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In this article we propose a new strategy to address the little hierarchy problem. We show that the
addition of a fourth generation with vectorlike quarks to the minimal supersymmetric standard model can
raise the predicted value of the physical Higgs mass by mixing with the top sector. The mixing requires a
larger top quark Yukawa coupling (by up to ∼6%) to produce the same top mass. Since loop corrections to
mh go as y4top, this will in turn increase the predicted value of the physical Higgs mass, a point not
previously emphasized in the literature. In the presence of mixing, for A terms and soft masses around
900 GeV, a Higgs mass of 125 GeV can be generated while retaining perturbativity of the gauge couplings,
evading constraints from electroweak precision measurements and recent LHC searches, and pushing the
Landau pole for the top Yukawa above the GUT scale. Soft masses can be as low as 800 GeV in parts of
parameter space with a Landau pole at ∼1010 GeV. However, the Landau pole can still be pushed above the
GUT scale if one sacrifices perturbative unification by adding fields in a 5þ 5̄ representation. With a ratio
of weak-scale vector masses ≠ 1, soft masses may be slightly below 800 GeV. The model predicts new
quarks and squarks with masses ⪆ 750 GeV. We briefly discuss potential paths for discovery or exclusion
at the LHC.
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I. INTRODUCTION

Dynamically broken supersymmetry offers an elegant
way of cutting off leading divergences of quantum correc-
tions to the Higgs mass parameter in the standard model.
Unless parameters in the model are finely tuned, one
expects that the mass of supersymmetric particles are of
the same order as the Z and W masses. In particular,
quantum corrections to the Higgs mass parameter are
dominated by the contributions from the top quark, because
of the large Yukawa coupling. To preserve naturalness, this
leads to the expectation that the top squark should be
relatively light.
However, results from the Large Hadron Collider (LHC)

indicate that the Higgs mass is ∼125 GeV [1,2]. In the
minimal supersymmetric standard model (MSSM), a mass
so much higher than the tree-level upper bound of mZ can
be accommodated only with extremely heavy top squarks,
or moderately heavy top squarks and large top squark
mixing. The quadratic divergence contributed by such a
heavy top squark then needs to be canceled at the level of
∼10−4, leading to a significantly fine-tuned theory. This
tuning is significantly worse than the tuning implied by
direct constraints on superpartners at the LHC. In fact, in
the case of only moderate mixing, the top squark mass
implied by this Higgs mass is higher than the direct collider
limit ∼3 TeV that can ever be set by the LHC.
Unlike many other experimental constraints on the

MSSM, this “little hierarchy” problem [3,4] is directly

associated with the low energy spectrum of the theory.
Consequently, it cannot be solved through ultraviolet
mechanisms that are often invoked to address indirect
constraints (such as flavor or CP violation; see [5] for
an overview) or alteration of the collider signatures of
supersymmetry to avoid direct constraints on the theory
[6–11]. Several attempts have been made to modify the
MSSM spectrum through the addition of matter fields
to raise the Higgs mass [12–45]. These mechanisms were
originally proposed to accommodate the Higgs mass bound
⪆114 GeV imposed by LEP, and though more recent work
has demonstrated the ability for such a mechanism to yield
a Higgs mass ∼125 GeV (e.g., [46]), in general the higher
mass needs significantly larger couplings than considered
in the earlier models, leading to the rapid appearance of
Landau poles marginally above the weak scale. While such
a possibility cannot be logically excluded, it destroys the
success of perturbative grand unification in supersymmetric
models, an aesthetic success of the MSSM.
In this paper, we propose a new strategy to address the

little hierarchy problem. The largest loop contribution to
the effective potential of the Higgs comes from the top
supermultiplet and the magnitude of this contribution is
governed by the top Yukawa. The Yukawa coupling used in
current estimates of the top quark contribution to the Higgs
mass is directly extracted from measurements of the top
mass. However, the naive relation between the physical
mass of the top quark and the Yukawa coupling, extracted
from the tree level Lagrangian, is modified when the top
supermultiplet is mixed with other heavier states. When
diagonalizing the mass matrix, the new mixing terms will
contribute negatively to the naive estimate ytv sin β, thus
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requiring a larger Yukawa coupling to obtain the measured
value of the top, mt ∼ 173 GeV. Since the Higgs effective
potential depends upon the fourth power of this coupling,
even a moderate increase can lead to a significant enhance-
ment of the Higgs mass.
We demonstrate this mechanism through a simple exten-

sion of the models [38,39,46] where a vectorlike fourth
generation with Yukawa couplings to the Higgs was intro-
duced. In these models, the additional contributions from
the vectorlike generation were sufficient to push the Higgs
mass above the LEP bound of ∼114 GeV. This goal could
be accommodated with perturbative gauge coupling uni-
fication with relative ease using only the Yukawa couplings
of the fourth generation with itself. Consequently, mixing
between the fourth generation and the standard model was
not explored. But the mixing between the top quark and
the fourth generation is experimentally fairly unconstrained.
Indeed, recently there has been more interest shown in
exploring this possibility, with [47] in particular seeking to
constrain the possible dominant mixing angle for any
(single) vectorlike heavy multiplet. However, it has not been
noted that such a mixing can contribute significantly to the
mechanism for raising mh so far above mZ. When this
mixing is Oð1Þ, we show that the Yukawa couplings
necessary to obtain the physical top quark mass are large
enough to substantially increase the Higgs mass.
This paper is structured as follows. We describe the

model in Sec. II. In Sec. III, we discuss the effects of large
mixing on the top Yukawa. We compute the weak-scale
mixing Yukawa couplings necessary to achieve a Higgs
mass of ∼125 GeV and the induced top Yukawa Landau
pole. In Sec. IV we study the experimental constraints
and briefly discuss the LHC phenomenology. Finally, we
conclude in Sec. V.

II. THE MODEL

In this model, we extend the MSSM by adding a full
vectorlike fourth generation (i.e., a chiral fourth generation

plus its mirror) with Yukawa couplings to the Higgs.
Furthermore, the couplings mixing the fourth generation
and the top sector are allowed to take on values close to
unity; they have a quasifixed point which limits their TeV
values to be not much larger than 1 [39]. However, we
ignore mixing with the first and second generations since
these are constrained by experiment to be small. We
consider the simplest model which preserves gauge cou-
pling unification. Therefore, the new vectorlike generation
contains quark and lepton supermultiplets Q4, Uc

4 and Ec
4,

living in the 10 representation of SU(5), plus the corre-
sponding mirror generation Q̄c

4, Ū4, and Ē4 living in the 10
representation. The SUð3Þc × SUð2ÞL × Uð1ÞY quantum
numbers of the additional colored superfields and the
top sector, plus explanation of our conventions and nota-
tion, are shown in Table I.
The relevant mass-eigenstate Dirac fermions are the top

t, bottom b, and the new quarks t01;2 and b0 of charge þ2=3
and −1=3, respectively. In the scalar sector the relevant
particles are the top squarks ~t1;2, sbottoms ~b1;2, and the
corresponding non-MSSM squarks ~t01;2;3;4 and ~b01;2. The
terms in the superpotential that affect the Higgs mass are

W ⊂ yijQiHuUc
j þ μQQ̄c

4Q4 þ μUŪ4Uc
4 þ μHuHd ð1Þ

where i and j are generation indices than run from 3 to 4,
and μ is the usual coefficient of the Higgs bilinear term.
Terms such as μ34Q3Q̄c

4 are rotated away without loss of
generality. Yukawa couplings of the form ȳ44HdQ̄c

4Ū4 and
Yukawa couplings between the Higgs and the leptons are
ignored since their effect in raising the Higgs mass is
subdominant in the large tan β limit. In the soft Lagrangian,
we assume the same squared mass Δm2 for all the squarks,
Bμ terms corresponding to each vectorlike mass (ignoring
mixed Bμ terms with the third generation), and A terms of
the form yijA associated with each Yukawa coupling.
Throughout the paper, we set tan β ¼ 30. We refer to the

TABLE I. The third and fourth generation colored fields and their quantum numbers in the gauge-eigenstate basis are listed in the table
above. We follow the standard convention that all chiral supermultiplets are defined in terms of two-component left-handed Weyl
spinors, so that charge conjugates of right-handed fields are used. The barred fields denote gauge-eigenstate fields belonging to the 10
representation of SUð5Þ. Four-component Dirac fermions can be constructed as qD ¼ ðqi; qc†i ÞT . The mass basis fermions are the top t,
bottom b, and the new quarks t01;2 and b0 of charge þ2=3 and −1=3, respectively. Their superpartners are the top squarks ~t1;2, sbottoms
~b1;2, and the corresponding non-MSSM squarks ~t01;2;3;4 and ~b01;2.

Supermultiplet Scalars Fermions SUð3ÞC SUð2ÞL Uð1ÞY T3 Q

Q3 ð ~u3; ~d3Þ ðu3; d3Þ 3 2 1=6 (1=2, −1=2) (2=3, −1=3)
Uc

3 ~uc3 uc3 3̄ 1 −2=3 0 −2=3
Dc

3
~dc3 dc3 3̄ 1 1=3 0 1=3

Q4 ð ~u4; ~d4Þ ðu4; d4Þ 3 2 1=6 (1=2, −1=2) (2=3, −1=3)
Uc

4 ~uc4 uc4 3̄ 1 −2=3 0 −2=3
Q̄c

4 ð ~̄dc4; ~̄uc4Þ ðd̄c4; ūc4Þ 3̄ 2 −1=6 (1=2, −1=2) (1=3, −2=3)
Ū4

~̄u4 ū4 3 1 2=3 0 2=3
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Appendixes for details about the particle spectrum and the
interaction Lagrangian.

