
Continuum study of various susceptibilities within thermal QED3

Pei-lin Yin,1 Yuan-mei Shi,2,3 Zhu-fang Cui,2,6 Hong-tao Feng,4 and Hong-shi Zong2,5,6,*
1Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics,

and Department of Physics, Nanjing University, Nanjing 210093, China
2Department of Physics, Nanjing University, Nanjing 210093, China

3Department of Physics and Electronic Engineering, Nanjing Xiaozhuang University,
Nanjing 211171, China

4Department of Physics, Southeast University, Nanjing 211189, China
5Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093, China

6State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing 100190, China
(Received 4 June 2014; published 25 August 2014)

In this paper, the relations of four different susceptibilities (i.e., the chiral susceptibility, the fermion
number susceptibility, the thermal susceptibility, and the staggered spin susceptibility) are investigated both
in and beyond the chiral limit. To this end, we numerically solve the finite-temperature version of the
truncated Dyson-Schwinger equations for the fermion and boson propagator. It is found that, in the chiral
limit, the four susceptibilities give the same critical temperature and signal a typical second order phase
transition. But the situation changes beyond the chiral limit: the critical temperatures from the chiral and the
thermal susceptibilities are different, which shows that to define a critical region instead of an exclusive
point for crossover might be a more suitable choice. Meanwhile, both the fermion number and the
staggered spin susceptibilities have no singular behaviors any more; this may mean that they are no longer
available to describe the crossover properties of the system.
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I. INTRODUCTION

The quantum chromodynamics (QCD) vacuum exhibits
many nonperturbative phenomena that are not present in
quantum electrodynamics (QED) vacuum. With increasing
temperature and/or chemical potential, the QCD vacuum
changes and the system undergoes a phase transition into
another phase with the temperature and/or chemical poten-
tial reaching their critical values. There may be many
different phases corresponding to different regions of
temperature and/or chemical potential. Research into prop-
erties of strongly interacting matter within different phases,
as well as behaviors of phase transitions, so as to map the
phase diagram for the system in the plane of temperature
and chemical potential, is quite important in today’s basic
physics theory and experiment, so a great many studies
have been done in this field [1–8].
In drawing the phase diagram of strongly interacting

matter, research into chiral symmetry breaking—restoration
and confinement-deconfinement phase transitions is an
important aspect. Some quantities that characterize the above
two kinds of phase transition are introduced both in lattice
QCD simulation and continuum model studies, for instance,
the chiral fermion condensate, the chiral susceptibility
[9–12], the quark number susceptibility [13–18], the thermal
susceptibility [19–21], and so on. For the latter, the approach
includes chiral perturbation theory [22], Dyson-Schwinger

equations (DSEs) and the Bethe-Salpeter equation (BSE)
[23,24], hard-thermal-loop (HTL) and hard-dense-loop
(HDL) approximations [25–27], the Nambu—Jona-
Lasinio (NJL) model [28–30], the QCD sum rule, and
others. With regard to chiral phase transition, the chiral and
the quark number susceptibilities have attracted much
interest over the past few years. In Ref. [31], based on a
continuum model study of the chiral susceptibility in two-
flavor QCD, the authors show that, with temperature
increasing, this susceptibility exhibits a divergent peak
(which indicates a second order phase transition) in the
chiral limit, and a finite peak (which means a crossover)
beyond the chiral limit.
Due to the complex non-Abelian character of QCD, it is

difficult to have a thorough understanding of the chiral
phase transition. In this case, to gain valuable comprehen-
sion of it, it is very suggestive to study some model which is
structurally much simpler than QCD while sharing the
same basic nonperturbative phenomena.
As a field theoretical model, quantum electrodynamics in

(2þ 1) dimensions (QED3) has been studied quite inten-
sively in recent years. It has many features that are similar
to QCD, such as dynamical chiral symmetry breaking
(DCSB) [32–38] and confinement [39–42]. In addition, due
to the coupling constant being dimensionful (its dimension
is

ffiffiffiffiffiffiffiffiffiffiffi
mass

p
), QED3 is super-renormalizable, so it does not

suffer from the ultraviolet divergence which is present in
QED4. Apart from these interesting features, QED3 with
Nf massless fermion flavors can be regarded as a possible*zonghs@nju.edu.cn
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low-energy effective theory for strongly correlated elec-
tronic systems [43–45].
In order to see what will happen in the case of QED3, the

