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A small Higgs mass parameter m2
hu

can be insensitive to various trial heavy stop masses, if a universal

soft squared mass is assumed for the chiral superpartners and the Higgs boson at the grand unification
(GUT) scale, and a focus point (FP) of m2

hu
appears around the stop mass scale. The challenges in the FP

scenario are (1) a too heavy stop mass (≈5 TeV) needed for the 126 GeV Higgs mass and (2) the too high
gluino mass bound (≳1.4 TeV). For a successful FP scenario, we consider (1) a superheavy right-hand
(RH) neutrino and (2) the first and second generations of hierarchically heavier chiral superpartners. The
RH neutrino can move a FP in the higher energy direction in the space of ðQ;m2

hu
ðQÞÞ, whereQ denotes the

renormalization scale. On the other hand, the hierarchically heavier chiral superpartners can lift up a FP in
that space through two-loop gauge interactions. Precise focusing of m2

hu
ðQÞ is achieved with the RH

neutrino mass of ∼1014 GeV together with an order one (0.9–1.2) Yukawa coupling to the Higgs boson,
and the hierarchically heavy masses of 15–20 TeV for the heavier generations of superpartners, when the
Uð1ÞR breaking soft parameters m1=2 and A0 are set to be 1 TeV at the GUT scale. Those values can
naturally explain the small neutrino mass through the seesaw mechanism, and suppress the flavor violating
processes in supersymmetric models.
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I. INTRODUCTION

The naturalness problem of the electroweak scale (EW)
and the Higgs boson mass has been the most important
issue for the last four decades in the theoretical particle
physics community. It has provided a strong motivation
to study various theories beyond the standard model
(SM). Particularly, the minimal supersymmetric SM
(MSSM) has been regarded as the most promising
candidate among new physics models beyond the SM.
However, any evidence of new physics beyond the SM
including supersymmetry (SUSY) has not been observed
yet at the large hadron collider (LHC), and experimental
bounds on SUSY particles are increasing gradually.
Nonetheless, a better new idea that can replace the
present status of SUSY has not seemed to appear yet.
Accordingly, it would be worthwhile to explore a break-
through within the SUSY framework.
Concerning the radiative Higgs mass and EW sym-

metry breaking, the top quark Yukawa coupling (yt) of
order unity plays the key role in the MSSM: through
the sizable top quark Yukawa coupling, the top quark
and stop make a dominant contribution to the renorm-
alization of the soft mass parameter of the Higgs boson
(m2

hu
) as well as the radiative physical Higgs mass

squared (m2
H) [1]:

Δm2
H ≈

3y4t
4π2

sin4βv2h log

�
~m2
t

m2
t

�
þ � � � ; ð1Þ

Δm2
hu
≈
3y2t
8π2

~m2
t log

�
~m2
t

Λ2

�
þ � � � ; ð2Þ

where mt ( ~mt) denotes the top quark (stop) mass,
and vh is the vacuum expectation value (VEV) of
the Higgs boson, vh ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhui2 þ hhdi2

p
≈ 174 GeV with

tan β≡ hhui=hhdi. Λ means a cutoff scale. A messenger
scale of SUSY breaking is usually adopted for it. Here,
we set the left-hand (LH) and right-hand (RH) stop
squared masses, m2

q3 and m2
uc
3
, equal to ~m2

t for simplicity.

Note that Δm2
hu

can be a large negative value for a large
stop mass and a high messenger scale.
As seen in Eq. (1), a large stop mass can raise the

radiative Higgs mass. According to the recent analysis
based on three-loop calculations [2], a 3–4 or 5 TeV stop
mass is necessary for explaining the recently observed
126 GeV Higgs mass [3] without a stop mixing effect.
From Eq. (2), however, such a heavy stop mass is expected
to significantly enhance the renormalization effect on m2

hu
,

and eventually it gives rise to a fine-tuning problem
associated with naturalness of the EW scale. It is because
a negative m2

hu
triggers the EW symmetry breaking, and

eventually determines the Z boson mass in the MSSM, as
seen in the extremum condition of the MSSM Higgs
potential [1]:
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1

