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In this work we show that the general singlet extension of the minimal supersymmetric standard model
(MSSM) can naturally provide a self-interacting singlino dark matter to solve the small cosmological scale
anomalies (a large Sommerfeld enhancement factor can also be obtained). However, we find that the
NMSSM (the singlet extension of the MSSM with Z3 symmetry) cannot achieve this due to the restricted
parameter space. In our analysis we introduce the concept of symmetric and antisymmetric viscosity cross
sections to deal with the nonrelativistic Majorana-fermion dark matter scattering.
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I. INTRODUCTION

As the standard model of the big bang cosmology, the
ΛCDM model can account for most observations of the
Universe. A crucial ingredient of this model is the existence
of cold dark matter (CDM), which, with a proper cosmo-
logical constant, can successfully predict the large scale
structure of the Universe. However, the predictions on
small scale structures seem not as successful and some
anomalies exist [1].
(1) Missing satellites [2]: There should be many more

dwarf-sized subhalos (satellites) than observed in the
DM halo of the Milky Way (MW). And the observed
galaxy luminosity and H I-mass functions beyond the
MW show shallower faint-end slopes than predicted.

(2) Cusp versus core: Low surface brightness and dwarf
galaxies seem to have cored inner density proles.
This is at odds with CDM cusps predicted by
simulations [3].

(3) Too big to fail In comparison with the densest and
most massive satellites found in simulations, the
observed brightest satellites of the MW attain their
maximum circular velocity at too-large radii [4].

There are various ways to solve these small scale
problems, such as the nonthermal production of warm
dark matter [5] or the baryon feedback in the galaxies to
make small halos dark [6]. Also, recently the authors of
[7,8] proposed another self-interacting Dirac-fermion DM
scenario with a light mediator (≲100 MeV) to solve these
small scale anomalies. With a light force carrier, the dark

matter scattering cross section could have a nontrivial
velocity dependence. All of the small scales (the dwarf
size, the Milky Way size, and the galaxy cluster size) can
have appropriate cross sections, thus leaving enough
parameter space for the mass of DM, the force carrier,
and the coupling strength. The authors also showed that the
DM self-interactions can be correlated with the effect of
Sommerfeld enhancement in DM annihilation which is
being probed through indirect detection experiments.
This self-interacting DM scenario perfectly explains the

anomalies in the simulations of small scale structures.
Therefore, it is necessary to check if such a scenario can be
realized in popular new physics theories like low energy
supersymmetry (SUSY). In SUSY the better-known DM
candidate is the Majorana-type neutralino, which is com-
posed of binos, winos, and Higgsinos. Apparently, if the
neutralino can have self-interactions through a light force
carrier, such a carrier cannot have a sizable standard model
(SM) interaction due to the stringent constraints from both
collider and DM detection experiments. Thus, this light
force carrier should be composed mainly of a singlet with
respect to the SM gauge groups, which cannot be found in
the minimal supersymmetric standard model (MSSM).
Fortunately, there are various singlet extensions of the

MSSM, among which the next-to-minimal supersymmetric
standard model (NMSSM) seems most attractive [9,10].
In the NMSSM, all the parameters in the superpotential
are dimensionless and electroweak symmetry breaking is
triggered by the TeV-scale soft SUSY breaking terms. The
SUSY preserving μ term in the superpotential of the MSSM
is generated by the vacuum expectation values (VEV) of a
singlet superfield S. It is shown that in the NMSSM a light
singlet scalar at several GeV can survive the DM detection
limits and the collider constraints [11]. On the other hand, if
we do not impose any discrete symmetry (in the NMSSM it
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is Z3) and allow for all possible interactions of the singlet
field, then we have the general singlet extension of the
MSSM (GMSSM) (more detail can be seen in [12]), which
was used to explain the PAMELA anomaly [13,14].
Compared with the NMSSM, the GMSSM has a larger
parameter space. In the GMSSM, the singlet can form a
dark sector in the case of a very small λ. The singlinolike
dark matter can annihilate into the light singletlike scalar,
which can give the correct DM relic density and a proper
Sommerfeld enhancement factor. In this model, the singlet
scalar can be even lighter than in the NMSSM due to a
larger parameter space. So it is intriguing to check if such a
singlet scalar in the NMSSM or GMSSM can serve as the
light force carrier mediated in the DM self-interactions,
which is the aim of this work.
In this work we focus on the NMSSM and GMSSM to

check if the self-interacting DM scenario can be realized.
In our study we will take into account the constraints
from DM relic density, the DM direct detection experi-
ments as well as the proper nonrelativistic scattering cross
sections between DM. We organize the content as follows.
In Sec. II, we will discuss the general DM interactions. In
Secs. III and IV, we will, respectively, check the NMSSM
and GMSSM to figure out the possibility of realizing the
self-interacting DM scenario to solve the small cosmologi-
cal scale anomalies. Section V contains our conclusions.

II. DARK MATTER INTERACTIONS

As mentioned in the Introduction, in order to explain both
the large scale and small scale structures of the Universe, we
can introduce the self-interacting DM scenario. The inter-
actions between DM and SM particles can be summarized as
(shown in Fig. 1)
(1) The annihilation to the SM particles (the left diagram

of Fig. 1), whose cross section at high energy
determines the relic density of dark matter and whose
cross section at low energy is being probed by the
indirect detection experiments like PAMELA [15]
and AMS02 [16].

(2) The elastic scattering off the SM particles (the
middle diagram of Fig. 1), which is being probed
by various direct detection experiments like CDMS
[17], XENON [18], and LUX [19].