chiral phase transition driven by the temperature in QED3 is
investigated by analyzing the temperature dependence of
susceptibility in the present paper. Although there have
been some works on studying the chiral phase transition by
susceptibility in the past few years, such as the chiral
susceptibility, the fermion number susceptibility, and so on,
research of the relations among them in the same frame-
work seems scant, as far as the present authors know. The
motivation of the present paper is to discuss specifically the
behavior of four different susceptibilities (i.e., the chiral
susceptibility, the fermion number susceptibility, the ther-
mal susceptibility, and the staggered spin susceptibility
[46]) with the temperature varying in and beyond the chiral
limit separately to compare the similarities and differences
among them.
This paper is organized as follows: In Sec. II, model-

independent analytical expressions for the four susceptibil-
ities are given, which express susceptibilities as integrals of
dressed propagators and dressed vertex. In Sec. III, calcu-
lations of the four susceptibilities within the DSEs frame-
work are performed. A brief summary and discussions are
given in Sec. IV.

II. ANALYTICAL TREATMENT

Dynamical properties of a many-particle system can be
investigated by measuring the response of the system to an
external perturbation that disturbs the system only slightly
in its equilibrium state. A noticeable measure is the
susceptibilities that are defined as the first-order derivative
of the order parameter with respect to the external field.
The order parameter is radically different in two phases and
thus characterizes the phase transition of the system. As a
result, the divergent or some other singular behavior of
susceptibilities is usually regarded as an essential character-
istic of phase transition.
In this section, by means of the external field method in

Ref. [47], model-independent expressions for the four
susceptibilities are given.

A. Formalism of the chiral susceptibility

It is commonly accepted that with the temperature and/or
chemical potential increasing, strongly interacting matter
will undergo a phase transition from the Nambu-Goldstone
phase (or Nambu phase, in which the condensate of
particle-antiparticle pairs, the order parameter of the chiral
phase transition, is nonzero due to DCSB) to the Wigner
phase (where chiral symmetry is partially restored and thus
the condensate vanishes). The fluctuation of this order
parameter is related to the chiral susceptibility which
measures the response of the chiral condensate to a small
perturbation of the current mass of the fermion.

The chiral susceptibility is defined as

χc ¼ ∂ð−hψ̄ψiÞ
∂m ¼ T

V
∂2 lnZ
∂m2

; ð1Þ

where hψ̄ψi is the fermion chiral condensate in the
presence of current mass m, and Z denotes the partition
function of the system.
Formally, we can express the chiral condensate by means

of the dressed fermion propagator

−hψ̄ψi ¼
Z

d3p
ð2πÞ3 Tr½Sðm;pÞ�; ð2Þ

where the notation Tr denotes trace over Dirac indices of
the propagator, and S is the dressed fermion propagator at
finite current mass m.
Substituting Eq. (2) into Eq. (1) and adopting the identity

∂Sðm;pÞ
∂m ¼ −Sðm;pÞ ∂S

−1ðm;pÞ
∂m Sðm;pÞ; ð3Þ

we immediately arrive at

χc ¼ −
Z

d3p
ð2πÞ3 Tr

�
Sðm;pÞ ∂S

−1ðm;pÞ
∂m Sðm;pÞ

�
: ð4Þ

Analogizing the well-known Ward identity in QED, we
consider the current mass m as a constant background
scalar field coupled to the fermion fields by the term mψ̄ψ .
Then Sðm;pÞ is the dressed fermion propagator in the
presence of such a background field and the derivative of its
inverse with respect to m yields the so-called one-particle-
irreducible (1PI) dressed scalar vertex

Γðm; 0; pÞ ¼ ∂S−1ðm;pÞ
∂m ; ð5Þ

where p is the relative momentum, and the total momentum
of the dressed scalar vertex vanishes because the back-
ground scalar field m is a coordinate-independent constant.
Substituting Eq. (5) into Eq. (4) gives

χc ¼ −
Z

d3p
ð2πÞ3 Tr½Sðm;pÞΓðm; 0; pÞSðm;pÞ�: ð6Þ

Therefore, we obtain an integral formula for the chiral
susceptibility at zero temperature and chemical potential. It
expresses the chiral susceptibility in terms of the dressed
fermion propagator and the dressed scalar vertex, which are
just basic quantities in quantum field theory. The DSEs-
BSE approach provides us with a desirable framework to
calculate them, and hence the chiral susceptibility.
Here, we note that there is a linear divergence in the

above integral. In order to obtain something meaningful
from the chiral susceptibility, we need to subtract the linear
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divergence of the free chiral susceptibility. The regularized
chiral susceptibility is defined by

