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In this paper we perform an amplitude analysis of essentially all published pion and kaon pair
production data from two-photon collisions below 1.5 GeV. This includes all the high statistics
results from Belle, as well as older data from Mark II at SLAC, CELLO at DESY, and Crystal Ball at
SLAC. The purpose of this analysis is to provide as close to a model-independent determination of
the γγ to meson pair amplitudes as possible. Having data with limited angular coverage, typically
j cos θj < 0.6–0.8, and no polarization information for reactions in which spin is an essential
complication, the determination of the underlying amplitudes might appear an intractable problem.
However, imposing the basic constraints required by analyticity, unitarity, and crossing symmetry makes
up for the experimentally missing information. Above 1.5 GeV multimeson production channels become
important, and we have too little information to resolve the amplitudes. Nevertheless, below 1.5 GeV the
two-photon production of hadron pairs serves as a paradigm for the application of S-matrix techniques.
Final state interactions among the meson pairs are critical to this analysis. To fix these, we include the
latest ππ → ππ, KK scattering amplitudes given by dispersive analyses, supplemented in the KK
threshold region by the recent precision Dalitz plot analysis from BABAR. With these hadronic
amplitudes built into unitarity, we can constrain the overall description of γγ → ππ and KK data sets,
both integrated and differential cross sections, including the high statistics charged and neutral pion, as
well as KsKs, data from Belle. Since this analysis invokes coupled hadronic channels, having data on
both ππ and KK reduces the solution space to essentially a single form in the region where these
channels saturate unitarity. For the ππ channel, the separation of isospin-0 and -2 and helicity-0 and -2
components is complete. We present the partial wave amplitudes, show how well they fit all the available
data, and give the two-photon couplings of scalar and tensor resonances that appear. These partial waves
are important inputs into forthcoming dispersive calculations of hadronic light-by-light scattering.
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I. INTRODUCTION

There has long been interest both theoretically and
experimentally in photon-photon interactions as one of
the cleanest ways of probing hadron structure. The differing
compositions of resonant states, whether q̄q, qqqq, gg, or
hadronic molecules, are, in principle, revealed by their two-
photon couplings [1]. Consequently, it is important to be
able to extract these couplings reliably from experiment.
With incomplete data, this is far from straightforward, but it
is nevertheless possible. That is the purpose of the present
study. Once that is done, we will compare our results with
the many model predictions for different compositions of
these states. Just as importantly, our partial waves serve as a
key input into future dispersive calculations of the hadronic
light-by-light contribution to the anomalous magnetic
moment of the muon, providing further motivation for a
new study of greater certainty.
Experimental effort has focused with most precision on

ππ production with a series of measurements of the cross

sections for γγ → πþπ− [2–4] and γγ → π0π0 [5,6] reac-
tions. It is sometimes advertised that the all neutral channel
is ideal for spotting resonances. The fact that there is no
direct electromagnetic interaction of the photons with π0’s
makes this process background free. This is in contrast to
the charged pion channel, where just above threshold the
cross section is dominated by the one-pion exchange Born
term. Thus, from the fact that there is no low mass
enhancement in the π0π0 channel is inferred, the σ must
have very small coupling to γγ and so be a “glueball.”
Unfortunately such arguments are far too simplistic. Even
at energies just above πþπ− threshold, the Born term is
rapidly modified by final state interactions that include the
σ. Moreover, the neutral pion cross section is naturally
nonzero, since γγ → πþπ− through the Born amplitude and
then the πþπ− pair can scatter to π0π0. Indeed, these final
state interactions are so important that their effect domi-
nates the coupling of the σ → ππ. Remarkably, the near
threshold process is precisely calculable [7–9] without
knowing the exact composition of the σ. As the energy
increases, the photons couple not to the charge of the
final state hadron but rather to their internal charged
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constituents. Consequently, the charged and neutral pion
cross sections become more similar with the f2ð1270Þ
emerging as the dominant structure.
To determine the two-photon amplitudes, and hence the

couplings of any resonances, requires a model-independent
strategy for extracting the relevant partial wave amplitudes
from experiment. Implementing the basic constraints of
analyticity, unitarity, and crossing are essential to this
program. This has been set out earlier in a series of papers
[10–12] that we follow here. This formalism automatically
takes into account the key final state interactions and allows
for the only robust determination of resonance couplings.
Moreover, as we present here, recent data from Belle on
γγ → πþπ− [13], π0π0 [14], and KsKs [15] considerably
sharpen the analysis by an increase in statistics and
precision of at least a factor of 10.
One of the low energy states of particular interest is the

f0ð980Þ. The Belle charged pion measurement has statistics
sufficient to allow the πþπ− invariant mass to be binned in
5 MeV steps and in angular intervals of 0.05 in cos θ, where
θ is the center-of-mass scattering angle (often called θ� in
experimental papers). This reveals a clear peak in the
0.93–1.03 GeV region. Fitting this with a simple smooth
background, Belle [13] quotes a two-photon width for the
f0ð980Þ of 205 þ95

−83 ðstatÞ þ147
−117 ðsystÞ eV. However, these

data, while having unprecedented statistics, seem to have
large distortions from μþμ− contamination, as discussed in
Ref. [16] and to be seen later in this paper in the figures
to come.
A previous amplitude analysis, by one of the present

authors (M. R. P.) and Belle colleagues based on a similar
marriage of dispersion relations with unitarity [17] we use
here, fitted all the available cross sections and angular
distributions. The partial wave analysis exposed a range of
solutions with a two-photon width for the f0ð980Þ between
100 and 540 eV (not so dissimilar to the range allowed
by Belle’s simple resonance plus background fit with no
partial wave separation). However, at the time only the
charged pion data from Belle were available. Now with the
publication of their neutral pion results, it is appropriate
to revisit this analysis. This is the motivation for the
present work.
To be able to perform an amplitude analysis, two

unavoidable problems have to be solved. First, experiments
have only limited angular coverage, and second the polari-
zation of the initial states is not measured. It is here that the
theoretical constraints from analyticity, unitarity, crossing
symmetry, and Low’s low energy theorem of QED come in.
These allow all the partial waves to be calculated within
tolerable uncertainties below 600 MeV [8,9,17,18]. Above
that energy imposing a framework that ensures the two-
photon amplitudes are correctly related to hadronic scatter-
ing processes through coupled-channel unitarity is sufficient
to determine the partial waves, provided, of course, one has
sufficient information about the corresponding hadronic

reactions. Here we take advantage of recent dispersive
studies of meson-meson scattering amplitudes that combine
classic inputs from experiments like that of the CERN-
Munich group on ππ production [19], and Argonne National
Lab (ANL) and BrooKhaven National Lab (BNL) groups on
the KK final state [20,21] with the latest low energy data
from NA48-2 [22]. Peláez and his collaborators [23] provide
ππ scattering amplitudes for the I ¼ 0; 2 S, andD waves we
need here. These in turn require additional information on
inelasticities that we discuss in detail in Sec. II. When these
hadronic inputs are included in a coupled-channel K-matrix
representation, we then have constraints on channels like
KK → KK that we also require. Armed with these T-matrix
elements, we can then fit the γγ → ππ (and KK) amplitudes
and determine their partial waves up to almost 1500 MeV.
Having good πþπ− and π0π0 angular distributions, even of
limited range, now allows the relative proportions of helicity-
0 to helicity-2 isoscalar D waves through the f2ð1270Þ
region to be narrowed down, without the need to appeal to
simple quark model assumptions.
The Belle data limit the range of possible solutions

significantly compared to previous amplitude analyses.
Being a coupled-channel analysis, it also relates the ππ
information to one of the main inelastic channels, namely,
KK, in the same energy range. However, while γγ → ππ
involves even isospins, the inclusion of the KK channel
brings in isospin 1, too. Nevertheless, the older, rather
sparse, experimental measurements [24–29] of the KþK−

and K0K0 channels limit our amplitudes to a small patch of
solutions. When combined with the new high statistics
results from Belle [15] on γγ → KsKs, this space narrows
to essentially a single solution (we call this solution I).
How this solution fits all the available data on integrated
and differential cross sections is presented in Sec. III.
This amplitude contains poles in the complex energy plane
for the σ=f0ð500Þ, f0ð980Þ, f0ð1370Þ, and f2ð1270Þ
resonances. The residues of these poles fix the two-photon
couplings of each of these states. These are tabulated in
Sec. IV and are a main result of our study.
We then discuss the interpretation of these results for the

composition of these key hadrons in Sec. V. It is here, too,
that we discuss the relationship of the present study to the
work of others [30–42].
However, it is important to bear in mind the key

distinction between the work reported here and that dis-
cussed in Sec. V is that this is an amplitude analysis. It does
not attempt to predict the data in terms of imperfect
knowledge of direct and crossed-channel dynamics but
rather determines the s-channel amplitudes from a simul-
taneous analysis of all the available data. The interpretation
of these model-independent amplitudes in terms of specific
crossed-channel dynamics is the subject of a separate paper.
Having partial wave amplitudes that automatically cover

the full angular range are a key input into future dispersive
analyses of hadronic light-by-light scattering that appear in
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contributions to the anomalous magnetic moment of the
muon. Having precision information on the real photon
amplitudes is a crucial step toward reducing the present
uncertainties in such calculations by a factor of 4,
demanded by future experiments.
This paper is organized as follows. In Sec. II we focus on

the formalism and the determination of the hadronic
T-matrix elements. In Sec. III we give the overall fit to
both γγ → ππ and γγ → KK̄ data, including integrated
cross section and angular distributions. In Sec. IV we
extract the γγ couplings. In Sec. V we compare the resulting
radiative decay widths to those from different models,
as well as discussing related analyses. Finally we give our
conclusions in Sec. VI.

II. FORMAL DEFINITIONS OF AMPLITUDES

A. γγ → ππ amplitudes

We begin with the unpolarized cross section in the two-
photon center-of-mass frame, which is related to the two
helicity amplitudes Mþ�, by

dσ
dΩ

¼ ρðsÞ
128π2s

½jMþ−j2 þ jMþþj2�; ð1Þ

where for γγ → MM (with M ¼ meson) the phase-space
factor

ρðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

M=s
q

: ð2Þ

These amplitudes have partial wave expansions with only
even J:

Mþþðs; θ;ϕÞ ¼ e2
ffiffiffiffiffiffiffiffi
16π

p X
J≥0

FJ0ðsÞYJ0ðθ;ϕÞ;

Mþ−ðs; θ;ϕÞ ¼ e2
ffiffiffiffiffiffiffiffi
16π

p X
J≥2

FJ2ðsÞYJ2ðθ;ϕÞ: ð3Þ

Integrating over the full angular range, the cross section for
individual partial waves with specific isospin I, spin J, and
helicity λ is given by

σIJλðsÞ ¼
2πα2

s
ρðsÞjFI

JλðsÞj2; ð4Þ

where α is the usual final structure constant e2=ð4πÞ in units
in which ℏ and c are 1.
If one had experimental data that covered the complete

angular range, one would take moments of the differential
cross sections and then fit partial waves to these. With full
angular coverage, the moments are independent of each
other, the spherical harmonics YJλ being orthogonal.
However, the two-photon process is here determined in
eþe− collisions in an environment in which the electron and
positron are scattered at small angles in the center-of-mass

frame: small angles because that is when radiating a virtual
photon is closest to being massless and so has its highest
probability. The small scattering angle means that not only
are the scattered electron and positron undetected but neither
are forward or backward going mesons. Consequently, in the
two-photon center-of-mass frame, the determination of the
cross section is only possible for j cos θj < 0.6 for charged
pions and for neutral pions over a larger region out to
j cos θj ¼ 0.8. This means that the moments of the measured
angular distribution are not independent, and interferences
between partial waves are not readily separable. Thus,
the observed integrated cross section is not just the sum
of the squared moduli of partial wave amplitudes, but their
interferences are just as critical in determining their magni-
tude and energy dependence.