(3) The nonrelativistic self-scattering (the right diagram
of Fig. 1), where l ¼ 0 in the partial wave expansion
gives the Sommerfeld enhancement relative to the

relativistic annihilation, while l≲ 25 can account for
the anomalies in the small cosmological scales.

These interactions have subtle correlations among one
another. A complete study on DM properties needs to
combine all these interactions from various experiments.
We now briefly review the calculation of DM relic

density and the DM-nucleon cross sections. When the early
Universe was cooling down, the equilibrium between
DM and SM particles in the thermal bath could no longer
be maintained. The DMwill annihilate to SM particles until
the annihilation rate falls below the expansion rate of the
Universe. Thus, the key point in the DM relic density
calculation is the annihilation rate of DM. In our following
calculation, we use the standard method [20] to calculate
the relativistic annihilation cross section and the degrees of
freedom at the freezing-out temperature.
It is sufficient to consider only the spin-independent

(SI) elastic cross sections between DM (denoted by χ) and
nucleons (denoted by fp for proton and fn for neutron [20])
because of its high sensitivity in current DM direct
detection experiments. These interactions are dominantly
induced by scalar exchange processes at tree level, as
shown in the middle diagram of Fig. 1. Note that the vector
boson exchange interactions are also possible and we
concentrate on the scalar interactions only. For moderately
light scalar bosons, fp is approximated by (similarly for fn)

fp ≃
X

q¼u;d;s

fϕq
mq

mpf
ðpÞ
Tq

þ 2

27
fTG

X
q¼c;b;t

fϕq
mq

mp; ð2:1Þ

where fðpÞTq denotes the fraction of mp (proton mass) from

the light quark q, fTG
¼ 1 −

P
u;d;sf

ðpÞ
Tq

is the heavy quark

contribution through gluon exchange, and fϕq is the
coefficient of the effective scalar operator given by

fϕq ¼ CϕχχCϕqq

m2
ϕ

; ð2:2Þ

with C being the corresponding interaction vertex and mϕ

the mass of the exchanging particle. The DM-nucleus
scattering rate is then given by

σSI ¼ 4

π

�
mχmT

mχ þmT

�
2

× ðnpfp þ nnfnÞ2; ð2:3Þ

where mχ is the DM mass, mT is the mass of the target
nucleus, and npðnnÞ is the number of protons (neutrons) in
the target nucleus. We can see the dependence of the SI
cross section on the mass of the exchanging particle
σSI ∝ 1=m4

ϕ, which is very important in our following
discussions.
Note that the annihilation cross section in relic density is

calculated at high energy. To explain the DM indirect

FIG. 1. Dark matter interactions: annihilation to SM particles in
the left diagram, scattering off quarks in the middle diagram, and
self-scattering in the right diagram.
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detection results (such as the PAMELA result) and the
small cosmological scale anomalies, the DM scattering at
low energies is needed. We will discuss their relations in
the following.

A. The Sommerfeld enhancement effect

The Sommerfeld enhancement effect in dark matter
annihilation is proposed to explain some DM indirect
detection results, such as the positron excess observed
by PAMELA [15] or AMS [16]. The explanation of
positron excess requires a very large DM annihilation rate
which on the other hand cannot explain the DM relic
abundance if the DM is produced thermally in the early
Universe. The Sommerfeld effect can greatly enhance the
annihilation rate when the velocity of DM is much smaller
than the velocity at freeze-out temperature [21]. Note that it
is shown that the positron excess can be more naturally
explained by the pulsar wind and, further, the gamma rays
produced by inverse Compton scattering on the interstellar
radiation field of electrons and positrons produced by dark
matter basically exclude the dark matter interpretation [22].
The Sommerfeld enhancement is a common effect in

nonrelativistic quantum mechanics (QM). When DM has
self-interactions, it will lead to an effective potential VðrÞ in
the nonrelativistic limit. Thus, the Schrödinger equation of
DM particles can be written as

−
1

2mχ
∇2ψk þ VðrÞψk ¼

k2

2mχ
ψk; ð2:4Þ

where k is the relative momentum of the DM particle. A
nonrelativistic DM moves and annihilates around the
origin, namely, near r ¼ 0. Therefore, the only effect of
the potential VðrÞ is the change of the modulus for the wave
function at the origin comparing to that without VðrÞ. Then,
the annihilation cross section is enhanced to

σ ¼ σ0Sk; ð2:5Þ
where the Sommerfeld enhancement factor S is given by

Sk ¼
jψkð0Þj2
jψ ð0Þ

k ð0Þj2
¼ jψkð0Þj2; ð2:6Þ

where ψkð0Þ and ψ ð0Þ
k ð0Þ are, respectively, the perturbed

(unperturbed) wave function of DM.
We can find a solution for the Schrödinger equation in

nonrelativistic QM. Because RklðrÞ ∼ rl as r → 0 and the
l > 0 part will not change the annihilating wave function
at the origin, we need only to calculate the l ¼ 0 part of
the radial wave RklðrÞ. We can numerically solve the
Schrödinger equation with the boundary condition

χðrÞ≡ rRklðrÞ → sinðkrþ δÞ as r → ∞: ð2:7Þ
In the case of a Yukawa-type effective potential induced by
scalar exchange,

