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We analyze the many-flavor phase diagram of quantum electrodynamics (QED) in 2þ 1 (Euclidean)
space-time dimensions. We compute the critical flavor number above which the theory is in the
quasiconformal massless phase. For this, we study the renormalization group fixed-point structure in
the space of gauge interactions and pointlike fermionic self-interactions, the latter of which are induced
dynamically by fermion-photon interactions. We find that a reliable estimate of the critical flavor number
crucially relies on a careful treatment of the Fierz ambiguity in the fermionic sector. Using a Fierz-complete
basis, our results indicate that the phase transition towards a chirally broken phase occurring at small flavor
numbers could be separated from the quasiconformal phase at larger flavor numbers, allowing for an
intermediate phase which is dominated by fluctuations in a vector channel. If these interactions approach
criticality, the intermediate phase could be characterized by a Lorentz-breaking vector condensate.
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I. INTRODUCTION

The competition between screening and antiscreening
effects is at the heart of the intriguing diversity of phases
occurring in asymptotically free theories. Not only thermal
phase transitions governed by parameters such as temper-
ature or chemical potentials, but also quantum phase
transitions triggered by the number of active degrees of
freedom have recently been of central interest. Most
prominently, the number of light fermion degrees of free-
dom Nf often serves as a control parameter to tune the
screening–antiscreening competition. While chiral quan-
tum phase transitions of this type have attracted consid-
erable attention in four-dimensional non-Abelian gauge
theories because of their potential relevance for embed-
dings of the Higgs sector in beyond-standard-model sce-
narios [1–7], similar theoretical mechanisms can be at work
in the Abelian theory of quantum electrodynamics (QED)
in d ¼ 3 (Euclidean) spacetime dimensions. Beyond the
predominantly conceptual interest, such studies gain sig-
nificance from layered condensed-matter systems for which
d ¼ 2þ 1 dimensional QED with four-component Dirac
fermions can serve as an effective field theory for low-
energy excitations. Applications of this type have been
discussed, e.g., in the context of graphene, surface states of
three-dimensional topological insulators, and high-temper-
ature cuprate superconductors. For recent reviews on this
rapidly evolving field, see, e.g., Refs. [8,9]. In particular,
QED3 has been proposed to model the destruction of
phase coherence in the underdoped cuprates [10–16].
Chiral symmetry breaking in QED3 then describes the

zero-temperature transition from the d-wave superconduct-
ing state into the antiferromagnetic state. The size of the
dynamically generated mass in the effective theory con-
sequently determines the band gap in the insulating phase
of the underdoped cuprates.
As the coupling constant of QED3 has a positive mass

dimension, the theory is asymptotically free for purely
dimensional reasons: any finite value of the coupling, if
measured in terms of a reference scale, will become
arbitrarily small if this reference scale is pushed to
asymptotically large energies or momenta. In turn, one
expects QED3 to become more strongly coupled at low
energies, possibly generating fermion masses through a
chiral phase transition. By contrast, increasing the number
of fermion flavors enhances the screening properties of
fermionic fluctuations. If this screening dominates, the
coupling may remain small and the theory can be expected
to be in the disordered massless phase. More precisely, the
fluctuations can generate an infrared (IR) fixed point, such
that the theory remains quasiconformal: it has a nontrivial
RG flow from the Gaussian ultraviolet (UV) to the IR fixed
point with the transition scale set by the dimensionful
gauge coupling. Scenarios of this type have been suggested
and analyzed in many works, and the critical flavor number
Nχ

f;cr separating the chirally broken phase for small Nf from
the symmetric for large Nf has been estimated by a variety
of nonperturbative methods; see, e.g., Refs. [17–40].
Predictions from self-consistent approximations of the
Dyson-Schwinger equations (DSE) in their most advanced
form yield results near Nχ

f;cr ≈ 4; see, e.g., [28]. Recently,

PHYSICAL REVIEW D 90, 036002 (2014)

1550-7998=2014=90(3)=036002(20) 036002-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.036002
http://dx.doi.org/10.1103/PhysRevD.90.036002
http://dx.doi.org/10.1103/PhysRevD.90.036002
http://dx.doi.org/10.1103/PhysRevD.90.036002


these studies have been extended to incorporate lattice
anisotropies as well as finite temperature in order to
approach more realistic applications [41–44]. An early
RG study found Nχ

f;cr ≃ 3.1 [30]. Based on a thermody-
namic argument an inequality Nχ

f;cr ≤ 1.5 has been con-
jectured [26], but was challenged later [15]. Another upper
bound Nχ

f;cr < 7 has been claimed recently using an RG
monotonicity argument [40]. On the other hand, lattice
simulations in QED3 are difficult due to a large separation
of scales; however, they appear to agree at least on a lower
bound Nχ

f;cr > 1 [32,33,35,37]. The actual value of Nχ
f;cr in

QED3 is in fact of profound interest for the effective cuprate
models, in which the number of four-component Dirac
flavors is Nf ¼ 2: If Nχ

f;cr > 2, then the effective theory
predicts a direct transition from the d-wave superconduct-
ing into the antiferromagnetic phase at T ¼ 0 as a function
of the doping [12,13]. Otherwise, a small Nχ

f;cr < 2 would
leave the possibility of an unconventional non-Fermi-liquid
phase in the T ¼ 0 underdoped cuprates [10,11,14].
In the present work, we take a fresh look at the phase

structure of QED3 as a function of the fermion number. We
pay particular attention to all interaction channels allowed
by the large Uð2NfÞ flavor symmetry for Dirac fermions in
the reducible representation. Using the functional renorm-
alization group (RG), we find evidence for a more involved
structure of the phase diagram. Within our approach, we
can straightforwardly identify the “conformal-critical”
flavor number Nqc

f;cr above which the theory is in the
quasiconformal phase. A priori, Nqc

f;cr can be different from
the “chiral-critical” flavor number Nχ

f;cr below which the
theory is in the chirally broken phase. Our results suggest
thatNχ

f;cr ≲ Nqc
f;cr. This includes the interesting possibility of

a third intermediate phase withNf fermion flavors such that
Nχ

f;cr < Nf < Nqc
f;cr. Our findings suggest that this phase is

dominated by vector-channel fluctuations. If they become
critical, the model features a Lorentz-breaking vector
condensate and a correspondingly mixed spectrum of
photonlike massless Goldstone bosons and massive
excitations.
The present work is organized as follows: In Sec. II, we

discuss the symmetries and fermionic interaction channels
of QED3. Corresponding symmetry-breaking patterns are
briefly outlined in Sec. III. In Sec. IV, we introduce and
apply the functional RG as our central technical tool in
order to derive the RG flow equations for the interactions
and wave-function renormalizations. Section V is devoted
to a fixed-point analysis as a means to identify possible
phase structures. An estimate of the conformal-critical
flavor number Nqc

f;cr marking the transition to the disordered
quasiconformal phase is performed in Sec. VI. After
illustrating the importance of Fierz completeness of the
fermionic interaction channels in Sec. VII, we summarize
our findings in the form of a conjectured phase diagram in
Sec. VIII and conclude in Sec. IX. Some technical details
are summed up in the Appendices.

II. SYMMETRIES AND FERMIONIC
INTERACTION CHANNELS

Let us first recapitulate the flavor symmetries of
QED3 with many flavors, paying attention to the diversity
of interaction channels; see [45,46] for an extended
discussion.
The microscopic (classical) action of QED3 with Nf

fermion flavors in d ¼ 3 Euclidean space-time is given by

S ¼
Z

d3x

�
ψ̄ai∂ψa þ ēψ̄aAψa þ 1

4
FμνFμν

�
; ð1Þ

where ē denotes the bare dimensionful gauge coupling and
summation over flavor indices a is tacitly assumed. The
fermions ψ ; ψ̄ are considered to be four-component Dirac
spinors, naturally occurring, e.g., in effective theories for
electrons on a honeycomb lattice [47–53] or in cuprates
[10–16]. They transform under a reducible representation
of the Dirac algebra fγμ; γνg ¼ 2δμν in terms of 4 × 4 Dirac
matrices

γμ ¼
�

0 −iσμ
iσμ 0

�
; μ ¼ 1; 2; 3; ð2Þ

where fσμgμ¼1;2;3 denote the standard Pauli matrices. The
Clifford algebra can be spanned with the aid of two further
4 × 4 matrices

γ4 ¼
�

0 12
12 0

�
and γ5 ¼ γ1γ2γ3γ4 ¼

�
12 0

0 −12
�
;

ð3Þ
which anticommute with each other as well as with all γμ. A
complete Clifford basis is given by

fγAgA¼1;…;16 ¼ f14; γμ; γ4; γμν; iγμγ4; iγμγ5; γ45; γ5g; ð4Þ

where γ45 ¼ iγ4γ5 and γμν ¼ i
2
½γμ; γν� [in Eq. (4), only

those γμν with μ < ν are counted as independent].
The obvious UðNfÞ flavor symmetry of Eq. (1) together

with rotations in the space of irreducible subcomponents of
the Dirac spinors leads to an enhanced Uð2NfÞ flavor (or
“chiral”) symmetry of QED3; see Appendix A for details.
From a renormalization group perspective, it is conven-

ient to view the approach from the microscopic theory
towards possible symmetry-broken regimes as a two-stage
process: first, fluctuations involving gauge-fermion inter-
actions induce effective fermionic self-interactions.
Second, further fluctuations may lead to a rapid growth
of the fermionic interactions driving the system to criti-
cality and giving rise to possible condensation phenomena.
In the present work, we study the fermionic self-

interactions in the pointlike (i.e., the zero-momentum)
limit. To this end, we first classify all possible fermionic
self-interactions which are compatible with the Uð2NfÞ
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flavor symmetry as well as with the discrete C, P, and T
symmetries of the model. Following [29,30,45,46,49],
these interactions are given by the flavor-singlet channels

ðVÞ2 ¼ ðψ̄aγμψ
aÞ2; ðPÞ2 ¼ ðψ̄aγ45ψ

aÞ2; ð5Þ

and the flavor-nonsinglet channels

ðSÞ2 ¼ ðψ̄aψbÞ2 − ðψ̄aγ4ψ
bÞ2 − ðψ̄aγ5ψ

bÞ2
þ ðψ̄aγ45ψ

bÞ2; ð6Þ

ðAÞ2 ¼ ðψ̄aγμψ
bÞ2 þ 1

2
ðψ̄aγμνψ

bÞ2 − ðψ̄aiγμγ4ψbÞ2

− ðψ̄aiγμγ5ψbÞ2: ð7Þ

Here, we have used the convention ðψ̄aψbÞ2 ≡ ψ̄aψbψ̄bψa,
etc. The corresponding 4-point correlation functions of
these fermion interactions can develop largely independent
structures in momentum space. By contrast, in the zero-
momentum (pointlike) limit, these four-fermion inter-
actions are connected due to Fierz identities,