B. Isospin decomposition

The produced pions are in a combination of isospin 0 and
2 and the kaons in I ¼ 0 and 1. The isospin decomposition
of γγ → πþπ−, π0π0 and γγ → KþK−; K0K0 amplitudes is

Fþ−
π ðsÞ ¼ −

ffiffiffi
2

3

r
F I¼0

π ðsÞ −
ffiffiffi
1

3

r
F I¼2

π ðsÞ;

F 00
π ðsÞ ¼ −

ffiffiffi
1

3

r
F I¼0

π ðsÞ þ
ffiffiffi
2

3

r
F I¼2

π ðsÞ; ð5Þ

Fþ−
K ðsÞ ¼ −

ffiffiffi
1

2

r
F I¼0

K ðsÞ −
ffiffiffi
1

2

r
F I¼1

K ðsÞ;

F 00
K ðsÞ ¼ −

ffiffiffi
1

2

r
F I¼0

K ðsÞ þ
ffiffiffi
1

2

r
F I¼1

K ðsÞ: ð6Þ

[Note our charged pion amplitude here is the negative of
those presented in Refs. [9,17], and the normalization
factor for the F I

πðsÞ arising from the property of identical
particles has been absorbed into the coefficients in Eq. (5)].
We will concentrate first on the amplitudes with ππ final
states. The extension to KK will then be straightforward.
At low energies, dipion production is dominated by the

one-pion exchange Born amplitude as a consequence of
Low’s low energy theorem. This means that, at least at low
energies close to threshold, the γγ → π0π0 cross section is
much smaller than that for πþπ−. Equation (5) means that
the I ¼ 2 γγ → ππ amplitude is of comparable size to that
with I ¼ 0 (aside from the factor of

ffiffiffi
2

p
). This is unusual for

a hadronic amplitude. The expected weakness of “exotic”
channels is reflected in the fact that final state interactions
only slowly change the two-photon amplitude from its
Born contribution for I ¼ 2, while in the isoscalar channel,
these differ appreciably within a few hundred MeV of
threshold. The isospin-0 and -2 amplitudes interfere in the
individual charged and neutral cross sections, and this
interference helps to untangle these. Indeed, to be able to
separate amplitudes into their isospin components requires
that comparable data on both neutral and charged meson
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pairs are available. The Belle two-photon experiment
provides access to πþπ− and π0π0 channels in overlapping
regions of cos θ.
While interferences are critical to the amplitude analysis,

these are not easy to convey in words or pictures. However,
summing the cross sections for charged and neutral pions
integrated over the same region of cos θ≡ z up to z ¼ Z,
which we can do for the Belle data, removes the I ¼ 0,
I ¼ 2 interference. Thus,

ΣðZÞ≡
Z

Z

0

dz

�
dσ
dz

ðγγ→πþπ−Þþdσ
dz

ðγγ→π0π0Þ
�

¼2πα2

s
ρðsÞ

X
J;J0;λ

½Iλ
JJ0 ðZÞðF �0

JλF
0
J0λþF �2

JλF
2
J0λÞ�; ð7Þ

where

I λ
JJ0 ðZÞ ¼

Z
Z

0

dzPλ
JðzÞPλ0

J0 ðzÞ: ð8Þ

In Fig. 1 we show ΣðZ ¼ 0.6Þ from the Belle data [13,14]
as a function of dipion mass mðππÞ ¼ ffiffiffi

s
p

.
Since the I ¼ 2 amplitude has not only no known direct

channel resonances but all indications that it is smooth, it is
natural to associate any structures in ΣðZÞwith dynamics in
the I ¼ 0 ππ channel. Beyond the near threshold enhance-
ment from the Born component, the data in Fig. 1 show two
clear peaks. The largest around 1250 MeV is associated
with the spin-2 f2ð1270Þ resonance. Two-photon collisions
favor the production of tensor mesons, and the f2ð1270Þ,
having ππ as its dominant decay mode, appears very
strongly. However, one sees that the position of the peak
is shifted and the width is larger for this enhancement than
the nominal PDG values [43]. This is because with Z < 1 in

Eq. (7) there are important S −D0 interferences within the
I ¼ 0 channel, which we will discuss later. The second
much smaller peak is seen just below 1 GeV. This is
associated with the appearance of the f0ð980Þ. The f0ð980Þ
is an example of a particular type of resonance that is
strongly coupled to a nearby opening channel. Many
similar kinds of states are now being discovered in channels
dominated by hidden charm and beauty [44–46]. As a
consequence of its proximity to the KK threshold, the
f0ð980Þ appears as a dip in some processes and a peak in
others. A peak means it couples through its hidden strange
component, ss or KK, as in J=ψ → ϕππ, while a dip means
its coupling is entirely through its nn or ππ component
(where n refers to the appropriate sum of u; d). Here in γγ
we have a small peak implying a combination of both these
nonstrange and hidden strange components. These will be
discussed later after we have performed our amplitude
analysis.

C. S matrix and QED constraints

Now to solve the problem of how to determine the partial
wave amplitudes, we input in turn the three key properties
of the S matrix: unitarity, analyticity, and crossing sym-
metry, together with the low energy theorem of QED. In the
energy region we study, below 1.4 or 1.5 GeV, there is a
limited number of accessible I ¼ 0; 2 hadronic channels:
ππ; KK;…, before the 4π channels become important.
In this region we presume that unitarity is saturated by
the ππ and KK channels alone. If we denote the hadronic
scattering amplitudes by T, it is straightforward to show
that coupled-channel unitarity is fulfilled for the two-
photon reaction for each partial wave by [47]

F I
Jλðγγ → ππ; sÞ ¼ α1

I
JλðsÞT̂I

Jðππ → ππ; sÞ
þ α2

I
JλðsÞT̂I

Jðππ → KK; sÞ;
F I

Jλðγγ → KK; sÞ ¼ α1
I
JλðsÞT̂I

Jðππ → KK; sÞ
þ α2

I
JλðsÞT̂I

JðKK → KK; sÞ; ð9Þ

with the coupling functions αiðsÞ real. This representation
automatically embodies the final state interactions of the ππ
and KK systems. The hadronic amplitudes T̂ represent
what we call reduced amplitudes. As far as coupled-
channel unitarity is concerned, they are the same as the
T-matrix amplitudes. However, to avoid right-hand cut
singularities in the functions αi, any real zeros in the
T-matrix elements1 have to be removed. For the S-wave
amplitudes, subthreshold zeros are imposed by the Adler

FIG. 1 (color online). The sum of the πþπ− and π0π0 integrated
cross sections, Σð0.6Þ, Eq. (7), with Z ¼ 0.6 from the Belle
results of Refs. [13,14]. At present the line is to guide the eye: it is
our solution I.

1or their determinant. The determinant of the T-matrix ele-
ments can only have a zero below the inelastic threshold when the
ππ → KK must have the elastic phase. A priori we do not know
whether such a zero occurs. However, after making the new fits in
Sec. III A, we check that no such zero exists, and so this
complication can be ignored.
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condition of chiral dynamics. We need to ensure that these
zeros do not artificially transmit from one reaction to
another and allow their existence and position to be process
dependent. Thus, with channel labels defined by 1 ¼ ππ,
2 ¼ KK channels, we have for the hadronic process i → j

T̂ijðsÞ ¼ TijðsÞ=ðs − s0ðijÞÞ; ð10Þ

where s ¼ s0ðijÞ is the position of the Adler zero in the
hadronic channel i → j. For amplitudes with higher angu-
lar momentum, the hadronic amplitudes have a zero at
threshold, and so reduced amplitudes are defined by
dividing by factors of ðs − 4m2

MÞJ. The γγ → MM ampli-
tudes, F , and hadronic MM → M0M0 amplitudes, T, each
have right- and left-hand cuts. Unitarity requires their
right-hand cut structures to be the same. That is what
Eq. (9) embodies with the coupling functions, αiðsÞ,
real. However, their left-hand cuts differ, and the αiðsÞ
themselves have left-hand cuts. These are generated by
crossed-channel exchanges, as we shall discuss. Along the
right-hand cut where the ππ and KK channels saturate
unitarity, the functions αiIJλ as defined by Eq. (9) are real.
Thus, Eq. (9) means that the behavior of the hadronic
partial wave amplitudes up to 1.5 GeV constrains the γγ
amplitudes, even more so below the KK thresholds, when
Eq. (9) imposes Watson’s final state interaction theorem.
There in the elastic region, the hadronic and two-photon
amplitudes have the same phase for each and every value of
I; J. To implement unitarity up to 1.5 GeV, we therefore
need to know the hadronic amplitudes for ππ → ππ and
KK for each I; J. In the next subsection, we will discuss
how these are represented.
In principle, these inputs would be sufficient to describe

the γγ → ππ data in the whole energy region where the
hadronic channels we include saturate unitarity. However,
it is really only above 800 MeV that we have data on the
two-photon reaction of any precision, which comes from
the more recent Belle experiment. While the Crystal Ball
data [5,6] give π0π0 results right down to threshold, the
corresponding πþπ− results from CELLO [3,4] start at
800 MeV. Only the Mark II [2] experiment from 25 years
ago has charged differential cross sections down to
600 MeV. With a special run, Mark II also determined
the charged cross section at five energies between 300 and
400 MeV, but with 30% error bars. Consequently, the low
energy partial waves are poorly determined from the data
alone. Fortunately, QED imposes a low energy theorem on
the Compton scattering amplitude at threshold, which in
turn fixes the γγ partial waves at s ¼ 0. As one enters the
s-channel physical region at s ¼ 4m2

π , these partial waves
are modified by final state interactions. Knowledge of
hadronic scattering in fact determines this modification
rather precisely. Consequently, the partial waves in the low
energy region are calculable from the hadronic scattering
amplitudes. The tool for this calculation is a marriage of

unitarity and analyticity. This we now discuss. It is
important in following this analysis that, while we use
the representation of Eq. (9) for the γγ partial waves to fit
the available data in the entire energy region from ππ
threshold to 1.5 GeV, it is only in the very low energy
region that we constrain these fits by calculations we now
discuss. However, the same hadronic inputs go into both.
These will be detailed in the next section.
Analyticity is imposed through the use of dispersion

relations. The two-photon amplitudes, F I
Jλ, have both a

right- and a left-hand cut. The left-hand cut is generated by
crossed-channel dynamics, and there have been several
phenomenological efforts to model this with specific
exchanges, as we will discuss later in Sec. VA. Here
our intent is more general. We separate the left-hand cut
contribution to F into two parts: the known one-pion
exchange Born term B and the rest, which we denote by L.
Then for s < 0

ImF I
Jλ ¼ ImBI

JλðsÞ þ ImLI
JλðsÞ; ð11Þ

where the function B has a left-hand cut starting at s ¼ 0,
while the discontinuity in L starts at s ¼ sL, with
sL ≃ −m2

ρ. The Born term is separated to ensure the low
energy theorem for the Compton process γπ → γπ is
satisfied. Then, we have

F I
JλðsÞ → BI

JλðsÞ as s → 0 ð12Þ

with corrections of OðsÞ, as shown by Abarbanel and
Goldberger [48].
To implement these properties, we proceed as follows.

With the phase of the γγ → ππ partial wave amplitude,
F I

JλðsÞ given by φI
JλðsÞ, we define the Omnès function [49]:

ΩI
JλðsÞ ¼ exp

�
s
π

Z
∞

sth

ds0
φI
Jλðs0Þ

s0ðs0 − sÞ
�
: ð13Þ

Below the inelastic threshold (here effectively around
990 MeV), the phase φI

JλðsÞ ¼ δIJðsÞ, the ππ elastic phase
shift, as required by Watson’s theorem. This Omnès
function contains (by construction) the right-hand cut of
F I

Jλ. Using this we form the function PI
JλðsÞ ¼

F I
JλðsÞ=ΩI

JλðsÞ, which only has a left-hand cut. Then we
can write a dispersion relation for ðF ðsÞ − BðsÞÞΩ−1ðsÞ.
For the S-wave amplitudes, this has two subtractions at
s ¼ 0,

F I
00ðsÞ ¼ BI

00ðsÞ þ bIsΩI
00ðsÞ

þ s2ΩI
00ðsÞ
π

Z
L
ds0

Im½LI
00ðs0Þ�ΩI

00ðs0Þ−1
s02ðs0 − sÞ

−
s2ΩI

00ðsÞ
π

Z
R
ds0

BI
00ðs0ÞIm½ΩI

00ðs0Þ−1�
s02ðs0 − sÞ ; ð14Þ
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where the bI (with I ¼ 0; 2) are subtraction constants
to be constrained below. For J > 0 it is useful to
take advantage of the known threshold behavior
of the γγ partial wave amplitudes and their approach

to the Born term as s → 0 (which we detail later)
and so write an unsubtracted dispersion relation for
ðF ðsÞ − BðsÞÞΩ−1ðsÞ=snðs − 4m2

πÞJ=2 with n ¼ 2 − λ=2.
Then

F I
JλðsÞ ¼ BI

JλðsÞ þ
snðs − 4m2

πÞJ=2
π

ΩI
JλðsÞ

Z
L
ds0

Im½LI
Jλðs0Þ�ΩI

Jλðs0Þ−1
s0nðs0 − 4m2

πÞJ=2ðs0 − sÞ

−
snðs − 4m2

πÞJ=2
π

ΩI
JλðsÞ

Z
R
ds0

BI
Jλðs0ÞIm½ΩI

Jλðs0Þ−1�
s0nðs0 − 4m2

πÞJ=2ðs0 − sÞ : ð15Þ

These analytic representations, which we use for s > 4m2
π,

automatically fulfill the low energy theorem of Low. The
contribution from the nearby part of the left-hand cut is
contained in the one-pion exchange Born term and domi-
nates the low energy integrals. As the energy,

ffiffiffi
s

p
, increases

above 400MeV the more distant left-hand cut contributions
included in the function L start to become important and
increasingly so. While the contribution generated by ρ and
ω exchange can be reliably computed, heavier single-
particle and multiparticle contributions are more problem-
atic. A number of studies has included a1 and b1
contributions [38], and more recently those from f2 and
a2 exchanges have been added [40], in an attempt to make
predictions for the γγ reaction up to 1.4 GeV. Here our aim
is different. It is to determine from experiment what the
two-photon amplitudes are, not to predict them. The
amplitude continued along the left-hand cut is an output
that we will discuss in a separate paper. Here the constraints
of unitarity, analyticity, and crossing symmetry are imposed
as a general framework, within which amplitudes describ-
ing the experimental data are to be constructed.