III. THE EFFECTS FROM MIXING

A. Mixing and the top Yukawa coupling

As stated in the introduction, the qualitative difference
between this note and earlier work [38,39,46] is the
emphasis on the mixing terms proportional to y34 and
y43. In general, we assume a parameter space where y34, y43
and y44 are allowed to vary from 0 to values ≳1, while the
top Yukawa is constrained to give the right top mass. We
consider the four following benchmark scenarios for the
Yukawas: (1) y34 ¼ −y43 ≫ y44, (2) y43 ≫ y34; y44,
(3) y34 ≫ y43; y44, and (4) y44 ≫ y34; y43. Case 1 focuses
on effects where both mixing Yukawas are significant,
whereas cases 2 and 3 focus on mixing from only one term.
Case 4 corresponds to earlier work [38,39,46] where the
mixing terms y34 and y43 were ignored, and serves as a
useful comparison. As will be shown in Sec. III B, the
parameter space where this model makes sizable contribu-
tions to the Higgs mass is a region where the fourth
generation is accessible at the LHC.
When mixing terms are present, and if y44 ¼ 0, the top

Yukawa coupling y33 necessary to obtain the measured top
mass mt ¼ 172.9 GeV is given by

y33 ¼
mt

v sinβ

�
1þ ðy43v sinβÞ2

μ2Q −m2
t

�
1=2

�
1þ ðy34v sinβÞ2

μ2U −m2
t

�
1=2

:

ð2Þ

This formula is exact when y44 ¼ 0 and is obtained after
bidiagonalizing the up-type fermion mass matrix mu

f
(shown explicitly in Appendix A), identifying its smallest
singular value with the top mass, and solving for y33.
If y44 ≠ 0, the above formula still holds to a very good
approximation since the coupling y44 first makes an
appearance at fourth order in the expansion parameter
(v=μQ;U), and therefore has a negligible effect in raising the
value of y33.
For simplicity, we take μQ ¼ μU ≡ μ4. In this case, we

can define Δ ¼ v=μ4 to quantify the hierarchy between the
new vectorlike mass scale and the electroweak scale, such
that Δ ¼ 0 in the limit μ4 → ∞. At large tan β, and taking
mt=v ¼ 1, Eq. (2) can be approximated as

y33 ≈ 1þ 1

2

�
Δ2

1 − Δ2

�
ðy243 þ y234Þ þOðΔ4Þ: ð3Þ

Evidently, Δ > 0 leads to an increase in the top Yukawa.
As a result, the soft masses Δm needed to get a 125 GeV
Higgs decrease. Taking the value of the mass of the new
quarks to be near their experimental limit of 700–800 GeV
(see Sec. IV C) leads to the constraintΔ≲ 1=4. Then, in the
case where the mixing Yukawas are near unity, the effects

of mixing between the top sector and the fourth generation
can lead to an increase of y33 by about 6%. This can
significantly increase the Higgs mass squared since the
radiative corrections go as y433. Mixing effects on the Higgs
mass are studied in detail in Sec. III B. Lastly, we note that
an increase in the top Yukawa also leads to an increase in
the Higgs quartic; however, this increase is subdominant
compared to the Higgs mass.

B. Weak-scale Yukawa couplings

In this section we compute the weak-scale Yukawa
couplings necessary to obtain the required Higgs mass
using the one-loop effective potential in the decoupling
limit (where mA;mHþ ; mH− ; mH0 ≫ mh). Contributions to
the Higgs effective potential have the following form:

ΔV ¼ 3

32π2

�X
f ~mag

~m2
a

�
ln

~m2
a

Q2
−
3

2

�

− 2
X
fmag

m2
a

�
ln
m2

a

Q2
−
3

2

��
ð4Þ

where Q is the renormalization scale and ma ( ~ma) are the
quark (squark) masses. The summation runs over the
masses of the heavy up-type quarks (a ¼ t; t01; t

0
2) and their

superpartners (a ¼ ~t1;2; ~t01;2;3;4). The resulting physical
Higgs mass is then

mh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Zcos
22β þ 1

2

�∂2ðΔVÞ
∂v2u −

1

vu

∂ðΔVÞ
∂vu

�s
: ð5Þ

For numerical efficiency, the algorithm used to solve for
the necessary parameters obtains a Higgs mass in the range
125.5� 0.5 GeV. For this set of computations we take the
soft terms to be of the form Δm ¼ A, as might be expected
in gravity mediation (or high scale gauge mediation [38]),
and choose μ4 ¼ 900 GeV. The Yukawa values at the weak
scale as functions of the soft masses are plotted in Fig. 1,
along with their constraints from electroweak precision
measurements. As one would intuitively expect, the mixing
Yukawas necessary to achieve a given Higgs mass are
smaller when jy34j ∼ jy43j than when one of these couplings
dominates the other. However, the lowest possible value of
Δm consistent with electroweak precision measurements
(EWPM) is Δm ∼ 800 GeV and occurs for the case where
y34 ∼ 0.8 and y43 ¼ y44 ¼ 0.

C. Top Yukawa Landau pole

The mixing terms y34 and y43 significantly affect the
Higgs mass only when they areOð1Þ. TheseOð1ÞYukawas
affect the renormalization group evolution of the top
Yukawa y33 and can cause it to hit a Landau pole. In this
section, we estimate the scale at which this Landau pole is
attained for various choices of the Yukawas and soft terms
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necessary to obtain a Higgs mass ∼125 GeV. The top
Yukawa two-loop beta function presented in Appendix D is
used to calculate the scale Λ where the coupling y33 hits a
Landau pole. Below, we plot Λ as a function of the soft
mass Δm and consider the effects from
(1) Different mixing scenarios.
(2) A terms.

(3) The vectorlike mass μ4.
(4) The number of extra multiplets in the 5þ 5̄ of

SU(5).
From Fig. 2, we see that large mixing can push Λ above

the GUT scale while retaining soft masses as low as
∼900 GeV. The three different mixing scenarios give
comparable results because these Yukawa couplings
reinforce each other in their respective renormalization
group evolution. In contrast, to push Λ above ∼1016 in the
case with no mixing requires soft masses to be larger
than 1.5 TeV.
From Figs. 3 and 4 it is clear that for a given soft mass,

the implied Landau pole scale can also get pushed up by
including larger A terms or a smaller vector mass. For
A ¼ Δm ∼ 900 GeV, Λ can be pushed above the GUT
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y43 y34,y44

y44 y34,y43

y34 y43 min m
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FIG. 2 (color online). We plot the scale Λ where the y33
required to getmh ¼ 125.5 GeV hits a Landau pole, as a function
of the soft mass Δm. We set A ¼ Δm, μ4 ¼ 900 GeV, and
n5 ¼ 0. Soft masses to the left of the dotted lines can only yield
mh ¼ 125.5 GeV with Yukawa couplings larger than allowed by
EWPM and are thus ruled out (see Sec. IV). Physically unin-
teresting values of Λ < 1 TeV are not plotted. The presence of
mixing decreases significantly the value of the soft masses
needed. As can be seen from the plot, the scale of the Landau
pole in the cases with sizable mixing are all comparable. The
cases where either y34 or y43 dominate (shown in black) yield
identical values since each contributes to the top Yukawa beta
function in the same way. However, their differing effects on the
oblique parameters lead to different minimum values for the soft
masses.
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y34 min m

FIG. 3 (color online). We plot the scale Λ where the y33
required to getmh ¼ 125.5 GeV hits a Landau pole, as a function
of the soft mass Δm. We set y34 ≫ y44; y43, μ4 ¼ 900 GeV, and
n5 ¼ 0. Soft masses to the left of the dotted lines can only yield
mh ¼ 125.5 GeV with Yukawa couplings larger than allowed by
EWPM and are thus ruled out (see Sec. IV). There is only one line
here since these limits are independent of the A terms). For a
given soft mass the implied Landau pole gets significantly pushed
up by the presence of A terms.
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FIG. 4 (color online). We plot the scale Λ where the y33
required to getmh ¼ 125.5 GeV hits a Landau pole, as a function
of the soft massΔm. We set y34 ≫ y44; y43, A ¼ Δm, and n5 ¼ 0.
Soft masses to the left of the dotted lines can only yield mh ¼
125.5 GeV with Yukawa couplings larger than allowed by
EWPM and are thus ruled out (see Sec. IV). For a given soft
mass, the implied Landau pole increases as the vector mass
decreases.
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FIG. 1 (color online). We plot the values of the Yukawa
couplings at the weak scale necessary to obtain mh ¼ 125.5�
0.5 GeV, as a function of Δm. We take A ¼ Δm, μ4 ¼ 900 GeV.
When either y34 or y43 dominates, the same value of the dominant
Yukawa is required to get mh ¼ 125.5 GeV so both scenarios
are represented by one black line. The dotted lines show the
maximum values allowed by EWPM for each mixing scenario
(see Sec. IV). Since y34 and y43 contribute to the oblique
parameters differently they have different constraints on their
maximum values, represented by the green and orange dotted
lines, respectively. Above the dotted line requires Yukawas larger
than allowed by EWPM and is thus ruled out.
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scale. Δm can be as low as 800 GeV, albeit in parts of
parameter space with a Landau pole at ∼1010 GeV.
In the last point (4) above, we included one more

parameter in our analysis, namely, the number n5 of
multiplets in the 5þ 5̄ representation of SUð5Þ that are
added to the model. These could correspond, for example in
the minimal version of gauge-mediated supersymmetry
breaking, to messenger fields which do not couple to the
Higgs and that communicate SUSY breaking from a hidden
sector to the visible sector. This number does not affect the
Yukawas necessary to obtain the Higgs mass but it
contributes to the running of the gauge couplings, making
them stronger in the ultraviolet. And since the gauge
couplings contribute negatively to the renormalization of
the Yukawas, a larger ultraviolet gauge coupling slows the
growth of the yij’s, pushing up the Landau pole. However,
as we will see, to preserve perturbative gauge coupling
unification we cannot add an arbitrary number of n5 in
addition to the vectorlike 10þ 10 of SU(5) necessary in our
model. To verify perturbativity we used the one-loop beta
functions presented in Appendix D and required gunif ≲ 3.
From Fig. 5, we see that the gauge couplings become
nonperturbative around 1013 GeV for n5 ¼ 2 and
1015 GeV for n5 ¼ 1. They remain perturbative all the
way to the GUT scale for n5 ¼ 0. Therefore, the Landau
pole can still be pushed above the GUT scale if one
sacrifices perturbativity at the scale of unification.