ðVÞ2þðSÞ2þðPÞ2¼0; −4ðVÞ2−3ðSÞ2þðAÞ2¼0: ð8Þ

In this limit, only two four-fermion terms are linearly
independent. We choose to work with the flavor singlets
and parametrize the corresponding part of the (effective)
Lagrangian as

Lψ ;int ¼
ḡ

2Nf
ðVÞ2 þ ~̄g

2Nf
ðPÞ2

¼ ḡ
2Nf

ðψ̄aγμψ
aÞ2 þ ~̄g

2Nf
ðψ̄aγ45ψ

aÞ2; ð9Þ

with the bare couplings ḡ; ~̄g. In our RG study below, ḡ and ~̄g
are set to zero at the initial scale. However, they can be
generated dynamically during the RG flow. In any case, the
first term ∼ḡ corresponds to the interaction known from the
Thirring model, whereas the second one ∼ ~̄g is similar to a
Gross-Neveu interaction.1

For Nf > 1, another Fierz basis may be of interest from a
physical point of view:

Lψ ;int ¼ −
ḡV
2Nf

ðVÞ2 þ ḡϕ
4Nf

ðSÞ2; ð10Þ

where the couplings are related to those of Eq. (9) by

ḡV ¼ ~̄g − ḡ;

ḡϕ ¼ −2~̄g: ð11Þ

In addition to the vector (Thirring) channel ∼ðVÞ2, we
encounter the nonsinglet channel ∼ðSÞ2 of Eq. (6) remi-
niscent to the Nambu–Jona-Lasinio (NJL) model. We
emphasize that the description of the system in terms of
Eq. (9) is completely equivalent to that of Eq. (10) in the
pointlike limit. The same is true for any other combination
of two linearly independent (“Fierz-complete”) interactions
out of the four channels ðVÞ2, ðPÞ2, ðSÞ2, or ðAÞ2.
We conclude this section by critically assessing the

pointlike limit: from a more general viewpoint, pointlike
interactions are only a special limit of fermionic correlation
functions ΓðnÞ, i.e.,

gOðψ̄OψÞ2

¼ lim
pi→0

ψ̄aðp1Þψ̄bðp2ÞΓð4Þ;abcd
O ðp1;p2;p3;p4Þψcðp3Þψdðp4Þ:

ð12Þ

A priori, the pointlike limit hence ignores a substantial
amount of momentum-dependent information.2 Most
importantly, since bound-state formation is encoded in
the momentum structure of correlation functions (e.g. as
s-channel poles in Minkowski space), we cannot expect to
obtain reliable information about the mass spectrum of the
system. Moreover, the formation of a condensate goes
along with a singularity in the fermionic four-point func-
tion, such that the fermionic pointlike description cannot
access the symmetry-broken regime.
In turn, this implies that the pointlike limit can only be

used to study the system within the symmetric regime. In
fact, it is adequate to address the large-Nf limit which is
expected to lie in the symmetric phase. By lowering the
flavor number Nf, we can therefore study the approach to
the symmetry-broken phase of the theory, as symmetry-
breaking inevitably goes along with a breakdown of the
pointlike description. In this manner, we can determine a
conformal-critical flavor number Nqc

f;cr below which the
pointlike description breaks down, possibly indicating
condensate and bound-state formation. In the case that
the approach to Nqc

f;cr from above exhibits a clear signature
for condensation in a particular channel, the conformal-
critical flavor number can agree with a specific critical
flavor number Nf;cr below which the system is in a
particular symmetry-broken phase. This reasoning has been
used in [54–56] to determine the many-flavor phase
diagram of QCD.
However, because of the diversity of possible symmetry-

breaking patterns as discussed below, the meaning of Nqc
f;cr

in QED3 is less obvious. In fact, our results indicate that
there may exist more than one critical flavor number
corresponding to different symmetry-broken phases. The

1If expressed in terms of two-component Weyl spinors, this
interaction is indeed identical to the Gross-Neveu interaction; cf.
Appendix A.

2The functional renormalization group approach used below
actually reinstates part of the momentum-dependent information
in an effective manner.
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conformal-critical flavor number Nqc
f;cr, which we aim to

estimate in the present work, provides an upper bound on
the potentially existing critical flavor numbers for all kinds
of broken phases.

III. SYMMETRY-BREAKING PATTERNS

Let us discuss the various symmetry-breaking patterns
that can arise if the fermion self-interactions become
critical. Symmetry breaking can give rise to two funda-
mentally different fermion mass terms: imψ̄ψ and
i ~m ψ̄ γ45ψ . Further fermion bilinears involving γ4 and γ5
are Uð2NfÞ equivalent to these mass terms.
The relation between fermion mass generation and

symmetry breaking becomes transparent by means of a
Hubbard-Stratonovich transformation [57,58]. This partial
bosonization allows us to treat composites of two fermions
in terms of effective bosons, schematically, ϕ ∼ ψ̄ψ . More
formally, such a transformation allows us to trade in the
four-fermion interaction term for a corresponding term
bilinear in bosonic fields and a Yukawa-type interaction
term on the level of the path integral:

ḡOðψ̄OψÞ2⟶ḡO−1ϕ2
O þ ψ̄ h̄OϕOψ ; ð13Þ

where the Yukawa-type coupling h̄O can possibly be
flavor- or Dirac-matrix valued. The quantum numbers
and transformation properties of the new bosonic field
ϕO depend on the exact definition of the four-fermion
interaction associated with the operator O. The Yukawa
coupling is normalized such that the four-fermion coupling
is reproduced upon integrating out the bosonic field.
From Eq. (13), we deduce that the four-fermion cou-

plings are inversely proportional to the mass term ∼ϕ2
O of

the bosonic field. Upon fluctuations, we expect that a full
Ginzburg-Landau-type effective potential is generated for
the boson field. Therefore, a singularity of the pointlike
fermionic coupling goes along with the effective potential
developing a nontrivial minimum. If so, the expectation
value of ϕO serves as an order parameter for symmetry
breaking. Vice versa, if we observe a divergence of the
fermionic self-interactions at a finite RG scale kSB in the
purely fermionic language, this serves as an indication for
the possible onset of spontaneous symmetry breaking.
Whereas Fierz completeness can be fully preserved by

choosing a suitable basis in the purely fermionic language,
simple approximations on the partially bosonized side can
actually violate this property. For instance, in mean-field
approximations this is known as the “Fierz ambiguity” or
“mean-field ambiguity” [59], the resolution of which
requires dynamical bosonization techniques on the bosonic
side [60–62].
In the present work, we anyway study the system by

approaching the phase boundary from the symmetric phase,
hence the quantitative details of bosonization are not
important for our purpose. In order to get a first picture

of possible symmetry-breaking patterns, let us take a closer
look at the partially bosonized version of Eq. (10) that uses
the ðVÞ2 and ðSÞ2 channels, which are considered to be the
relevant channels also in the Thirring model [62]. Using the
irreducible representation in terms of two-component
fermions χ, see Appendix A, we get for the vector channel

−
ḡV
2Nf

ðVÞ2→ 1

2
m̄2

VVμVμ− h̄VVμχ̄
iσμχ

i; i¼ 1;…;2Nf ;

ð14Þ
where Vμ denotes a real vector boson, and the ðSÞ2 channel
yields

ḡϕ
4Nf

ðSÞ2 → 1

2
m̄2

ϕϕ
ijϕji þ ih̄ϕχ̄iϕijχj; ð15Þ

where ϕ† ¼ ϕ denotes a scalar field represented by a
Hermitian 2Nf × 2Nf matrix. The equivalence with the
fermionic action holds also on the path integral level, if the
bare couplings satisfy the constraint

h̄2ϕ
2m̄2

ϕ

¼ ḡϕ
2Nf

;
h̄2V
2m̄2

V
¼ ḡV

2Nf
: ð16Þ

Whereas the vector field Vμ is invariant under Uð2NfÞ
transformations, the scalar field transforms according to
the bifundamental representation. Different symmetry-
breaking patterns arise depending on which bosonic field
component eventually develops a finite vacuum expectation
value. For instance, if ϕij acquires an expectation value
∼δij, a fermion mass term ∼i ~mψ̄aγ45ψ

a is generated. As is
obvious from the form of the expectation value, this mass
term does not break the Uð2NfÞ symmetry. It breaks parity
and time-reversal symmetry [46]. By contrast, an expect-
ation value of the form

ϕij ∼
�
1 0

0 −1
�

ð17Þ

gives rise to a mass term imðχ̄aχa − χ̄aþNfχaþNf Þ ¼
imψ̄aψa which corresponds to a symmetry-breaking
pattern of the form

Uð2NfÞ → UðNfÞ ⊗ UðNfÞ: ð18Þ
This is the pattern expected to occur for small flavor
numbers in QED3. For Nf > 2, more breaking patterns
arising from the scalar sector are in principle conceivable,
but have not been considered in the literature so far and will
also be ignored in this work.
Another option is that the vector field Vμ develops an

expectation value. This would leave the Uð2NfÞ flavor
symmetry intact, but would break Lorentz invariance.
Breaking patterns of this type have already been considered
during the heyday of the NJL model and the development
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of the Higgs mechanism [63–65]. For instance, if the
expectation value of Vμ was timelike, the corresponding
Goldstone bosons may resemble in some aspects a photon
field in temporal gauge. In the present case of QED3, these
Goldstone bosons could mix with the photon. In addition, a
massive bosonic excitation and Lorentz violating features
in correlation functions could be expected to occur.
However, the number of nonperturbative studies of this
symmetry breaking scenario and the nature of the transition
is limited; see, e.g., [66,67].