VðrÞ ¼ −αχ
e−mϕr

r
; ð2:8Þ

with αχ ¼ jCϕχχ j2=4π, the Sommerfeld enhancement factor
is given by

Sk ¼
����
dχ
dr ð0Þ
k

����2: ð2:9Þ

Though there is no analytical solution for the Schrödinger
equation with the Yukawa-type potential, there are three
distinguishable regions for the Sommerfeld enhancement,
depending on the value of mχ=mϕ. If the mediator scalar
mass is comparable to the DM mass, Sk is negligible at all
scales. However, if the mediator scalar mass is much smaller
than the DM mass, the enhancement factor becomes
independent of mχ=mϕ and corresponds to the Coulomb
limit. In this limit, the Sommerfeld enhancement factor is
essentially given by Sk ∼ παχ=v. In the resonance regions
where mχ=mϕ ≃ π2n2=6αχ with n ¼ 1; 2; 3;…, the DM
annihilation cross section can be enhanced. The enhance-
ment factor is approximately given by Sk ∼ π2αχmϕ=
ð6mχv2Þ, which is very sensitive to the DM velocity. In
our numerical calculation we reproduced the results of
[23], as shown in Fig. 2. This figure shows the Sommerfeld
enhancement factor at velocities of 10,200, and 1000 km=s,
corresponding to the characteristic velocities of the halo of
the dwarf, the Milky Way, and the cluster, respectively
(these are the three small cosmological scales at which the
ΛCDM model seems not to work well).

B. The transfer and viscosity cross sections of
self-interacting dark matter

As pointed out in [23,24], in order to solve the small
scale simulation anomalies, self-interaction between the
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FIG. 2 (color online). The Sommerfeld enhancement factor at
different velocities with the coupling strength αχ ¼ 0.01. Here
v ¼ 10 km=s, 200 km=s, 1000 km=s correspond to the charac-
teristic speeds of dwarf halos, the Milky Way, and clusters,
respectively.
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DM is necessary. In the nonrelativistic limit, the scattering
between DM can be described by QM. The most recent
simulations have shown that σ=mχ ∼ 0.1–10 cm2=g on
dwarf scales (the characteristic velocity is 10 km=s) is
sufficient to solve the core versus cusp and too big to fail
problems, while the Milky Way (the characteristic velocity
is 200 km=s) and cluster scales (the characteristic velocity
is 1000 km=s) require σ=mχ ∼ 0.1–1 cm2=g. It appears
that all the data may be accounted for with a constant
scattering cross section around σ=mχ ∼ 0.5 cm2=g. On the
other hand, the self-interacting DM models generically
predict a velocity-dependent scattering cross section over a
wide range of parameter space.
The numerical input for the simulation of small scales is

the differential cross section dσ=dΩ as a function of the
DM relative velocity v. The standard cross section σ ¼R
dΩðdσ=dΩÞ receives a strong enhancement in the for-

ward-scattering limit (cos θ → 1), which does not change
the DM particle trajectories. Thus, two additional cross
sections are defined to parametrize transport [25], the
transfer cross section σT , and the viscosity (or conductivity)
cross section σV :

σT ¼
Z

dΩð1 − cos θÞ dσ
dΩ

;

σV ¼
Z

dΩsin2θ
dσ
dΩ

: ð2:10Þ
The transfer cross section is weighted by ð1 − cos θÞ, which
is the fractional longitudinal momentum transfer, while the
viscosity cross section is weighted by sin2 θ, which is the
energy transfer in the transverse direction. The transfer
cross section was used in the DM literature to regulate
the forward-scattering divergence in the case of a Dirac-
fermion DM candidate, while the viscosity cross section
was used in the case of a Majorana-fermion DM candidate.
This is because both forward and backward scatterings
diverge, corresponding to poles in the t- and u-channel
diagrams for the identical DM candidate.
In [23] the authors considered a Dirac-fermion DM and

calculated σT . Within the resonance region, no analytic
formula exists for σT and it must be computed by solving
the Schrödinger equation directly with a partial wave
expansion method. The scattering amplitude is given by

fðθÞ ¼ 1

k

X∞
l¼0

ð2lþ 1ÞeiδlPlðcos θÞ sin δl: ð2:11Þ

The differential scattering cross section is given by

dσ
dΩ

¼ 1

k2

����X∞
l¼0

ð2lþ 1ÞeiδlPlðcos θÞ sin δl
����2; ð2:12Þ

where δl is the phase shift for a partial wave l. In terms of
the phase shifts, the transfer cross section is given by

σTk2

4π
¼

X∞
l¼0

ðlþ 1Þsin2ðδlþ1 − δlÞ: ð2:13Þ

To obtain δl, one must solve the Schrödinger equation to
calculate the radial wave function RlðrÞ for the reduced
two-DM particle system

1

r2
d
dr

�
r2
dRl

dr

�
þ
�
k2 −

lðlþ 1Þ
r2

− 2μVðrÞ
�
Rl ¼ 0:

ð2:14Þ
The Schrödinger equation can be recast into the form

�
d2

dx2
þ a2 −

lðlþ 1Þ
x2

� 1

x
e−x=b

�
χlðxÞ ¼ 0 ð2:15Þ

with new variables

χl ≡ rRl; x≡ αχmχr; a≡ v
2αχ

; b≡ αχmχ

mϕ
:

ð2:16Þ
When the DM candidate is a Majorana fermion, the

amplitude and Schrödinger equation are the same as in
Eqs. (2.11) and (2.15). However, the total wave function of
the spin-1=2 fermionic DM must be antisymmetric with
respect to the interchange of two identical particles. Then
the spatial wave function should be symmetric when the
total spin is 0 (singlet), while the spatial wave function
should be antisymmetric when the total spin is 1 (triplet).
The viscosity cross section should be defined with two
variables:

dσVS
dΩ

¼ jfðθÞþfðπ−θÞj2

¼ 1

k2

���� X∞
lðEVEN numberÞ

ð2lþ1Þðexpð2iδlÞ−1ÞPlðcosθÞ
����2

ð2:17Þ
dσVA
dΩ

¼ jfðθÞ−fðπ−θÞj2

¼ 1

k2

���� X∞
lðODD numberÞ

ð2lþ1Þðexpð2iδlÞ−1ÞPlðcosθÞ
����2:

ð2:18Þ
Using the orthogonality relation for the Legendre poly-
nomials, we can obtain

σVSk2

4π
¼

X∞
lðEVEN numberÞ

4sin2ðδlþ2 − δlÞðlþ 1Þ

× ðlþ 2Þ=ð2lþ 3Þ; ð2:19Þ
σVAk2

4π
¼

X∞
lðODD numberÞ

4sin2ðδlþ2 − δlÞ

× ðlþ 1Þðlþ 2Þ=ð2lþ 3Þ: ð2:20Þ
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From the expressions of the transfer and viscosity cross
sections, we can see that both σT and σV will converge to a
static value as the phase shift δl approaches the same value
when the partial wave l grows up. We adopt the numerical
method in [23] to calculate all the cross sections. The
results are shown in Fig. 3, in which we have the same
definitions of input variables. The left plot is the reproduced
results, the same as in [23]. We can see that σT and σVS
are almost the same, while σVA shows differences in
some regions (ab ≪ 0.1). The ab > 0.5 and b ≫ 1 are
the classical regime in which all the cross sections can be
very large. There are also the resonance regions (b≳ 1 and
ab≲ 0.5) in which all the cross sections exhibit patterns of
resonance, making the cross section much more compli-
cated. The self-interacting DM scenario used in [23] and in
this paper works around the resonance regions. In the
region ab ≪ 0.1, σVA is much smaller than the other two
cross sections. The reason is that the summation of the
phase shift in σVA begins at l ¼ 1, as shown in Eq. (2.20),
and in this region the dominant phase shift is δ0 and other
phase shifts are much smaller. That is why we always
calculate δ0 for the partial wave expansion in QM. In our
following analysis, we assume that the DM scatters with
random orientations; thus, the triplet is three times as likely
as the singlet and the average cross section will be

σV ¼ 1

4
σVS þ

3

4
σVA: ð2:21Þ

This is simple but sufficient to estimate the viscosity cross
section for Majorana DM.

III. CAN THE SELF-INTERACTING DARK
MATTER SCENARIO BE REALIZED

IN THE NMSSM?

SUSY can not only give a solution to the hierarchy
problem but also provide a good dark matter candidate and
realize gauge coupling unification. Among the SUSY
models, the MSSM has been intensively studied. This
model, however, has the little hierarchy problem since the

newly discovered 125 GeV Higgs boson requires a heavy
stop or a large trilinear coupling At. Besides, the MSSM
also suffers from the μ problem [26]. It is remarkable that
both the little hierarchy problem and the μ problem can be
solved in the NMSSM [9,10], in which an additional gauge
singlet S is introduced. In this model, the μ term is
dynamically generated through the coupling SHuHd after
S develops an electroweak scale VEV, while the little
hierarchy problem is solved through an additional tree-level
contribution to the Higgs mass. With the additional singlet,
it might be possible for the NMSSM to give DM a proper
nonrelativistic cross section by tuning the singlet mediator.
In the following we check this possibility.

A. Dark matter and Higgs bosons in the NMSSM

In the NMSSM the relevant superpotential containing Ŝ
is given by

λŜ Ĥu ·Ĥd þ
κ

3
Ŝ3; ð3:1Þ

where Ĥu and Ĥd are the Higgs doublet superfields, and λ
and κ are dimensionless parameters. Note that there is no
explicit μ term and an effective μ parameter is generated
when the scalar component (S) of Ŝ develops a VEV s:
μeff ¼ λs. The corresponding soft SUSY breaking terms
are given by

AλλSHu ·Hd þ
Aκ

3
κS3 þ H:c: ð3:2Þ

So the scalar Higgs potential is given by

VF ¼ jλHd ·Hu − κS2j2 þ jλSj2ðjHdj2 þ jHuj2Þ; ð3:3Þ

VD ¼ g22
2
ðjHdj2jHuj2 − jHd ·Huj2Þ

þ g21 þ g22
8

ðjHdj2 − jHuj2Þ2; ð3:4Þ
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FIG. 3 (color online). The bird’s-eye view of transfer and viscosity cross sections σT , σVS, σVA in the parameter space ða; bÞ.
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Vsoft ¼ m2
djHdj2 þm2

ujHuj2 þm2
s jSj2

−
�
AλλSHd ·Hu þ

κ

3
AκS3 þ H:c:

�
; ð3:5Þ

where g1 and g2 are the coupling constants of UYð1Þ and
SULð2Þ, respectively. Assuming

H0
u ¼ hu þ

HuR þ iHuIffiffiffi
2

p ;

H0
d ¼ hd þ

HdR þ iHdIffiffiffi
2

p ;

S ¼ sþ SR þ iSIffiffiffi
2

p ; ð3:6Þ

with hu, hd, s being the corresponding VEVs and using the
minimization conditions, one can obtain a 3 × 3 CP-even
Higgs matrixMh, a 3 × 3 CP-odd Higgs matrixMa, and a
2 × 2 charged Higgs matrix Mc. Note that there are three
Goldstone bosons in Ma and Mc, which imply that after
diagonalization these two matrices must have 0 eigenvalues.
From the superpotential in Eq. (3.1), we can see that the

interactions between the singlet and the SM sector are
controlled by the parameter λ. If a light singlet Higgs exists,
the constraints from both collider and DM detections can be
satisfied only if λ is small enough. Then the singlet Higgs
will be a dark sector. The spectrum of the NMSSM has
been widely studied in the literature [10], so we only
present our conventions and list two necessary terms for our
analysis, concentrating on the dark singlet sector:

(i) The CP-even Higgs mass matrix Mh in the inter-
action basis Sbare ¼ ðHuR;HdR; SRÞ can be diagon-
alized by an orthogonal matrix Sij to obtain three
CP-even mass eigenstates (ordered in mass)
hi ¼ SijSbarej , with the corresponding masses de-
noted by mhi. The elements involving the singlet
component are

Mh;33 ¼ λAλ
huhd
s

þ κsðAκ þ 4κsÞ; ð3:7Þ

Mh;13 ¼ 2λμeffhu − λhdðAλ þ 2κsÞ; ð3:8Þ

Mh;23 ¼ 2λμeffhd − λhuðAλ þ 2κsÞ: ð3:9Þ

(ii) Neutralino matrix M0 is composed of the Uð1ÞY
gaugino λ1, the neutral SUð2Þ gaugino λ2, the
singlino ψ s, and the neutral Higgsinos ψ0

u;d. In the
basis ψ0 ¼ ð−iλ1;−iλ2;ψ0

u;ψ0
d;ψ sÞ one can rewrite

L ¼ −
1

2
ðψ0ÞTM0ðψ0Þ þ H:c: ð3:10Þ

where

M0 ¼

0
BBBBBBBB@

M1 0 g1huffiffi
2

p − g1hdffiffi
2

p 0

0 M2 − g2huffiffi
2

p g2hdffiffi
2

p 0

g1huffiffi
2

p − g2huffiffi
2

p 0 −μeff −λhd

− g1hdffiffi
2

p g2hdffiffi
2

p −μeff 0 −λhu
0 0 −λhd −λhu 2κs

1
CCCCCCCCA
:

ð3:11Þ
After diagonalization, one obtains five eigenstates
(ordered in mass) χ0i ¼ Nijψ

0
j , among which the

lightest one χ01 is usually assumed to be the lightest
SUSY particle and serve as a good DM candidate.

From the spectrum we can see that if λ approaches
zero, one can tune the masses of the singlet-dominant
scalars and neutralinos to arbitrary values by varying the
parameters κ; Aκ.
DM (the lightest neutralino) in the NMSSM has

three-type components: gaugino, Higgsino, and singlino.
Assuming the gaugino unification relation M2=M1 ≈ 2,
we have three possibilities for the DM:

(i) Bino-dominant DM. As shown in [27], under current
collider and DM relic density constraints, the SI
cross section can exclude a large part of parameter
space, leaving only a bino-dominant DM candidate
below TeV.

(ii) Higgsino-dominant DM. As pointed in [28], the
Higgsino-dominant DM candidate around 1.1 TeV
can satisfy all the constraints, including the relic
density and current DM direct detections.

(iii) Singlet-dominant DM. In order to explain the ob-
servation of CoGeNT [29], the analysis in [30]
showed that in the Peccei-Quinn limit there can
exist three light singletlike particles (0.1–10 GeV): a
scalar, a pseudoscalar, and a singlinolike DM can-
didate. For a certain parameter window, through
annihilation into the light pseudoscalar the singlino
DM can give the correct relic density, and through
exchanging the light scalar in scattering off the
nucleon a large cross section suggested by CoGeNT
and DAMA/LIBRA [31] can be attained.

B. Allowed parameter space and dark matter
self-scattering in the NMSSM

We use the package NMSSMTools [32] to study all the
scenarios numerically. As the package requires the mass of
light Higgs to be heavier than 1 GeV, we modify the
package so that the light Higgs mass can be arbitrarily
low and also we include our own codes in the calculation of
the SI cross section. Since it is nontrivial to obtain a light
singlet-dominant Higgs, we randomly scan the parameter
space under the conditions mh1 < 5 GeV and mh2 >
120 GeV. In our scan we consider constraints from DM
relic density and the DM-nucleon scattering cross section.
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Since the SM Higgs (h2) is much heavier than the singlet-
like Higgs (h1), we only need to slightly tune the parameter
Aκ to get a light Higgs with mass 100 MeV. Finally, we use
a light scalar with mh1 ¼ 100 MeV for the calculation of
the DM-nucleon SI cross section σSI. Note that the singlet
sector will be dark with respect to the SM sector when λ is
sufficiently small, and then the SM sector is very insensi-
tive to the tuning in the dark sector.
The numerical results of the three possibilities are shown

in Fig. 4, in which the SI cross section of DM-nucleon
scattering is shown and current constraints of XENON and
LUX are displayed. We can see that the DM direct detection
constraints exclude most of the samples. However, there
is still some surviving parameter space, especially for
bino-dominant and Higgsino-dominant scenarios. Future
XENON1 Twill further cover the surviving parameter space.
Now we present some details related to our scan for

different scenarios:
(i) For the singlino-dominant DM scenario, we define

the parameters ε≡ λμ=mZ, ε0 ≡ Aλ=μ tan β − 1 and
scan the parameter space as in [30]:

2 ≤ tan β ≤ 50; 0.05 ≤ λ ≤ 0.2;

0.0005 ≤ κ ≤ 0.05; −0.1 ≤ ε ≤ 0.1; ε ∼ ε0;

jAκj < 500 GeV; jμj < 1 TeV: ð3:12Þ

The sfermion mass is set to be 6 TeV so that we can
easily get a 125 GeV SM Higgs. As noted in [30],
the DM annihilates to SM particles mainly through
the resonance of the singlet pseudoscalar a1 (the
Feynman diagram is shown in Fig. 5). The result of
the scan is shown in the left panel of Fig. 6. As a
consequence of resonance, the singlet pseudoscalar
mass is almost twice the DM mass. This result is
consistent with [30] and also implies that the
coupling of a1ff̄ should not be completely ne-
glected and thus the parameter λ cannot be too small.
On the other hand, as shown in Sec. II, the SI cross
section has the inverse quartic power dependence on
the mediated scalar mass (here it is the singlet Higgs
h1). Though the coupling of h1ff̄ is suppressed by a
small λ, the cross section will be enhanced greatly
when the mass of h1 is below GeV. Therefore, this
scenario can hardly satisfy the direct detection limits
on the SI cross section.