χcr ¼ χc − χcf

¼ −
Z

d3p
ð2πÞ3 Tr½Sðm;pÞΓðm; 0; pÞSðm;pÞ

− S0ðm;pÞ1S0ðm;pÞ�: ð7Þ

This expression can be generalized to the case of finite
temperature. According to finite-temperature field theory,
the corresponding finite-temperature version of the chiral
susceptibility can be obtained by replacing the integration
over the third component of the momentum with summa-
tion over Matsubara frequencies

χcrðTÞ ¼ −T
X
n

Z
d2P
ð2πÞ2 Tr½Sðm;pnÞΓðm; 0; pnÞSðm;pnÞ

− S0ðm;pnÞ1S0ðm;pnÞ�; ð8Þ

where pμ
n ¼ ðωn; ~pÞ. The notation ωn denotes the fermion

Matsubara frequencies; i.e., ωn ¼ ð2nþ 1ÞπT, ~p repre-
sents the spatial component of the momentum and its
modulus is written as P. Therefore, we have obtained a
model-independent integral formula for the chiral suscep-
tibility at finite temperature and vanishing chemical
potential.

B. Formalism of the fermion number susceptibility

In addition to the above chiral phase transition, with
increasing temperature and/or chemical potential, strongly
interacting matter will also experience a phase transition
from the confinement phase (where the degree of freedom
for the system is the hadron and thus the baryon number is
an integer) to the deconfinement phase (in which the degree
of freedom is the quark and gluon, and so the baryon
number is a fraction). The fluctuation of fermion number is
theoretically constructed from measurement of the fermion
number susceptibility, i.e., the response of fermion number
density to an infinitesimal change in the chemical potential.
The fermion number susceptibility is defined as

χn ¼ ∂ρðμÞ
∂μ

����
μ¼0

¼ T
V
∂2 lnZ
∂μ2

����
μ¼0

; ð9Þ

where ρ represents the fermion number density, and μ is the
chemical potential of the fermion.
Meanwhile, the fermion number density can be

expressed as [48]

ρðμÞ ¼ −
Z

d3p
ð2πÞ3 Tr½Sðμ; pÞγ

3�; ð10Þ

where Sðμ; pÞ is the dressed fermion propagator at finite
current mass and chemical potential.
Substituting Eq. (10) into Eq. (9) and using the identity

∂Sðμ; pÞ
∂μ ¼ −Sðμ; pÞ ∂S

−1ðμ; pÞ
∂μ Sðμ; pÞ; ð11Þ

one easily arrives at

χn ¼
Z

d3p
ð2πÞ3 Tr

�
Sðμ; pÞ ∂S

−1ðμ; pÞ
∂μ Sðμ; pÞγ3

�����
μ¼0

:

ð12Þ

In the same way as mentioned above, we consider Aν as
a constant background vector field coupled to the fermion
fields in the manner ψ̄γνψAν. Then SðA; pÞ is the dressed
fermion propagator in the presence of this background field
and the derivative of its inverse with respect toAν gives the
so-called 1PI dressed vector vertex

ΓνðA; 0; pÞ ¼ −
∂S−1ðA; pÞ

∂Aν ; ð13Þ

where p is the relative momentum and the total momentum
of this vertex still vanishes due to the constant background
field. Putting Aν ¼ δν3μ in Eq. (13), we obtain

Γ3ðμ; 0; pÞ ¼ −
∂S−1ðμ; pÞ

∂μ : ð14Þ

Combining Eq. (12) with Eq. (14) gives

χn ¼ −
Z

d3p
ð2πÞ3 Tr½Sðμ; pÞΓ

3ðμ; 0; pÞSðμ; pÞγ3�jμ¼0:

ð15Þ

Thus, we have also got the expression for the fermion
number susceptibility, in terms of a dressed fermion
propagator and dressed vector vertex which can be calcu-
lated by means of the DSEs-BSE approach at zero temper-
ature and chemical potential.
Finally, similar to Eq. (8), the above equation can be

generalized to the finite-temperature version:

χnðTÞ ¼ −T
X
n

Z
d2P
ð2πÞ2 Tr½Sðμ; pnÞΓ3ðμ; 0; pnÞ

× Sðμ; pnÞγ3�jμ¼0: ð16Þ

Therefore, we have obtained a model-independent integral
formula for the fermion number susceptibility at finite
temperature and vanishing chemical potential.
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C. Formalism of the thermal susceptibility