IV. RENORMALIZATION GROUP
FLOW OF QED3

The preceding sections already anticipated an RG view-
point on the model. In fact, our quantitative analysis will be
based on the functional RG formulated in terms of the
Wetterich equation [68] which is a flow equation for the
coarse-grained quantum effective action Γk:

∂tΓk ¼
1

2
STr½ð∂tRkÞ · ½Γð2Þ

k þ Rk�−1�: ð19Þ

Here, Γð2Þ
k is the second functional derivative of Γk with

respect to the fields, t ¼ lnðk=ΛÞ, and k is a flowing IR
cutoff scale which is used to set up the RG flow of the
quantum effective action. The regularization is implemented
with the aid of the regulator function Rk specifying the
details of the Wilsonian momentum shell integrations. In the
long-range limit, k → 0, Rk also vanishes such that all
quantum fluctuations have been integrated out. The initial
condition of the RG flow is determined by the classical
action S in the limit k → Λ: Γk→Λ→∞ → S. In an exact
solution to Eq. (19), the results for physical observables to be
read off for k → 0 should not depend on our specific choice
for the regularization scheme, i.e., the function Rk in our
case. In this work, we exploit a variation of the scheme to test
the predictive power of our approximations; see Sec. VI.
Solving theWetterich equation yields an RG trajectory in

theory space, i.e., the space of all action functionals
parametrized for instance by all possible field operators
compatible with the symmetries of the theory. In the present
work, we confine ourselves to an investigation of the RG
flow within a hypersurface of theory space, parametrized
by the Ansatz

Γk½ψ̄ ;ψ ; A� ¼
Z

d3x

�
ψ̄ðiZψ∂ þ Zψ̄Aψ ēAÞψ

þ 1

2
AμZAð−ð∂2Þδμν þ ∂μ∂νÞAν

þ 1

2ξ
AμZξ∂μ∂νAν

þ ~̄g
2Nf

ðψ̄γ45ψÞ2 þ
ḡ

2Nf
ðψ̄γμψÞ2

�
; ð20Þ

where the couplings ḡ, ~̄g, the wave-function renormaliza-
tions Zψ , ZA, and the vertex renormalization Zψ̄Aψ , gov-
erning the renormalization of ē, are assumed to be functions
of the RG scale k. As discussed above, we consider the
four-fermion couplings ḡ and ~̄g in the pointlike limit. In
addition, also the coupling Zψ̄Aψ ē, parametrizing the photon-
electron vertex, and the fermionic wave-function renormal-
ization Zψ will be considered in the zero-momentum limit.
In fact, as the flow equation is local in momentum space,
receiving its dominant contributions from momenta p≃ k
for a given scale k, the k dependence of all these couplings
can be viewed as an effective momentum dependence of
the corresponding vertices and propagators; see also our
discussion below.
Within the functional RG approach, the restriction to the

pointlike limit is therefore less severe as it may seem: only
highly asymmetric momentum dependencies of the vertices
are neglected, whereas an overall momentum dependence
is effectively parametrized by the k dependence of the
couplings.
The situation is slightly but decisively different for the

photon wave-function renormalization, which we a priori
consider to be a function of momentum ZA ¼ ZAðp2Þ.
While all qualitative features could still be extracted from
the zero-momentum limit, the quantitative description of
QED3 depends rather strongly on the precise form of the
momentum dependence of the photon propagator. The
reason for this is the qualitative change of the momentum
dependence of the polarization tensor Πμν,

ΠμνðpÞ ¼ ðp2δμν − pμpνÞΠðpÞ; ð21Þ

across the scale set by the dimensionful QED coupling ē2 in
three dimensions.3 For instance, in the large-Nf limit, the
dressing function of the polarization tensor is known to
behave as [78]

ΠðpÞ ∼ 1

p
; ð22Þ

which can have a rather strong effect on the photon wave-
function renormalization ZA,

ZAðpÞ ¼ 1þ ΠðpÞ: ð23Þ

We need ZAðp2Þ mainly in order to extract the running of
the gauge coupling. Since the momentum dependence of
ZAðp2Þ is expected to be sensitive to the value of the gauge

3This is a peculiarity of three-dimensional theories and occurs
generically for bosonic propagators dressed by fermion loops;
see, e.g., Ref. [69] for further examples. By contrast, no such
severe momentum dependence is known in four-dimensional
theories: In studies of QED4 and QCD4, for example, RG flows
using the background-field method [70–72] to compute ZA have
been quite successful; see, e.g., Refs. [56,73–77].
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coupling, it appears quantitatively mandatory to resolve the
momentum dependence of ZAðp2Þ in QED3 as accurately
as possible.
In addition to the kinetic term of the photon, the gauge

sector also comes with a gauge-fixing term with gauge
parameter ξ and a corresponding wave-function renormal-
ization Zξ. In the present work, we work in the Landau
gauge ξ → 0 which is known to be a fixed point of the RG
flow [79–82]. This suggests to choose Zξ ¼ ZA for
simplicity.
With these prerequisites, it is in principle straightforward

to derive the flow of general action functionals spanned
by the Ansatz (20). In order to make proper contact with
QED3, we have to provide initial conditions for the flow
parameters in Eq. (20). With regard to the classical action
Eq. (1), these initial conditions are given at the microscopic
UV scale Λ by

Zψ jΛ→∞ → 1; ZAjΛ→∞ → 1; Zψ̄Aψ jΛ→∞ → 1;

ē2jΛ→∞ > 0; ḡjΛ→∞ → 0; ~̄gjΛ→∞ → 0: ð24Þ

Note that in particular the four-fermion self-interactions are
not considered to be independent parameters. If they appear
in the RG flow, they are solely generated by quantum
fluctuations.
The RG flows for the couplings can conveniently be

formulated for the dimensionless renormalized couplings.
For the fermionic interactions, these are given by

~g ¼ Z−2
ψ k ~̄g and g ¼ Z−2

ψ kḡ: ð25Þ

The running of the fermionic wave-function renormaliza-
tion in turn can be parametrized in terms of the fermionic
anomalous dimension

ηψ ¼ −∂t lnZψ : ð26Þ

The calculation of the corresponding fermionic flows is
straightforward with standard techniques, see Ref. [83], and
the results will be summarized below.
The RG flow of the gauge sector requires a more careful

discussion. The corresponding definition of the dimension-
less gauge coupling is

e2 ¼ ē2Z2
ψ̄Aψ

ZAZ2
ψk

: ð27Þ

In ordinary perturbation theory, the Ward identity for the
photon-electron vertex enforces Zψ̄Aψ ¼ Zψ to hold at each
order in a coupling expansion; see, e.g. [84]. In the
Wetterich formulation of the functional RG, the regulator,
being introduced as a momentum-dependent mass term,
also contributes to the breaking of the gauge symmetry
similar to the gauge-fixing procedure. This also affects
the Ward identities which are accordingly modified by

regulator-dependent terms [73,74,77,79,81,85–88]. For our
case, these terms can be worked out explicitly along the
lines of [76,89], yielding the modified relation

Zψ̄Aψ ¼ Zψ ð1 − Cgg − C~g ~gÞ; ð28Þ

where Cg and C~g are constants depending on the number of
fermion flavors as well as the regularization scheme.
At this point, let us schematically define the photon

anomalous dimension analogously to Eq. (26) as ηA ¼
−∂t lnZA (a more precise definition also accounting for the
momentum dependence of ZA will be given below). Then,
the flow equation for the gauge coupling (27) reads

∂te2 ¼ ðηA − 1Þe2 − 2e2
ðCgð∂tgÞ þ C~gð∂t ~gÞÞ
ð1 − Cgg − C~g ~gÞ

: ð29Þ

In addition to the first term expected from perturbation
theory, we encounter additional terms proportional to the
flows of the fermion couplings which diagrammatically
correspond to a resummation of a large class of diagrams.
Below, we will investigate the approach to possible phase
transitions as a function of Nf by means of a fixed-point
analysis. As fixed points are defined as points in theory
space where the RG flow vanishes, i.e., ∂tg ¼ ∂t ~g ¼ 0,
the additional terms in Eq. (29) vanish identically at the
fermionic fixed points and thus are irrelevant for the
determination of the fixed point of the full system. For
our fixed-point analysis presented below, these additional
terms can therefore be ignored.
Finally, we have to give a precise definition of the photon

anomalous dimension in order to complete our set of flow
equations for our truncation. The evaluation of the photon
polarization tensor, corresponding to the diagram in
Fig. 1, yields a fully momentum-dependent wave-function
renormalization ZAðp2Þ. Since the integrand of the momen-
tum trace in the flow equation by construction is peaked for
loop-momenta q near the regulator scale, q2 ≃ k2, it is
crucial to obtain a reliable estimate of the gauge coupling

FIG. 1. 1PI diagram contributing to the vacuum polarization
tensor Πμν: the double lines represent (full) scale-dependent
regularized fermion propagators. The flow of the photon wave-
function renormalization is driven by the scale derivative of this
diagram with respect to the regulator.
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that parametrizes the photon-fermion interaction strength
of the modes interacting at momentum transfer of the order
of the scale k. As the running of the gauge coupling is
dominated by the photon anomalous dimension (at least
near fermionic fixed points), we define ηA with the aid of
the scale derivative of ZAðp2Þ at a momentum scale p2

evaluated near k2. To be more specific, we define

ηA ¼ −∂t lnZAðp2 ¼ ζ2k2Þ ð30Þ

where ζ serves as a control parameter that can be used to
estimate the dependence of our final results on the details of
the definition of ηA and thus on the definition of the gauge
coupling. The parameter ζ fixes the momentum scale p
serving as the (re)normalization point of the photon field
amplitude relative to the Wilsonian momentum shell k.
Large values of ζ ≫ 1 therefore appear to be artificial, since
the physically relevant momenta would then lie far beyond
the Wilsonian momentum shell. As a consequence, we
expect ηA to be a decreasing function of ζ for large ζ for
purely kinematical reasons. The natural range of physically
relevant ζ values hence is 0 ≤ ζ ≲ 1, with ζ → 0 corre-
sponding to the pointlike limit. For a more adapted
resolution of nontrivial momentum dependencies of
ZAðp2Þ, the choice ζ ¼ 1 appears a priori preferable.
In the determination of ZAðp2Þ via the polarization

tensor, another subtlety is hidden: the standard Ward
identity for the polarization tensor pμΠðpÞμν ¼ 0 is also
affected by the presence of the regulator, yielding a nonzero
regulator-dependent term on the right-hand side that
vanishes in the limit k → 0. This is a known peculiarity
of the present Wilsonian type of RG flow; see, e.g.,
Refs. [73,74,77,87,88,90–92] for a more detailed discus-
sion of this issue. In order to avoid a contamination of our
gauge coupling definition with these artificial regulator-
dependent terms, we subtract the p → 0 limit of Πμν for
finite k in the determination of ZAðp2Þ. This guarantees that
the information entering the anomalous dimension ηA is not
contaminated by contributions that arise in the RG flow
only in order to satisfy the regulator-dependent constraint
on the (unphysical) longitudinal modes. The technical
details of the construction of ηA are summarized in
Appendix C. In any case, the result for ηA has a com-
paratively simple form,

ηA ¼ 8v3Nfe2L
ðFÞ
1 ðηψ ; ζÞ; ð31Þ

where v3 ¼ 1=ð8πÞ2, and LðFÞ
1 denotes a threshold function

that corresponds to the regularized one-particle irreducible
(1PI) Feynman diagram shown in Fig. 1. It depends on the
choice of the regulator, thus encoding the RG-scheme
dependence, and also on the control parameter ζ introduced
above. The dependence on the fermion anomalous

dimension ηψ signals the “RG improvement” inherent in
the functional RG. The explicit integral representation of