D. Hadronic inputs

We now discuss the inputs to this framework for each
partial wave amplitude. We start with the coupled-channel ππ
and KK hadronic amplitudes with I ¼ 0; 2 and J ¼ 0; 2 and
treat the higher waves later. It is worth recapping that these
inputs are used in two distinct ways. Up to 1.5 GeV, they are
the key ingredients in ensuring that our fitted amplitudes to
γγ → ππ, and → KK, satisfy coupled-channel unitarity
through Eq. (9). The second use is as inputs in the dispersive
treatment of the low energy γγ amplitudes, Eqs. (14) and (15).
Though this is only used at two-photon energies below
600 MeV, being dispersive integrals, they require inputs up
to high energy. Thus, above 1.5 GeV, it is only the hadronic
inputs “on the average” that matter and not the fine details.
Indeed, as the dispersive integrals all converge sufficiently
fast, different behavior above 1GeVor so is only considered to
gain an idea of the uncertainties in the dispersive calculations.

1. IJ ¼ 00 channel

As mentioned in the Introduction, we take advantage of
the work of the Madrid-Krakow collaboration [23] on

updating knowledge of the ππ T-matrix element, for which
we use their Constrained Fit to Data IV (CFDIV) para-
metrization. In this reference, information is expressed in
terms of the phase shift, δIJ, and the inelasticity, ηIJ, from
which we can define the T-matrix element in the usual way:

TI
J ¼

1

2iρπðsÞ
½ηIJe2iδIJ − 1� ¼ jTI

JjeiφI
J : ð16Þ

See Ref. [23], for the detailed expressions and for their
range of applicability. In the elastic region, when η ¼ 1,
then of course we have φI

J ¼ δIJ . In this I ¼ J ¼ 0 channel,
we use a coupled-channel K-matrix parametrization,
imposing the ππ scattering amplitudes of Peláez et al.
[23] as a data set, up to

ffiffiffi
s

p ¼ 1.42 GeV. See Sec. III for
details. We also fold in the earlier dispersive results
of Buttiker et al. [50] in the near threshold region of the
ππ → KK channel. Above that energy, we use a Regge
form for the full γγ → ππ amplitude,

VVðs; tÞ ¼ ð1 − exp½−iπαVðtÞ�ÞΓ½1 − αVðtÞ�ðα0sÞαVðtÞ;
VPðs; tÞ ¼ ð1þ exp½−iπαPðtÞ�ÞΓ½−αPðtÞ�ðα0sÞαPðtÞ;
F 0ðs; tÞ ¼ VPðs; tÞ þ g0hVVðs; tÞ;
F 2ðs; tÞ ¼ VPðs; tÞ þ g2hVVðs; tÞ; ð17Þ

where αVðtÞ ¼ 0.45þ α0t, αPðtÞ ¼ −0.017þ α0t with
α0 ¼ 0.88 GeV−2, h ¼ 3.71, g0 ¼ −0.843, g2 ¼ 1.414.
With this we predict the phase in the high energy region
for the two-photon reaction from 2 to 5 GeV for each partial
wave (not just I ¼ J ¼ 0). Making a smooth connection
gives the phase and Omnès function in Fig. 2. It is
important to emphasize that these phases are only imposed
in the low energy region of our amplitude analysis. Phases
up to 5 GeV are required only to limit the uncertainties in
the dispersive calculations, using Eq. (14).
In the low energy region below 600MeV, we use the twice

subtracted dispersion relation, Eq. (14). To keep the notation
simple, we here drop the indices J ¼ 0, λ ¼ 0. The left-hand
cut contribution is dominated by the one-pion exchange
Born amplitude, which we have included explicitly.
Equation (14) encodes how the Born amplitude is modified
by final state interactions in both the I ¼ 0; 2 channels. To
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have an idea of how accurate this constraint on the near
threshold two-photon amplitude is, we estimate the effect
of other particle exchanges in the t and u channels that
contribute to L. We approximate the left-hand cut by
individual exchanges R ¼ ρ;ω; a1; b1 and T an effective
exchange that “sums” the rest. With the mass squared of an
exchange given by sR, each generates a contribution to the
discontinuity across the left-hand cut for s < −ðsR −m2

πÞ2=
sR ≃ −sR. Thus, if their couplings to γπ are of the same
order of magnitude, then their individual contributions to the
γγ → ππ amplitudes only start to become important in the
physical region when s ≥ sR. This implies the Born term is
dominant until the energy is a few hundred MeV above
threshold. Including only simple exchange contributions to
L ¼ LR, we have

LI¼0
R ðsÞ ¼ −

ffiffiffi
3

2

r
LρðsÞ −

ffiffiffi
1

6

r
LωðsÞ −

ffiffiffi
3

2

r
Lb1ðsÞ

−
ffiffiffi
1

6

r
Lh1ðsÞ −

ffiffiffi
2

3

r
La1ðsÞ þ LTðsÞ: ð18Þ

Here LTðsÞ is the contribution of an “effective exchange”
parametrized as in Appendix A. This representation for L is

just an approximation to allow us to assess the uncertainties
in the calculated γγ amplitudes in the low energy region.
In reality, there are, of course, contributions to the left-hand
cut from multimeson exchange, pions, and kaons, the
calculation of which is more complicated. Nevertheless,
this simple modeling will allow us to judge the range of
the uncertainties in predicting the low energy γγ → ππ
amplitudes that will anchor our partial wave analysis. The
subtraction constants b0; b2 can be fixed by the approach to
Low’s theorem: Fþ−

π ðsÞ → BðsÞ þOðs2Þ, and F 00
π ðsÞ ¼ 0

when s → 0. The neutral amplitude has a chiral zero nearby,
as F 00

π ðsnÞ ¼ 0 at s ¼ sn ¼ Oðm2
πÞ [9]. Indeed, at lowest

order in chiral perturbation theory, the γγ → π0π0 cross
section is proportional to that for πþπ− → π0π0, as noted in
Ref. [51]. The amplitude for the hadronic reaction having a
zero at s ¼ m2

π at tree level. Higher-order corrections destroy
this simple proportionality and shift the chiral zero in the γγ
reaction a little; see Eq. (20). With this zero, we then have:

bI¼0 ¼
ffiffiffi
3

p
Δ=ðΩI¼0ðsnÞ þ 2ΩI¼2ðsnÞÞ;

bI¼2 ¼ −
ffiffiffi
2

p
bI¼0; ð19Þ

where

FIG. 2 (color online). The phases and moduli of the Omnès functions of the process γγ → ππ. Both S and D waves with I ¼ 0 and
I ¼ 2 are presented.
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Δ ¼ −
ffiffiffi
1

3

r
snΩI¼0ðsnÞ

π

0
B@Z

R
ds0

ffiffi
2
3

q
Bðs0ÞIm½ΩI¼0ðs0Þ−1�

s02ðs0 − sÞ þ
Z
L
ds0

Im½LI¼0
R ðs0Þ�ΩI¼0ðs0Þ−1
s02ðs0 − sÞ

1
CA

þ
ffiffiffi
2

3

r
snΩI¼2ðsnÞ

π

0
B@Z

R
ds0

ffiffi
1
3

q
Bðs0ÞIm½ΩI¼2ðs0Þ−1�

s02ðs0 − sÞ þ
Z
L
ds0

Im½LI¼2
R ðs0Þ�ΩI¼2ðs0Þ−1
s02ðs0 − sÞ

1
CA:

To determine the location of the Adler zero (and its
uncertainty), we consider the values given by chiral
perturbation theory at one loop [51] (1.019m2

π0
), two loops

[52] (1.175m2
π0
), and in the Muskhelishvili–Omnès analysis

[40]. These are all encompassed by taking

sn ¼ ð1� 0.2Þm2
π0
; ð20Þ

which is within the range of Ref. [9].

2. IJ ¼ 02 channel

This amplitude for ππ → ππ and→ KK is dominated by
the f2ð1270Þ resonance. These hadronic amplitudes are
suppressed below 1 GeV, by the D-wave angular momen-
tum required to excite a tensor resonance. In contrast, in the
γγ reaction, J ¼ 2 can be reached even in the S wave in the
helicity-2 channel. Consequently, even the spin-2 compo-
nent of the pion exchange Born term is important from the
lowest γγ energies.
Below 600 MeV, we constrain the D waves as we did the

S waves but instead use the dispersion relation of Eq. (15).
The Omnès function is computed using the following
inputs. For the f2ð1270Þ, the ππ channel contributes
∼84%, KK almost 5%, and the 4π channel 10%, according
to the PDG 2012 tables [43]. Since the shape of the f2 is
dominated by the ππ channel, the amplitude T11 with
I ¼ 0; J ¼ 2 controls the pole position. To allow for the
different shape in the two-photon channels, the hadronic
amplitude is modified by the appropriate coupling functions
αðsÞ. Thus, we have for each helicity (dropping the
I ¼ 0; J ¼ 2 labels)

F 1ðsÞ ¼ α1ðsÞT̂11 þ α2ðsÞT̂21 þ α3ðsÞT̂31;

≃ α1ðsÞT̂11; ð21Þ

where the subscripts 1, 2 and 3 label the ππ, KK, and 4π
channels. While α1ðsÞ is real, α1ðsÞ could be complex for
s > sth2;th3, where these are the thresholds of the KK and 4π
channels, respectively. In practice, there is a lack of
sensitivity to the separation of these thresholds, and α1 is
essentially real up to

ffiffiffi
s

p ¼ 1.5 GeV. This is also so for the
IJ ¼ 20; 02 channels discussed below. Then we analyze the
T-matrix element recalculated from Eq. (16). The phase
shift and inelasticity are given by Ref. [23] up to 1.4 GeV.
At higher energies, we choose a smooth connection up to

5 GeV given by the Regge representation of Eq. (17). We
use this result as the input to Eq. (21) and determine the
Omnès function and phase for ππ → ππ shown in Fig. 2.
Using a single-channel dispersion relation gives a constraint
on the γγ amplitude, shown below 600 MeV in Fig. 3.
Indeed, the amplitudes with J ¼ 2 behave [10,40] as

F I
20−BI

20∼ s2ðs−4m2
πÞ; F I

22−BI
22∼ sðs−4m2

πÞ: ð22Þ

Such behavior is built into the dispersion relation, Eq. (15),
we use.

3. IJ ¼ 20 channel

In isospin 2, inelasticity is produced by the opening
of the 4π channel. In a way similar to the isospin-zero case
just discussed, we relate the γγ → ππ partial waves to the
hadronic amplitudes by

F 1ðsÞ ¼ α1ðsÞT̂11 þ α3ðsÞT̂21 ≃ α1ðsÞT̂11; ð23Þ
where 1 and 3 represents the 2π and 4π channels. We set
sth3 ¼ ð1.05 GeVÞ2, below which α1 must be real. In
practice, it is real up to

ffiffiffi
s

p ¼ 1.5 GeV. The parametriza-
tion for the ππ S-wave amplitude (T11) is given by Ref. [23]
below 1.35 GeV, and above, we use a smooth Argand plot
connection. Then we obtain the Omnès function shown
in Fig. 2. To determine the low energy behavior of the
corresponding γγ → ππ partial wave, we still need the left-
hand cut contributions. For this, we use for the non-Born
term a form analogous to that of Eq. (18),

LI¼2
R ðsÞ ¼

ffiffiffi
1

3

r
LωðsÞ þ

ffiffiffi
1

3

r
Lh1ðsÞ −

ffiffiffi
1

3

r
La1ðsÞ þ LTðsÞ;

ð24Þ
and the LTðsÞ is given in Appendix A. With this input, we
use the subtracted dispersion relation given in Eq. (14),
where the subtraction constant bI¼2 is fixed by the chiral
constraint in Eq. (19).