IV. CONSTRAINTS

In this section, we work out the constraints from Higgs
production, measurements of VCKM

tb , the most recent mass
bounds from direct searches for vectorlike quarks at the
LHC (with up to 19.5 fb−1 of 8 TeV data from CMS [48]
and 14.3 fb−1 of 8 TeV data from the ATLAS detector) and
constraints on the oblique parameters S and T [49] from
electroweak precision measurements. We find that the
oblique corrections and LHC direct searches place the
dominant constraints on the total parameter space but that

portions of the remaining parameter space available can
still raise the Higgs mass to ∼125 GeV while yielding new
quarks discoverable at the LHC in the near future.

A. Higgs production

The Higgs production rate at the LHC is dominated
by the gluon fusion process and recent measurements can
be used to put constraints on any model with new particles
that get their mass through the Higgs. In the case where a
chiral fourth generation is added to the SM, this leads to an
increase of the Higgs production rate by gluon fusion by
about a factor of 9 over the SM rate, in contradiction
with experiments. This is a result of the fact that the new
quarks get all of their mass via coupling to the Higgs;
no decoupling limit exists to ameliorate the situation.
However, in the case of a new generation of vectorlike
quarks the new quarks get their mass only partially through
the Higgs, the remaining part coming from the vectorlike
mass parameter(s), here μ4. This opens the possibility that
the new generation might contribute differently to Higgs
production.
One can see the dependence of the relevant amplitude on

the parameters of the model as follows. We take the large
tan β limit throughout this discussion, though the procedure
can be generalized in an obvious way. Consider an effective
vertex coupling two gluons and a Higgs, which can be
thought of as arising from a term in an effective Lagrangian
with the form

L0 ¼ g�GμνGμνH; ð6Þ

where H → hþ v after electroweak symmetry breaking
(EWSB) so that L0 → L1 þ L0

1, where

L1 ¼ g�GμνGμνh; L0
1 ¼ g�GμνGμνv: ð7Þ

The amplitude associated with the effective ggh vertex is
simply the unknown g�. This is the same amplitude as
for the L0

1 “vertex,” which can be interpreted as a correction
to the gluon self-energy Πgg. In particular, it is that part of
the self-energy that comes from the coupling of particles in
the loop to the Higgs vacuum expectation value (we
consider only the one-loop correction). Rather than directly
computing the effective ggh coupling g� by summing all
one-loop gg → h diagrams, we can use the ggv coupling to
obtain g� from the well-known form of the gluon self-
energy in a simple way. For this we need to consider all the
contributions to the one-loop gluon self-energy, identify all
the terms that include a factor of v, and sum the coefficients
of v from each term. (Actually, what we need is just the
sum, not individual coefficients.) Therefore to extract the
information we want out of Πgg, all we have to do is take a
partial derivative with respect to v. In equation form,
g� ∼ ∂

∂v ½ΠggðvÞ�, where Πgg is thought of as a function of v.
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Gauge coupling
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FIG. 5 (color online). We plot the scale Λ where the y33
required to getmh ¼ 125.5 GeV hits a Landau pole, as a function
of the soft mass Δm. We set y34 ≫ y44; y43, A ¼ Δm,
μ4 ¼ 900 GeV. Here the dotted lines indicate where the gauge
couplings become nonperturbative for n5 ¼ 2 and n5 ¼ 1. They
remain perturbative all the way to the GUT scale for n5 ¼ 0.
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The form of corrections to vector boson propagators is
well known. Since the coupling for a non-Abelian gauge
theory is universal, all colored fermions in the loop
contribute in the sameway, i.e., the only difference between
their contributions comes from the mass dependence. In
particular, for a given quark running in the loop, one
obtains a logarithmic dependence on its squared mass, m2

i .
This implies that

Πgg ⊃ c
X
i

logðm2
i Þ; ð8Þ

where c is some constant and the sum is over t; t01; t
0
2.

Now in the case under consideration all of the squared
masses m2

i are the eigenvalues of the matrix mu
fm

u†
f (as

given in Appendix A). Since
P

i logðm2
i Þ ¼ log ðΠim2

i Þ ¼
log ½det ðmu

fm
u†
f Þ� and det ðmu

fm
u†
f Þ ¼ det2ðmu

fÞ, the rel-
evant terms in Πgg are given by

Πgg ⊃ c
X
i

logðm2
i Þ ¼ c log ½det2ðmu

fÞ�: ð9Þ

Taking the partial derivative,

Agg→h ∝
∂½logðdet2mu

fÞ�
∂v ¼ 1

det2mu
f

∂det2mu
f

∂v : ð10Þ

In the special case ȳ44 ¼ 0, we have detðmu
fÞ ¼

vðy33μ24 sin βÞ, which (taking sin β ≈ 1) is the same as in
the SM aside from the factor of μ24, which cancels in the
amplitude. Thus Agg→h ∝ 2=v, with no dependence on the
yij Yukawas or the vectorlike mass parameter μ4, and there
is no change from the well-known approximate SM
amplitude. We ignore contributions from the scalars, as
these are suppressed. We note in passing that this expres-
sion has the right mass dimension for the g� multiplying the
dimension-five operator in L0.

B. VCKM
tb

The addition of the vectorlike fourth generation will
affect both the weak charged currents (CC) and the weak
neutral currents (NC) at tree level. In particular, the W�
gauge bosons now couple to both left-handed and right-
handed particles. Furthermore, including mixing with the
top sector will enrich the flavor structure of the model and
induce flavor changing neutral currents (FCNCs) in the
mass-eigenstate basis. These FCNCs only involve third and
fourth generation particles and are therefore fairly uncon-
strained. In Appendix B we derive the triple and quartic
gauge boson interaction terms with the quarks and squarks,
as well as the interaction terms between the Higgs ho and
quarks.
The rotation from gauge to mass eigenstates leads to

generalized Cabbibo-Kobayashi-Maskawa (CKM) matri-
ces between the third generation, fourth generation, and its

mirror generation (which can be viewed as a “fifth”
generation), which we denote by Kab

α for quarks, and
~Kab
α for squarks, with a; b ¼ u; ū; d; d̄ and α ¼ L;R. These

matrices will be present in every interaction term.
Furthermore, they are not square matrices like in the
MSSM because there are more up-type quarks than
down-type quarks.
The generalized CKM matrix Kud

L is a rectangular
(2 × 3) matrix (see Appendix B for more details) in the
mass basis ðt; t01; t02Þ for the (four-component) up-type
quarks and ðb; b0Þ for the down-type quarks. This matrix,
being rectangular, is not unitary but satisfies the following
equation:

Kud
L ðKud

L Þ† þ Kū ū
L ðKū ū

L Þ† ¼ ðVu†
L Dud

L Vd
LÞðVu†

L Dud
L Vd

LÞ†
þ ðVu†

L Sū ū †L Vu
LÞðVu†

L Sū ū †L Vu
LÞ†

¼ Vu†
L ðDud

L þ Sū ūL ÞVu
L

¼ 13×3

where we have used the unitarity of the mixing matrices Vu
L

and Vd
L, and the fact that Dud

L ðDud
L Þ† ¼ Duu

L , ðSuuL Þ†SuuL ¼
Sū ūL andDuu

L þ Sū ūL ¼ 13×3 (see Appendix C for the explicit
form of these matrices).
The ðKud

L Þ11 entry predicted by our model should lie
within the margin of error of the measured value of VCKM

tb
[defined as the (3,3) entry of the (3 × 3) matrix corre-
sponding to the SM CKM matrix VCKM]. As usual, we
neglect the mixing between the first two generations and
the higher generations. When unitarity of the SM VCKM is
not assumed, VCKM

tb was recently measured by CMS [50]
to be jVCKM

tb j ¼ 1.14� 0.22. We therefore require 0.92 <
ðKud

L Þ11 < 1.36. After scanning over a large region of our
relevant parameter space, we conclude that this restriction
is always satisfied. Therefore, the constraints from the
measured value of VCKM

tb are negligible. This is in agree-
ment with the statements in [46].