LðFÞ
1 ðηψ ; ζÞ can be found in Eq. (C6).
For the fermion anomalous dimension we find

ηψ ¼ 16

3
v3e2ðmðF;BÞ

2;1 ðηψ ; ηAÞ − ~mðF;BÞ
1;1 ðηψ ; ηAÞÞ; ð32Þ

with the regulator-dependent threshold functionsmðF;BÞ
2;1 and

~mðF;BÞ
1;1 , as defined, e.g., in Refs. [83,93,94]. As the thresh-

old functions are linear in the anomalous dimensions,
Eqs. (31) and (32) can unambiguously be solved for ηψ
and ηA as functions of the gauge coupling.
The RG β functions for the fermion sector read

∂t ~g ¼ ð1þ 2ηψÞ~g − 8v3

�
2Nf − 1

Nf
~g2 −

3

Nf
~gg −

2

Nf
g2
�
lðFÞ1

− 8v3ð2~ge2 þ 4ge2ÞlðF;BÞ1;1 þ 16v3Nfe4l
ðF;BÞ
2;1 ; ð33Þ

∂tg ¼ gð1þ 2ηψ Þ þ 8v3

�
1

Nf
~ggþ 2Nf þ 1

3Nf
g2
�
lðFÞ1

−
8

3
v3ð4~ge2 − 2ge2ÞlðF;BÞ1;1 ; ð34Þ

where the threshold functions l again carry the regulator

dependence and depend linearly on ηψ via lðFÞ1 . For the
evaluation of the photon exchange diagrams, we neglect the
full momentum dependence of the photon propagator, but
take the photon field renormalization at the renormalization
point ZAðp2Þ ¼ ZAðζ2k2Þ into account. Hence, the thresh-

old functions lðF;BÞ1;1 and lðF;BÞ2;1 depend also on ηA. For the so-
called sharp cutoff, Eqs. (33)–(34) are equivalent to the
results reported in Ref. [30]. In the limit of large flavor
number Nf, they also reduce to the large-Nf flow equations
found previously within the conventional Wilsonian RG
approach [29]. We would like to add that the sharp-cutoff
regulator has to be handled with some care. Whereas this
type of regulator can be used to compute the flow equations
for the pointlike four-fermion couplings without any
difficulty, the computation of the flow equations for the
wave-function renormalizations suffers from ambiguities
which can be traced back to the fact that there is no unique
definition for this regulator; see Appendix B. Since the
photon wave-function renormalization plays a prominent
role in our study of the many-flavor phase structure, we
refrain from using this regulator in the following. Instead,
we only consider a smeared-out version of this regulator
which is free of these difficulties.4 For the latter we have

4This amounts to using a finite value for the parameter b in our
definition of the sharp-cutoff regulator; see Eq. (B6).
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found that it yields results for the phase structure that are in
accordance with those reported in Sec. VI below.
For vanishing gauge coupling e2 ¼ 0, we observe that

the fermionic β functions (33) and (34) vanish identically if
g; ~g are zero at a particular scale [as, e.g., required by the
initial conditions (24)]. This obvious fixed point of the flow
corresponds to the noninteracting Gaussian fixed point of
the theory. For e2 ≠ 0, the point of vanishing fermionic
couplings is no longer a fixed point due to the last term ∼e4
in Eq. (33).
Finally, the flow of the gauge coupling is given by

Eq. (29) upon insertion of the anomalous dimension ηA and
the fermionic flows. Near fixed points of the fermionic
flow, where ∂tg; ∂t ~g≃ 0, the β function of the gauge
coupling simplifies to

βe2 ≡ ∂te2 ¼ ðηA − 1Þe2: ð35Þ

For the fixed-point analysis carried out in the present work,
we consider this simplified flow.
We close this section with a few comments on the

reliability of the approximations involved in our truncation.
In our numerical studies, we indeed find that jηψ j≲ 1 in the
symmetric large-Nf regime where the RG flow is governed
by the presence of a fixed point; see also our discussion in
the subsequent section. This is a strong support for our
implicit assertion that momentum dependencies in the
fermion sector are less important, such that higher deriva-
tive terms of fermionic operators can safely be dropped in
this regime. Moreover, it is worthwhile to point out that in
the pointlike limit the RG flow of a Fierz-complete set of
four-fermion couplings is completely decoupled from the
RG flow of fermionic n-point functions of higher order. In
particular, 8-fermion interactions do not contribute to the
flow of the four-fermion interactions in this limit. This
observation corroborates the truncation on the four-fermion
level. Further tests of the truncation—particularly of the
gauge sector—will actively be pursued in the following
sections by studying the amount of artificial regularization-
scheme dependence of observables.

V. FIXED-POINT ANALYSIS

The RG fixed-point structure of a theory is intimately
related to the phase diagram. Fixed points are defined as
common zeros of all β functions, in our case by the
requirement

∂te2je2�;g�;~g� ¼ ∂tgje2�;g�;~g� ¼ ∂t ~gje2�;g�;~g� ¼ 0; ð36Þ

where e2�; g�; ~g� denote the values of the dimensionless
couplings at the fixed point. Whereas the fixed-point values
themselves are nonuniversal, i.e., depend on the choice of
the regularization scheme, the critical exponents as well
as the anomalous dimensions ηψ ;� and ηA;� at a fixed point
are universal. Summarizing all couplings in G ¼ ðe2; g; ~gÞ,

the critical exponents θI are defined in terms of (minus) the
eigenvalues of the stability matrix Bi

j,

∂tGi ¼ βiðGÞ; Bi
j ¼ ∂βi

∂Gj

����
G¼G�

; ð37Þ

with −θI labeling the eigenvalues of Bi
j, and I running

from 1 to the number of couplings considered (I ¼ 1; 2; 3
in our case). For instance, at the Gaussian fixed point,
G ¼ 0, we have θI ¼ fþ1;−1;−1g, with the positive
exponent þ1 related to the RG relevant gauge coupling.
The negative exponents −1 correspond to the RG irrelevant
fermionic couplings in QED3. At the Gaussian fixed point,
the critical exponents simply correspond to the power-
counting dimension of the couplings.
In order to illustrate the fixed-point structure of the

theory, let us start with the flow of the gauge coupling.
Assuming that the fixed-point conditions for the fermion
couplings are satisfied, we can use Eq. (35). In addition to
the Gaussian fixed point, a non-Gaussian, i.e., interacting,
fixed-point exists for

ηA;� ¼ 1; e2� ¼
1

8v3NfL
ðFÞ
1 ðηψ ;�; ζÞ

; ð38Þ

where the threshold function LðFÞ
1 with ηψ evaluated at the

IR fixed point is a regulator-dependent but real-valued
positive number.5 The crucial observation is that the value
of the fixed point scales with the flavor number Nf
as e2� ∼ 1=Nf .
Starting the RG flow near the Gaussian fixed point at

e2 ≪ 1, the β function ∂te2 is negative, implying that the
coupling is asymptotically free towards the UV and
increases towards the IR. Hence, the gauge coupling is
expected to approach the non-Gaussian fixed point in the
long-range limit; see Fig. 2. As long as no fermion-mass
generating phase transition occurs in which case the
dynamics of the theory would be governed by a different
sector of the theory, the whole system remains massless and
the IR fixed point [Eq. (38)] is reached asymptotically at
small momentum scales. In that case, the theory is
quasiconformal, i.e., near conformal in the UV near the
Gaussian fixed point as well as near conformal in the IR
near the non-Gaussian fixed point. The two near-conformal
regimes are smoothly connected by a crossover occurring at
momentum scales near the scale approximately set by the
bare coupling ē2. Note that the maximum coupling strength

5Negative values could only occur for very large ηψ ;� which
would indicate the breakdown of our truncation anyway. For all
flows studied in this work, ηψ generically remains rather small,
jηψ j ≲ 1, provided that the dynamics is governed by a fixed point.
If, on the other hand, the IR fixed point of the gauge coupling is
destabilized by, e.g., spontaneous (chiral) symmetry breaking,
then ηψ may grow rapidly as well. However, a detailed analysis of
this scenario is beyond the scope of our present work.
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of the dimensionless coupling is set by the IR fixed-point
value; see Eq. (38). In particular, the maximum coupling
strength is smaller for larger flavor numbers.
Let us now turn to the fermionic sector with the

corresponding flows given in Eqs. (33) and (34), treating
the gauge coupling as an external parameter for the
moment. As the fixed-point conditions for g and ~g
[Eq. (36)] correspond to two coupled quadratic equations,
we generically expect up to four distinct fixed-point
solutions. Provided that the gauge coupling is sufficiently
small, we find four distinct real solutions which thus
represent candidates for physically relevant fixed points.
For finite e2 > 0, these points in coupling space are no
longer fixed points of the total system, as their positions
change with the gauge coupling e2. In a slight abuse of
language, we still call them fixed points, as for a given
value of e2 they govern the flow in the fermionic sector. In
the limit e2 → 0, one of the four fixed points is continu-
ously connected to the (true) Gaussian fixed point atG ¼ 0.
For small but finite e2, this fixed point is slightly shifted to
nonzero couplings ~g�; g� but continues to have two RG
irrelevant directions. This fixed point, namedO in Fig. 3, is
thus IR attractive in the ð~g; gÞ plane. Two further fixed
points A and C have one IR attractive (RG irrelevant) and
one IR repulsive (RG relevant) direction, and the fixed
point B exhibits two IR repulsive directions; see Fig. 3.
For vanishing gauge coupling, e2 ¼ 0, the Gaussian

fixed point O describes a free theory of noninteracting
fermions. The fixed point C has been extensively studied in
[45,46,62]. It can be associated with the asymptotically safe
three-dimensional Thirring model. For sufficiently small
flavor numbers Nf < Nχ;Thirring

f;cr , the fixed point controls a
second-order quantum phase transition, separating the
massless phase from the phase of chiral symmetry break-
ing; see, e.g., [95] for a study of the Nf ¼ 1 model. In
Refs. [46,62], the critical flavor number of the Thirring
model has been estimated as Nχ;Thirring

f;cr ≃ 5.1. Lattice
studies of the Thirring model with a different realization

of the chiral symmetry using staggered fermions found
Nχ;Thirring

f;cr ≃ 6.6 [96].6

The fixed-point A corresponds to a variant of the three-
dimensional Gross-Neveu model. Different versions of this
model exist in d ¼ 3, all of which are asymptotically safe
because of such a non-Gaussian fixed point [105–107].
This fixed point governs the second-order quantum phase
transition of a discrete Z2 symmetry (parity symmetry in
this case) which is known to occur for any Nf. By contrast,
the fixed point B has less well been studied, but could
equivalently give rise to an asymptotically safe fermionic
model potentially exhibiting first-order phase transitions to
various phases in the IR.
Returning now back to QED3, the initial conditions (24)

put the system into the vicinity of the Gaussian fixed-point
O at the microscopic scale k → Λ, leaving us with one RG
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FIG. 2 (color online). βe2 function for three different values of
Nf as obtained from the linear regulator evaluated for ζ ¼ 1.