The chiral condensate is commonly used to characterize
the chiral phase transition of strongly interacting matter. In
the case of finite temperature, it is a function of temperature
and shows some singular behaviors near the phase tran-
sition point. The issue of thermal susceptibility, that is, the
response of the chiral condensate to an infinitesimal change
of temperature, has attracted a great deal of interest over the
years. Some works in Refs. [19–21] showed that the peak
of the thermal susceptibility should be a crucial character of
chiral phase transition.
As mentioned above, the thermal susceptibility is

defined as

χTðTÞ ¼ ∂hψ̄ψi
∂T ¼ −

1

V
∂2ðT lnZÞ
∂T∂m ; ð17Þ

where hψ̄ψi denotes the finite-temperature fermion chiral
condensate at finite current mass, which can be obtained
from Eq. (2) by replacing the integration over the third
component of momentum with summation over Matsubara
frequencies

−hψ̄ψi ¼ T
X
n

Z
d2P
ð2πÞ2 Tr½Sðm;pnÞ�: ð18Þ

Substituting Eq. (18) into Eq. (17), the thermal suscep-
tibility can be expressed as

χTðTÞ ¼ −T
X
n

Z
d2P
ð2πÞ2 Tr

�
Sðm;pnÞ

T
þ ∂Sðm;pnÞ

∂T
�
:

ð19Þ

Therefore, once the finite-temperature dressed fermion
propagator is known, one can calculate the thermal
susceptibility.

D. Formalism of the staggered spin susceptibility

Because of its success in interpreting the existence of
antiferromagnetic correlation in underdoped cuprates, the
Uð1Þ gauge fluctuation effect has aroused great interest and
extensive attention both in theory and experiment in recent
years. The response corresponding to this fluctuation is the
staggered spin susceptibility which can be directly mea-
sured in experiments and so provides an ideal tool to probe
the characteristics of a strongly correlated system. In recent
work, based on functional analysis, the general formula for
the staggered spin susceptibility was given in terms of a
dressed fermion propagator and dressed pseudoscalar
vertex, and thus it can be calculated within the framework
of the DSEs-BSE approach.
The general expression for the low-energy behavior of

the regularized staggered spin susceptibility was given by
Ref. [49]:

χs ¼
Z

d3p
ð2πÞ3 Tr½SðpÞΓpðpÞSðpÞ − S0ðpÞ1S0ðpÞ�; ð20Þ

where the notation Γp represents the pseudoscalar vertex
that satisfies the corresponding inhomogeneous BSE.
The corresponding finite-temperature version of the

staggered spin susceptibility can be obtained as

χsðTÞ ¼ T
X
n

Z
d2P
ð2πÞ2 Tr½SðpnÞΓpðpnÞSðpnÞ

− S0ðpnÞ1S0ðpnÞ�; ð21Þ

where Γp satisfies the finite-temperature version of the
inhomogeneous BSE.

III. NUMERICAL RESULTS

A. Dyson-Schwinger equations in QED3

Given the chiral symmetry and parity transformation, we
will employ the four-dimension matrix representation and
four-component spinors as in four space-time dimensions.
In Euclidean space, the Lagrangian density of QED3 with
Nf massless fermion flavors reads

L ¼
XNf

f¼1

ψ̄fð−∂ −mþ ieAÞψf −
1

4
F2
μν −

1

2ξ
ð∂ · AÞ2;

ð22Þ

where the subscript f is a flavor label; f ¼ 1; 2; ... ; Nf for
a theory with Nf distinct types or flavors of electrically
active fermions. We will only work with one flavor in the
present paper. Using this Lagrangian density, one can
derive in the standard way, for instance through functional
analysis, the DSEs for propagators.
For the fermion propagator, we obtain the finite-

temperature version of DSEs:

S−1ðm;pnÞ ¼ S−10 ðm;pnÞ þ Σðm;pnÞ; ð23Þ

Σðm;pnÞ ¼ T
X
n

Z
d2K
ð2πÞ2 γμSðm; knÞΓνðpn; knÞDμνðqnÞ;

