÞ; ð77Þ

with t again given by (43), and using (77), (53) can be tested for invariance under a change of the gauge parameters,

1

4
ðλf0g þ λf1gÞðtÞðΦf0g þΦf1gÞðtÞ4 þ 1

4
Δλf0g0 ðtÞΦf0gðtÞ4 ≃ 1

4
ðλf0g þ λf1gÞðtÞðϕf0g þϕf1gÞðtÞ4 þ 1

4
Δλf0gðtÞϕf0gðtÞ4; ð78Þ

which completes the proof that the renormalization group improved effective potential is gauge parameter independent in the
next-leading logarithmic approximation in the context of the renormalization group solution (31), again in agreementwith (5).
Using (55) as the next-leading approximation of the effective potential the solution of (3)–(4) contains at next-leading

logarithmic order in addition to (70), as seen from (63),

ΔΦf1g ≃ −Φf0g
�Z

t

0

dt0γf0gϕ ðt0Þ
�
1

4

βf0gλ ðt0Þ − βf0gλ ðtÞ
λf0gðtÞ − ðγf0gϕ ðt0Þ − γf0gϕ ðtÞÞ

�

−
Z

t

0

dt0γf0gϕ;0 ðt0Þ
�
1

4

βf0gλ ðt0Þ − βf0gλ ðtÞ
λf0gðtÞ − ðγf0gϕ;0 ðt0Þ − γf0gϕ;0 ðtÞÞ

��
∣t≃logϕ

M
ð79Þ

with

ξ
∂
∂ξ ðΦ

f0g þ Φf1g þ ΔΦf1gÞ≃ −Cf0g ∂
∂ϕ ðΦf0g þ Φf1g þ ΔΦf1gÞ − ðCf1g þ ΔCf1gÞ ∂

∂ϕΦf0g; ð80Þ

using again (72) and again with a similar equation for ξ0.
The running variable is in this case by (38),

τ̄ ¼ log
Φf0g þ Φf1g þ ΔΦf1g

M
; ð81Þ

which in the next-leading logarithmic approximation reduces to (66), and thus

λf0gðτ̄Þ≃
�
λf0gðtÞ − βf0gλ ðtÞ

Z
t

0

dt0ðγf0gϕ ðt0Þ − γf0gϕ;0 ðt0ÞÞ
�
∣t¼logϕ

M
: ð82Þ

For Φf1gðτ̄Þ and ΔΦf1gðτ̄Þ it is sufficient to take τ̄≃ log ϕ
M at next-leading logarithmic order. One thus finds by (41), (66),

(68), (70) and (79) the running field variable in this case,

ðΦf0g þ Φf1g þ ΔΦf1gÞðτ̄Þ ¼ ðΦf0g þ Φf1g þ ΔΦf1gÞ exp
�
−
Z

τ̄

0

dt0ðγf0gϕ;0 ðt0Þ þ γf1gϕ;0 ðt0ÞÞ
�

≃
�
ϕf1gðtÞ þ ϕf0gðtÞ

�
1þ

Z
t

0

dt0ððγf0gϕ ðt0ÞÞ2 − ðγf0gϕ;0ðt0ÞÞ2Þ þ
1

4

Δλf0gðtÞ − Δλf0g0 ðtÞ
λf0gðtÞ

−
1

4

Z
t

0

dt0ðγf0gϕ ðt0Þ − γf0gϕ;0 ðt0ÞÞ
βf0gλ ðt0Þ − βf0gλ ðtÞ

λf0gðtÞ

��
∣t¼logϕ

M
; ð83Þ

and therefore, using again (68),
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1

4
λf0gðτ̄ÞΦf0gðτ̄Þ4 þ 1

4
λf1gðtÞΦf0gðtÞ4

þ λf0gðtÞΦf0gðtÞ3ðΦf1g þ ΔΦf1gÞðtÞ

−
1

4

Z
t

0

dt0ðβf0gλ ðt0Þ − 4λf0gðtÞγf0gϕ;0 ðt0ÞÞγf0gϕ;0 ðt0ÞΦf0gðtÞ4 þ 1

4
Δλf0g0 ðtÞΦf0gðtÞ4

≃ 1

4
λf0gðtÞϕf0gðtÞ4 þ 1

4
λf1gðtÞϕf0gðtÞ4 þ λf0gðtÞϕf0gðtÞ3ϕf1gðtÞ

−
1

4

Z
t

0

dt0ðβf0gλ ðt0Þ − 4λf0gðtÞγf0gϕ ðt0ÞÞγf0gϕ ðt0Þϕf0gðtÞ4 þ 1

4
Δλf0gðtÞϕf0gðtÞ4; ð84Þ

valid in next-leading logarithmic order, with t ¼ log ϕ
M and

τ̄ given by (81). Eq. (84) verifies (5) for this case also. This
proves according to (55) that the effective potential is
unchanged under gauge parameter changes for the renorm-
alization group solution (37) in the next-leading logarith-
mic order as well.