4. IJ ¼ 22 channel

When the energy is below 1.35 GeV, we use the
parametrization set out in Ref. [23]. Above, we use an
Argand plot connection making both the T-matrix element
and its derivative continuous. The corresponding Omnès
function is calculated up to 5 GeV, and the result at lower
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energies is shown in Fig. 2. We find that, though the phase-
shift is very small and the inelasticity very close to unity,
Eq. (16), the phase will be quite different from the phase
shift, which means that the 4π channel cannot be ignored.
Again, we use a form for this γγ partial wave,

F IJ¼22
λ;1 ðsÞ ¼ α1ðsÞT̂11 þ α3ðsÞT̂31 ≃ α1ðsÞT̂11; ð25Þ

where 1 and 3 represent the 2π and 4π channels (there being
no coupling to KK with I ¼ 2 quantum numbers). Once
again, we set sth3 ¼ ð1.05 GeVÞ2, and below that energy ᾱ1
must be real. However, in practice, it is real up toffiffiffi
s

p ¼ 1.5 GeV. The low energy γγ amplitudes are then
fixed using just the Born terms modified by final state
interactions using dispersion relation, Eq. (15).
One may think these partial waves are too small to

matter. However, though the λ ¼ 0 partial wave is small and
the Born term plus other single-particle exchanges, as given
in Eq. (24), are good enough to represent its left-hand cut,
the λ ¼ 2 wave has a much bigger effect because of its
interference with the large I ¼ 0; J ¼ λ ¼ 2 wave. Thus,
we parametrize this wave by

F 2
D2 ¼ α2D2ðsÞBD2ðsÞ exp½iφ2

D�; ð26Þ

where α2D2ðsÞ is a polynomial function of s. Of course, the
new amplitude should more or less reproduce the low
energy Born amplitude. Indeed, in this I ¼ J ¼ 2 case, we
demand it to be compatible up to 1.5 GeV, within the
uncertainty given by Eq. (15).

5. J ≥ 4 channel

In the energy region we study here, final state inter-
actions can be ignored for high spin waves. Importantly, for
charged meson production, these amplitudes contain the
one meson exchange poles that sit just outside the physical
region, close to cos θ ¼ �1. Consequently, we set these
waves equal to their Born terms to be the γγ amplitudes; see
Appendix A for their explicit formulas.

E. Coupling functions, αðsÞ
It is important to repeat that the coupling functions that

appear in Eqs. (9), (21), (23), (25), and (30) not only carry
channel labels 1 for ππ, 2 for K̄K, and 3 for others but they

FIG. 3 (color online). Low energy amplitudes of γγ → ππ using Eqs. (14) and (15). These are inputs to our partial wave
determinations. Only the F2

D2 wave has been input as a constraint up to 1.5 GeV as described in the text. The bands indicate the
uncertainties in these calculations, including the dispersive effect of the unknowns in the left-hand cut contributions and the phase of the
relevant γγ partial waves above 1.5 GeV.
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each also have I; J; λ labels that we have often suppressed
to make these equations transparent. Thus, the α functions
are different for I ¼ 0; 2, J ¼ 0; 2 with λ ¼ 0; 2. These are
parametrized as

αi
I
J;λðsÞ ¼ expðbsÞ

X
n

anXn; ð27Þ

with X ¼ ð2s − s1 − s2Þ=ðs2 − s1Þ where s1 ¼ sth,
s2 ¼ 2.1 GeV2, and so in the range fitted −1 ≤ X ≤ 1.
The exponential factor is an efficient way of taking account
of the rapid change of the amplitudes from the near
threshold Born term. The parameters b and an depend,
of course, on I, J, λ, and the channel label i.
All the different coupling functions α have in common that

they are functions with only left-hand cuts. Consequently,
they are expected to be smooth along the right-hand cut.
Given the limited energy domain that is fitted here, we
represent these by low-order polynomials. Fits extending
over a larger regimewould need higher powers of s, and so a
conformal representation may well be more economical.
Here low-order polynomials are sufficient. Typically, we
have no more than four or five parameters per wave, in
Eq. (27). However, not having the correct analytic structure,
such parametrizations should not be continued far into the
complex energy plane. We will consider that later in Sec. IV.

F. Dispersive constraints in the low energy region

With the inputs given above for the phase behavior of
each partial wave and for the left-hand cut amplitude, we
can accurately compute the I ¼ 0; 2 S, D0; D2 waves in the
low energy region. The uncertainties in the phases above
1.4 GeVor so contribute at most 10% to the spread of the γγ
partial waves below 600 MeV. A far larger contribution to
this spread comes from the uncertainties in the modeling of
the left-hand cut contributions by single-particle exchanges
(beyond one-pion exchange) and for the S waves in the
position of the Adler zero location, Eq. (20). These give rise
to the error bands shown in Fig. 3. For the F 2

D2 wave, this is
used up to 1.5 GeV, as described in Sec. II F. The increase
in uncertainties is why we only use the dispersive treatment
for the partial waves below 600 MeV. We will require our
two-photon amplitudes, described by the general unitary
representation, Eq. (9), to lie within these bands. Other
calculational treatments [38,40] have imposed greater faith
in knowledge of the crossed-channel exchanges and of the
phases of the γγ amplitudes to make predictions even
beyond KK threshold. Rather, we will use γγ data entirely
to determine these amplitudes, and merely constrain the
partial waves to lie within the calculated bands of Fig. 3 in
the energy ranges shown.

G. γγ → KK amplitudes

In principle, the methodology adopted for the treatment of
the γγ → ππ channels could be applied to that for KK

production. Again, coupled-channel unitarity applies, and at
the threshold for Compton scattering, γK → γK, Low’s low
energy theorem equally holds and the amplitude is controlled
by the one-kaon exchange Born amplitude. However, the
physical region for γγ production of kaon pairs is so far away
from that for Compton scattering that there is no part of the
physical region where the left-hand cut of this amplitude
dominates its behavior. Very rapidly, K exchange gives
way to κ and K� exchange, or more generally correlated
Kπ; Kππ;… exchanges. Consequently, none of our previous
dispersive machinery is useful in practice. Moreover, for the
KK channels, the older data are of much poorer statistics
than for ππ, particularly below 1.5 GeV with just 23 data
points compared to nearly 3000 for the ππ channels. The
recently published Belle results on γγ → KsKs have good
angular coverage above 1.1 GeV and add a further 315 data
points to our analysis. While the KK data may be expected
to constrain the I ¼ 0 amplitudes through coupled-channel
unitarity, Eq. (9), they also have important I ¼ 1 compo-
nents, which Bose symmetry does not allow in the case of
the ππ final state. Having data on KþK−, K0K0, and KsKs
modes helps to disentangle these, at least approximately.
A complete amplitude analysis of the isovector channel
would require the inclusion not only of data on γγ → π0η
but detailed information on the purely hadronic π0η → π0η,
KK channels, which are not available. Consequently, we
have to attempt a more limited separation of the isovector
component and so instead use a representation that is less
detailed. Below, we give our parametrization of the KK
amplitudes, which is particularly simple and crude in the
case of the I ¼ 1 component.

1. IJ ¼ 00 channel

In this channel, complete information is provided by the
final state interaction constraint, Eq. (9). This fixes the
γγ → KK amplitude once the coupling functions α1;2 have
been determined.

2. IJ ¼ 02 channel

The isospin-zero D waves are dominated by the
f2ð1270Þ resonance, for which we use a simple
parametrization,

F0
Dλðγγ→KKÞ¼F0

Dλðγγ→ ππÞρ
2
2ðsÞ

ρ21ðsÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ51ðM2

f2
ÞΓðf2ð1270Þ→KKÞ

ρ52ðM2
f2
ÞΓðf2ð1270Þ→ ππÞ

s
exp½iφ0

D�;
ð28Þ

where recall Eq. (2), ρi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

i =s
p

with i ¼ 1 for the π
and i ¼ 2 for the K channels. In reality, our fit shows that
φ0
D, φ

1
D [see for the latter Eq. (30)] only make the fit a bit

better, with a Δχ2 < 5. Given the large uncertainty in the
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I ¼ 1 components, which also contributes in the KK case,
e.g., Eq. (29) in the IJ ¼ 10 channel, we simply set these
phases to zero.

3. IJ ¼ 10 channel

For the isospin-1 Swave, we simply parametrize this as a
complex function,

FI¼1
S ðγγ → KKÞ ¼ fK1 ðsÞ þ ifK2 ðsÞ; ð29Þ

with fKi ðsÞ polynomials of s. We then let the data fix these.

4. IJ ¼ 12 channel

The isospin-1 D waves are dominated by the appearance
of the a2ð1320Þ. Since its shape is controlled by its large ρπ
decay mode, we simply parametrize this wave in the KK
channel by

F1
D2ðγγ → KKÞ ¼ αK

1
D2ðsÞT1

Dðρπ → ρπÞ s − sth2
s − sth1

exp½iφ1
D�;

ð30Þ
where sth1 and sth2 are the ρπ and KK thresholds,
respectively, T1

D is given by the simple Breit–Wigner
parametrization,

T1
Dðρπ→ρπÞ

¼ g1ðsÞ2
M2−s− iρ1ðsÞg21ðsÞ− iρ2ðsÞg22ðsÞ− iρ3ðsÞg23ðsÞ

: ð31Þ

and the dimensionful functions giðsÞ include the standard
Blatt–Weisskopf barrier factors, here called QiðsÞ, with i
labeling the decay channel, so that

g2i ðsÞ ¼
Ma2Γa2BRiQiðM2

a2Þ
ρiðM2

a2ÞQiðsÞ
; i ¼ 1; 2; 3;

Q1ðsÞ ¼ 1þ q2

s − sth1
;

QjðsÞ ¼ 1þ q2

s − sthj
þ
�

q2

s − sthj

�
2

; j ¼ 2; 3: ð32Þ

Γa2 ¼ 107 MeV, and BRi are the individual channel
branching ratios. We take the parameters q to be 1 GeV.
Here, 1, 2, and 3 represent ρπ, KK, and the remaining nπ
channels, respectively. Given the paucity of the data to be
fitted, we absorb all the contribution of ωππ; ηπ;… into the
nπ channel for simplicity. It is equal to setting this
branching ratio to 25%. Moreover, we simply ignore the
IJλ ¼ 1D0 wave and higher-spin partial waves. The
coupling function αK

1
D2 is parametrized as in Eq. (27).

Together with the γγ → K̄K data, these do act as a useful
constraint in the coupled-channel treatment we use, espe-
cially for the S wave.

III. FIT RESULTS

A. ππ → ππ scattering amplitudes

There are two main parts in our fit. One is the fit to
hadronic data, which determines the T-matrix elements, the
inputs for which we have described in detail in Sec. II. The
other focuses on the two-photon reactions, γγ → ππ and
γγ → KK. Our strategy is to first fit the hadronic data and
use the resulting T-matrix elements to fit the γγ data.
For the IJ ¼ 00 ππ scattering amplitude, we use a

coupled-channelK-matrix parametrization. To fix the param-
eters, we fit to the phase shift and inelasticity as was done

FIG. 4 (color online). Fit to the KþK− S-wave magnitude and phase in the decay Dþ
s → ðKþK−Þπþ determined by BABAR [54].
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previously [17], including all the data from Refs. [19–22].
The CFDIV parametrization of T0

0 [23] is included as
important new constraints, together with the dispersive
results of Buttiker et al. [50] on the ππ → KK amplitude.
We include the effects of isospin breaking by taking into
account the 8 MeV mass difference between the KþK− and
K0K0 thresholds, rather than treating the kaons as having a
common mass as in Ref. [23]. Other than this mass differ-
ence, the K-matrix elements are treated as isospin invariant.
While our fitting is only along the real axis, the para-
metrization does have the σ pole at

ffiffiffi
s

p ¼ 441 − i272 MeV.
Since theKK threshold region features crucially in the γγ

data, see Fig. 15 later for instance, we also include the latest
BABAR Dalitz plot analysis of Dþ

s → πþπ−πþ [53] and
Dþ

s → KþK−πþ [54]. With a spectator π in each case, the
ππ and K̄K S-wave amplitude and phases have been

determined [53,54], and for the latter in finer detail than
in other reactions, as shown in Fig. 4. According to Eq. (9),
these decay amplitudes also constrain the S-wave hadronic
amplitudes, of course, with appropriately different α
functions. The fitted T-matrix elements are shown in
Fig. 5. Compared to the precise description below
800 MeV and above 1.2 GeV, inconsistencies among the
data sets around the K̄K threshold mean the description of
any one data set is not perfect there.
As seen in Fig. 5, our fitted amplitudes are not identical

to those of Peláez et al. [23], though their amplitudes are an
input, particularly in the region of 0.9–1.05 GeV. This is
because we fit other information, such as that of Refs. [50]
and [53,54]. Important for the latter, we treat the charged
and neutral kaon pair thresholds with their actual (rather
than a common) mass.

FIG. 5 (color online). The I ¼ J ¼ 0 T-matrix elements for the hadronic processes: ππ → ππ, ππ → KK, and KK → KK. The “data”
labeled by CFDIVare from the dispersive analysis of Peláez and collaborators [23]. The red points, representing the modulus of T12, are
from the Roy–Steiner equation analysis of Buttiker et al. [50].
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With the basic T-matrix elements that enter into the
unitarity equation, Eq. (9), now fixed, we focus on the
analysis of the photon-photon amplitudes.