FIG. 3 (color online). RG trajectories in the plane spanned by the
four-fermion couplings ~g and g for Nf ¼ 4 and e2 ¼ 0 using the
linear regulator. The fixed points are depicted by the red dots,
where O is the IR stable Gaussian fixed point, A and C are fixed
points with one IR attractive and one IR repulsive direction, and B
is an unstable fixed point with two IR repulsive directions. The thin
arrows indicate the RG flow towards the IR regime. The dashed
line (g ¼ ~g) corresponds to the chiral channel (where gV ¼ 0 and
gϕ is nonzero), potentially associated with chiral symmetry break-
ing; see also Eq. (11). This channel is typically chosen in Fierz-
incomplete studies. The blue/bold arrows attached to the four fixed
points indicate the shift of the fixed points induced by an increase
of the gauge coupling e2 > 0.

6In the literature, estimates for the critical flavor number of the
Thirring model span a wide range of values [96–104]. Many of
the analytical estimates show a strong similarity to the corre-
sponding QED3 results.
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relevant parameter, namely the gauge coupling, as it should
be. Towards the UV, the full system is asymptotically free.
Towards the IR, the gauge coupling increases, shifting the
Gaussian fixed point O slightly in the ð~g; gÞ plane; see
blue/bold arrows in Fig. 3. SinceO remains IR attractive in
the fermionic directions, the flow of ~g; g follows this IR
attractive fixed point.
If the gauge coupling approaches a critical value e2cr, the

fixed points C and O annihilate; see Fig. 3. If we increase
the gauge coupling even further, then the flow of the four-
fermion couplings is no longer bounded by the existence of
an IR attractive fixed point. On the contrary, the four-
fermion interactions start to grow rapidly and diverge at a
finite RG scale kSB, potentially indicating dynamical
symmetry breaking, as discussed above.
From the fixed-point analysis itself, we do not gain

immediate insight into the exact type of spontaneous
symmetry breaking, as this is a result of the full RG flow
towards the IR. Nevertheless, the fixed-point analysis
provides for a criterion for symmetry breaking to be possible
at all: as long as the fixed-point O exists, being IR attractive
for the fermionic couplings, no approach to criticality in the
fermion sector can occur. Thus, monitoring the existence of
this fixed point as a function ofNf provides first information
about the structure of the phase diagram as a function of Nf .

VI. CONFORMAL-CRITICAL
FLAVOR NUMBER

From the preceding discussion, we expect the system
to be quasiconformal as long as the fixed-point O in the
fermion sector persists and remains IR attractive in
the fermionic couplings. The fixed-point O vanishes if
the gauge coupling exceeds a critical coupling strength e2cr.
In the quasiconformal phase, the IR fixed point e2� as given
in Eq. (38) is a measure for the maximum coupling
strength. Since e2� is small for large Nf , the quasiconformal
phase occurs at large Nf extending to Nf → ∞. Lowering
Nf , the annihilation of the fixed-pointsO and C indicate the
boundary of the quasiconformal phase and a possible onset
of a different phase. The corresponding value of Nf defines
the conformal-critical flavor number Nqc

f;cr which is defined
by the criticality condition

e2�ðNqc
f;crÞ¼! e2crðNqc

f;crÞ: ð39Þ
See also Fig. 4. Whereas both e2� and e2cr are nonuniversal
and depend on the choice of the regularization scheme, the
conformal-critical flavor number Nqc

f;cr is expected to
be universal.7 However, the fact that we consider an

approximation of the exact RG flow implies that also
the universality of Nqc

f;cr holds only approximately.
In Table I, we list our results for Nqc

f;cr as obtained from
our computations with three different regulator functions;
see Appendix B for the definitions of these functions. We
also consider two different values of the control parameter ζ
which parametrizes the external photon momentum of the
vacuum polarization diagram relative to the cutoff scale; cf.
Eq. (30). Whereas the choice ζ ¼ 1 appears more adapted
to resolve the momentum dependence of the photon wave
function, the choice ζ ¼ 0 conforms with the pointlike
approximation in the fermion sector. In either case, we
obtain the smallest value of Nqc

f;cr for the Callan-Symanzik
regulator. Since the latter is equivalent to a mass term ∼k
without any momentum dependence, it does not entail a
UV suppression and therefore is likely to give rise to
stronger truncation artifacts, as is also known from many
other RG studies. The two other regulators, the exponential
and the linear regulator, cf., Appendix B for details, provide
for both a UVand IR regularization and are thus considered
as quantitatively more reliable. These two regulators span
the range of estimates forNqc

f;cr ofN
qc
f;cr ≃ 8;…; 10 for ζ ¼ 1

and Nqc
f;cr ≃ 4;…; 5.7 for ζ ¼ 0 with the largest Nqc

f;cr value
arising from the linear regulator, respectively. Intermediate
values of ζ yield ranges that interpolate between the ζ ¼ 0
and ζ ¼ 1 cases.8 We observe that the variation with respect
to the control parameter ζ is even larger than the regulator
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FIG. 4 (color online). The critical value e2cr for the gauge
coupling and the value e2� of the IR fixed point as a function of Nf
as obtained from the linear regulator for ζ ¼ 1. The intersection
point of both lines determines the conformal-critical flavor
number Nqc

f;cr; see Eq. (39). Note that the depicted Nf dependence
of e2� has been computed with the aid of Eq. (35). However, the
associated IR fixed-point e2� is only approached for Nf ≥ Nqc

f;cr.
For Nf < Nqc

f;cr, this fixed point is destabilized due to spontaneous
symmetry breaking.

7Since Nqc
f;cr presumably is not an integer, its value might

depend on the manner, how theories with noninteger flavor
numbers are constructed. Nevertheless, the result that systems
with integer Nf > Nqc

f;cr have long-range properties substantially
different from those with integer Nf < Nqc

f;cr is in principle a
universal and observable phenomenon.

8Incidentally, a smeared version of the sharp cutoff with
smearing parameter b≃ 2 (see Appendix B) yields values for
Nqc

f;cr within the ranges spanned by the exponential and the linear
regulator.
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dependence. We interpret this as a signature for the
importance of the precise resolution of the momentum
dependencies of the correlation functions.
In general, these uncertainties indicate a systematic error

to be associated with the employed truncation. For exam-
ple, the inclusion of the full momentum dependence
especially of the photon-propagator and the fermion-
photon vertex may be required to determine Nqc

f;cr more
precisely. In order to assess the stability of our results for
the conformal-critical flavor number, let us discuss the
variations of the regulator and the control parameter in
more detail: First, the dependence on the regulator is a
natural consequence of truncated flows. This dependence
can be lifted by identifying “optimized” regularization
schemes satisfying a priori criteria that can be argued to
be closest to the exact results within a given truncation
[88,108–110]. The linear regulator is such an optimized
regulator for the pointlike limit and with ζ ¼ 0. For ζ ¼ 1,
none of our regulators is optimized in a similar sense.
Different values of ζ should therefore be considered as
different truncations.
According to its definition ζ ¼ jpj=k, the control param-

eter measures the relation between the incoming photon
momentum and the regularization scale of the internal
fermion loop of the vacuum polarization diagram; see
Fig. 1. For a reconstruction of the full momentum depend-
ence of the photon wave function ZAðp2Þ via the anoma-
lous dimension formula Eq. (30), we hence consider the
choice ζ ¼ 1 more reliable. On the other hand, the vacuum
polarization diagram is only used to estimate the running
coupling, which in turn enters the fermion box diagrams as
an estimate for the fermion-photon vertex; see also Fig. 5.
This estimate can be afflicted with the following problem:
As we evaluate the box diagrams in the pointlike limit, i.e.,
in the limit of zero external momentum, the vertex enters
the flow equations at an asymmetric point, since the
internal lines of the diagram carry an in general finite loop
momentum. Therefore, potentially asymmetric structures
of the vertices are neglected by our approximation. The
intrinsic tension between such structures and our estimate
for the running coupling could even be amplified by
choosing a nonzero ζ.
With this analysis of the regulator and ζ dependence, we

can now summarize our estimates for the location of the
conformal-critical flavor number Nqc

f;cr. From a conservative
perspective, we have not been able to find estimates of Nqc

f;cr

with values smaller than Nf ≃ 3.7 or larger than Nf ≃ 10.0
also including extreme regulator choices such as the
Callan-Symanzik regulator. We hence conclude Nqc

f;cr to
lie within this interval. Excluding the Callan-Symanzik
regulator in order to avoid regulator artifacts, our results
span a smaller region. The regulator and ζ dependence
analysis given above suggest the conformal-critical flavor
number of QED3 to lie in the region

Nqc
f;cr ≈ 4.1…10.0: ð40Þ

We emphasize, however, that the upper and lower end of
this interval should not be viewed as a strict boundary, but
may change upon improvements of the approximation.
Despite these uncertainties, this estimate represents one of
the main results of our study.

VII. FIERZ COMPLETENESS

The above given estimate for the conformal-critical flavor
number Nqc

f;cr—though coming with a large uncertainty—
appears to include values significantly larger than many
results for the critical flavor number for chiral symmetry
breaking reviewed in the introduction. While there are many
sources that can take a strong influence on the final result
(e.g., large finite volume effects in finite-volume studies
[41,111]), we emphasize in this work two issues that have
not yet received sufficient attention.
First, we have determined the conformal-critical flavor

number Nqc
f;cr above which the system is quasiconformal.

While this value is likely to mark a region in the many-
flavor phase diagram where a crossover or a phase
transition is expected to occur, it does not necessarily have
to agree with the critical flavor number for the chiral phase
transition Nχ

f;cr. As we can only detect the quasiconformal
regime with our pointlike approximation, we can only
conclude so far that Nχ

f;cr ≤ Nqc
f;cr; cf. also next section for a

discussion. Hence, there is no immediate disagreement
with the literature in this respect.
Second, we have emphasized that our Ansatz for the

effective action is Fierz complete in the sense that it

FIG. 5. 1PI diagram contributing to the RG flow of the four-
fermion couplings: the double lines represent (full) scale-depen-
dent regularized fermion and photon propagators.

TABLE I. Conformal-critical flavor number for different regu-
lator functions, Callan-Symanzik regulator (CS), exponential
regulator (exp), linear regulator (lin), and for different choices
of the control parameter ζ ¼ 1 and ζ ¼ 0.