(ii) For the bino-dominant DM scenario, we scan the
parameter space

10−5 ≤ jλj; jκj < 1; 2 ≤ tan β ≤ 50;

jμj; jAλj < 1 TeV; jM2j < 500 GeV; ð3:13Þ
and set Aκ ∼ −4κμ=λ to get a light singlet Higgs [see
Eq. (3.8)]. We also keep the gaugino unification
assumptionM1 ¼ M2=2;M3 ¼ 3M2 and set the soft
parameters to 6 TeV.
Since a bino does not couple to a singlet Higgs

directly, the coupling between bino-dominant DM
and singlet Higgs arises from its Higgsino and
singlino components. Therefore, the SI cross section
of bino-dominant DM can be much less than the
LUX limits, as shown in Fig. 4.
The right panel of Fig. 6 shows the samples that

satisfy the DM relic density in the bino-dominant
DM scenario. The samples can be divided into two
regions: one is in the diagonal region (ma ∼ 2mχ)
and the other is a vertical belt around mχ ∼ 50 GeV.
The first region is excluded by the direct detection
limits of LUX (the reason is similar to the singlino-
dominant DM scenario). In the second region, the
DM annihilates to SM fermions through the Z-boson
resonance, independent of singlet coupling λ.10

-3

10
-2

10
-1

1

10

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 102 103

σ χ-
p
 (

× 1
0-4

4  c
m

2 )

Mχ

XENON100 2012

LUX Run03 2013

XENON1T, G2 expected

FIG. 4 (color online). The spin-independent cross section of
DM scattering off the proton versus the DM mass in different
scenarios in the NMSSM. □ denotes singlino-dominant DM
scenarios, most of which are excluded by the DM direct detection
limits;△ denotes bino-dominant DM scenarios, among which the
red ones are excluded while the green ones survive; ∘ (around
1 TeV) denotes Higgsino-dominant DM scenarios, among which
the pink ones are excluded while the green ones survive. All the
samples satisfy the DM relic density constraints.

FIG. 5. Feynman diagram of DM annihilation to SM fermions
through a pseudoscalar a.
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The coupling λ is constrained only by the SI cross
section limits and can only take a very small value,
namely, λ≲ 0.005. This can be seen from the left
panel of Fig. 7.

(iii) For the Higgsino-dominant DM scenario, we scan
the parameter space

10−5 ≤ jλj; jκj < 1; 2 ≤ tan β ≤ 50;

jAλj < 1 TeV; jμj < 1.5 TeV;

Aκ ∼ −4κμ=λ; jM2j ¼ 10 TeV: ð3:14Þ
As above, the gaugino unification assumption is
used and the soft parameters are set to be 6 TeV. In
this scenario, the DM mass needs to be around
1100 GeV to satisfy the relic density, and thus no
resonance through the Z boson or pseudoscalar
happens in the DM annihilation.

The singlet Higgs can couple directly to the
Higgsino through the λSψuψd term in the Lagran-
gian, so the SI cross section limits only constrain λ.
From the right panel of Fig. 7, we can see that λ≲
0.001 for the surviving samples.

As a brief summary, the singlino-dominant DM scenario
is almost excluded because of the λ-value correlation
between the relic density and DM-nucleon SI cross section
(the relic density needs a not-too-small λ which is too large
for the DM-nucleon SI cross section). On the other hand,
some parameter space still survives the SI cross section
limits in the bino-dominant and Higgsino-dominant DM
scenarios, in which the λ-value correlation between the relic
density and DM-nucleon SI cross section is relaxed and λ is
constrained by the DM-nucleon SI cross section limits to
take a very small value.
In order to figure out if the NMSSM can realize the DM

self-interaction scenario to explain the small cosmological
scale anomalies, we now calculate the DM self-scattering
cross section. For each allowed sample in Fig. 7, we use
three velocities corresponding to the three small cosmo-
logical scales (dwarf, Milky Way, and cluster) to calculate
the DM self-scattering cross section. Then for each sample
we have three values of the DM self-scattering cross
section and we keep the maximal one to display it in
Fig. 8. We see that due to a very small λ value, σV=mχ is
too small to explain the small cosmological scale anoma-
lies (its value must be in the range 0.1–10 cm2=g to
explain the dwarf scale anomaly and in 0.1–1 cm2=g to
explain MW and cluster anomalies). For such a weak
scattering, we can regard the DM as a collisionless
particle. So we conclude that NMSSM cannot realize
the self-interacting DM scenario to solve the small
cosmological scale anomalies.
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IV. CAN THE SELF-INTERACTING DARK
MATTER SCENARIO BE REALIZED

IN THE GMSSM?