B. γγ → ππ fits

In this section, we describe the fit to all the data on
γγ → ππ, both integrated cross sections and angular

distributions. These data sets are listed in Table I. The
recent high statistics data on γγ → π0π0 by Belle [14] is the
main addition to the earlier fit [17]. The experimental
binning, particularly in cos θ, is taken into account in the
fitting. The fit forms are integrated over each bin, even
though we show the fits as continuous lines. The charged
meson data will, of course, have one-meson exchange poles
close to the forward and backward directions. With data

TABLE I. Summary of data sets. Data in each experiment are fitted up to 1.44 GeV. Mark II results are from Boyer et al. [2], CB88
(Crystal Ball 1988) fromMarsiske et al. [5] and CB92 (Crystal Ball 1992) from Bienlein et al. [6], CELLO from Harjes [3] and Behrend
et al. [4], and γγ → πþπ− of Belle from Mori et al. [13] and γγ → π0π0 of Belle from Abe et al. [14].

Experiment Process Integrated cross section j cos θjmax Angular distribution j cos θjmax

Mark II γγ → πþπ− 81 0.6 63 0.6
Crystal Ball γγ → π0π0 36 0.8 (CB88) 0.7 (CB92) 90 0.8
CELLO γγ → πþπ− 28 0.6 104 (Harjes) 201 (Behrend) 0.55 - 0.8
Belle γγ → πþπ− 128 0.6 1536 0.6

γγ → π0π0 36 0.8 684 0.6

FIG. 6 (color online). Solution I compared with the γγ → πþπ− data sets. The Mark II [2], Cello [3,4], and Belle [13] are all
integrated over j cos θj ≤ 0.6. The freedom to make a small systematic shift in normalization of Mark II data above 0.45 GeV has
been used to improve the fits. While we make a systematic shift to all Belle data. Rather than shift the data, the solutions
have been renormalized. This results in the discontinuity in the solid curves at 0.45 GeV of Mark II plots.

COMPREHENSIVE AMPLITUDE ANALYSIS OF … PHYSICAL REVIEW D 90, 036004 (2014)

036004-13



only out to j cos θj ∼ 0.6, these poles are not obviously
there in the plots we show. Nevertheless, these poles are
there in our theoretical amplitudes used to fit the data,
encoded in the J ≥ 4 partial waves. This is explicitly
illustrated later in Fig. 18.
As the number of data points from different experiments

is different, we weight the data sets to ensure each group
contributes roughly the same in χ2. Each experiment,
except for CELLO, quotes separately a systematic uncer-
tainty for normalizing their cross sections. CELLO [3,4]
folds this with the statistical uncertainties. To fit the
disparate data sets, we allow for these global shifts.
These are almost 7% for Mark II above 0.45 GeV, 11%
for Crystal Ball (CB88) in the whole energy region, 3% for
Crystal Ball (CB92), and 4% for the Belle neutral pion data.
The normalization uncertainty of Belle charged pion data is
energy dependent. However, it is dominated by a global
shift of almost 12%. In the plots, we choose to renormalize
our amplitudes rather than the data sets, so it is the
published data that are plotted in Fig. 6 and later figures.
Among the charged pion data sets, only Mark II has data
below 700 MeV. We increase the weight of these data
points to give them some bite. In addition, we constrain the
individual partial waves to lie within the dispersively
evaluated bands of Fig. 3, as we have previously described.
We obtain a number of fits that almost equally well

describe all the data. Consequently, we show one repre-
sentative solution (we call solution I) in these plots. The
reason for this choice will become clear when we come to
the KK data. The differential cross section plots for γγ →
πþπ− are displayed in Figs. 7–11. Figure 7 shows the fit to
Mark II; Fig. 8 that to Cello; and Figs. 9, 10, and 11 for

Belle. The results for the integrated cross section for
γγ → π0π0 are shown in Fig. 12 and differential cross
sections in Figs. 13 and 14. The quality of the fits is good.
This is quantified in Table II, where the χ2 for each data set
is listed.
We see that, while overall the charged pion data are well

described, there are zones of discrepancy. These are most
apparent in the Belle data because of their smaller statistical
uncertainty. In the integrated cross section, we see that from
800 to 900 MeV the trend of the Belle results is not well
captured. This may be related to imperfections in the
separation of the πþπ− component from the far larger
μþμ− production—a wholly QED process. This also
appears to affect the angular distributions in this same
mass domain seen in the strange upward blip of the
distribution around cos θ≃ 0.5. These are the main con-
tributors to the average χ2 per data point of 2.2, as can be
seen from Table II. These structures, which are difficult to
reconcile with anything in the γγ → πþπ− channel, explain
why our amplitudes give cross sections below the Belle
data in the energy region 0.8–0.9 GeV, as shown in the
enlarged plots in Fig. 15. This makes the Belle results on
π0π0 production, which have no such contamination,
particularly important. We also see, from Figs. 1 and 6,
that the Belle πþπ− cross section is not well reproduced
around 1.2–1.25 GeV, even allowing for a systematic
normalization uncertainty of 12%—the fit being on the
low side. This amounts to a corresponding undershooting
of the differential cross section in this mass range seen in
the lower three plots of Fig. 10. However, the fits to the
other charged data from Mark II and Cello are better,
Figs. 6–8.

FIG. 7 (color online). Fit to the γγ → πþπ− differential cross section of the Mark II experiment [2]. The fit shown is solution I.
The numbers give the central energy in GeVof each angular distribution listed in order of the cross section at z ¼ 0, where z ¼ cos θ.
The data are normalized so that the integrated cross section is just a sum of the differential cross sections in each angular bin.
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The integrated cross sections for γγ → π0π0 and how
well they are fitted are shown in Fig. 12. Among these
data sets, only CB88 [5] has data below 700 MeV.
Consequently, as discussed above, we have increased the
weight of these low energy data in the fitting. The differ-
ential cross-section plots for γγ → π0π0 are shown in
Figs. 13 and 14, which fit the data from Crystal Ball
and Belle, respectively. The χ2’s are given in Table II.
Having data of more comparable precision for both

γγ → πþπ− and γγ → π0π0 makes the separation of I ¼ 0
and I ¼ 2 components considerably more reliable. This is
important for determining what of structures seen around
950 MeV is the f0ð980Þ and what is background, and so
better constrain the isoscalar component. The angular
distributions likewise help in separating the S and D waves

that strongly interfere through the same mass region up to
1.4 GeV. We notice that there is a clear “peak” in the region
of 0.95–1.025 GeV. In Fig. 15, we show a blowup of this
region for both the Belle charged and neutral pion cross
sections. We see that our solution I provides an adequate
description of these data. However, as already remarked,
the πþπ− data below 900 MeV have a strange behavior,
more easily seen in Fig. 6. This is likely an issue of the
incomplete removal of the large μþμ− signal in this mass
range. In Fig. 16, we plot the integrated cross section of
each partial wave amplitude. This is one of our main
results. It is a key input into future dispersive calculations
of light-by-light scattering, as well as the basis for
determination of resonance two-photon couplings as we
discuss later in Sec. IV.

FIG. 8 (color online). Fit to the γγ → πþπ− differential cross section of CELLO experiment. Here, Cello1 is from Harjes [3] and
Cello2 from Behrend et al. [4]. The numbers give the central energy in GeV of each angular distribution listed in order of the cross
section at z ¼ 0, where z ¼ cos θ.
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FIG. 9 (color online). Fit to the γγ → πþπ− differential cross section of the Belle experiment [13]. The numbers give the central energy
in GeV of each angular distribution listed in order of the cross section at z ¼ 0, where z ¼ cos θ. The data are normalized so that the
integrated cross section is just a sum of the differential cross sections in each angular bin.
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FIG. 10 (color online). Fit to the γγ → πþπ− differential cross section of the Belle experiment [13]. The numbers give the central
energy in GeVof each angular distribution listed in order of the cross section at z ¼ 0, where z ¼ cos θ. The data are normalized so that
the integrated cross section is just a sum of the differential cross sections in each angular bin.
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FIG. 11 (color online). Fit to the γγ → πþπ− differential cross section of the Belle experiment [13]. The numbers give the central
energy in GeVof each angular distribution listed in order of the cross section at z ¼ 0, where z ¼ cos θ. The data are normalized so that
the integrated cross section is just a sum of the differential cross sections in each angular bin.
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In Fig. 17, we give the prediction for the integrated cross
section from our solution I. We display the charged and
neutral pion cross sections on scales that differ by a factor
of 2. If the processes were pure I ¼ 0, the curves for πþπ−
and π0π0 would be on top of each other. In the lower energy
region, the effect of a sizeable I ¼ 2 component is
obviously apparent. However, this is not so in the region
of the f2ð1270Þ, where a factor of 2 does indeed approxi-
mate their magnitudes. Nevertheless, their shapes are
different, with the f2 peak shifted, reflecting the different
mix of I ¼ 2 amplitudes. Finally in Fig. 18, we give the
prediction for the differential cross section for γγ → πþπ−
from our solution at two energies. This is to illustrate the
effect of the one-pion exchange poles as j cos θj → 1, not
seen in data with limited angular coverage.

C. γγ → KK̄ fits

As previously indicated, we have a patch of solutions
that fit all the γγ → ππ data with almost the same χ2

and very similar characteristics. Compared to previous

amplitude analyses, the Belle π0π0 results have limited this
significantly. Nevertheless, being a coupled-channel treat-
ment, each of these solutions makes a different prediction
for the isoscalar γγ → KK cross section and its energy
dependence. It is here that the older experimental data on
the KþK− and K0K0 channels, and the much newer high
statistics results on KsKs, narrow the continuum patch to
essentially a single solution. Of course, KK production
involves an important isovector component, too, which
we crudely model by a Breit–Wigner-like form for the
a2ð1320Þ, as set out in Sec. II F.
From the γγ → ππ amplitudes fitted in the last section,

the isoscalar S wave of γγ → KK has automatically been
fixed according to Eq. (9), meanwhile isoscalar D waves
are fixed by Eq. (28). What we need to know are the
isovector waves, and they are parametrized by Eqs. (29)
and (30). With these, we obtain the fit in Figs. 19 and 20.
For simplicity, we only plot in Fig. 19 the γγ → KþK−

cross section integrated over the whole angular range and
γγ → K0K0 cross section integrated over j cos θj ≤ 0.87, in
accordance with the data from Refs. [24,29]. Since the

FIG. 12 (color online). Solution I compared with the γγ → π0π0 data sets. The CB88 [5] and Belle [14] data are integrated over
j cos θj ≤ 0.8, while the CB92 data [6] with increased statistics cover j cos θj ≤ 0.7.
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ARGUS group does not give the errors for its event
distribution, we include errors to make its χ2 comparable
to that of other data sets. By far, the biggest constraint
comes from the Belle KsKs data. Indeed, these are the only
data that cover a significant angular range (j cos θj ≤ 0.6)
down to 1.05 GeV.
Both the isoscalar and isovector S waves are found to

peak close to threshold. For I ¼ 0, the peak is 12 nb,
reflecting the appearance of the f0ð980Þ, while for I ¼ 1,
which is to be expected of the a0ð980Þ, this is around 3 nb
with a large uncertainty as indicated by the shaded band,
Fig. 21. The isoscalar and isovector S waves tend to cancel
in the charged kaon channel rather than in the neutral kaon
channel. This does not satisfy the model estimate of
σK0K0 ≤ 1 nb calculated in Refs. [32,33]. The uncertainty
band for the isovector S wave, as shown in Fig. 21, is
caused by a lack of information. A full coupled-channel
analysis including the ηπ0 and multipion modes and
scattering would reduce this. Without this here, recall we
have simply parametrized this S wave by Eq. (29). Of
course, this uncertainty will affect the determination of D
waves, too, and this is reflected in the γγ couplings listed
in Table III.

IV. TWO-PHOTON COUPLINGS

Our analysis has determined the I ¼ 0; 2 amplitudes for
γγ → ππ and to a lesser extent the I ¼ 0; 1 components for
γγ → KK. For the ππ channel, the integrated cross section
for each partial wave is shown in Fig. 16. For spin ≥ 4,
these are assumed to be given by the Born amplitude.

We see, as expected, the prominent peak for the
f2ð1270Þ in the D waves, most obviously with helicity
2. In the S wave, we see a smaller structure associated with
the f0ð980Þ and at low energies masked by the peak from
the Born amplitude the effects of the σ=f0ð500Þ. For the
idealized case where a state is well described by a Breit–
Wigner form with no background, its two-photon width can
be inferred from the height of the resonance peak through

ΓðR → γγÞ ¼ σγγðres:peakÞM2
RΓtot

8πðℏcÞ2ð2J þ 1ÞBR : ð33Þ

In reality, the states here are broad, overlapping with each
other or with strongly coupled thresholds, and so the
model-independent coupling of a resonance is given only
by the residue of its pole. Knowing the underlying
amplitudes, we can determine these couplings to two
photons as we discuss in Sec. IV B.