ð24Þ

where S−10 ¼ i~γ · ~pþ iγ3ωn þm is just the inverse of the
free fermion propagator, Σ is the fermion self-energy, Γν is
the full fermion-boson vertex, and Dμν is the dressed boson
propagator.
Other than zero temperature, the O(3) symmetry of the

system reduces to O(2), and based on the Lorentz structure
analysis, the inverse of the fermion propagator can be
written as
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S−1ðm;pnÞ ¼ i~γ · ~pA∥ðm;pnÞ þ iγ3ωnA3ðm;pnÞ
þ Bðm;pnÞ; ð25Þ

where A∥ and A3 are familiar wave function renormaliza-
tion factors, B is the fermion self-energy function, and a
tensor term proportional to σμν is ruled out by PT
invariance.
At zero temperature, the results in Ref. [36] show that

when the 1/N order contribution to the renormalization
factor is included, the critical number of fermion flavors
takes almost the same value as the case where A ¼ 1. At
finite temperature, the comparison of studies in
Refs. [50,51] also suggests that the 1=N order contribution
to the factor only changes the results slightly. So we expect
that the 1=N order contribution to A∥ and A3 is not
important and we will take A∥ ¼ A3 ¼ 1 in the present
paper. In addition, the conclusions in Ref. [52] indicate that
by summing over the frequency modes and taking suitable
simplifications, the qualitative aspects of the result obtained
under the zero frequency approximation for fermion self-
energy do not undergo significant changes. From this, we
will also ignore the frequency dependence of the self-
energy.
For the boson propagator, we will follow Ref. [50] in

retaining only the μ ¼ ν ¼ 3 component of the boson
propagator, and ignore all but the zero-frequency compo-
nent; that is to say, we employ the boson propagator

Dμνðm; T;QÞ ¼ 2δμ3δν3
Q2 þ Πðm; T;QÞ ; ð26Þ

where Q2 ¼ ~q2 ¼ ð~p − ~kÞ2. The zero frequency boson
polarization with current mass reads

Πðm; T;QÞ ¼ T
π

Z
1

0

dx

8<
:ln

�
4cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ xð1 − xÞQ2

p
2T

�

−
m2tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þxð1−xÞQ2

p
2T

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ xð1 − xÞQ2

p
9=
;: ð27Þ

Substituting Eqs. (24)–(26) into Eq. (23), we can
immediately obtain [to be concise, hereafter we use B to
represent Bðm; T; P2Þ, andΠ to representΠðm; T;QÞ in the
right sides of equations]

Bðm; T; P2Þ ¼ mþ T
X
n

Z
d2K
ð2πÞ2

B=ðQ2 þ ΠÞ
ðω2

n þ K2 þ B2Þ ;

ð28Þ

and with the help of the identity

X
n

1

ω2
n þ x2

¼ tanh x
2T

2xT
; ð29Þ

the above equation can be reduced to

Bðm; T; P2Þ ¼ mþ
Z

d2K
ð2πÞ2

Btanh
ffiffiffiffiffiffiffiffiffiffiffi
K2þB2

p
2Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ B2
p

ðQ2 þ ΠÞ : ð30Þ

B. Chiral symmetry breaking—restoration phase
transition in the chiral limit

In this section, within the framework of the DSEs
approach, we will investigate the behavior of the four
susceptibilities with varying temperature. All equations
involved in the section are in the chiral limit.

1. The chiral susceptibility χ c

For the chiral susceptibility, substituting Eqs. (5) and
(25) into Eq. (8) gives

χcrðTÞ ¼ 2

Z
d2p
ð2πÞ2

�
Bm

"
P2tanh

ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2T

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ B2

p
Þ3

þ B2sech2
ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2T

2TðP2 þ B2Þ

#
−
1

P
tanh

P
2T

�
; ð31Þ

where B is the function that satisfies Eq. (30) in the absence
of current mass. The function Bm is just the derivative of B
with respect to current mass and can be written as

Bm ¼ 1þ
Z

d2K
ð2πÞ2 Bm

8<
:K2tanh

ffiffiffiffiffiffiffiffiffiffiffi
K2þB2

p
2T

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ B2

p
Þ3

þ B2sech2
ffiffiffiffiffiffiffiffiffiffiffi
K2þB2

p
2T

2TðK2 þ B2Þ

9=
; 1

Q2 þ Π
: ð32Þ

Using the iterative method for the above two equations,
we can immediately arrive at the typical behavior of them,
and thus the chiral susceptibility. As a result, we plot the
behavior of the chiral susceptibility with varying temper-
ature in Fig. 1.1

From Fig. 1, it can be seen that the chiral susceptibility
exhibits a very narrow, pronounced, and, in fact, divergent
peak at the critical temperature Tc ¼ 2.47 × 10−2, which is
a typical characteristic of the second order phase transition.

1In the studies within QED3, the coupling constant α ¼ e2 has
dimension 1 and provides us with a mass scale. Accordingly, a
kind of natural unit e2 ¼ 1 is often used (for example, see
Ref. [53]). For simplicity, in this paper the temperature and the
mass are both measured in this unit.
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This conclusion is in good agreement with the result based
on the continuum model studies of two-flavor QCD [54].