The main reason for the failure of the NMSSM in solving
the small cosmological scale anomalies is a too-small λ
(constrained by DM-nucleon SI cross section limits), which
determines the coupling strength of h1χχ in DM self-
interaction. (Note that when the DM is singlino dominant,
the coupling h1χχ can be proportional to κ. However, a
singlino-dominant DM is obtained under the condition
κ ≪ λ [30], which means a very small κ.) In the NMSSM,
the λSHu ·Hd term in the superpotential is the origin of the
μ term. In the GMSSM, however, the Z3 discrete symmetry
is not imposed and the μ term can exist in the super-
potential, together with the λSHu ·Hd term (several other
terms of the singlet superfield can also exist in the super-
potential). Then the singlet sector can be a completely
dark sector in the case of a nearly vanishing λ. Unlike the
NMSSM, the dark Higgs sector (including a singlino-
dominant DM) can be easily realized in the GMSSM,
which does not need the condition κ ≪ λ [30]. This means
that a singlino-dominant DM can be obtained with a sizable
κ and in this case the coupling h1χχ in DM self-interaction,
which is proportional to κ, can be large. So it should be easy
to realize the self-interacting DM scenario in GMSSM.
As shown in [13], in the GMSSM a singlino-dominant

dark matter annihilates to a singlet-dominant Higgs, which

can give the correct DM relic density, and also the DM-
nucleon SI cross section limits from the direct detec-
tions can be easily satisfied. In addition, an appropriate
Sommerfeld enhancement can explain the positron excess
observed by PAMELA. The nonrelativistic DM scattering
and Sommerfeld enhancement are similar to what was
discussed in [7], except that there can be mediated an
additional pseudoscalar in the GMSSM.

A. Dark matter and Higgs bosons in the GMSSM

The superpotential of the GMSSM is

W ¼ μĤu · Ĥd þ λŜĤu · Ĥd þ ηŜþ 1

2
μsŜ

2 þ 1

3
κŜ3; ð4:1Þ

which involves the parameters μ; λ; η; μs; κ. We set λ ∼ 0 so
that the singlet sector almost decouples from the SM sector.
In the following discussion, we will concentrate on the
singlet sector.
The soft SUSY breaking terms take the form

−Lsoft ¼ m2
s jSj2 þ

�
CηηSþ 1

2
BsμsS2 þ

1

3
κAκS3 þ H:c:

�
:

ð4:2Þ

The main difference between the NMSSM and GMSSM is
reflected in their Higgs sectors which contain different
singlet Higgs mass matrices and self-interactions. The
difference mainly comes from the F term Fs:

VFs
¼ jFsj2 ¼ jηþ μsSþ κS2j2
¼ jκS2j2 þ η2 þ μ2s jSj2
þ ðημsSþ κηS2 þ κμsS2S� þ H:c:Þ: ð4:3Þ

Since η2 is a constant, the μ2s jSj2, ημsS, κηS2 terms can be
absorbed by the redefinition of the soft SUSY breaking
parameters m2

s jSj2, CηηS,
1
2
BsμsS2.

The singlet Higgs potential is

V ¼ VF þ Vsoft ¼ m2
s jSj2

þ
�
CηηSþ 1

2
BsμsS2 þ

1

3
κAκS3 þ κμsS2S� þ H:c:

�
:

ð4:4Þ

The singlet chiral supermultiplet contains a complex scalar
and a Majorana fermion χ. After the scalar component gets
a VEV, we can get one CP-even Higgs h and one CP-odd
Higgs a. The mass spectrum and the relevant Feynman
rules are

mχ ¼ 2κsþ μS; ð4:5Þ

m2
h ¼ κsð4κsþ Aκ þ 3μSÞ − Cηη=v; ð4:6Þ
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FIG. 8 (color online). The same as Fig. 7, but showing the
nonrelativistic viscosity cross section between DM in the
NMSSM. For each allowed sample in Fig. 7, we use three
velocities corresponding to the three small cosmological scales
(dwarf, Milky Way, and cluster) to calculate the cross section and
here we plot the maximal one.
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m2
a ¼ −2Bsμs − κsð3Aκ þ μSÞ − Cηη=s; ð4:7Þ

Vhhh ¼ −4ikð6κsþ Aκ þ 3μSÞ ¼ −4iκð3mχ þ AκÞ; ð4:8Þ

Vhaa ¼ −4iκð2κs − Aκ þ μSÞ ¼ −4iκðmχ − AκÞ; ð4:9Þ

Vhχχ ¼ −4iκ; ð4:10Þ

Vaχχ ¼ −4κγ5: ð4:11Þ

We do not give the Feynman rules for the four-scalar vertex
for they are irrelevant to our analysis. From the spectrum
and Feynman rules above, we can see that the mass
parameters of the three particles (h, a, χ) can be set freely
because the relevant input soft parameters can take arbitrary
values. This makes the following calculation much easier
and we can choose the input parameters easily without
fine-tuning.
Then we have only five input parameters in our calcu-

lation, namely, mχ ; mh;ma; κ; Aκ. It is useful to note that
the three CP-even Higgs vertices Vhhh can vanish if we set
Aκ ¼ −3mχ .
The calculation of the nonrelativistic DM scattering

cross section is already given in Sec. II with the coupling
strength of DM to mediator (αχ ¼ 4κ2=π). Here we just
give some details relevant to the calculation of DM relic
density. The Feynman diagrams of the DM annihilation are
shown in Fig. 9. The general form of the annihilation cross
section is given by [33]

σv ¼ 1

4

β̄f
8πsS

½jAð1S0Þj2 þ
1

3
ðjAð3P0Þj2 þ jA3ðP1Þj2Þ

þ jAð3P2Þj2�; ð4:12Þ

where S is the symmetry factor; Að1S0Þ; Að3P0Þ; Að3P1Þ;
Að3P2Þ are the contributions from different spin states of
DM; and βf is given by