C. Mass bounds from LHC direct searches

LHC direct searches are the most obvious source of
constraints on the masses of the new vectorlike quarks. The
branching ratios of the new quarks depend on the relative
size of the relevant Yukawa, W and Z couplings. Until
fairly recently, many searches assumed 100% branching
ratio through one channel, particularly the Wb decay, and
therefore had a large degree of model dependence.
However, unlike these searches, ATLAS and CMS now
can exclude vectorlike quarks in a model independent way
by considering general branching ratio scenarios in their
data analysis.
At the LHC, the t0 (or b0) can be either pair produced or

singly produced. Typically, the pair produced initial
state has a large cross section; however, as shown in
[47] it is possible that single production of the heavy
quark via the exchange of a t-channel W has a larger cross
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section than t0t0. This opens new decay chains such as
t0bj → htbj → bbWbbj. In Tables II and III we list
possible event topologies that could arise at the LHC.
For the final states, we see that there may be as many as six
b jets, or if the Higgs decays via the less common WW�
channel then there may be as many as six W bosons.
Finally, we note that t0bj → Wbbj and t0t0 → WbWb
present two of the best routes to discovery since mWb
would reconstruct tomt0 and the signals are relatively clean.

The most recent search done by CMS is the first search to
consider all three final states, and puts the most stringent
constraints to date on the existence of a heavy vectorlike
top quark. Assuming that the heavy vectorlike top quark
decays exclusively into bW, tZ, and tH, CMS has set lower
limits for its mass between 687 and 782 GeV for all
possible branching fractions into these three final states
assuming strong production. Their results are summarized
in Fig. 6 (taken from [48]).
For ATLAS, the high multiplicity of jets has recently

been used in the search for vectorlike quarks, yielding the
mass bound on the t0 consistent with CMS [51]. Therefore,
requiring the vectorlike mass parameter μ4 ≳ 700 ensures
that the physical masses of the new heavy quarks are above
the lower bounds excluded by the LHC.

D. Electroweak precision observables

We now study the total contribution of the new
generation to the electroweak oblique parameters S and
T. In Appendix B, we work out the interaction terms
between the new particles and the electroweak gauge
bosons in the mass basis Lagrangian, as these are needed
to derive the necessary Feynman rules to calculate the self-
energy loops in the definitions of S and T. The relevant
interaction terms are of the form Wff, Zff, Aff and for
quarks, and W ~f ~f, Z ~f ~f, A ~f ~f, WW ~f ~f, ZZ ~f ~f, AA ~f ~f and
ZA ~f ~f for squarks. In Appendix E we calculate the
contributions to the oblique parameters from both fermions
(Tf, Sf) and scalars (Ts, Ss). We note that in the full
decoupling limit, μ4 → ∞ and yij → 0, we recover SM
values.
To get the total contribution of the new sector, we define

Tnew ¼ Tf þ Ts − TSM and Snew ¼ Sf þ Ss − SSM. The
values TSM ≈ 1.22 and SSM ≈ −0.08 were calculated to
account for the top sector alone. In general, we find that
Ts ≪ Tf and Sf ≈ Ss.

TABLE III. Possible event topologies that could arise at the
LHC with initial states involving a pair produced t0 or b0. f
denotes any fermion, ðf ¼ q; lÞ.
Initial Intermediate Final Initial Intermediate Final

t0t0 htht bbWbbbWb b0b0 hbhb bbbbbb
t0t0 htZt bbWbffWb b0b0 hbZb bbbffb
t0t0 htWb bbWbWb b0b0 hbWt bbWWb
t0t0 ZtZt ffWbffWb b0b0 ZbZb ffbffb
t0t0 ZtWb ffWbWb b0b0 ZbWt ffbWWb
t0t0 WbWb WbWb b0b0 WtWt WWbWWb

FIG. 6 (color online). Present status of heavy vectorlike top searches with 19.5 fb−1 of 8 TeV data with the CMS detector (figure taken
from [48]). A branching-fraction triangle is shown with expected (left) and observed 95% C.L. (right) on the mass. Every point in the
triangle corresponds to a specific set of branching-fraction values subject to the constraint that all three add up to 1.

TABLE II. Possible event topologies that could arise at the
LHC with initial states involving only one single t0 or b0.
f denotes any fermion, ðf ¼ q; lÞ.
Initial Intermediate Final Initial Intermediate Final

t0 ht bbWb b0 hb bbb
t0 Zt ffWb b0 Zb ffb
t0 Wb Wb b0 Wt WWb
t0t htt bbWbWb b0b hb bbbb
t0t Ztt ffWbWb b0b Zb ffbb
t0t Wbt WbWb b0b Wtb WWbb
t0bj htbj bbWbbj b0tj hbWbj bbbWbj
t0bj Ztbj ffWbbj b0tj ZbWbj ffbWbj
t0bj Wbbj Wbbj b0tj WtWbj WWbWbj
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The μ4 dependences of Snew and Tnew are shown in
Figs. 7 and 8, respectively, for the benchmark scenario
y34 ¼ 0.6 and y44 ¼ y43 ¼ 0 with the Yukawa values kept
fixed. As a sanity check, we see that for a large range of μ4,
the values of S and T remain very small.
The dependences of Snew and Tnew on the mixing

Yukawa couplings are shown in Figs. 9 and 10, respec-
tively, for the benchmark scenario y34 ≫ y44; y43 with μ4 ¼
900 GeV kept fixed and A ¼ Δm ¼ 800 GeV. As y34
increases from 0.5 to 1, Snew increases by a negligible

amount of the order of 10−4. However, Tnew increases by
∼0.25. For T ≳ 0.15, there is tension with the EWPM fit (as
can be seen in Fig. 11) and therefore the maximum allowed
value for y34 in this case is ∼0.8.
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FIG. 7 (color online). Snew versus μ4 for y34 ¼ 0.6 and
y44 ¼ y43 ¼ 0. Snew remains small as μ4 → ∞.
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FIG. 8 (color online). Tnew versus μ4 for y34 ¼ 0.6 and
y44 ¼ y43 ¼ 0. Tnew remains small as μ4 → ∞.
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FIG. 9 (color online). Snew versus y34 for the benchmark
scenario y34 ≫ y44; y43, μ4 ¼ 900 GeV, A ¼ Δm ¼ 800 GeV.
Snew remains small in this region. As y34 increases from 0.5 to 1,
Snew increases by a negligible amount of the order of 10−4. The
region y34 ≳ 0.8 to the right of the dashed line is disfavored by
EWPM due to the T parameter (see Fig. 10).

0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.05

0.10

0.15

0.20

0.25

y34

T
ne

w

FIG. 10 (color online). Tnew versus y34 for the benchmark
scenario y34 ≫ y44; y43, μ4 ¼ 900 GeV, A ¼ Δm ¼ 800 GeV.
As y34 increases from 0.5 to 1, Tnew increases from ∼0.05 to
∼0.25. The region y34 ≳ 0.8 to the right of the dashed line is
disfavored by EWPM as can be seen in Fig. 11.
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FIG. 11 (color online). We calculate Snew and Tnew for each of
the benchmark scenarios: y34 ≫ y43; y44; y43 ≫ y34; y44; and
y34 ¼ −y43 ≫ y44. Within each scenario μ4 ¼ 900 GeV,
A ¼ 600 GeV, and we vary Δm from 300 to 1500 GeV. Each
of these points satisfies current mass bounds (see Sec. IV C) and
gives a Higgs mass mh ¼ 125.5� .5 GeV while yielding new
quarks discoverable at the LHC. The points corresponding to very
low Δm and larger Yukawas lie farthest from the best fit, with the
agreement improving as Δm grows and the Yukawas decrease.
For many of these points the net effect from the new sector falls
within the 95% or 68% confidence limits on the electroweak
observables. The experimental best fit corresponds to the center
of the ellipses, at (0.00,0.02) [52]. The light (dark) grey ellipse
denotes the 95% (65%) C.L. on the EWobservables. The origin is
defined to be the standard model prediction with a 125 GeV
Higgs. In concert with the results of Sec. III B, precision
electroweak observables permit sufficiently large Yukawa mixing
to obtain a Higgs mass ∼125 GeV with soft terms below a TeV.
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To get a more general picture, we scanned over a wide
range of the parameter space from the new sector consistent
with the mass bounds from the LHC (see Sec. IV C). We
varied yij, μ4, and Δm but kept the A terms fixed at
800 GeV. The results are presented in Fig. 11. We see that
−0.1≲ Snew ≲ 0, while Tnew can be positive or negative.
The positive contributions of Tnew can be large enough to
be in tension with EWPD. Nevertheless, from Fig. 11 it is
clear that with vector masses μ4 ≳ 900 GeV a large set of
our parameter space of interest falls within the 95% and
68% confidence limits on the electroweak observables.
Furthermore, while taking μU=μQ ¼ 1 is a natural

simplification, in general this condition does not hold.
Indeed, if the vector masses are taken to be equal at some
high SUSY-breaking scale, then differences in the beta
functions will result in unequal vector masses at the weak
scale. We therefore probed the effect of varying this ratio
while keeping the sum of the masses constant. The ratio is
less constrained for smaller mixing Yukawas, with 2.3≳
μU=μQ ≳ 0.85 allowed by EWPM for y34 ¼ −y43 ¼ 0.1
and μQ þ μU ¼ 1800 GeV, while for large y34 ¼ −y43 we
find 1.2≳ μU=μQ ≳ 0.9. On the other hand, there are

scenarios in which the effects from a nonunity ratio value
counteract the effects from large mixing Yukawas. For
example, with μU=μQ ¼ 1.1 it was found that y34 ¼ −y43
can be as large as 0.56 and still fall within the 95%
confidence limits on EWPD, up from 0.43 for a ratio of 1.
Since EWPM give the most significant constraints on
the yij, we see by referring to Fig. 1 that soft masses
≲800 GeV are then the minimum required for the y34 ¼
−y43 case, rather than the ∼1000 GeV it requires when the
ratio is 1 (the yij needed to give the desired Higgs mass
have negligible dependence on the value of the ratio).
In Fig. 12 we plot the Snew; Tnew for ratios μU=μQ ¼
0.9; 1.0; 1.1, and Yukawa values y34 ¼ −y43 ranging from
0.01 to 0.56 in steps of 0.05.
We conclude that in concert with the results of Sec. III B,

precision electroweak observables permit sufficiently large
Yukawa mixing to obtain a Higgs mass ∼125 GeV with
soft parameters below a TeV while yielding new quarks
discoverable at the LHC.