2. The fermion number susceptibility χ n

For the fermion number susceptibility, substituting
Eqs. (14) and (25) into Eq. (16), and employing the similar
approximation in Ref. [38] for the dressed vector vertex, we
can obtain

χnðTÞ ¼ 4

T

Z
d2P
ð2πÞ2

exp
ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
T	

exp
ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
T þ 1



2
: ð33Þ

Once the fermion self-energy function is obtained, we
can calculate the fermion number susceptibility. The
behavior of χnðTÞ is shown in Fig. 2.
As is shown in Fig. 2, where χn is normalized by the free

fermion number susceptibility χnf and is hence dimension-
less, the fermion number susceptibility rises as temperature
increases, then shows an apparent inflexion at the critical
temperature Tc ¼ 2.47 × 10−2, and finally is almost
constant.

3. The thermal susceptibility χ T

For the thermal susceptibility, substituting Eq. (25) into
Eq. (19), the latter can be reduced to

χTðTÞ ¼ 2

Z
d2P
ð2πÞ2

(
BT

"
P2tanh

ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2T

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ B2

p
Þ3

þ B2sech2
ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2T

2TðP2 þ B2Þ

#
−
Bsech2

ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2T

2T2

)
; ð34Þ

where the function BT represents the derivative of fermion
self-energy function with respect to temperature, and can be
expressed as

BT ¼
Z

d2K
ð2πÞ2

(
BT

"
K2tanh

ffiffiffiffiffiffiffiffiffiffiffi
K2þB2

p
2T

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ B2

p
Þ3

þ B2sech2
ffiffiffiffiffiffiffiffiffiffiffi
K2þB2

p
2T

2TðK2 þ B2Þ

#
−
Bsech2

ffiffiffiffiffiffiffiffiffiffiffi
K2þB2

p
2T

2T2

−
BΠT tanh

ffiffiffiffiffiffiffiffiffiffiffi
K2þB2

p
2Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ B2
p

ðQ2 þ ΠÞ

)
1

Q2 þ Π
; ð35Þ

while the function ΠT denotes the derivative of boson
polarization function with respect to the temperature, which
is written as

ΠT ¼ 1

π

Z
1

0

(
ln

�
4cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞQ2

p
2T

�

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞQ2

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞQ2

p
2T

T

)
: ð36Þ

From the two functions B and BT , one can obtain the
dependence of the thermal susceptibility on temperature.
As a result, the behavior of this susceptibility is plotted
in Fig. 3.

FIG. 2. Dependence of the fermion number susceptibility χn=χnf
on temperature T, where χnf is the free fermion number suscep-
tibility at finite temperature.

FIG. 3. Dependence of the thermal susceptibility χT on temper-
ature T.

FIG. 1. Dependence of the chiral susceptibility χc on
temperature T.
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From Fig. 3, it is found that the thermal susceptibility
rises with temperature increasing, then reaches its maxi-
mum at the critical temperature Tc ¼ 2.47 × 10−2, and
vanishes when temperature is above Tc.

4. The staggered spin susceptibility χ s

For the staggered spin susceptibility, we focus on its low-
energy behavior, and so the dressed pseudoscalar vertex Γp
can be written as

ΓpðpnÞ ¼ γ5Cðp2
nÞ þ i~γ · ~pγ5D∥ðp2

nÞ þ iγ3wnγ5D3ðp2
nÞ:
ð37Þ

Substituting Eq. (37) into Eq. (21), we immediately
arrive at

χsðTÞ ¼ 2

Z
d2P
ð2πÞ2

 
Ctanh

ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ B2
p −

tanh P
2T

P

!
: ð38Þ

Meanwhile, the dressed pseudoscalar vertex satisfies the
finite-temperature version of the inhomogeneous BSE

ΓpðpnÞ ¼ γ5 − T
X
n

Z
d2K
ð2πÞ2 γμSðknÞΓpðknÞSðknÞγν

×DμνðqnÞ: ð39Þ

Substituting Eq. (37) into Eq. (39) gives

CðP2Þ ¼ 1þ
Z

d2K
ð2πÞ2

Ctanh
ffiffiffiffiffiffiffiffiffiffiffi
K2þB2

p
2Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ B2
p

ðQ2 þ ΠÞ : ð40Þ

By solving the functions B and C, we can obtain the
staggered spin susceptibility with a range of temperature,
and the results are shown in Fig. 4.
As can be seen from Fig. 4, the staggered spin suscep-

tibility decreases with temperature increasing, then drops
rapidly at the critical temperature Tc ¼ 2.47 × 10−2, and is
almost constant when temperature is higher.