A. Argand plots

An important outcome of our amplitude analysis is the
behavior of the partial wave amplitudes, as complex
functions of energy. For all the waves, but the S wave,
these are very simple and show no surprises. However, to
learn about the structure of scalars, it is helpful to trace the
variation of S-wave amplitudes from the Argand plots in
Fig. 22. The I ¼ 0 Swave encodes the effect of σ, f0ð980Þ,
f0ð1370Þ poles. In the region from ππ threshold to
600 MeV, the real Born amplitude is increasingly being
modified by strong final state interactions, generated by the

FIG. 13 (color online). Fit to the γγ → π0π0 differential cross section from the Crystal Ball experiment. Here, CB88 is from Marsiske
et al. [5] and CB92 from Bienlein et al. [6]. The numbers give the central energy in GeVof each angular distribution listed in order of the
cross section at z ¼ 0, where z ¼ cos θ. The data are normalized so that the integrated cross section is just a sum of the differential cross
sections in each angular bin.
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FIG. 14 (color online). Fit to the γγ → π0π0 differential cross section of the Belle experiment [14]. The numbers give the central
energy in GeVof each angular distribution listed in order of the cross section at z ¼ 0, where z ¼ cos θ. The data are normalized so that
the integrated cross section is just a sum of the differential cross sections in each angular bin.
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σ pole. These in fact decrease the amplitude from its simple
Born value and so produce the strong near threshold
peaking seen in Fig. 16. From Fig. 22, we see the amplitude
varies fastest in the region of 0.95–1.025 GeV, correspond-
ing to the narrow f0ð980Þ. The two thresholds, KþK− and
K0K0, are clearly seen. Then, once again, above 1.1 GeV,
the S-wave variation is generated by the deep pole of the
f0ð1370Þ and the approaching f0ð1520Þ. We see the
I ¼ 2 S-wave amplitude is smooth apart from a “kink”
near 1.2 GeV, reflecting where the 4π (and ρππ) channels
become important.

B. Scalar couplings

The couplings of a resonance are defined by the residue
of its pole on the nearby unphysical sheets. To determine
these, we need to continue the amplitude shown, for
instance, in Fig. 22 into the complex s plane. It is the
complex value of gγγ on the appropriate sheet that we quote
in Table III. An intuitive feel for what this number means in
terms of a two-photon width is provided by the represen-
tation suggested by [12,17]

ΓðR → γγÞ ¼ α2

4ð2J þ 1ÞmR
jgγγj2; ð34Þ

where α is the usual QED fine structure constant. This is,
of course, not a physical quantity but merely a way to
reexpress jgγγj.

1. f 0ð500Þ → γγ

Since the existence of σ o[r f0ð500Þ] was established
by dispersive analyses [55,56], a central issue has been what
is its internal structure. This in turn is reflected in its two-
photon coupling. The representation we use, Eq. (9), which
is well suited to fitting data on the real energy axis, can only
be reliably continued a short distance into the complex plane,
since our simple representation of the coupling functions,
αðsÞ, does not have the necessary analytic structure.
Consequently, to determine the residue of the σ pole that
is deep in the complex plane, and close to the left-hand cut,
we use the dispersion relation of Eq. (14) to continue the
amplitudes far away from the real energy axis. From this
amplitude, we can reliably extract its γγ coupling, together

TABLE II. Summary of contributions to the χ2 from each experiment for our solution I. Here, χ2tot is calculated as follows: we sum χ2

of all data sets and divide it by the total number of data points we are fitting, namely, 2951. χ2average is computed in the same way, but for
each data set separately. The number in the bracket of the line for γγ → KþK− means that we do not take into account the Belle’s data,
which lie above 1.4 GeV.

Solution I χ2tot ¼ 2.17

Experiment Process Data points χ2average χ2Integrated Cross-section χ2Angular distribution

Mark II γγ → πþπ− 144 1.55 1.50 1.61
Crystal Ball γγ → π0π0 126 1.63 1.88 1.53
CELLO γγ → πþπ− 333 1.87 1.03 1.41 from Harjes/2.23 from Behrend

Belle
γγ → πþπ− 1664 2.85 1.16 3.00
γγ → π0π0 684 1.19 0.43 1.24

TPC/Argus/Belle γγ → KþK− 18 2.78 2.78 � � �
TASSO/CELLO γγ → K0K0 5 1.77 1.77 � � �
Belle γγ → KsKs 315 1.03 0.73 1.13

FIG. 15 (color online). Solution I compared with Belle results on γγ → πþπ− [13] and π0π0 [14] in the energy region 0.8–1.05 GeV. The
charged pion data are integrated over j cos θj ≤ 0.6, and the neutral data are integrated over j cos θj ≤ 0.8. This misfit of the Belle charged
pion data below 0.9 GeV is perhaps due to μþμ− contamination, as discussed in the text. This is not seen in the Mark II fits, Fig. 7.
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with its pole position, this is listed in Table III, as well as its
interpretation in terms of a radiative width, Eq. (34).
On the second sheet, our σ pole in our hadronic

amplitudes is at E ¼ 0.441 − i0.272 GeV as found by
Ref. [57], which is within the error of Ref. [58]. The more
distant third sheet pole is located at E¼0.386− i0.108GeV,
which is compatible with that of Ref. [59]. Extracting
first the coupling to ππ from the residue of the amplitude
T11, we then find the coupling gγγ listed in the table.
For the pole on the second sheet, this can be interpreted
as a radiative width of f0ð500Þ → γγ of ð2.05� 0.21Þ keV.
The error is given by the band shown in Fig. 3. In
Eq. (34), the resonance mass mR is taken to be jmRj.
Other choices are included in the uncertainties. The high
quality of the fit to the data sets and corresponding

dispersion relation mean we assign a four star confidence
level to this result in Table III. The relation of these results to
other works will be discussed in Sec. VA.

2. f 0ð980Þ → γγ

As shown in Fig. 15, our solution fits the peaks observed
by Belle both in charged pion [13] and neutral pion data
[14]. Moreover, our input hadronic amplitude has only one
pole located at E ¼ 0.995 − i0.042 GeV on the second
sheet; see Table III. Since this is quite close to the real axis,
Eq. (9) with the functions αðsÞ represented by polynomials
should be good enough to determine the couplings. The
way to extract the photon couplings on different Riemann
sheets, numbered by Sh, is given in Refs. [12,38]. This can
be expressed in a simplified way [60] through

FIG. 16 (color online). Individual partial wave components of the γγ → ππ integrated cross section.

FIG. 17 (color online). The cross sections for γγ → πþπ− (with the scale on the left) and π0π0 (scale on the right) predicted by our
solution I for the full angular range are shown. If the processes were pure I ¼ 0, the cross sections would be equal everywhere.
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gShγγ ¼ α1ðsRÞgShππ þ α2ðsRÞgShKK; ð35Þ

where the functions are evaluated at the pole s ¼ sR on the
appropriate sheet. Here, α1ðsÞ and α2ðsÞ in Eq. (9) are
simple functions, given by Eq. (27), and g2ππ , gππgKK
are residues extracted from hadronic amplitudes
TJðππ → ππ; KKÞ with J ¼ 0. In this way, we find the
γγ coupling of the f0ð980Þ → γγ listed in Table III. This
can be interpreted as a width ð0.32� 0.05Þ keV for our
solutions. The error comes from the uncertainties in the
αðsÞ and T-matrix elements from MINUIT, together with
the variation between γγ solutions. As the f0ð980Þ is close
to the real axis, and the fit is of high quality, we have four
star confidence in these results, Table III.

3. f 0ð1370Þ → γγ

As shown in Table III, there are two poles located at
E ¼ 1.423 − i0.177 GeV on the second sheet and at
E ¼ 1.406 − i0.344 GeV on the third sheet in our hadronic
amplitudes. These poles are deep in the complex energy
plane and close to the end of our fitted range and have
dominant couplings to 4π channels that we have not treated
uniformly well. Consequently, one must interpret their two-
photon couplings with a great deal of care. The couplings we
find translate to a f0ð1370Þ → γγ width of ð4.0� 1.9Þ keV.
However, this number, even with its large error, does not
have the credibility of our other results, and that is reflected
in our associating one star with this result. We note the two
photon width is close to the upper limits of ð3.8� 1.5Þ and
ð5.4� 2.3Þ keV given in Ref. [61], in which the f0ð1370Þ is
treated as a mixed state of quarkonium and a glueball.

C. Tensor couplings

1. f 2ð1270Þ → γγ

Though the hadronic ππ amplitudes given by CFDIV
[23] are quite precise along the real energy axis, they are
not appropriate for continuing into the complex plane.
Consequently, we use a coupled-channel K-matrix para-
metrization to represent the phase and inelasticity given
by CFDIV. To make it simple, we absorb the 4π-channel
contribution into the inelasticity for KK. As shown in
Table III, the resulting amplitude has two poles located at
E ¼ 1.270 − i0.081 GeV on the second sheet and at E ¼
1.267 − i0.108 GeV on the third sheet. The f2ð1270Þ → γγ
residue can then be interpreted, via Eq. (34), as a radiative
width on the second sheet as ð3.49� 0.43Þ keV and
ð2.93� 0.40Þ keV on sheet III. It is the pole on sheet
III that is the nearest to the real axis and produces the
dominant physical effects on the cross section. These
widths are compatible with the earlier “peak solution” of
Ref. [12] and solution A of Ref. [17]. The simple cross-
section formula for a Breit–Wigner peak, Eq. (33), corre-
sponds to a width of ð3.32� 0.37Þ keV from the cross
section seen in Fig. 16. The high degree of consistency
between neighboring solutions is the reason we have four
star confidence in the results for the f2ð1270Þ, Table III.
The nonrelativistic constituent quark model picture

predicts that the coupling of the tensor mesons should be
predominantly through helicity 2 [62] through an E1
transition. As discussed in detail by Poppe [63], earlier data
from SLAC and DESY could not rule out a significant D0

component for the f2 coupling to two photons: with limited
angular coverage and poorer statistics, S and D0 waves
were interchangeable [12,17]. In Ref. [64], quark model cal-
culations with relativistic corrections predict the helicity-zero

FIG. 18 (color online). The full angular distribution for γγ → πþπ− predicted by our solution I at 0.4 and 1.2 GeV. These energies
are listed in order of the cross section at z ¼ 0, where z ¼ cos θ. While the fits to the angular distributions in the preceding plots are
integrated over each bin in cos θ, here we show the fits as continuous functions of angle to illustrate the effect of the pion poles at
j cos θj > 1. These give the sweep up at the end of the angular range, even though this is not evident in data with limited angular coverage.
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component to be 6% of the total. Now, finding a solution
compatiblewith theBelle data in both the neutral and charged
pion channels fixes the helicity-zero fraction to be ð9� 2Þ%.
This validates a simple q̄q picture for the f2ð1270Þ.

2. a2ð1320Þ → γγ

Our result for the a2 photon coupling does not have the
precision of that for the f2. While the isoscalar D wave is
determined by the far greater ππ information we have fully
discussed, the isovector D wave has been crudely para-
metrized by a Breit–Wigner form for the a2ð1320Þ. The fit
shown in Fig. 21 gives a radiative width for the a2 of
ð1.04� 0.22Þ keV. The error reflects the systematic uncer-
tainty produced by different solutions, as shown in Fig. 21,

while the simple Breit–Wigner formula of Eq. (33) for the
peaks seen in Fig. 21 corresponds to a width of
ð1.04� 0.18Þ keV. These results are in agreement with the
radiative width of ð1.00� 0.06Þ keV that the PDG [43]
quotes. The difference is tolerable as that width is deduced
from the dominant 3π decay mode of the a2, which has a
branching fraction of∼70%, whilewhat enters here is theKK
fraction of merely 5%, and that is reflected in our associating
a two star confidence level with this result in Table III.

V. DISCUSSION

A. Related work

In a series of papers, Achasov and Shestakov [30–33]
have considered the two-photon reactions we study here.

FIG. 19 (color online). Solution I compared with the γγ → KK data sets. For the γγ → KþK− process, ARGUS cross section data [24]
are integrated over cos θ. For their event distribution, the integral is over j cos θj ≤ 0.7. TPC [26] and Belle [27] are integrated up to
j cos θj ¼ 0.6. For the γγ → K0K0 process, CELLO [28] and TASSO [28] are integrated up to j cos θj ¼ 0.7 and j cos θj ¼ 0.87
separately. The Belle KsKs data are from Ref. [15].
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Based on a ππ,KK rescattering mechanism, they determine
the two-photon widths averaged over the resonance mass
distributions. In particular, they have investigated the
implication of kaon loops for the appearance of the
f0ð980Þ in these reactions. In Ref. [30], they fit the charged
pion data in the energy range from 0.85 to 1.5 GeVand the
neutral pion results from threshold to 1.5 GeV. They do not
fit the angular distributions and presume theDwave is pure
helicity 2. They then find a width for f2ð1270Þ → γγ of
3.68 keV. Their model separates the two-photon couplings
of resonances between a “direct” coupling and that from
hadron loops. In Ref. [31], they find the direct components
to be small. The radiative widths integrated over the
resonances were then found to be 0.45 keV for the σ
and 0.19 keV for the f0ð980Þ. In Ref. [33], Achasov and
Shestakov give a prediction for the scalar contributions to
the KK channels from their kaon loop model. Their
isoscalar S wave is in agreement with ours, but the
isovector S wave is much bigger than ours in the range
of 1.0–1.1 GeV; see Fig. 21.