Regulator RCS Rexp Rlin

Nqc
f;crðζ ¼ 1Þ 7.5 8.1 10.0

Nqc
f;crðζ ¼ 0Þ 3.7 4.1 5.7
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includes all pointlike four-fermion interactions compatible
with the symmetries of the model. The significance of Fierz
completeness for an appropriate description of an approach
to criticality is already obvious from our parametrization.
The chiral-symmetry breaking channel ðSÞ2 in the Fierz-
transformed Lagrangian in Eq. (10) which, when becoming
dominant, generates a mass term ∼imψ̄aψa, is associated
with a superposition of both four-fermion channels ~gðPÞ2
and gðVÞ2 used in this work (see dashed line in Fig. 3).
Ignoring one of the channels may lead to strong deviations
from the Fierz-complete result.
In order to quantify the importance of Fierz complete-

ness, we study the dependence of our result for the
conformal-critical flavor number Nqc

f;cr on a one-parameter
family of Fierz-incomplete approximations. To be specific,
we first introduce a Fierz-complete reparametrization of the
couplings as follows:

sφ ¼ g sinφþ ~g cosφ; ð41Þ

~sφ ¼ g cosφ − ~g sinφ; ð42Þ

where the angle φ parametrizes a family of couplings sφ,
~sφ. From here, we arrive at a Fierz-incomplete set by
truncating ∂t ~sφ ≡ 0≡ ~sφ. The angle φ can now be used to
select a specific interaction channel. For example for
φ ¼ π=4, we have ~g ¼ g, such that we are left with the
chiral channel only; see also Eq. (11) and the dashed line
in Fig. 3.
With the φ-dependent Fierz-incomplete approximation

at hand, we can now compute the conformal-critical flavor
number again. In Fig. 6, we present our results for Nqc

f;cr as a
function of the angle φ for ζ ¼ 0 (upper panel) and ζ ¼ 1
(lower panel). We observe that the predictions for the
conformal-critical flavor number strongly vary within this
family of Fierz-incomplete approximations. Moreover, we
find that a finite range of values for φ exists for which we
have Nqc

f;cr ¼ 0. This was to be expected, since for π=2≲
φ≲ π we project onto a channel orthogonal to the chiral
channel. There is no annihilation of fixed points in this
channel for any Nf, since the fixed points A and B do not
approach the Gaussian fixed-point O for any value of e2;
see blue/bold lines in Fig. 3. This may be interpreted as a
consequence of the Vafa-Witten argument [112], prohibit-
ing the spontaneous breaking of parity symmetry in QED3.
As another specific example, let us consider a projection
onto the chiral channel corresponding to φ ¼ π=4: here we
find Nqc

f;cr ≈ 5 even for all studied regulator functions and ζ
values. However, this is still significantly different, for
instance, from the Fierz-complete result for ζ ¼ 1.
Our analysis clearly demonstrates the necessity of a Fierz-

complete treatment as one may significantly overestimate by
almost a factor of 2 or underestimate ðNqc

f;cr ¼ 0Þ the
conformal-critical flavor number within a Fierz-incomplete
setup; see Fig. 6. This strong ambiguity of Nqc

f;cr within a

Fierz-incomplete study represents the second important
result of our work. Moreover, any Fierz-incomplete study
that is only sensitive to the chiral channel will inevitably
identifyNqc

f;cr withN
χ
f;cr. In this case, any information about a

possibly existing intermediate phase will not be accessible
because of Fierz incompleteness.
While Fierz completeness is simple to implement in the

present approximation scheme of the exact RG flow, it is
less obvious how this issue might affect other methods.
Mean-field methods are certainly strongly affected, as
the choice of a mean field immediately breaks Fierz
completeness [59].
By contrast, lattice simulations are by construction not

affected, as no choice of channels is required. Still, our
results on Fierz completeness can also be interpreted as a
mandate to implement the flavor symmetries exactly.
Hence, lattice formulations should be given preference
that feature an exact (lattice version of) the Uð2NfÞ flavor
symmetry.
The largest body of literature on chiral-symmetry break-

ing in QED3 relies on solutions of Dyson-Schwinger
equations for the photon and fermion propagators amended
with suitable vertex constructions. For the solution of the
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FIG. 6 (color online). Conformal-critical flavor number Nqc
f;cr as

a function of the angle φ parametrizing an artificial Fierz
incompleteness for ζ ¼ 0 (top panel) and ζ ¼ 1 (bottom panel).
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equation for the fermion propagator SψðpÞ, an Ansatz of the
following form is typically used,

Sψ ðpÞ−1 ¼ ipAðp2Þ þ Bðp2Þ; ð43Þ

where Aðp2Þ is related to the (inverse) wave-function
renormalization, and Bðp2Þ parametrizes the mass function.
In particular, limp→0Bðp2Þ ≠ 0 signals fermion mass gen-
eration and chiral symmetry breaking. This Ansatz is also
commonly and successfully used for investigations of the
strong-coupling regime of QCD in d ¼ 4. Here, we note
that the Ansatz (43) does not exhaust all possible terms
permitted by the special Dirac structure and flavor sym-
metry of QED in d ¼ 3. As suggested by our results, the
inclusion of all terms permitted by the symmetries might be
an essential ingredient. On the level of the fermion
propagator, a complete Ansatz would read

SψðpÞ−1 ¼ ipAðp2Þ þ Bðp2Þ þ γ45Cðp2Þ þ ipγ45Dðp2Þ;
ð44Þ

involving two further scalar functions C andD. The case of
limp→0Cðp2Þ ≠ 0 would signal the generation of a parity-
breaking mass term. However, even in the parity-symmetric
phase where limp→0Cðp2Þ ¼ 0, the two further functions
might develop a nontrivial momentum dependence at
intermediate scales, potentially taking influence on the
Bðp2Þ function and thus on the onset of chiral symmetry
breaking.
Let us finally emphasize that there certainly is no

one-to-one correspondence between our results for
Fierz-incomplete approximations and flavor-symmetry-
incomplete DSE Ansätze of the type of Eq. (43). It may
well be that Eq. (43) is perfectly sufficient to obtain
quantitatively reliable results. In QED3 with a Chern-
Simons term, which explicitly breaks parity symmetry,
the full Ansatz (44) is indeed mandatory. This has been
studied previously [113–115], suggesting, however, that on
the level of the considered approximations the chiral-
critical flavor number seems to be less influenced by the
functions Cðp2Þ and Dðp2Þ in Eq. (44). It should thus be
worthwile to further investigate whether this still holds in
“pure” QED3 without explicit breaking of parity, in
particular with an emphasis on an analysis of the IR limit.

VIII. PHASE STRUCTURE

As our truncation based on pointlike fermion interaction
channels is not capable of entering the symmetry-broken
regime, the scenario developed in this section is founded
only on limited information which we can extract from the
RG flow in the symmetric regime. With these reservations
in mind, we recall that we have identified a conformal-
critical flavor number Nqc

f;cr above which we found QED3 to
be in the quasiconformal phase.

So far, we have carefully distinguished betweenNqc
f;cr and

a possible critical flavor number Nχ
f;cr, indicating the onset

of a chirally broken phase. From our results, we can
primarily conclude that Nχ

f;cr ≤ Nqc
f;cr. For a first attempt

to estimate the possible value of Nχ
f;cr within our approach,

let us take a look at the RG flow trajectories in the plane of
fermionic couplings for various flavor numbers belowNqc

f;cr.
For illustrative purposes, we consider the flows obtained
with the linear regulator and a control parameter value
ζ ¼ 1, which yielded the estimate Nqc

f;cr ≃ 10. Also, we
fix the gauge coupling slightly above the critical value
e2cr where the fixed-points O and C annihilate,
0 < ðe2 − e2crÞ ≪ 1.
The resulting fermionic flows in the ð~g; gÞ plane are

shown in Fig. 7 for the case of Nf ¼ 1 (left panel) and
Nf ¼ 9 (right panel). As before, the dashed line (g ¼ ~g)
corresponds to the chiral channel ðSÞ2, potentially asso-
ciated with chiral symmetry breaking when becoming
dominant. The solid red line marks the direction of the
asymptote of the RG trajectories for large ~g; g. Starting the
flow for vanishing fermionic interactions ~g ¼ g ¼ 0, in
general both ~g and g are generated and will approach this
asymptote in the course of the RG flow. The slope of the
RG asymptote thus determines the relative weight of the
different possible channels in the IR. For Nf ¼ 1 (left panel
of Fig. 7), it is fairly close to the dashed line associated with
symmetry breaking in the chiral channel; in fact, for Nf ¼
1.75 (not shown) the RG asymptote would lie exactly on
top of the chiral channel. By contrast, the Nf ¼ 9 asymp-
tote is closer to the pure vector channel ∼gðVÞ2. The fact
that this asymptote rotates with increasing Nf towards the
vector channel is already known from studies of the
Thirring model [45,62]. In fact, the depicted flows agree
with those of the Thirring model for asymptotically large g
and ~g, as we have kept the gauge coupling at a fixed finite
value. For any Nf < Nqc

f;cr, the RG asymptote in QED3 thus
coincides with the Thirring-model asymptote within our
approximation.
On the basis of our pointlike fermionic truncation it is

hard to judge which channel ultimately dominates as a
function of Nf . This is because we do not have a metric in
theory (coupling) space available that could provide for a
quantitative measure of absolute distance from a certain
channel. As a tentative measure for the chiral symmetry-
breaking region, we have depicted a gray shaded region
between the angle bisectrix between the chiral axis and the
~g axis and the one between the chiral axis and the g axis.
For small Nf such as Nf ¼ 1, the asymptote lies inside

this region where we expect chiral symmetry-breaking to
occur; cf. Fig. 7 (left panel). For larger Nf such as Nf ¼ 9,
the asymptote lies outside this region; cf. Fig. 7 (right
panel). Taking this rough measure seriously, we find that
the asymptote of the four-fermion flows lies within this
suspected domain of attraction of the chiral channel for
1≲ Nf ≲ 4. As a rough estimate, this suggests that one
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identifies the maximal value of Nf , for which the system is
inside this region with a dominant chiral channel, with the
critical flavor number for chiral-symmetry breaking Nχ

f;cr.
Independent of our choice for the regulator function, we
find the estimate Nχ

f;cr ≃ 4, which is in the ballpark of the
most advanced DSE studies [28,38,41–43].
For the linear regulator in the pointlike limit ζ ¼ 0 and

for all regulators with ζ ¼ 1, we find that the chiral-critical
flavor number can in fact be smaller than the conformal-
critical flavor number, Nχ