β̄f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ðm2

X þm2
YÞ=sþ ðm2

X þm2
YÞ2=s2

q
; ð4:13Þ

with X, Y being the final states. The amplitudes from
different final states are given by

(1) χχ → hh:

Að3P0Þ ¼ 16
ffiffiffi
6

p
vκ2

�
Rð3mχ þ AκÞ

4 − RðmhÞ2 þ iGh

− 2
1þ RðmχÞ

Pχ
þ 4

3

β̄2f
P2
χ

�
; ð4:14Þ

Að3P2Þ ¼ −ð128=
ffiffiffi
3

p
Þvκ2β̄2f=P2

χ : ð4:15Þ

(2) χχ → aa:

Að3P0Þ ¼ 16
ffiffiffi
6

p
vκ2

�
Rðmχ − AκÞ

4 − RðmhÞ2 þ iGh

− 2
1 − RðmχÞ

Pχ
þ 4

3

β̄2f
P2
χ

�
; ð4:16Þ

Að3P2Þ ¼ −ð128=
ffiffiffi
3

p
Þvκ2β̄2f=P2

χ : ð4:17Þ

(3) χχ → ha:

Að3S0Þ¼−32
ffiffiffi
2

p
κ2
Rðmχ −AκÞ
4−RðmaÞ2

�
1þv2

8

�

þ64
ffiffiffi
2

p
κ2
RðmχÞ
Pχ

�
1þv2

�
1

8
−

1

2Pχ
þ β̄2f
3P2

χ

��

þ16
ffiffiffi
2

p
κ2ðRðmaÞ2−RðmhÞ2Þ

×

�
1þv2

�
−
1

8
−

1

2Pχ
þ β̄2f
3P2

χ

��
; ð4:18Þ

Að3P1Þ ¼ 64vκ2β̄2f=P
2
χ : ð4:19Þ

In the above formulas,

RðmXÞ ¼
mX

mχ
;

Pχ ¼ 1þ RðmχÞ2 −
1

2
ðRðmXÞ2 þ RðmYÞ2Þ;

Gh ¼
Γhmh

m2
χ

: ð4:20Þ

Given the annihilation amplitudes, the relic density Ωh2
can be calculated in the standard way. From the expression
of the DM relic density [23],

σv ¼ 3

8

πα2χ
m2

χ
v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
h

m2
χ

s
; ð4:21Þ

we can see that the ratio αχ=mχ is almost a constant when
mh ≪ mχ in order to give the correct DM relic density.

FIG. 9. Feynman diagram of singlino DM annihilation to
scalars in the GMSSM. The final state of ϕϕ can be hh, ha,
or aa.
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B. Allowed parameter space and dark matter
self-scattering in the GMSSM

We first change our Feynman rules to those in [23] and
check if we can reproduce the results in [23]. Our results are
shown in Fig. 10, which agree with [23]. Figure 10 shows

the transfer cross section σT allowed by solving the small
cosmological scale anomalies (dwarf, Milky Way, and
cluster) with their corresponding characteristic velocities.
Here all the samples satisfy the DM relic density given
by PLANCK [34]. We can see that σT=mχ can satisfy
simultaneously the requirements of dwarf, Milky Way,
and galaxy cluster scales to solve the small scale anomalies.
On the other hand, as can be seen from the figure, the
requirement to solve such small scale structure anomalies
can also give strong constraints on the parameter space of
the self-interacting DM scenario. This means that subtle
relations should be satisfied among mh, mχ , and αχ .
Then we perform a numerical calculation in the

GMSSM. Since in the GMSSM the singlino DM is of
Majorana type, we need to use the viscosity cross section
σV . In Fig. 11 we show the GMSSM parameter space
allowed by DM relic density plus all three small scale
structures. The corresponding parameter space for the DM
self-interaction model [23] is also displayed for compari-
son. We can see that compared with the DM self-interaction
model [23], the GMSSM has a larger parameter space to
solve the anomalies of all three small scales (the mass of
DM can be heavier than 10 GeV and the coupling strength
αχ can be at order 10−3). The reason is that in the DM self-
interaction model [23], DM can only annihilate into hh via
the t channel and u channel, while in the GMSSM DM can
annihilate into hh, ha, and aa via the t channel, u channel,
and s channel, as shown in Fig. 9.
Finally, in Fig. 12 we show the Sommerfeld enhance-

ment in the allowed parameter space. We see that compared
with the DM self-interaction model [23], the GMSSM
allows for a larger mχ=mh and thus can give a larger
Sommerfeld enhancement factor. The ongoing indirect
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FIG. 10 (color online). Scatter plots of the parameter space in
the DM self-interaction model [23] allowed by DM relic density
plus dwarf scale structures (blue region), Milky Way size
structures (red region), or cluster size structures (green region).
We obtained these results by changing our Feynman rules to
those in [23].
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detections of DM can probe the DM annihilation rate (shed
light on the Sommerfeld enhancement factor) and thus help
to distinguish different DM self-interaction models.

V. CONCLUSIONS

In this paper we studied the possibility of the DM self-
interaction to solve the small cosmological scale anomalies
in the singlet extensions of the MSSM.We first checked the
NMSSM and found that the correlation between the DM
annihilation rate and DM-nucleon SI cross section strongly
constrains this model so that it cannot realize the DM self-
interacting scenario. For the GMSSM, the parameter space

was found to be large enough to realize the DM self-
interacting scenario and at the same time can give a large
Sommerfeld enhancement factor. Also, we found that for
Majorana-fermion DM, we must use viscosity cross sec-
tions (σVS and σVA) in DM simulations.
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