V. CONCLUSION AND COMMENTS

It has been demonstrated above that Eq. (1) allows a
redefinition of the field variable of the effective potential
in the SUð2Þ ⊗ Uð1Þ model of electroweak unification in
the leading and next-leading logarithmic approximation for
both of the renormalization group equation solutions (31)
and (37). As a result of the redefinition, the arbitrary gauge
parameters ðξ; ξ0Þ are eliminated in terms of fixed gauge
parameters ðξ0; ξ00Þ of some preferred gauge such as the
Landau gauge. The redefinition is achieved by solving
(3)–(4) to the required accuracy, and the solutions are (64) in
the leading logarithmic approximation and (70) and (79)
in the next-leading logarithmic approximation. Remarkably,
the construction in the leading logarithmic approximation
only involves the anomalous dimension of the Higgs boson
field, while in the next-leading logarithmic approximation
the quantity Δλ defined in (29) plays a crucial role.
As mentioned in the Introduction, (64), (70) and (79)

define mappings of the field variable ϕ, and the inverse
mappings are obtained by interchanging ðξ; ξ0Þ and ðξ0; ξ00Þ
in (64), (70) and (79); this is also easily shown directly and
represents a consistency check on the solutions of (3)
and (4) represented by (64), (70) and (79). This observation
makes it possible to obtain the field variable in an arbitrary
gauge from the field variable in the Landau gauge as used
in [3–5] such that the effective potential is invariant: one
substitutes instead of the field variable ϕ the solutions (64),
(70) and (79) determined above, with the replacements
ðξ; ξ0Þ → ð0; 0Þ and ðξ0; ξ00Þ → ðξ; ξ0Þ, since one is now
dealing with the inverse mapping of the field variable. The
gauge parameter depencence of the instability scale studied
numerically in [9] can be found analytically this way.
The conditions (34) and (38) were imposed on the

renormalization group running variables in order to obtain
well-defined approximation schemes. They may not be the

optimal choices of running variables from the point of
view of numerical accuracy. Also it was pointed out that
the two solutions (31) and (37), though equivalent, have
different expansions in this approximation scheme, and
thus one may give more precise estimates than the other
one. Similarly, different gauge choices may lead to different
degrees of accuracy, though they are formally equivalent.
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APPENDIX: RENORMALIZATION GROUP
FUNCTIONS

gi represents the couplings of the theory (including the
dimensionless gauge fixing parameters ξ; ξ0) that obey the
renormalization group equations (33). Solving these equa-
tions with the one-loop β functions leads to the leading
logarithmic approximation of the running coupling con-
stants, and including also two-loop β functions one obtains
the next-leading logarithmic approximation. Theβ functions
for coupling constants are gauge parameter independent,
and up to two-loop order they can be seen from [4,5,7].
Anomalous dimensions are, in contrast to coupling

constant β functions, dependent on the dimensionless
gauge fixing parameters. The anomalous dimension of
the W field in the electroweak theory is at one-loop order,
keeping only bosonic contributions,

γ½1�W ≃ −
1

16π2

�
25

6
− ξ

�
g2; ðA1Þ

and the function βξ for the gauge parameter ξ is in general
given by
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βξ ¼ −2ξγW: ðA2Þ

Solving (33) for the gauge parameter ξ with the β function
(A2) one gets, using the one-loop value of βξ, the running
gauge parameter in the leading logarithmic approximation.
The quantity ξ0g02 is renormalization group invariant. The
anomalous dimension of the scalar field is at one-loop
order, disregarding fermions,

γ½1�ϕ ≃ −
1

16π2

�
3

4
ð3g2 þ g02Þ − 3

4
ξg2 −

1

4
ξ0g02

�
: ðA3Þ

Inserting here the leading logarithmic approximations of
the coupling constants and gauge fixing parameters one
obtains the leading logarithmic approximation of the

anomalous dimension, the function γf0gϕ ðtÞ used in the text.
The anomalous dimension of the W field is at two-loop

order, keeping only terms involving the coupling constant g
(gauge parameter dependence only occurs in these terms),

γ½2�W ≃
�

1

16π2

�
2
�
−
231

8
þ 11

2
ξþ ξ2

�
g4; ðA4Þ

where the value in pure SUð2Þ Yang-Mills theory is found
from [21] and the scalar field contribution from [22]. βξ is
determined by (A2) also at two-loop order, and solving (33)
in this case one obtains the running gauge parameter in the
next-leading logarithmic approximation. The two-loop
anomalous dimension of the scalar field γ½2�ϕ is also found
from [22]. The part proportional to g4 is, neglecting again
the fermion contribution,

γ½2�ϕ ≃
�

1

16π2

�
2
�
−
511

32
þ 3ξþ 3

8
ξ2
�
g4: ðA5Þ

γ½2�ϕ has no dependence on ξ0. Inserting g2 and ξ in leading
logarithmic order into (A5) and in next-leading logarithmic
order into (A3), the sum is the function γf1gϕ ðtÞ (the result is
only complete in the gauge parameter dependent part).
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