2
m2

Z ¼ m2
hd
−m2

hu
tan2β

tan2β − 1
− jμj2; ð3Þ

where m2
Z denotes the Z boson mass and μ is the “μ-term”

coefficient in the MSSM superpotential. If −m2
hu

is exces-
sively large, it should be compensated with jμj2. Thus, a
fine-tuning of 10−3–10−4 does not seem to be avoidable in
the MSSM, unless the messenger scale Λ is low enough.
Due to this reason, a relatively smaller stop mass
(≪ 1 TeV) has been assumed for naturalness of the EW
scale, and various extensions of the Higgs sector have been
proposed for explaining the observed 126 GeV Higgs mass
[4–6]. Unfortunately, however, the stop mass bound has
already reached 700 GeV [7], which starts threatening the
traditional status of SUSY as a solution to the naturalness
problem of the EW phase transition. Thus, in this paper, we
intend to discuss the naturalness problem in case the stop is
quite heavy (∼5 TeV).
In fact, the renormalization ofm2

hu
, Eq. (2), is necessarily

affected by ultraviolet (UV) physics. Thus, for a more
complete expression of it, the full renormalization group
(RG) equations should be studied for a given UV model,
even though Eq. (2) would not be very sensitive to an UV
physics in SUSY models. Unlike the expectation based on
low energy physics, however, it was claimed that the Z
boson and Higgs masses at low energy are quite insensitive
to the stop mass in the “focus point (FP) scenario” [8–10]:
under the simple initial condition for the stops and Higgs
squared masses, m2

q3¼m2
uc
3
¼m2

hu
¼���≡m2

0 at the grand

unification (GUT) scale, the RG solution of m2
hu

turns out
to be almost independent of m2

0 at the EW scale, unlike
those of m2

q3 and m2
uc
3
. It is because the coefficient of m2

0 in

the RG solution ofm2
hu
at the EW scale turns out to be quite

small. Accordingly, m2
hu

can remain small enough even for
relatively large trial m2

0s (∼ multi-TeV) unlike other super-
particles in the chiral sector. Interestingly enough, more-
over, the FP scenario favors the simplest version of SUSY
model with the minimal field contents and the universal
initial condition for the soft squared masses at the GUT
scale: many careless extensions of the MSSM at low energy
would destroy the FP mechanism.
The insensitivity ofm2

hu
tom2

0 or stop masses implies that
Eq. (2) is effectively canceled by other ingredients. One
might expect that a fine-tuning for smallness of m2

hu
would

be hidden somewhere in this scenario. This guess is
actually true. As will be seen later, the smallness of the
coefficient of m2

0 in m2
hu

originates from the fact that

e
−3
4π2

R
t0
tW

dty2t ≈
1

3
: ð4Þ

Here, t parametrizes the renormalization scale Q,
t − t0 ¼ log Q

MG
. tW and t0 correspond to the EW and

GUT scale MG (≈2 × 1016 GeV), respectively. Actually,
Eq. (4) is an accidental relation in some sense. Just the
quark and lepton masses, the low energy values of the
SM gauge couplings, and the MSSM field contents
completely determine ytðtÞ, and the Z boson mass scale
and the gauge coupling unification scales provide
exactly the needed energy interval. In the sense that
Eq. (4) is not artificially designed, but nature might
permit it, we will call it “natural tuning.” Of course,
there might exist a deep reason for it. In this paper,
however, we will not attempt to explain the origin, but
take a rather pragmatic attitude: we will just accept,
utilize, and improve it.
However, the recently observed 126 GeV Higgs mass is

challenging also in the FP scenario. Since the FP scenario
works well with the minimal field contents and a sup-
pressed stop mixing effect, the Higgs mass can be raised
only through the radiative correction by the quite heavy
stop, ~mt ∼ 3–4 or 5 TeV [2]. To get a heavier stop mass, we
need a largerm2

0. In order form
2
hu
to remain insensitive even

to much larger m2
0s [> ð5 TeVÞ2], a more precise focusing

is quite essential. That is to say, the coefficient of m2
0 in

the m2
hu
’s RG solution should be much closer to zero.