f;cr < Nqc
f;cr. This leaves us with the

interesting conclusion that the many-flavor phase diagram
of QED3 could be more involved than previously
anticipated: in addition to the chiral symmetry broken
phase for Nf < Nχ

f;cr and the quasiconformal phase for
Nf > Nqc

f;cr there could be another phase in between for
Nχ

f;cr < Nf < Nqc
f;cr characterized by different low-energy

properties.
At this point, it is instructive to compare our results with

those from the 3D Thirring model which shares with QED3

both its Uð2NfÞ chiral symmetry as well as the correspond-
ing possible symmetry-breaking patterns. In the Thirring
model, defined in terms of the non-Gaussian UV fixed-
point C (for e2 ¼ 0), the long-range chiral properties in the
pointlike language are also determined by the competition
between the chiral and the vector channel. In [62] the
Thirring model was studied in detail using dynamical
bosonization techniques that allow one to enter the
symmetry-broken regime and give direct access to the
order-parameter potentials, condensation phenomena, and
massive excitations. The critical flavor number below

which the system is in the chiral symmetry broken phase
was determined to be

Nχ;Thirring
f;cr ≈ 5.1; ð45Þ

which is similar to our rough estimate for Nχ
f;cr for QED3

given above. In fact the mere quantitative difference
between our QED3 flows and those of the Thirring model
within the same approximation in the fermion sector are the
gauge-coupling terms in the β functions. As the approach to
criticality is primarily indicated by diverging four-fermion
interactions, the following scenario is possible: if the gauge
contributions to the fermion self-interactions stay subdomi-
nant for the approach to criticality, we conjecture that the
critical flavor number of QED3 and the 3D Thirring model
are identical.
For this conjecture to hold, the chiral-critical flavor

number of the Thirring model must not lie in the quasi-
conformal regime of QED3. With our result for the
conformal-critical flavor number, Nqc

f;cr > Nχ;Thirring
f;cr , this

criterion appears to be satisfied within our approximation
for the linear regulator in the pointlike truncation with ζ ¼
0 and for all regulators with ζ ¼ 1. Otherwise the QED3

system could still be trapped by the IR attractive fixed-point
O while the analogous Thirring system would already be in
the chirally broken phase, such that the conjecture would
fail. Whether the gauge contributions indeed stay subdomi-
nant during the approach to criticality is a quantitative
question that we cannot resolve within our present simple
truncation. For instance, using the simplified β function for
the gauge coupling (35), the gauge coupling remains

FIG. 7 (color online). RG flow of the four-fermion interactions in the plane spanned by the couplings ~g and g for 0 < ðe2 − e2crÞ ≪ 1
and Nf ¼ 1 (left panel) and Nf ¼ 9 (right panel), as obtained from the linear regulator function with ζ ¼ 1. Recall that Nf;cr ¼ 10.0 in
this case. The dashed line corresponds to the chiral channel (~g ¼ g). The solid red line represents the asymptotes of the RG trajectories.
The gray shaded area indicates a tentative measure for the chiral symmetry-breaking region; see main text for details.
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bounded by its fixed-point value, e2 ≤ e2�, and the criterion
is satisfied. In the more general case, e.g., using Eq. (29),
the situation is less clear and requires a full numerical
integration of the flow. Most likely a definite answer
requires a dynamically bosonized flow. However, even if
the gauge contributions do not stay subdominant, it appears
plausible that the chiral-critical flavor numbers for QED3

and the 3D Thirring model would still be similar.
Let us now try to address the new possible phase

between Nχ
f;cr and Nqc

f;cr, assuming that Nχ
f;cr < Nqc

f;cr.
Again, the Thirring model may provide a guideline: in
[62], it was observed that for Nf > Nχ

f;cr, the system not
only is dominated by the vector channel, but moreover the
mass term of the vector channel m2

V approaches zero at a
finite scale k. This indicates the possibility of the appear-
ance of a Lorentz symmetry breaking condensate hVμi ≠ 0
for Nχ

f;cr < Nf < Nqc
f;cr, going along with two massless

Goldstone bosons and a massive “radial” mode.
These considerations suggest a many-flavor phase dia-

gram of QED3 as schematically drawn in Fig. 8 with a
chirally broken small-Nf phase, possibly a phase with
spontaneously broken Lorentz symmetry at intermediate
Nf , and a quasiconformal massless phase at large Nf
extending to Nf → ∞. The nature of the phase transitions
at Nχ

f;cr and Nqc
f;cr cannot be determined within our present

approximation. For the Thirring model, the dynamically
bosonized study revealed that the chiral phase transition at
Nχ

f;cr is of second order [62]. In particular the chirally
broken and Lorentz-broken phases do not overlap, but
inhibit one another. This suggests the possibility of a
second-order phase transition at Nχ

f;cr also in QED3, if
the gauge coupling does not take too strong of an influence
on the approach to criticality.
The nature of the transition at Nqc

f;cr is less clear. On
the one hand, the quasiconformal mode vanishes because
of the annihilation of fixed points. This is similar to

Berezinsky-Kosterlitz-Thouless (BKT)-type phase transi-
tions, such that one might expect corresponding essential
(or Miransky) scaling of observables near the phase
transition [116–123] with universal powerlaw corrections
[124]; see also [43,55,56]. On the other hand, the spectra on
the two sides of the phase transition share some similarities:
on both sides, the fermion and the photon fields are
massless; there is a massive (but presumably unstable)
vector excitation on the quasiconformal side, while there
are a massive “radial” excitation and massless Goldstone
bosons on the Lorentz symmetry-breaking side. Near
the transition atNqc

f;cr all these vectorlike degrees of freedom
can possibly mix nontrivially which might influence the
nature of the transition.
In order to check the scenario suggested above, it

appears highly worthwhile to search for vector condensates
hψ̄γμψi also with other nonperturbative methods in the
region above the chiral phase transition Nf ≳ Nχ

f;cr. If a
vector condensate is found, our work suggests the
existence of a further transition to the quasiconformal
phase at Nqc

f;cr > Nχ
f;cr.

IX. CONCLUSIONS

In the present work we have studied the many-flavor
phase diagram of QED3 by analyzing the RG fixed-point
structure of the theory. In addition to the asymptotically
free Gaussian fixed point, the fixed-point structure of QED3

shares similarities with that of the three-dimensional
Thirring model which has the same global chiral/flavor
symmetries.
For large flavor numbers Nf > Nqc

f;cr, the screening
property of fermionic fluctuations induces an IR attractive,
quasiconformal, fixed point in the gauge sector, which in
the fermionic sector corresponds to a slightly shifted
Gaussian fixed point, implying that the fermionic system
remains attracted by this fixed point. For large Nf , the
system is in a quasiconformal phase and remains massless
in complete agreement with expectations and literature
results. If this large-Nf phase described a condensed-matter
system, the existence of the quasiconformal fixed point
would indicate a so-called algebraic-Fermi-liquid phase
[11], with striking consequences to the electronic, optical,
and thermodynamic experimental observables. Such a
material would be one of the very rare examples above
1þ 1 dimensions and without disorder or magnetic field,
which exhibit genuine non-Fermi liquid behavior. If QED3

is indeed an effective theory for the superconductor-
insulator transition in the cuprates, our result of a large
Nqc

f;cr > 2, however, supports the scenario that cuprates at
T ¼ 0 are not in the quasiconformal phase, and there is no
algebraic-Fermi-liquid behavior for any doping of the
cuprates.
Lowering Nf , the system approaches the lower end of

the “quasiconformal window” at Nqc
f;cr which is character-

ized by a merger of the Gaussian and the “Thirring” fixed

FIG. 8 (color online). Sketch of the conjectured many-flavor
phase diagram of QED3. In addition to the phase governed by
spontaneous chiral symmetry breaking (χSB) for small values of
Nf , an intermediate phase driven by the vector-channel may exist,
possibly exhibiting (spontaneous) breaking of Lorentz symmetry;
see text for a discussion of the transition lines.
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point in the fermionic interactions. This mechanism is
similar to the one discovered in four-dimensional many-
flavor QCD [54–56], which gives rise to BKT-type scaling
behavior [121,123,124]. As an important difference, we
observe the possibility in QED3 that the RG flow can
remain dominated by the vector channel for Nf slightly
below Nqc

f;cr. Only for even smaller Nf, the chiral channel
eventually takes over such that the theory can definitely be
expected to be in the chirally broken phase with massive
fermions.
If these findings persist beyond the approximations

underlying our analysis, the phase diagram of QED3 along
the many-flavor direction can exhibit more phases than
previously anticipated. In between the chirally broken
phase for Nf < Nχ

f;cr and the quasiconformal phase for
Nf > Nqc

f;cr, there can exist a vector-channel dominated
phase provided that Nχ

f;cr < Nqc
f;cr. If the vector channel

becomes critical, this phase could be characterized by a
Lorentz-breaking vector condensate and a corresponding
excitation spectrum with photonlike Goldstone bosons as
well as a massive radial-type mode.
From a technical perspective, we have discovered that a

Fierz-complete set of fermionic interactions is a mandatory
ingredient for reliably estimating quantities such as Nqc

f;cr.
Simple projections onto seemingly physically relevant
channels can imply a complete loss of quantitative control.
This result may inspire corresponding improvements in
other analytic approximation schemes used in the literature.
A similar word of caution applies to lattice approaches: as
Fierz completeness is a statement about the exact realiza-
tion of the Uð2NfÞ flavor symmetry of the model, a lattice
formulation that is not guaranteed to preserve the full
continuum flavor symmetry may simply simulate a differ-
ent continuum model with possibly very different values of
Nqc

f;cr. Indeed, a previous RG approach to such a QED3

theory in the presence of Uð2NfÞ-symmetry breaking
interactions revealed that those perturbatively irrelevant
interactions may become relevant for strong gauge cou-
pling, significantly affecting the corresponding predictions
for Nqc

f;cr [29]. Also, while certainly tempting, it is thus
premature to speculate on possible consequences of the
new vector-channel-dominated phase, which we predict for
Nχ

f;cr < Nf < Nqc
f;cr, on the cuprate phase diagram: Even if

this new phase reached all the way down to the physical
flavor number Nf ¼ 2 (i.e., if Nχ

f;cr was smaller than 2, in
contrast to most of the previous findings, and also to our
estimate), the actual cuprate system does not have the full
Uð2NfÞ symmetry and it is momentarily unclear how the
presence of the symmetry-breaking short-range interactions
will affect the many-flavor phase diagram in QED3 and the
existence of the vector-channel-dominated intermediate
phase. This deserves further investigation.
From a quantitative viewpoint, our result for Nqc

f;cr is still
rather strongly affected by artificial regularization-scheme
dependencies. This may hint to the insufficient resolution

of momentum dependencies of the vertices which in our
work is only estimated by an overall RG scale. We consider
Eq. (40) to represent our best estimate: Nqc

f;cr ≈ 4.1…10.0.
For the chiral-critical flavor number, our results are

compatible with those of the most advanced DSE studies,
suggesting Nχ

f;cr ≃ 4. Hence, the window of theories in the
vector-channel-dominance phase could be finite and
include theories with integer Nf.
However, under the assumption that the gauge contri-

butions to the approach to criticality stay subdominant, we
conjecture the chiral-critical flavor number of QED3 and
the 3D Thirring model to be identical. A recent study of the
3D Thirring model suggests that Nχ;Thirring

f;cr ≈ 5.1; see
Ref. [62]. In the light of our QED3-Thirring conjecture
and the approximation involved in our computation, we can
therefore not exclude the possibility that Nχ

f;cr and Nqc
f;cr are

so close to each other that the vector-dominance phase does
not include a system with integer Nf. While it is certainly
not inconceivable that Nχ

f;cr and Nqc
f;cr are in fact identical,

we see no natural reason for this coincidence to hold. Of
course, a verification and exact determination of the phase
boundaries of the many-flavor phase diagram requires more
elaborate studies in the future, ideally by using various
different theoretical approaches. In any case, the present
work points to a so far overlooked new intermediate phase
and may therefore help to better our understanding of the
dynamics underlying low-dimensional fermionic field the-
ories and the corresponding strongly correlated condensed-
matter systems.
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APPENDIX A: IRREDUCIBLE
REPRESENTATION