V. CONCLUSIONS

In this paper we studied the effects of sizable mixing
Yukawa terms between the top sector and a vectorlike
quark generation. We computed the energy scale of the
Landau pole induced by the top Yukawa for various
scenarios. We also discussed the LHC phenomenology
and the consequences of including top mixing effects on
final state event topologies.
We found that sizable mixing Yukawa couplings (y34 and

y43) in the superpotential require an increase of the value of
the top Yukawa coupling by at most ∼6% to produce the
observed top mass. Since loop corrections to mh go as y4top,
mixing will increase the predicted value of the physical
Higgs mass, a point not previously emphasized in the
literature. This high sensitivity to the top Yukawa is in
contrast with the weaker logarithmic dependence on top
squark masses.
The mixing Yukawas necessary to achieve a given Higgs

mass are smaller when jy34j ∼ jy43j than when one of these
couplings dominates the other, and if one allows μU=μQ ≠
1 then the lowest soft masses (Δm ∼ 750 GeV) can be
accommodated for this case. However, under the restriction
μU=μQ ¼ 1, the lowest possible value of Δm consistent
with EWPM is Δm ∼ 800 GeV, which occurs when
y34 ∼ 0.8 and y43 ¼ y44 ¼ 0 (see Fig. 1).
Moreover, mixing can significantly raise the Higgs mass

while retaining perturbativity to much higher scales than
possible with only the self-coupling y44 of the fourth
generation (see Fig. 2). For A terms and soft masses
around 900 GeV, the top Yukawa Landau pole can be
pushed above the GUT scale. For μQ ¼ μU, soft masses can
be as low as 800 GeV and still generate a Higgs mass of
125 GeV, albeit in parts of parameter space with a Landau
pole at ∼1010 GeV. Smaller supersymmetry-breaking
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FIG. 12 (color online). We plot the Snew; Tnew for ratios
μU=μQ ¼ 0.9; 1.0; 1.1, and Yukawa values y34 ¼ −y43 ranging
from 0.01 to 0.56 in steps of 0.05. Each of these points satisfies
current mass bounds (see Sec. IV C) and gives a Higgs mass
mh ¼ 125.5� .5 GeV while yielding new quarks discoverable at
the LHC. The points corresponding to very low Δm and larger
Yukawas lie farthest from the best fit, with the agreement
improving as Δm grows and the Yukawas decrease. For many
of these points the net effect from the new sector falls within the
95% or 68% confidence limits on the electroweak observables.
The experimental best fit corresponds to the center of the ellipses,
at (0.00,0.02) [52]. The light (dark) grey ellipse denotes the 95%
(65%) C.L. on the EWobservables. The origin is defined to be the
Standard Model prediction with a 125 GeV Higgs. In concert
with the results of Sec. III B, precision electroweak observables
permit sufficiently large Yukawa mixing to obtain a Higgs mass
∼125 GeV with soft terms below a TeV.
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terms suffice if one sacrifices perturbativity at the uni-
fication scale by adding fields in a 5þ 5̄ (see Fig. 5).
We studied the constraints from electroweak precision

measurements, the measurements of VCKM
tb , Higgs produc-

tion, and the most recent mass bounds from direct searches
for vectorlike quarks at the LHC. We found that the oblique
corrections and LHC direct searches give the dominant
constraints. With vector masses μ4 ≳ 900 GeV and soft
scalar masses Δm≳ 800 GeV, the net effect from the new
sector falls within the 95% confidence limits on the
electroweak observables.
We conclude that there is a large parameter space

available for a supersymmetric model with a vectorlike
fourth generation that passes all tests from previous
experimental analyses with sufficiently large Yukawa
mixing to obtain a Higgs mass ∼125 GeV, while yielding
new quarks discoverable at the LHC. These models have a
soft SUSY-breaking scale that remains moderate and can
therefore address the little hierarchy problem.
Finally, we refer to the Appendixes for details about

the particle spectrum, the derivation of the mass matrices
in the model and the calculation of the oblique parameters.

In addition, we give the explicit form of all of the matrices
needed to write the interaction Lagrangian. These include
generalized CKM matrices, couplings matrices and pro-
jection matrices. We also list the beta functions used in
the study of Landau poles and perturbativity, as well as
loop functions used in the calculation of the oblique
parameters.
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APPENDIX A: THE PHYSICAL SPECTRUM AND
MASS MATRICES

After the SUð2ÞL ×Uð1ÞY gauge symmetry is broken,
Yukawa terms in the superpotential [Eq. (1)], soft terms, F
terms, and D terms lead to the following fermion mass
matrices,

Mu
f ¼

� 0 mu
f

mu†
f 0

�
; with mu

f ≡
0
B@

y33vu y34vu 0

y43vu y44vu μQ

0 μU 0

1
CA;

Md
f ≡

� 0 md
f

md†
f 0

�
; with md

f ≡
�
mbot 0

0 μQ

�
;

and the scalar squared mass matrices,

ðMu
s Þ2 ¼ ðMu

fÞ2 þ

0
BBBBBBBBBBB@

Yu3 0 0 −y33vuXu −y34vuXu 0

0 μ2Q þ Yu4 0 −y43vuXu −y44vuXu Bμ

0 0 μ2U þ Yū4 0 Bμ 0

−y33vuXu −y43vuXu 0 Yuc
3

0 0

−y34vuXu −y44vuXu Bμ 0 μ2U þ Yuc
4

0

0 Bμ 0 0 0 μ2Q þ Yūc
4

1
CCCCCCCCCCCA

;

ðMd
s Þ2 ¼ ðMd

fÞ2 þ

0
BBBBB@

Yd3 0 −mbotXd 0

0 μ2Q þ Yd4 0 Bμ

−mbotXd 0 Ydc
3

0

0 Bμ 0 μ2Q þ Yd̄c
4

1
CCCCCA
:

Here, vu ¼ v sin β, with v ≈ 174 GeV, and mbot ≈
4.2 GeV is the mass of the bottom quark. Xu ¼
Aþ μ cot β and Xd ¼ Aþ μ tan β. Along the diagonal,
Yq ≡ Δm2 þDa, where the D-term contribution is Da ¼
ðT3

a −Qa sin2 θwÞ cosð2βÞm2
Z for each quark field a, T3 is

the third component of weak isospin, Qa is the electric
charge, and θw is the weak mixing angle. We take all
parameters to be real. With the mass matrices defined as
above, the relevant mass Lagrangian (after EWSB) in the
gauge-eigenstate basis can be written as
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−Lm ¼ ðfuTL mu
ff

u
R þ fdTL md

ff
d
R þ H:c:Þ

þ ~fu†ðMu
sÞ2 ~fu þ ~fd†ðMd

s Þ2 ~fd ðA1Þ

where the basis is

fuL ¼ ðu3; u4; ū4ÞT
fuR ¼ ðuc3; uc4; ūc4ÞT
fdL ¼ ðd3; d4ÞT
fdR ¼ ðdc3; d̄c4ÞT
~fu ¼ ð ~u3; ~u4; ~̄u4; ~uc3; ~uc4; ~̄uc4ÞT
~fd ¼ ð ~d3; ~d4; ~dc3; ~̄dc4ÞT: ðA2Þ

The physical masses of the fermions are obtained by
bidiagonalizing the fermion mass matrices using the
singular value decomposition:

mu
D ¼ Vu†

L mu
fV

u
R

md
D ¼ Vd†

L md
fV

d
R

where Vu;d
L and Vu;d

R are unitary matrices and the mu;d
D

matrices are diagonal. The diagonal entries of mu
f (md

f)
correspond to the physical masses of the top (bottom) and
the new non-MSSM quarks t01;2 (b0). Similarly, the scalar
squared matrices are diagonalized by the unitary matrices
Wu;d as

ð ~Mu
DÞ2 ¼ Wu†ðMu

s Þ2Wu

ð ~Md
DÞ2 ¼ Wd†ðMd

s Þ2Wd;

where the ð ~Mu;d
D Þ2 matrices are diagonal. The positive

square roots of ð ~Mu
DÞ2 [and ð ~Md

DÞ2] correspond to the
physical masses of the tops squarks (sbottoms) and the new
non-MSSM squarks ~t1;2, ~t01;2;3;4 ( ~b1;2, ~b01;2). To obtain a
Lagrangian in the mass-eigenstate basis, we rotate the
gauge eigenstates by left-multiplying the vectors fu;d and
~fu;d in Eq. (A2) by the corresponding mixing matrices
Vu;d†
L;R and Wu;d†, respectively. We denote the mass-

eigenstate basis with a hat, f̂u;dL;R ¼ Vu;d†
L;R f

u;d
L;R and ~̂f

u;d ¼
Wu;d† ~fu;d. A typical particle spectrum is shown in Table IV
for μ4 ¼ 900 GeV.

APPENDIX B: THE INTERACTION
LAGRANGIAN

The rotation from gauge to mass eigenstates leads to
generalized CKM matrices between the third and fourth
generation, which we denote by Kab

α for quarks, and
~Kab
α for squarks, with a; b ¼ u; ū; d; d̄ and α ¼ L; R.