From above, we may safely draw the conclusion that
these four susceptibilities exhibit the singular behaviors at
the same critical temperature Tc ¼ 2.47 × 10−2, where the
chiral phase transition occurs. In addition, the chiral
susceptibility exhibits a divergent peak at the critical
temperature, which is a typical characteristic of the sec-
ond-order phase transition.

C. Chiral symmetry breaking—restoration phase
transition beyond the chiral limit

In this section, we will recalculate the four susceptibil-
ities to analyze the effect of current mass on the chiral phase
transition driven by temperature.

1. The chiral susceptibility χ c

Regarding the chiral susceptibility, following the same
step as Eq. (31), the chiral susceptibility beyond the chiral
limit is obtained as

χcrðm; TÞ ¼ 2

Z
d2p
ð2πÞ2

(
Bm

"
P2tanh

ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2T

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ B2

p
Þ3

þ B2sech2
ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2T

2TðP2 þ B2Þ

#
−

"
P2tanh

ffiffiffiffiffiffiffiffiffiffiffi
P2þm2

p
2T

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þm2

p
Þ3

þm2sech2
ffiffiffiffiffiffiffiffiffiffiffi
P2þm2

p
2T

2TðP2 þm2Þ

#)
; ð41Þ

where the self-energy function B satisfies Eq. (30) and thus
its derivative with respect to current mass can be expressed
as

Bm ¼
Z

d2K
ð2πÞ2

(
Bm

"
K2tanh

ffiffiffiffiffiffiffiffiffiffiffi
K2þB2

p
2T

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ B2

p
Þ3 þ B2sech2

ffiffiffiffiffiffiffiffiffiffiffi
K2þB2

p
2T

2TðK2 þ B2Þ

#

−
BΠmtanh

ffiffiffiffiffiffiffiffiffiffiffi
K2þB2

p
2Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ B2
p

ðQ2 þ ΠÞ

)
1

Q2 þ Π
þ 1; ð42Þ

and the function Πm is the derivative of polarization
function with respect to current mass, which satisfies

Πm ¼ −
m
π

Z
1

0

"
xð1 − xÞQ2tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þxð1−xÞQ2

p
2T

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ xð1 − xÞQ2

p
Þ3

þ m2sech2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þxð1−xÞQ2

p
2T

2Tðm2 þ xð1 − xÞQ2Þ

#
: ð43Þ

From Eqs. (30), (41), and (42), we can obtain the
dependence of the chiral susceptibility on temperature
and current mass. The behaviors of χc with regard to T
for several m are plotted in Fig. 5.

FIG. 4. Dependence of the staggered spin susceptibility χs on
temperature T.
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As is shown in Fig. 5, the chiral susceptibility exhibits a
quite different behavior in the presence of current mass.
The peak of the chiral susceptibility becomes not so sharp
and pronounced as in the chiral limit and its height is
greatly suppressed and evidently finite, which is a typical
character of a crossover. In addition, with the current mass
increasing, the critical temperature where the chiral sus-
ceptibility takes its maximum also rises, but the value of the
peak falls monotonously.

2. The fermion number susceptibility χ n

Similar to Eq. (33), the fermion number susceptibility
beyond the chiral limit can be written as

χnðm; TÞ ¼ 4

T

Z
d2P
ð2πÞ2

exp
ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
T

ðexp
ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
T þ 1Þ2

; ð44Þ

where the fermion self-energy function B satisfies Eq. (30).
From Eqs. (27), (30), and (44), the dependence of the

fermion number susceptibility on temperature and current
mass is immediately obtained. We show the behaviors of χn

with respect to T for several m in Fig. 6.

In Fig. 6, the fermion number susceptibility at finite
current mass also reveals a different picture from the case of
the chiral limit. As temperature increases, the fermion
number susceptibility also rises monotonously and almost
keeps a constant at last. It is noteworthy that χn becomes
smooth and no singular behaviors emerge in a range of
temperatures, which may show that the fermion number
susceptibility cannot describe the crossover properties of
the system well. It is consistent with the result obtained
using the NJL model [30].