In Refs. [34,35], Achasov and Shestakov (AS), using a
linear realization of the SUð2Þ × SUð2Þ σ model [36],
consider the σ as a resonance in ππ → ππ and γγ → ππ
scattering. They illustrate how the effect of the σ pole, deep
in the complex energy plane, on scattering on the real
energy axis is shielded by multiquark dynamics. In the
AS treatment, a major part of the σ-meson self-energy is
generated by intermediate ππ, or 4q, intermediate states.
Unlike our two-photon discussion here, or that of ππ
scattering using the Roy equations, the AS analysis has
no crossing, and so there is no contribution from the nearby
left-hand cut in their bubble sum. Nevertheless, the
“shielding” effect AS noted was contemporaneously dem-
onstrated in the phenomenological description shown in
Fig. 3 of Ref. [1]. A natural inference from this shielding
of the σ is that the direct photon coupling cannot give an
idea of the structure of the σ.
In Ref. [37], Oller and Oset make a theoretical study of

γγ → MM reactions. They present a unified picture, for
πþπ−, π0π0, KþK−, K0K0, and π0η production up to

FIG. 20 (color online). Solution I compared with the γγ → KsKs differential cross section from Ref. [15].
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1.4 GeV. This model includes crossed-channel particle
exchange and final state interactions. With this, they fit
the πþπ− data from Mark II and Cello (including their
angular distributions in three of the energy intervals) and
the Crystal Ball results on the π0π0 channel. As a result,
they find a radiative width for the f0ð980Þ of 0.20 keV.
Of course, this work predates the high statistics Belle
results.
In Ref. [38], Mao et al. perform a dispersive analysis of

the f0ð500Þ and f0ð980Þ in γγ → ππ. They find a width
of 0.12 keV for the second sheet pole of the f0ð980Þ and
quote 2.08 keV for the radiative width of the σ.
In Ref. [39], Mennessier et al. use an improved analytic

K-matrix model for hadronic reactions and extract the σ

and f0ð980Þ radiativewidths from studying the Crystal Ball
and Belle data on the neutral pion channel. Their Feynman
diagram based treatment allows direct and “rescattering”
contributions to the γγ couplings to be separated. They find
the direct σ width to be 0.16 keV, while the total is
ð3.08� 0.82Þ keV, and the direct f0ð980Þ width is
0.28 keV with a total of only ð0.16� 0.01Þ keV.
However, they fit up to 1.09 GeV just the π0π0 mode.
Their prediction for the γγ → πþπ− process provides a
rather poor approximation to the data.
In Ref. [40], García-Martín and Moussallam use the

dispersive machinery used here supplemented by a
coupled-channel Mushkhevili–Omnès representation.
Though the framework they use is similar to that we

FIG. 21 (color online). Individual partial wave components of γγ → KK cross sections. The lack of experimental data between 1.0 and
1.05 GeV contributes to the shaded (cyan) bands for the I ¼ 0; 1 S waves that reflect the systematic errors generated by different
amplitude solutions.

TABLE III. The resonance poles and their two-photon residues (both magnitude and phase) from solution I are listed. These residues
can be interpreted in terms of two-photon partial widths using Eq. (34). These are tabulated in keV. For each, the fraction of the width
provided by helicity zero is given: for the scalar resonances, it is, of course, 100%.

gγγ ¼ jgjeiφ
State Sh Pole locations (GeV) Jλ jgjðGeVÞ φ (°) ΓðfJ → γγÞ (keV) λ ¼ 0 fraction % C.L.

f2ð1270Þ
II 1.270 − i0.081 D0 0.37� 0.03 172� 6 3.49� 0.43 8.4� 1.4 ****

D2 1.23� 0.08 176� 5
III 1.267 − i0.108 D0 0.35� 0.03 168� 6 2.93� 0.40 8.7� 1.7 ****

D2 1.13� 0.08 173� 6
a2ð1370Þ IV 1.313 − i0.053 D2 0.72� 0.08 174� 3 1.04� 0.22 0a **
f0ð500Þ II 0.441 − i0.272 S 0.26� 0.01 105� 3 2.05� 0.21 100 ****
f0ð980Þ II 0.998 − i0.021 S 0.16� 0.01 −175� 5 0.32� 0.05 100 ****
f0ð1370Þ II 1.423 − i0.177 S 0.96� 0.10 8� 13 8.6� 1.9 100 *

III 1.406 − i0.344 S 0.65� 0.15 −146� 15 4.0� 1.9 100 *
aNote that we assume D0 waves to be zero for a2. In the second column, “Sh" denotes the Riemann sheets, and in the last column

“C.L.” indicates our confidence level in the reliability of the results, as in [43] and discussed in Sec. IV C.
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follow as set out in Refs. [8,10], we only attempt to
determine the inputs to the dispersion relations, Eqs. (14)
and (15), in as much they limit the partial waves from ππ
threshold to 600 MeV, and even then within bands of
uncertainty shown in Fig. 3. In contrast, Moussallam and
Garcia-Martin attempt to fix the inputs from distant energy
regions along the left- and right-hand cuts to predict the S
wave through the f0ð980Þ region. Thus, they assume the
left-hand cut is described by a combination of single-
particle exchanges: π, ρ, ω, a1, b1, h1, a2, and f2
exchanges. No account is taken of multimeson exchange
contributions like ππ, ρπ, 4π, etc. Data on the two meson
production are described up to 1.28 GeV.
In Ref. [41], Hoferichter et al. derive a system of

Roy–Steiner equations for pion Compton scattering.
These hyperbolic dispersion relations are then projected
onto s- and t-channel partial waves with subtraction
constants fixed in terms of pion polarizabilities.
Focusing on the low energy region, they find the two-
photon width of the σ to be ð1.7� 0.4Þ keV. The f2ð1270Þ
is assumed to couple entirely through helicity 2 and is used
to match parameters in their analysis below 1 GeV.
In Ref. [42], Danilkin et al. consider ππ, KK, πη, and ηη

production in a chiral Lagrangian model. They fit the ππ
cross sections up to 900MeVand π0η to 1.2 GeV. However,
the model does not include tensor resonances and so is
limited in applicability to 0.9 GeV and below.
All these papers have overlap with the study presented

here. Many have used techniques close to those that are the
basis of this analysis. However, our treatment is the only
one that is an amplitude analysis, using basic theoretical

concepts to set the framework and allowing the data to
dictate the structure of the two-photon partial waves. We
now turn to the interpretation of our results.

B. Scalar and tensor structure

Having determined the two-photon couplings of the
scalar and tensor states, and having interpreted these in
terms of a radiative width, we can use these to discuss the
nature of the states. The simplest is the relation of the
tensors: f2ð1270Þ and a2ð1320Þ. If their masses and
annihilation probabilities were exactly equal, the two-
photon width would measure the square of the mean square
of the electric charges of their constituents. So if each is a
q̄q system composed of u and d quarks, then

Γðγγ → ðuuþ ddÞ=
ffiffiffi
2

p
Þ∶Γðγγ → ðuu − ddÞ=

ffiffiffi
2

p
Þ

¼ ½ð2=3Þ2 þ ð−1=3Þ2�2∶ ½ð2=3Þ2 − ð1=3Þ2�2
¼ 25∶9: ð36Þ

With Γðf2 → γγÞ ¼ ð2.93� 0.40Þ keV (the width on sheet
III), this quark model relation predicts Γða2 → γγÞ ¼
ð1.06� 0.15Þ keV, compatible with our photon width
for the a2 presented in Table III. This agreement suggests
that the f2ð1270Þ and a2ð1320Þ are (not surprisingly)
simple qq structures. Of course, the determination of the
a2 radiative width is not on anything like the firm basis we
have here for the f2ð1270Þ with the partial wave separation
and the careful treatment of its pole residue.

FIG. 22 (color online). Argand plots for the γγ → ππ I ¼ 0 and I ¼ 2 S-wave amplitudes. For the I ¼ 0 Swave, the bigger dots mark
the energy every 0.1 GeV, while the smaller dots are the intermediate energies every 25 MeV. As seen, the amplitudes move particularly
fast between 950 and 1000 MeV because of the f0ð980Þ. The amplitude displays the expected kinks at KþK− and K0K0 thresholds. For
the I ¼ 2 S wave, the dots label the energies every 0.1 GeV.
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As discussed, for example, in Ref. [18], if the σ were
the quark model companion of the f2ð1270Þ with a
ðuuþ ddÞ= ffiffiffi

2
p

structure, it would satisfy

Γðσ → γγÞ
Γðf2 → γγÞ ¼

15

4

�
mσ

mf2

�
n
; ð37Þ

in potential models. Here “15=4” is reduced to 2 by
relativistic effects; see Ref. [64]. The power n indicates
the shape of the potential, with n ¼ 3 in the Coulomb
region and n → 0 if there is linear confinement [64].
To reproduce this relation with our radiative widths in
Table III, n should be around 0.7–1.2. Of course, this is
sensitive to what we choose as the real parameter mσ

in Eq. (37).
Meanwhile, there are other models to classify state

structure for the scalars. A simple ðūuþ d̄dÞ= ffiffiffi
2

p
gives

∼4 keV as given by Babcock and Rosner [65], while more
recently Giacosa et al. predicted it to be smaller than 1 keV
in the case of the σ [66]. An ss structure gives ∼200 eV
according to Barnes [67] and 62 eV from Giacosa [68].
A tetraquark, i.e., qqqq, composition gives ∼270 eV as
calculated by Achasov et al. [69] through kaon loops.
The prediction of largely KK composition for the f0ð980Þ
is more complicated. Barnes [70] gives ∼600 eV in the
molecular model of Weinstein and Isgur [71], while
Hanhart et al. [72] predict 220 eV. Alternatively,
Narison and Mennessier et al. have proposed an intrinsic
glueball nature for the σ, with direct radiative widths
between 0.2 and 0.6 keV [73], which increase to ð3.9�
0.6Þ keV when ππ rescattering is included [74]. Here, we
list the radiative widths in Table IV predicted in these
models. As discussed in Sec. VA, the radiative width for
the σ is dominated by the ππ rescattering effects regardless
of its “inner core,” just as in the original calculation of
Ref. [18] and updated here in Table III. The dominance
of ππ effects shows how important hadronic final state
interactions are.
For the f0ð980Þ, as shown in Table IV, the radiative

widths of ½ns�½ns�, ss, KK, and gg are quite close to each

other and close to the ð260� 40Þ keV we have determined
from the latest data. Here, too, the KK rescattering
component is a significant part of what is observed. To
reach a final conclusion on the structure of the underlying
state, more accurate calculations in strong coupling QCD,
either in the continuum or on the lattice, to predict these
couplings are required. Here, we have established what
their answer should be to agree with experiment.

VI. CONCLUSION

This paper presents an amplitude analysis of all data on
γγ → ππ. To make up for the limited angular range in these
experiments and the lack of polarization information, we
take advantage of the fundamental concepts of S-matrix
theory. Unitarity relates the two-photon reactions we study,
both ππ and KK production, to hadronic scattering reac-
tions involving pions and kaons. Unitarity determines the
interaction of the final state hadrons and so constrains
the form of the two-photon partial waves. At low energy,
Low’s theorem for Compton scattering further constrains
the amplitudes. So much so that consistency between
Compton scattering and the two-photon scattering region
imposed using dispersion relations restricts the γγ partial
waves to narrow bands up to 5 or 600 MeV. Data then do
the rest. So, almost up to 1.5 GeV, we have a rather small
band of solutions. The “unique” solution (we label I) has
been presented in Secs. III and IV. That there is such
precision comes from the high statistics data on the πþπ−,
π0π0, and KsKs data from Belle, together with earlier two-
photon data on ππ, as well as some limited information on
the KþK− and K0K0 channels. This is the first analysis that
describes all these data simultaneously, both integrated and
differential cross sections, and imposes coupled-channel
unitarity to determine the partial waves.
To achieve this degree of certainty, we supplement the

classic meson-meson scattering results from CERN-
Munich, Argonne, and Brookhaven experiments with the
latest hadronic reaction information from the precise
dispersive analyses of Ref. [50] and CFDIV [23] and the
recent BABAR data [53,54]. These constrain our T-matrix
elements, as shown in Fig. 5. With these amplitudes,
precise pole locations are given by Table III for the tensor
f2ð1270Þ and the scalars f0ð500Þ/σ, f0ð980Þ with a hint
of the f0ð1370Þ. Since the information on the isovector
channel from just γγ → KK is highly limited, we simply
input the a2ð1320Þ as a Breit–Wigner form with parameters
fixed from its dominant 3π decay mode.
To obtain precise two-photon amplitudes, the high

statistics Belle data sets on γγ → πþπ− and the π0π0

process [13,14] are fitted, together with all earlier two-
photon results. The solutions are of good quality, as
indicated in Table II and Figs. 6–14. The γγ → K̄K data
sets [24–29] have also been fitted. The Belle results [15], in
particular, on the KsKs channel with their good angular
coverage and narrow energy binning are a powerful

TABLE IV. Radiative widths in different modelings of their
composition.