These matrices will be present in every interaction term.
Furthermore, they are not square matrices like in the

MSSM because there are more up-type quarks (squarks)
than down-type quarks (squarks). Their general form
is Kab

α ¼ Va†
α Dab

α Vb
α or Kab

α ¼ Va†
α Sabα Vb

α, and ~Kab
α ¼

W† ~Dab
α W or ~Kab

α ¼ W† ~Sabα W. The projection matrices,
Dab

α and ~Dab
α (Sabα and ~Sabα ) select the appropriate doublet

(singlet) field component of fa and ~fa, respectively, before
rotating to the mass basis. We note that, in general,
Kaa

α ¼ Kab
α Kab†

α , so we can construct all of the generalized
CKM matrices from all the possible products of Kab

α and
Kab†

α . It is therefore the nonunitarity and off-diagonal
entries of Kab

α that leads to FCNCs. Kab
α and ~Kab

α depend
on the flavor and chirality of the particles involved in the
interaction, and on the parameters of the model (e.g. μ4, yij)
which are present in the corresponding mixing matrices Va

α

and Wa.
In Tables V and VI, we give the form of all these

generalized CKM matrices and write down the correspond-
ing interaction term coupling the vector bosons Vμ ¼
Wμ; Zμ; Aμ to the quarks or squarks, in the mass basis.
ThematricesDab

α , ~Dab
α ,Sabα and ~Sabα are listed inAppendixC,

and the mixing matrices Va
α and Wa were calculated

numerically and depend on the parameters of the model.
As an example, let us write down in matrix form the term

in the Lagrangian corresponding to the charged current
interaction vertex Wþff. In terms of the gauge-eigenstate
basis vectors fu†L (a three-dimensional row vector in
generation space) and fd†L (a two-dimensional column
vector in generation space), the interaction term needs a
3 × 2 projection matrix, which we call Dud

L , to couple the

TABLE IV. A typical particle spectrum for the three different
benchmark scenarios: (1) y34 ¼ −y43 ¼ 0.8 and y44 ¼ 0;
(2) y34 ¼ 0.8 and y43; y44 ¼ 0; (3) y44 ¼ 0.8 and y34; y43 ¼ 0.
The scenario y43 ¼ 0.8 and y34; y44 ¼ 0 gives the same masses
as scenario (2) and we therefore omit it. We set
A ¼ Δm ¼ μ4 ¼ 900 GeV. As we can see, mixing does not
change drastically the mass spectrum.

Mass (GeV) Scenario 1 Scenario 2 Scenario 3

mt0
1

909 900 900
mt0

2
913 911 900

mb0 900 900 900
~m~t1 814 818 821
~m~t2 982 991 1000
~m~t0

1
1275 1271 1271

~m~t0
2

1276 1273 1272
~m~t0

3
1287 1275 1273

~m~t0
4

1300 1294 1274
~m ~b1

860 860 860
~m ~b2

940 940 940
~m ~b01

1271 1271 1271
~m ~b02

1274 1275 1274
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left-handed (LH) fields with T3 ¼ 1=2 (uc3 and u
c
4) in f

u†
L to

the LH fields with T3 ¼ −1=2 (d3 and d4) in fdL. This gives
a term ∝ Wþ

μ f
u†
L Dud

L σ̄μfdL. Similarly, in terms of the gauge-
eigenstate basis vectors fd†R (a two-dimensional row vector
in generation space) and fuR (a three-dimensional column
vector in generation space), the interaction term needs a
2 × 3 projection matrix, Dū d̄

R , to couple the right-handed
(RH) field with T3 ¼ 1=2 (d̄4) in fd†R to the RH field

with T3 ¼ −1=2 (ūc4) in fuR. This gives a new term ∝
Wþ

μ f
d†
R Dū d̄ †

R σ̄μfuR that is not in the MSSM which couples
RH fields to the W boson. After rotating to the mass-
eigenstate basis and including the couplings, we get

−LWþff ¼
gffiffiffi
2

p Wþ
μ f̂

u†
L Kud

L σ̄μf̂dL þ gffiffiffi
2

p Wþ
μ f̂

d†
R Kū d̄ †

R σ̄μf̂uR

ðB1Þ

from which the coupling matrix GW
ud ¼ gffiffi

2
p Kud

L and GW
ū d̄

¼
− gffiffi

2
p Kū d̄

R can be extracted. We give the explicit form of the

coupling matrices in Tables VII, VIII and IX.
Proceeding similarly to the above example, the inter-

action Lagrangian for gauge bosons, quarks and the Higgs
in the mass-eigenstate basis is

−Lf ¼ Wþ
μ ðf̂u†L GW

udσ̄
μf̂dL þ f̂d†R GW†

ū d̄
σ̄μf̂uRÞ þW−

μ ðf̂d†L GW†
ud σ̄

μf̂uL þ f̂u†R GW
ū d̄
σ̄μf̂dRÞ

þ Z0
μðf̂u†L GZ

uL σ̄
μf̂uL þ f̂d†L GZ

dL
σ̄μf̂dL þ f̂u†R GZ

uR σ̄
μf̂uR þ f̂d†R GZ

dR
σ̄μf̂dRÞ

þ Aμðf̂u†L GA
uL σ̄

μf̂uL þ f̂d†L GA
dL
σ̄μf̂dL þ f̂u†R GA

uR σ̄
μf̂uR þ f̂d†R GA

dR
σ̄μf̂dRÞ

þ ðhof̂uTL Yuūf̂uR þ hof̂
dT
L Ydd̄f̂dR þ H:c:Þ ðB2Þ

where Yuū ¼ Vu†
L yuūVu

R and Ydd̄ ¼ Vd†
L ydd̄Vd

R, with yab defined as in Appendix C, are the matrices coupling the scalar
Higgs to the quarks. Similarly, the interaction Lagrangian for gauge bosons and squarks in the mass-eigenstate basis is

−L ~f ¼ Wþ
μ

�
~̂f
u† ~GW

ud∂
↔μ

~̂f
d þ ~̂f

d† ~GW†
ū d̄

∂↔μ
~̂f
u
�
þW−

μ

�
~̂f
d† ~GW†

ud ∂↔μ
~̂f
u þ ~̂f

u† ~GW
ū d̄∂

↔μ
~̂f
d
�

þ Z0
μ

�
~̂f
u† ~GZ

u ∂
↔μ

~̂f
u þ ~̂f

d† ~GZ
d ∂
↔μ

~̂f
d
�
þ Aμ

�
~̂f
u† ~GA

u ∂
↔μ

~̂f
u þ ~̂f

d† ~GA
d ∂
↔μ

~̂f
d
�

þWþ
μ W−μ

�
~̂f
u† ~GWW

u
~̂f
u þ ~̂f

d† ~GWW
d

~̂f
d
�
þ Z0

μZ0μ
�
~̂f
u† ~GZZ

u
~̂f
u þ ~̂f

d† ~GZZ
d

~̂f
d
�

þ Z0
μAμ

�
~̂f
u† ~GZA

u
~̂f
u þ ~̂f

d† ~GZA
d

~̂f
d
�
þ AμAμ

�
~̂f
u† ~GAA

u
~̂f
u þ ~̂f

d† ~GAA
d

~̂f
d
�
: ðB3Þ

TABLE VI. We give the form of all the generalized CKM
matrices ~Kab

α and their corresponding triple and quartic inter-
action terms coupling the vector bosons Vμ ¼ Wμ; Zμ; Aμ to the

squarks in the mass basis [see Eq. (B3)]. Here, ~̂f
a
are the squark

vectors in Eq. (A2), and a; b ¼ u; ū; d; d̄ and α ¼ L; R. The
projection matrices ~Dab

α and ~Sabα are listed in Appendix C.
The mixing matricesWa were calculated numerically and depend
on the parameters of the model.

Vμ
~̂f
a†
~Kab
α ∂↔μ

~̂f
b VμVμ ~̂f

a†
~Kab
α
~̂f
b ~Kab

α

Wþ
μ
~̂f
u†
~Kud
L ∂↔μ

~̂f
d Wþ

μ Wμþ ~̂f
u†
~Kud
L
~̂f
d Wu† ~Dud

L Wd

Wþ
μ
~̂f
d†
~Kū d̄ †
R ∂↔μ

~̂f
u Wþ

μ Wμþ ~̂f
d†
~Kū d̄ †
R

~̂f
u Wu† ~Dū d̄

R Wd

Z0
μ
~̂f
u†
~Kuu
L ∂↔μ

~̂f
u Z0

μZμ0 ~̂f
u†
~Kuu
L
~̂f
u Wu† ~Duu

L Wu

Z0
μ
~̂f
u†
~Kū ū
L ∂↔μ

~̂f
u Z0

μZμ0 ~̂f
u†
~Kū ū
L

~̂f
u Wu† ~Sū ūL Wu

Z0
μ
~̂f
u†
~Kū ū
R ∂↔μ

~̂f
u Z0

μZμ0 ~̂f
u†
~Kū ū
R

~̂f
u Wu† ~Dū ū

R Wu

Z0
μ
~̂f
u†
~Kuu
R ∂↔μ

~̂f
u Z0

μZμ0 ~̂f
u†
~Kuu
R
~̂f
u Wu† ~SuuR Wu

Z0
μ
~̂f
d†
~Kdd
L ∂↔μ

~̂f
d Z0

μZμ0 ~̂f
d†
~Kdd
L
~̂f
d Wd† ~Ddd

L Wd

Z0
μ
~̂f
d†
~Kd̄ d̄
R ∂↔μ

~̂f
d Z0

μZμ0 ~̂f
d†
~Kd̄ d̄
R

~̂f
d Wd† ~Dd̄ d̄

R Wd

Z0
μ
~̂f
d†
~Kdd
R ∂↔μ

~̂f
d Z0

μZμ0 ~̂f
d†
~Kdd
R
~̂f
d Wd† ~SddR Wd

TABLE V. We give the form of all the generalized CKM
matrices Kab

α and their corresponding triple interaction term
coupling the vector bosons Vμ ¼ Wμ; Zμ; Aμ to the quarks in

the mass basis [see Eq. (B2)]. Here, f̂aα are the quark vectors in
Eq. (A2), and a; b ¼ u; ū; d; d̄ and α ¼ L;R. The projection
matrices Dab

α and Sabα are listed in Appendix C. The mixing
matrices Va

α were calculated numerically and depend on the
parameters of the model.