3. The thermal susceptibility χ T

For the thermal susceptibility, analogizing with Eq. (34),
we finally arrive at

χTðm; TÞ ¼ 2

Z
d2P
ð2πÞ2

(
BT

"
P2tanh

ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2T

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ B2

p
Þ3

þ B2sech2
ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2T

2TðP2 þ B2Þ

#
−
Bsech2

ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2T

2T2

)
; ð45Þ

where the two functions B and BT satisfy, separately,
Eqs. (30) and (35). The function ΠT involved here is a little
different from Eq. (36), and is written as

ΠT ¼ 1

π

Z
1

0

(
ln

�
4cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ xð1 − xÞQ2

p
2T

�

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ xð1 − xÞQ2

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þxð1−xÞQ2

p
2T

T

þm2sech2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þxð1−xÞQ2

p
2T

2T2

)
: ð46Þ

According to the equation above, we obtain the depend-
ence of the thermal susceptibility on temperature and
current masses. As a result, the behaviors of χT with
regard to temperature for several current masses are plotted
in Fig. 7.

FIG. 5 (color online). Dependence of the chiral susceptibility χc

on temperature T for several m.

FIG. 6 (color online). Dependence of the fermion number
susceptibility χn=χnf on temperature T for several m, where χnf
is the free fermion number susceptibility at finite temperature and
current mass of the fermion.

FIG. 7 (color online). Dependence of the thermal susceptibility
χT on temperature T for several m.
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From Fig. 7, we can evidently see that the thermal
susceptibility shows an apparent peak. With temperature
increasing, the thermal susceptibility also rises, then takes
its maximum, and decreases slowly when the temperature is
higher. Similar to the chiral susceptibility, as current mass
increases, the critical temperature at which the thermal
susceptibility is maximal rises, while the value of the peak
falls slowly.

4. The staggered spin susceptibility χ s

Following the same step as Eq. (38), the staggered
spin susceptibility in the presence of current mass is
expressed as

χsðm; TÞ ¼ 2

Z
d2p
ð2πÞ2

(
Ctanh

ffiffiffiffiffiffiffiffiffiffi
P2þB2

p
2Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ B2
p

−

"
P2tanh

ffiffiffiffiffiffiffiffiffiffiffi
P2þm2

p
2T

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þm2

p
Þ3 þm2sech2

ffiffiffiffiffiffiffiffiffiffiffi
P2þm2

p
2T

2TðP2 þm2Þ

#)
:

ð47Þ

By solving Eqs. (30) and (40), the dependence of the
staggered spin susceptibility on temperature and current
mass can be obtained. We plot the behaviors of χs with
respect to temperature at several current masses in Fig. 8.
From Fig. 8, it can be seen that the staggered spin

susceptibility in this case shows a quite different picture
from the chiral limit case. With the temperature increasing,
the staggered spin susceptibility decreases slowly and is
almost a constant in the end. Similar to the fermion number
susceptibility, the staggered spin susceptibility is smooth
and no singular behaviors occur in the temperature range
we studied.
From what we have mentioned above, we can conclude

that the four susceptibilities in the presence of current mass
have intrinsic differences from the cases of chiral limit.

Both the chiral and the thermal susceptibilities reveal an
apparent but not divergent peak, signaling a typical cross-
over behavior; meanwhile, the critical temperatures from
these two susceptibilities are different, which shows that to
define a critical region instead of an exclusive point for
crossover might be a more suitable choice. Moreover, the
fermion number and the staggered spin susceptibilities are
smooth with varying temperature and no singular behaviors
arise; this may mean that these two susceptibilities cannot
describe the crossover properties of the system well.

IV. SUMMARY AND CONCLUSIONS

In this paper, we study the relations of the four different
susceptibilities (viz., the chiral susceptibility, the fermion
number susceptibility, the thermal susceptibility, and the
staggered spin susceptibility) both in and beyond the chiral
limit. We first give the general integral formula for the four
different susceptibilities by means of the external field
method, and then investigate the temperature dependence
of them in the framework of DSEs.
Our model study reveals that, in the chiral limit, the four

susceptibilities give the same critical temperature
Tc ¼ 2.47 × 10−2, where the chiral phase transition occurs.
In addition, the chiral susceptibility shows that this is a
second-order phase transition at finite temperature and
vanishing chemical potential. On the other hand, in the
presence of current mass, the results are quite different: the
critical temperatures from the chiral and the thermal
susceptibilities are different, which shows that to define
a critical region instead of an exclusive point for crossover
might be a more suitable choice. In addition, both the
fermion number and the staggered spin susceptibilities have
no singular behaviors any more; this may mean that they
are no longer available to describe the crossover properties
of the system.
Of course, the model adopted in this work is schematic;

to further confirm these observations, we need to study this
problem in some models that are more realistic in the
future.
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