Composition Prediction (keV) Author(s)

ðuuþ ddÞ= ffiffiffi
2

p
4.0 Babcock & Rosner [65]
< 1

a Giacosa et al. [66]
ss 0.2 Barnes [67]

0.062 Giacosa [68]
½ns�½ns� 0.27 Achasov et al. [69]
KK 0.6 Barnes [70]

0.22 Hanhart et al. [72]
gg 0.2–0.6 Narison [73]

aHere, superscript “a” means that the authors [68] assume
Mσ < 0.7 − 0.8GeV.
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constraint on our solution space. The results of the fits are
shown in Table II and Fig. 20.
For this narrow range of amplitudes, the two-photon

coupling of each state is specified by the residue of its pole
in the complex energy plane. This is the most model-
independent result possible. These couplings, listed in
Table III, can be interpreted as radiative widths, but only
as an intuitive guide. We find the width for the f0ð500Þ=σ
width to be ð2.05� 0.21Þ keV from the pole on the second
sheet. This is roughly half the value predicted for a
ðūuþ d̄dÞ= ffiffiffi

2
p

bound state. In fact the radiative width of
the σ is dominated by its coupling to two pions, which
underlies the calculation presented here and updates those
in Refs. [17,18,75,76]. The residue for the f0ð980Þ can be
interpreted as a γγ width of ð0.32� 0.05Þ keV. As dis-
cussed in Refs. [77,78], the f0ð980Þ may well be a KK
molecule, and its two-photon width is consistent with that,
though a combination of n̄n and ss components is still
possible.
For the tensor f2ð1270Þ, we interpret its γγ residue on the

third sheet as a radiative width of ð2.93� 0.40Þ keV for the
present solution (sol.) I. This is a definitive result. It is
between the values given by sol. A and sol. B of Ref. [17].
Limited results for the f0ð1370Þ are also listed in

Table III. However, this state appears at the very edge of
where our analysis with just ππ and KK channels can be
trusted. Consequently, we regard these results as having
only a single star reliability, rather then the four star results
we have for other states in Table III.
The determination here of a very narrow range of partial

wave solutions has brought a precision to two-photon
studies not previously achieved. The partial wave analysis
we have presented gives the individual cross sections
shown in Fig. 16. For the ππ S waves, we show their
Argand plots in Fig. 22. These are our main outputs. The
resonance couplings we have discussed are just conse-
quences of these. In a separate publication, we will deduce
what our amplitudes imply for the left-hand cut disconti-
nuity and its representation in terms of crossed-channel
exchanges in detail. The precision of the Belle data, and the
fact that their π0π0 results go out to cos θ ¼ 0.8, has
allowed a robust separation of helicity zero and two partial
waves. Only by a complete partial wave analysis can we fill
in the cross sections for the whole angular range. It is these
that are inputs into the light-by-light sum rules derived by
Pascalutsa and Vanderhaeghen [79]. Their contribution to
this will also be considered in a future work.
With plans advanced for new experiments on the

anomalous magnetic moment of the muon at both
Fermilab and J-PARC, there has been renewed theoretical
effort in limiting the uncertainties from the Standard Model
to this fundamental quantity. One of the largest uncertain-
ties comes from hadronic light-by-light scattering. While
the need is for theoretical, phenomenological, and exper-
imental guidance on the scattering of virtual photons,

results for real photons presented here provide a new
precision with which to anchor these studies. Indeed,
our amplitudes are a natural input into the newly developed
dispersive framework [80] for calculating light-by-light
contributions. The inclusion of the full γγ → MM ampli-
tudes, constructed from experiment here, should bring
greater certainty than the presently used artificial separation
of pion and kaon loops from scalar and tensor resonances;
see, e.g., Ref. [81]. They are all included here. Indeed, it is
this energy domain up to 2 GeV2 that is believed to
dominate the light-by-light contributions.
There has long been speculation about the nature of the

scalar mesons and whether the lightest ones are examples
of multiquark states, molecules, or glueballs, and not
simply qq states [82–86]. Two-photon couplings serve
as a guide to their composition. While the photons do excite
their “primordial” seeds, the fact that these photons at low
energy have long wavelengths means that they couple as
much to the hadronic decay modes of these light states.
Thus, to compare our experimental results with models
requires more detailed computation than has hitherto been
possible. Without such dynamical calculations, any further
remarks are mere speculation. Nevertheless, as discussed in
Ref. [77], the σ and f0ð980Þ may indeed be seeded by bare
nn and ss states of higher mass. The inclusion in their
dynamics of the hadronic channels, to which they couple,
may generate a very short-lived state close to ππ threshold
and one close to the opening of the KK channel [87]. It is
clear these states have something in common with tetra-
quark configurations, but particularly for the f0ð980Þ, its
pole structure reflects rather that of a molecule. Then, it is
natural that the two-photon couplings of these states are
dominated by couplings to ππ and KK systems, respec-
tively, rather than their speculated inner core. Of course,
only in explicit models, like 1=Nc [86,88], is it meaningful
to ask what this inner core is. In the real world withNc ¼ 3,
the hadronic modes surely dominate. Our understanding
of such dynamics is being challenged by the discovery of a
range of charmonium and bottomonium states [46] that
are similarly correlated with nearby hadronic channels and
upon which their very existence depends. The light scalar
states studied here are a key window on this dynamics.
Two-photon running to come at KLOE-2 [16,89] should

provide confirmation of our results for the isoscalar and
isotensor channels. This will demand better μþμ− separa-
tion than even Belle has below 900 MeV. However, results
of comparable precision for isovector states must await a
corresponding coupled-channel analysis combining data on
γγ → π0η, KþK−, and K0K0 with that on ππ. While the
two-photon production of ππ and ηπ channels, of course,
accesses different isospins, the KK channels involve both
I ¼ 0; 1. Thus, a larger global analysis would be required,
which would inevitably involve multipion hadronic scatter-
ing channels, too. Nevertheless, such analysis would enable
a full flavor description of the resonant states that dominate
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meson-meson interactions up to 1.5 GeV and inevitably
feed into the contribution of hadronic light-by-light sum
rules to the anomalous magnetic moment of the muon. That
is for the future.
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APPENDIX: BORN TERMS AND AMPLITUDES
FOR EXCHANGES

The Born term with one-pion exchange is calculated
from the chiral Lagrangian L2 ¼ F2huμuμi=4. With
ρ1ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
p

, its partial waves are

Bπ
S ¼

1 − ρ1ðsÞ2
2ρ1ðsÞ

ln

�
1þ ρ1ðsÞ
1 − ρ1ðsÞ

�
;

Bπ
D0 ¼

ffiffiffiffiffi
5

16

r
1 − ρ1ðsÞ2
ρ1ðsÞ2

�
3 − ρ1ðsÞ2

ρ1ðsÞ
ln
1þ ρ1ðsÞ
1 − ρ1ðsÞ

− 6

�
;

Bπ
D2 ¼

ffiffiffiffiffi
15

8

r �½1 − ρ1ðsÞ2�2
2ρ1ðsÞ3

ln
1þ ρ1ðsÞ
1 − ρ1ðsÞ

þ 5

3
−

1

ρ1ðsÞ2
�
:

The higher spin partial waves are determined in terms from
the full Born amplitudes using

X
J

BJ0Y0
Jðθ;ϕÞ ¼

ffiffiffiffiffiffi
1

4π

r
1 − ρ1ðsÞ2

1 − ρ1ðsÞ2 cos2 θ
;

X
J≥2

BJ2Y2
Jðθ;ϕÞ ¼

ffiffiffiffiffiffi
1

4π

r
ðρ1ðsÞ2 sin2 θÞei2ϕ
1 − ρ1ðsÞ2 cos2 θ

; ðA1Þ

by subtracting the lower partial waves, where Ym
J ðθ;ϕÞ are

the spherical harmonics function.
The contribution of other exchanges are calculated from

the resonance chiral Lagrangian [38,90],

LVPγ ¼ eCVεμναβFμνhΦfQ; ∂αVβgi;
LAPγ ¼ eCAFμνhΦ½Q; ∂μAν�i;
LBPγ ¼ eCBFμνhΦfQ; ∂μBνgi; ðA2Þ

where Φ is the pseudoscalar (0−−) octet, V is the (1−−)
octet, A is the (1þþ) octet, and B is the (1þ−) octet. The
partial wave projection of these gives

LSðC2
R;MR;sÞ¼C2

R

�
−

M2
R

ρ1ðsÞ
LFðMR;sÞþ s

�
;

LD0ðC2
R;MR;sÞ¼

C2
RM

2
R

ρ1ðsÞ
ð½1−3XF2ðMR;sÞ�LFðMR;sÞ

þ6XFðMR;sÞÞ;
LD2ðC2

R;MR;sÞ¼C2
Rsρ1ðsÞð½1−XF2ðMR;sÞ�2LFðMR;sÞ

þ2

3
XFðMR;sÞ½5−3XF2ðMR;sÞ�Þ; ðA3Þ

where we follow the functional forms given by Ref. [40]:

XFðM; sÞ ¼ 2M2 − 2m2
π þ s

sρ1ðsÞ
;

LFðM; sÞ ¼ ln

�
XFðM; sÞ þ 1

XFðM; sÞ − 1

�
:

The contributions of the vector and axial vector are given
by

Lω;SðsÞ ¼ LSðC2
ω;Mω; sÞ;

Lω;D0
ðsÞ ¼ LD0

ð
ffiffiffi
5

p
=2C2

ω;Mω; sÞ;
Lω;D2

ðsÞ ¼ LD2
ð

ffiffiffiffiffi
30

p
=16C2

ω;Mω; sÞ;
Lρ;SðsÞ ¼ LSð1=9C2

ρ;Mρ; sÞ;
Lρ;D0

ðsÞ ¼ LD0
ð

ffiffiffi
5

p
=18C2

ρ;Mρ; sÞ;
Lρ;D2

ðsÞ ¼ LD2
ð

ffiffiffiffiffi
30

p
=144C2

ρ;Mρ; sÞ;
La1;SðsÞ ¼ LSð1=4C2

A;Ma; sÞ;
La1;D0

ðsÞ ¼ LD0
ð

ffiffiffi
5

p
=8C2

A;Ma; sÞ;
La1;D2

ðsÞ ¼ LD2
ð−

ffiffiffiffiffi
30

p
=64C2

A;Ma; sÞ;
Lb1;SðsÞ ¼ LSð−1=36C2

B;Mb; sÞ;
Lb1;D0

ðsÞ ¼ LD0
ð−

ffiffiffi
5

p
=72C2

B;Mb; sÞ;
Lb1;D2

ðsÞ ¼ LD2
ð

ffiffiffiffiffi
30

p
=576C2

B;Mb; sÞ;
Lh1;SðsÞ ¼ LSð−1=4C2

B;Mh; sÞ;
Lh1;D0

ðsÞ ¼ LD0
ð−

ffiffiffi
5

p
=8C2

B;Mh; sÞ;
Lh1;D2

ðsÞ ¼ LD2
ð

ffiffiffiffiffi
30

p
=64C2

B;Mh; sÞ: ðA4Þ

Here, for LR;Jλ, the subscripts R, J, and λ represent the
crossed-channel exchange, spin, and helicity, respectively.

TABLE V. Decay widths and fitting parameters.

Process ΓðkeVÞ CRðGeV−1Þ
ω → π0γ 703 1.15� 0.02
ρ0 → π0γ 89.5 1.25� 0.08
aþ1 → πþγ 640 1.08� 0.21

bþ1 → πþγ 230 1.95� 0.25
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The coefficients Cω, Cρ, CA, and CB shown in Table V are
fixed from the decay widths RðA;BÞ → πγ.
For higher mass exchanges such as the tensors, we use an

effective pole (MT;C2
T) approximation. Their contribution

follows the form of Eq. (A3) in terms of the two parameters,
MT and CT , we now fix. Since we have considered all other

allowed single-particle exchanges up to a mass of 1.3 GeV,
we can (without loss of generality) simply set
MT ¼ 1.4� 0.2 GeV. To ensure the convergence of the
partial wave amplitudes, we demand the cancellation of
these exchange contributions when s → ∞. This imposes
the requirement

C2
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