Vμf̂
a†
α Kab

α σ̄μf̂bα Kab
α

Wþ
μ f̂

u†
L Kud

L σ̄μf̂dL Vu†
L Dud

L Vd
L

Wþ
μ f̂

d†
R Kū d̄ †

R σ̄μf̂uR Vu†
R Dū d̄

R Vd
R

Z0
μf̂

u†
L Kuu

L σ̄μf̂uL Vu†
L Duu

L Vu
L

Z0
μf̂

u†
L Kū ū

L σ̄μf̂uL Vu†
L Sū ūL Vu

L

Z0
μf̂

u†
R Kū ū

R σ̄μf̂uR Vu†
R Dū ū

R Vu
R

Z0
μf̂

u†
R Kuu

R σ̄μf̂uR Vu†
R SuuR Vu

R

Z0
μf̂

d†
L Kdd

L σ̄μf̂dL Vd†
L Ddd

L Vd
L

Z0
μf̂

d†
R Kd̄ d̄

R σ̄μf̂dR Vd†
R Dd̄ d̄

R Vd
R

Z0
μf̂

d†
R Kdd

R σ̄μf̂dR Vd†
R SddR Vd

R
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APPENDIX C: PROJECTION MATRICES

Below, we write down explicitly all of the projection
matrices Dab

α , Sabα , ~Dab
α and ~Sabα used in the construction of

the generalized CKMmatrices (see Appendix B). It follows

that only Dud
L and Dū d̄

R (and ~Dud
L and ~Dū d̄

R ) are independent,
since all of the other matrices can be obtained from their
products. For example, Dud

L ðDud
L Þ† ¼ Duu

L , ðSuuL Þ†SuuL ¼
Sū ūL . It also follows that Duu

L þ Sū ūL ¼ 13×3. For complete-
ness, we also include the matrices yab ⊂ Yab present in the
interaction term coupling the Higgs scalar particle to all
third and fourth generation quarks (see (B2).

1. Quark sector

Dud
L ¼

0
B@

1 0

0 1

0 0

1
CA: Couples

�
T3 ¼

−1
2

�
u†3; u†4 ∈ fu†L to

�
T3 ¼

1

2

�
d3; d4 ∈ fdL:

Dū d̄
R ¼

0
B@

0 0

0 0

0 1

1
CA: Couples

�
T3 ¼

−1
2

�
d̄c†4 ∈ fd†R to

�
T3 ¼

1

2

�
ūc4 ∈ fuR:

TABLE VIII. The coupling matrices at the triple vertex
between quarks and gauge bosons. We define gZðT3;QÞ ¼

g
cos θW

ðT3 −Q sin2 θWÞ, gAQ ¼ Qe.

Coupling matrix Explicit form

~GW
ud

gffiffi
2

p ~Kud
L

~GZ
u gZð1

2
;2
3
Þ
~Kuu
L þ gZð0;2

3
Þ
~Kū ū
L þ gZð0;−2

3
Þ
~Kuu
R þ gZð−1

2
;−2

3
Þ
~Kū ū
R

~GA
u gA2

3

~Kuu
L þ gA2

3

~Kū ū
L þ gA−2

3

~Kuu
R þ gA−2

3

~Kū ū
R

~GW
ū d̄ − gffiffi

2
p ~Kū d̄

R

~GZ
d gZð−1

2
;−1

3
Þ
~Kdd
L þ gZð0;1

3
Þ
~Kdd
R þ gZð1

2
;1
3
Þ
~Kd̄ d̄
R

~GA
d gA−1

3

~Kdd
L þ gA1

3

~Kdd
R þ gA1

3

~Kd̄ d̄
R

TABLE VII. The coupling matrices at the triple vertex
between squarks and gauge bosons. We define gZðT3;QÞ ¼

g
cos θW

ðT3 −Q sin2 θWÞ, gAQ ¼ Qe.

Coupling matrix Explicit form

GW
ud

gffiffi
2

p Kud
L

GZ
uL gZð1

2
;2
3
ÞK

uu
L þ gZð0;2

3
ÞK

ū ū
L

GZ
dL

gZð−1
2
;−1

3
ÞK

dd
L

GA
uL gA2

3

½Kuu
L þ Kū ū

L �
GA

dL
gA−1

3

Kdd
L

GW
ū d̄ − gffiffi

2
p Kū d̄

R

GZ
uR gZð0;−2

3
ÞK

uu
R þ gZð−1

2
;−2

3
ÞK

ū ū
R

GZ
dR gZð0;1

3
ÞK

dd
R þ gZð1

2
;1
3
ÞK

d̄ d̄
R

GA
uR gA2

3

½Kuu
R þ Kū ū

R �
GA

dR
gA−1

3

Kdd
R

TABLE IX. The coupling matrices at the quartic vertex between squarks and gauge bosons. We define
gZðT3;QÞ ¼ g

cos θW
ðT3 −Q sin2 θWÞ, gAQ ¼ Qe.

Coupling Matrix Explicit Form

~GWW
u

g2

2
½ ~Kuu

L þ ~Kū ū
R �

~GWW
d

g2

2
½ ~Kdd

L þ ~Kd̄ d̄
R �

~GZZ
u ðgZð1

2
;2
3
ÞÞ2 ~Kuu

L þ ðgZð0;2
3
ÞÞ2 ~Kū ū

L þ ðgZð0;−2
3
ÞÞ2 ~Kuu

R þ ðgZð−1
2
;−2

3
ÞÞ2 ~Kū ū

R

~GZZ
d ðgZð−1

2
;−1

3
ÞÞ2 ~Kdd

L þ ðgZð0;1
3
ÞÞ2 ~Kdd

R þ ðgZð1
2
;1
3
ÞÞ2 ~Kd̄ d̄

R

~GZA
u 2½gA2

3

gZð1
2
;2
3
Þ
~Kuu
L þ gA−2

3

gZð0;2
3
Þ
~Kū ū
L þ gA2

3

gZð0;−2
3
Þ
~Kuu
R þ gA−2

3

gZð−1
2
;−2

3
Þ
~Kū ū
R �

~GZA
d 2½gA−1

3

gZð−1
2
;−1

3
Þ
~Kdd
L þ gA−1

3

gZð0;1
3
Þ
~Kdd
R þ gA1

3

gZð1
2
;1
3
Þ
~Kd̄ d̄
R �

~GAA
u 2ðgA2

3

Þ2½ ~Kuu
L þ ~Kū ū

L þ ~Kuu
R þ ~Kū ū

R �
~GAA
d 2ðgA1

3

Þ2½ ~Kdd
L þ ~Kdd

R þ ~Kd̄ d̄
R �
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From the two matrices above, we can construct
(i) Duu

L ¼ Diagð1; 1; 0Þ. Couples (T3 ¼ −1
2
) u†3; u

†
4 ∈ fu†L to (T3 ¼ 1

2
) u3; u4 ∈ fuL.

(ii) Sū ūL ¼ Diagð0; 0; 1Þ. Couples (T3 ¼ 0) ūc4 ∈ fu†L to (T3 ¼ 0) ū4 ∈ fuL.
(iii) SuuR ¼ Diagð1; 1; 0Þ. Couples (T3 ¼ 0) uc†3 ; uc†4 ∈ fu†R to (T3 ¼ 0) uc3; u

c
4 ∈ fuR.

(iv) Dū ū
R ¼ Diagð0; 0; 1Þ. Couples (T3 ¼ 1

2
) ūc†4 ∈ fu†R to (T3 ¼ −1

2
) ūc4 ∈ fuR.

(v) Ddd
L ¼ Diagð1; 1Þ. Couples (T3 ¼ 1

2
) d†3; d

†
4 ∈ fd†L to (T3 ¼ −1

2
) d3; d4 ∈ fdL.

(vi) SddR ¼ Diagð1; 0Þ. Couples (T3 ¼ 0) dc†3 ∈ fd†R to (T3 ¼ 0) dc3 ∈ fdR.
(vii) Dd̄ d̄

R ¼ Diagð0; 1Þ. Couples (T3 ¼ −1
2
) d̄c†4 ∈ fu†R to (T3 ¼ 1

2
) d̄c4 ∈ fdR.

2. Squark sector

~Dud
L ¼

0
BBBBBBBBB@

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCCCCCCCA
: Couples

�
T3 ¼

−1
2

�
~u�3; ~u�4 ∈ ~fu† to

�
T3 ¼

1

2

�
~d3; ~d4 ∈ ~fd:

~Dū d̄
R ¼

0
BBBBBBBBB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1
CCCCCCCCCA
: Couples

�
T3 ¼

−1
2

�
~̄d
c�
4 ∈ ~fd† to

�
T3 ¼

1

2

�
~̄uc4 ∈ ~fu:

From the two matrices above, we can construct
(i) ~Duu

L ¼ Diagð1; 1; 0; 0; 0; 0Þ. Couples (T3 ¼ −1
2
) ~u�3; ~u

�
4 ∈ ~fu† to (T3 ¼ 1

2
) u3; u4 ∈ ~fu.