Though the reducible representation using 4-component
Dirac spinors ψa, a ¼ 1;…; Nf has its merits from
the viewpoint of applications in condensed-matter
systems, some aspects become more transparent in the
irreducible representation using 2-component spinors χi,
i ¼ 1;…; 2Nf . In our conventions, the transition between
these representations can be defined using the projector
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Pð45Þ
L;R ¼ 1

2
ð1� γ45Þ: ðA1Þ

Decomposing χi into ðχa; χaþNf Þ, for a ¼ 1;…; Nf, we
introduce the χ subcomponents by

PLψ
a ¼ 1ffiffiffi

2
p χa ⊗

�
1

i

�
; ψ̄aPL ¼ 1ffiffiffi

2
p χ̄a ⊗ ð1;−iÞ;

ðA2Þ

and

PRψ
a ¼ 1ffiffiffi

2
p χaþNf ⊗

�
1

−i
�
;

ψ̄aPR ¼ −
1ffiffiffi
2

p χ̄aþNf ⊗ ð1; iÞ:
ðA3Þ

In the irreducible representation, the enhanced Uð2NfÞ
symmetry of QED3 becomes obvious, since

ψ̄aγμψ
a ¼ χ̄iσμχ

i; i ¼ 1;…; 2Nf ; ðA4Þ

and σμ denote the Pauli matrices. Similarly, it is straightfor-
ward to show that ψ̄aψa ¼ χ̄aχa − χ̄aþNfχaþNf and
ψ̄aγ45ψ

a ¼ χ̄iχi. The latter implies that a mass term of
the form i ~mψ̄aγ45ψ

a actually preserves the Uð2NfÞ sym-
metry. Also, the interaction term ðPÞ2 introduced in the
main text in Eq. (5) in this notation indeed becomes the
standard Gross-Neveu interaction for two-component
spinors.
In the same spirit the nonsinglet interaction channel ðSÞ2

as used in Eq. (10) can be shown to read

ðSÞ2 ¼ 2ðχ̄iχjÞ2 ≡ 2χ̄iχjχ̄jχi; ðA5Þ

where the factor of 2 on the right-hand side motivates the
different coupling normalization between the ðVÞ2 and the
ðSÞ2 term in Eq. (10).

APPENDIX B: REGULATOR FUNCTIONS

In this appendix, we summarize the regulator functions
employed in the present work. For the definition of the
regulator functions, it is convenient to introduce so-called
regulator shape functions rF;B for the fermions (F) and
bosons (B), respectively:

RFðpÞ ¼ −prFðyÞ and RBðp2Þ ¼ p2rBðyÞ; ðB1Þ

where y ¼ p2=k2. Overall, we have used four different
regulator functions, namely the Callan-Symanzik regulator
RCS with

rFðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
yþ 1

y

s
− 1; rBðyÞ ¼

1

y
; ðB2Þ

the exponential regulator Rexp with

rFðyÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−y
p − 1; rBðyÞ ¼

1

ey − 1
; ðB3Þ

and the linear regulator Rlin; see Refs. [108–110], with

rFðyÞ ¼
�

1ffiffiffi
y

p − 1

�
θð1 − yÞ; ðB4Þ

rBðyÞ ¼
�
1

y
− 1

�
θð1 − yÞ; ðB5Þ

and the so-called sharp-cutoff regulator with

rFðyÞ¼ limb→∞

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

yb

s
−1; rBðyÞ¼ limb→∞

1

yb
: ðB6Þ

Note that the sharp-cutoff regulator has to be handled with
care as it requires a definite prescription of the order of the
various limiting processes involved, in order to avoid
ambiguities in the evaluation of the loop integrals. In
particular, this is the case for the threshold function
~mðF;BÞ
1;1 ; cf. also the RG equations in Ref. [29]. These

artifacts of the sharp-cutoff scheme are well known; see,

TABLE II. Numerical values for the threshold functions as
obtained from the various regulators employed in this work and
listed in Appendix B. Depending on the type of internal lines in
the 1PI diagram underlying the different threshold functions,
these functions can be written as a sum of three terms: a pure
(real-valued) number (N ), a number times ηψ (2nd row), and a
number times ηA (3rd row). Values with an asterisk � depend on
the details of the definition of the nonanalytic sharp cutoff.

RCS Rexp Rlin RSC

lðFÞ1

N π
2

ffiffi
π

p
2

2
3

1
∼ηψ −0.858407 −0.306377 − 1

6
–

lðF;BÞ1;1

N π
4

1.03828 4
3

1
∼ηψ −0.237463 −0.208436 − 1

6
–

∼ηA − π
16

−0.170823 − 2
15

–

lðF;BÞ2;1

N 3π
16

1.02494 2 1
∼ηψ −0.126032 −0.153062 − 1

6
–

∼ηA − π
16

−0.243833 − 4
15

–

mðF;BÞ
2;1

N 2
3

0.821746 1 2
3

∼ηψ −0.077618 −0.043037 0 –
∼ηA − 4

15
−0.26131 − 1

4
–

~mðF;BÞ
1;1

N 1 1.23262 3
2

1�
∼ηψ −0.214602 −0.19434 − 1

6
–

∼ηA − 1
3

−0.298558 − 1
4

–
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e.g., the discussion of the BKT-phase transition in [92],
Chapter 6.4. In Table II, we list the numerical values for the
threshold functions as obtained from the various employed
regulators.

APPENDIX C: RG FLOW OF ZA

We briefly summarize the derivation of the equation for
the anomalous dimension of the photon, ηA ¼ −∂t lnZA.
We begin by rewriting the Wetterich Eq. (19) as follows:

∂tΓk ¼
1

2
STr ~∂t ln ðΓð2Þ

k þ RkÞ; ðC1Þ

where ~∂t denotes a formal derivative acting only on
the regulator function Rk. The representation (C1) of the
Wetterich equation is a convenient starting point for the
computation of both the fermionic RG flows (see, e.g.,
Ref. [83] for a detailed introduction) as well as for
the anomalous dimensions. In order to calculate the flow
equation for ZA, we decompose the inverse regularized
propagator Γð2Þ

k on the right-hand side of the flow equation

into a field-independent (Pk) and a field-dependent (F k)
part,

Γð2Þ
k þ Rk ¼ Pk þ F k: ðC2Þ

The flow equation can then be decomposed in powers of the
fields:

∂tΓk ¼
1

2
STr

�
~∂t

X∞
n¼1

ð−1Þnþ1

n
ðP−1

k F kÞn
�
: ðC3Þ

On the right-hand side we have dropped a field-independent
term which is of no relevance for our present study. The
powers of P−1

k F k can be calculated by straightforward
matrix multiplications. It is then straightforward to project
the various terms from the expansion appearing on the right-
hand side of Eq. (C3) onto our Ansatz for the effective action.
To the flow of ZA only the second term of the expansion
contributes and we find

ηA ¼ −
1

2ZA

�
PT
μνðpÞ
p2

�Z
d3q
ð2πÞ3

~δ
δAμð−pÞ

1

2
STr

�
~∂t
ð−1Þ
2

ðP−1
k F kÞ2

� ⃖δ
δAνðqÞ

����
ψ̄¼ψ¼0;Aμ¼0

−
Z

d3q
ð2πÞ3

~δ
δAμð−p0Þ

1

2
STr

�
~∂t
ð−1Þ
2

ðP−1
k F kÞ2

� ⃖δ
δAνðqÞ

����
ψ̄¼ψ¼0;Aμ¼0;p0¼0

��
p2¼ζ2k2

; ðC4Þ

where we have used the transversal projector
PT
μνðpÞ ¼ δμν −

pμpν

p2 . The second term corresponds to
the subtraction of the zero-momentum limit of the
regularized flow which is constrained by the regulator-
modified Ward identity. In this way, the transversal
projection entering the definition of ηA satisfies the
standard Ward identity at all scales. This construction
is based on the implicit assumption that the longitudinal

and the transversal part of the photon propagator do not
differ by nonanalyticities at small momenta. From this
expression, we then obtain

ηA ¼ 8v3Nfe2L
ðFÞ
1 ; ðC5Þ

where v3 ¼ 1=ð8πÞ2 and

LðFÞ
1 ðηψ ; ζÞ≡ LðFÞ

1 ¼ 1

ζ2

Z
∞

0

dy

�
2

3

∂trψ ðyÞ − ηψrψðyÞffiffiffi
y

p ½1þ rψðyÞ�3
−
1

2

Z
1

−1
dx

ffiffiffi
y

p
x2 − ζx

y − 2ζx
ffiffiffi
y

p þ ζ2

� ½∂trψ �ðyÞ − ηψrψ ðyÞ
½1þ rψðyÞ�2½1þ rψðy − 2ζx

ffiffiffi
y

p þ ζ2Þ�

þ ½∂trψ �ðy − 2ζx
ffiffiffi
y

p þ ζ2Þ − ηψrψ ðy − 2ζx
ffiffiffi
y

p þ ζ2Þ
½1þ rψðyÞ�½1þ rψ ðy − 2ζx

ffiffiffi
y

p þ ζ2Þ�2
��

: ðC6Þ

Here, we have introduced y ¼ q2=k2 for convenience and x ¼ cos ϑ.
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