(ii) ~Sū ūL ¼ Diagð0; 0; 1; 0; 0; 0Þ. Couples (T3 ¼ 0) ~̄uc4 ∈ ~fu† to (T3 ¼ 0) ū4 ∈ ~fu.
(iii) ~SuuR ¼ Diagð0; 0; 0; 1; 1; 0Þ. Couples (T3 ¼ 0) ~uc�3 ; ~uc�4 ∈ ~fu† to (T3 ¼ 0) ~uc3; ~u

c
4 ∈ ~fu.

(iv) ~Dū ū
R ¼ Diagð0; 0; 0; 0; 0; 1Þ. Couples (T3 ¼ 1

2
) ~̄uc�4 ∈ ~fu† to (T3 ¼ −1

2
) ~̄uc4 ∈ ~fu.

(v) ~Ddd
L ¼ Diagð1; 1; 0; 0Þ. Couples (T3 ¼ 1

2
) ~d�3; ~d

�
4 ∈ ~fd† to (T3 ¼ −1

2
) ~d3; ~d4 ∈ ~fd.

(vi) ~SddR ¼ Diagð0; 0; 1; 0Þ. Couples (T3 ¼ 0) ~dc�3 ∈ ~fd† to (T3 ¼ 0) ~dc3 ∈ ~fd.

(vii) ~Dd̄ d̄
R ¼ Diagð0; 0; 0; 1Þ. Couples (T3 ¼ −1

2
) ~̄d

c�
4 ∈ ~fu† to (T3 ¼ 1

2
) ~̄d

c
4 ∈ ~fd.

3. Higgs sector

yuū ¼
0
@ y33 y34 0

y43 y44 0

0 0 0

1
A and ydd̄ ¼

�
ybot 0

0 0

�
:

APPENDIX D: BETA FUNCTIONS

1. Gauge Couplings

The beta function for the gauge couplings are

16π2
dgi
dt

¼ −big3i :

Here, t ¼ lnQ where Q is the renormalization scale. The
beta function coefficients for an arbitrary number of SU(5)
multiplets n5 and n10 are given by

b1 ¼ 3

5
ð11Þ þ n10b10 þ n5b5

b2 ¼ 1þ n10b10 þ n5b5

b3 ¼ −3þ n10b10 þ n5b5

with b10 ¼ 3, b5 ¼ 1 denoting group theoretic coefficients.

2. Top Yukawa coupling

Using the general results in [53], we obtain the following
top Yukawa two-loop beta function:
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βYu
ðtÞ ¼ 1

16π2

�
ð3Tr½YuðtÞ:Y†

uðtÞ�YuðtÞ þ 3YuðtÞY†
uðtÞYuðtÞ

þ YuðtÞY†
dðtÞYdðtÞÞ −

�
16

3
g3ðtÞ2 þ 3g2ðtÞ2 þ

13

15
g1ðtÞ2

�
YuðtÞ

�
:

Here, Yu is the up-type Yukawa coupling matrix containing y33, y34, y43 and y44.

APPENDIX E: CALCULATION OF OBLIQUE PARAMETERS

1. Fermion contribution

In [54], the authors derived a general formula for computing the values of S and T for any model with vectorlike quarks,
where the number of up and down quarks are arbitrary and not necessarily equal. Adapting these general results to our
model, we get

Tf ¼ 3

16πsin2θWcos2θW

�X3
α¼1

X2
i¼2

ð½ðKud
L Þ2αi þ ðKū d̄

R Þ2αi�θþðyα; yiÞ þ 2½ðKud
L ÞαiðKū d̄

R Þαi�θ−ðyα; yiÞÞ

−
X
β<α

ð½ðKuu
L Þ2αβ þ ðKū ū

R Þ2αβ�θþðyα; yβÞ þ 2½ðKuu
L ÞαβðKū ū

R Þαβ�θ−ðyα; yβÞÞ

−
X
j<i

ð½ðKdd
L Þ2ij þ ðKd̄ d̄

R Þ2ij�θþðyi; yjÞ þ 2½ðKdd
L ÞijðKd̄ d̄

R Þij�θ−ðyi; yjÞÞ
�
;

Sf ¼ 3

2π

�X3
α¼1

X2
i¼2

ð½Kud
L Þ2αi þ ðKū d̄

R Þ2αi�ψþðyα; yiÞ þ 2½ðKud
L ÞαiðKū d̄

R Þαi�ψ−ðyα; yiÞÞ

−
X
β<α

ð½ðKuu
L Þ2αβ þ ðKū ū

R Þ2αβ�χþðyα; yβÞ þ 2½ðKuu
L ÞαβðKū ū

R Þαβ�χ−ðyα; yβÞÞ

−
X
j<i

ð½ðKdd
L Þ2ij þ ðKd̄ d̄

R Þ2ij�χþðyi; yjÞ þ 2½ðKdd
L ÞijðKd̄ d̄

R Þij�χ−ðyi; yjÞÞ
�

where the K’s are the generalized CKM matrices for fermions, derived in Appendix B. The greek indices sum over the up-
type quark generations (i.e. from 1 to 3) and the latin indices sum over the number of down-type quark generations (i.e. from
1 to 2). The functions θ�ðy1; y2Þ, ψ�ðy1; y2Þ and χ�ðy1; y2Þ are defined in Appendix F, and yi ≡m2

i =m
2
Z.

2. Scalar contribution

The scalar partners also contribute to the oblique corrections. For this calculation, we use the notation and conventions of
[55], where the oblique parameters S and T are defined as

Ss ¼
4sin2θWcos2θW

αm2
Z

�
ΠZZðm2

ZÞ − ΠZZð0Þ −
cos2θW

cos θW sin θW
ΠZγðm2

ZÞ − Πγγðm2
ZÞ
�

Ts ¼
1

α

�
ΠWWð0Þ
m2

W
−
ΠZZð0Þ
m2

Z

�

where the Π’s are the electroweak vector boson self-energies. The contributions to the self-energies of the vector bosons
from the additional scalars ~t01;2;3;4 and ~b01;2 are [56]
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ΔΠγγ ¼
3

16π2
g2sin2θW

��
2

3

�
2 X6

i¼3

Fð~t0i; ~t0iÞ þ
�
1

3

�
2X4

i¼3

Fð ~b0i; ~b0iÞ
�

ΔΠZγ ¼
3

16π2
g sin θW

�
2

3

X6
i¼3

ð ~GZ
uÞiiFð~t0i; ~t0iÞ þ

1

3

X4
i¼3

ð ~GZ
dÞiiFð ~b0i; ~b0iÞ

�

ΔΠZZ ¼ 3

16π2

�X6
i;j¼3

jð ~GZ
uÞijj2Fð~t0i; ~t0jÞ þ

X4
i;j¼3

jð ~GZ
dÞijj2Fð ~b0i; ~b0jÞ

�

ΔΠWW ¼ 3

16π2
X6
i¼3

X4
j¼3

jð ~GW
udÞijj2Fð ~b0i; ~t0jÞ

where the ~G’s are the coupling matrices for scalars derived in Appendix B and the function Fðx; yÞ is given in Appendix F.

APPENDIX F: USEFUL FUNCTIONS

The expressions for θ�ðyi; yjÞ, ψ�ðyi; yjÞ and χ�ðyi; yjÞ, used in Appendix E, are [57]

θþðyi; yjÞ ¼ yi þ yj −
2yiyj
yi − yj

ln
yi
yj

θ−ðyi; yjÞ ¼ 2
ffiffiffiffiffiffiffiffi
yiyj

p �
yi þ yj
yi − yj

ln
yi
yj

− 2

�

ψþðyi; yjÞ ¼
1

3
−
1

9
ln
yi
yj

ψ−ðyi; yjÞ ¼ −
yi þ yj
6

ffiffiffiffiffiffiffiffiyiyj
p

χþðyi; yjÞ ¼
5ðy2i þ y2jÞ − 22yiyj

9ðyi þ yjÞ2
þ 3y1y2ðyi þ yjÞ − y3i − y3j

3ðyi − yjÞ3
ln
yi
yj

χ−ðyi; yjÞ ¼ − ffiffiffiffiffiffiffiffi
yiyj

p �
yi þ yj
6yiyj

−
yi þ yj

ðyi − yjÞ2
þ 2yiyj
ðyi þ yjÞ3

ln
yi
yj

�
:

Here, yi ¼ m2
i =m

2
Z, yi ¼ m2

i =m
2
Z and the limit ϵ → 0 of dimensional regularization is assumed. The expression for Fðx; yÞ

in the self-energy functions in Appendix E is [56]

Fðx; yÞ ¼ Hðx; yÞ þ ðxþ y − p2ÞBðx; yÞ
Hðx; yÞ ¼ ð2p2 − x − y − ðx − yÞ2=p2ÞBðx; yÞ=3

þ ðxlnxþm2
ylny − p2=3þ ðxlnx − x − ylnyþ yÞðy − xÞ=ð2p2ÞÞ2=3

Bðx; yÞ ¼ −
Z

1

0

dtlnðtxþ ð1 − tÞy − tð1 − tÞp2 − iϵÞ;

where now x ¼ m2
x, y ¼ m2

y and lnX ¼ lnðX=m2
ZÞ.
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