Moreover, m2
hu

does not follow the original FP scenario
below the stop mass scale, because the stops are decoupled
there. Thus, for a predictive EW scale, the FP should appear
around the stop mass scale rather than the conventional EW
or Z boson mass scale. The present heavy gluino mass
bound at the LHC, M3 ≳ 1.4 TeV [11], also spoils the
success of the FP scenario [12–14]. The heavy gluino leads
to a too large negative m2

hu
at the EW scale through RG

evolution. Such an RG effect by a heavy gluino mass
should be compensated properly for a small enough Z
boson mass.
In this paper, we will attempt just to trim the FP

scenario such that the FP is made located around the stop
mass scale and the heavy gluino effect becomes mild. In
order to accomplish that goal, we will consider a super-
heavy RH neutrino [15,16], and the two-loop gauge
interactions by the hierarchically heavier first and second
generations of chiral superpartners (sfermions) [17,18].
Hierarchically heavy masses for the first two generations
of sfermions (≳15 TeV) could also sufficiently suppress
unwanted SUSY flavor and SUSY charge parity (CP)
violating processes as in the “effective SUSY model”
[19]. Once the location of the FP is successfully modified
to a desirable position, even a quite heavy stop mass
could still be naturally compatible with the Z boson mass
scale, and the 126 GeV Higgs mass can be supported
dominantly by the radiative correction from such a
heavy stop.
This paper is organized as follows: we will review the

FP scenario and discuss the problems associated with the
recent experimental results in Sec. II. In Sec. III, we will
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explore the ways to move the location of the FP into a
desirable position in the space of ðQ;m2

hu
ðQÞÞ. In Sec. IV,

we will propose a simple model and discuss phenom-
enological constraints. Section V will be a conclusion.
For convenience, in our discussion in the main text, we
will leave the details of the full RG equations and
derivation of some semianalytic solutions to them in
the Appendix.

II. FOCUS POINT SCENARIO

Based on our semianalytic solutions to the RG equations,
let us discuss first the RG behaviors of soft parameters
associated with the Higgs boson and the third generation of
sfermions. When tan β is small enough, the top quark
Yukawa coupling, yt, dominantly drives the RG running of
fm2

hu
; m2

uc
3
; m2

q3 ; Atg, while the bottom quark and tau lep-

ton’s Yukawa couplings, yb and yτ, are safely ignored.
Here, At denotes the “A-term” coefficient corresponding
to the top quark Yukawa coupling. Thus, for small tan β,
the one-loop RG equations for fm2

hu
; m2

uc
3
; m2

q3 ; Atg are

written as

16π2
d
dt

m2
hu

¼ 6y2t ðXt þ A2
t Þ − 6g22M

2
2 −

6

5
g21M

2
1; ð5Þ

16π2
d
dt

m2
uc
3
¼ 4y2t ðXt þ A2

t Þ −
32

3
g23M

2
3 −

32

15
g21M

2
1; ð6Þ

16π2
d
dt

m2
q3 ¼ 2y2t ðXt þ A2

t Þ −
32

3
g23M

2
3

− 6g22M
2
2 −

2

15
g21M

2
1; ð7Þ

8π2
d
dt

At ¼ 6y2t At −
16

3
g23M3 − 3g22M2 −

13

15
g21M1; ð8Þ

where Xt ≡m2
hu
þm2

uc
3
þm2

q3 . t parametrizes the renorm-

alization scale Q, t − t0 ¼ log Q
MG

. g3;2;1 and M3;2;1 in the
above equations stand for the three MSSM gauge couplings
and gaugino masses. Our semianalytic solutions to them are
approximately given by

m2
hu
ðtÞ ≈m2

hu0
þ X0

2

�
e

3

4π2

R
t

t0
dt0y2t − 1

�
þ FðtÞ

2

−
3

2

�
m1=2

g20

�
2

fg42ðtÞ − g40g; ð9Þ

m2
uc
3
ðtÞ ≈m2

uc
3
0 þ

X0

3

�
e

3

4π2

R
t

t0
dt0y2t − 1

�
þ FðtÞ

3

þ 8

9

�
m1=2

g20

�
2

fg43ðtÞ − g40g; ð10Þ

m2
q3ðtÞ ≈m2

q30
þ X0

6

�
e

3

4π2

R
t

t0
dt0y2t − 1

�
þ FðtÞ

6

þ
�
m1=2

g20

�
2
�
8

9
g43ðtÞ −

3

2
g42ðtÞ þ

11

18
g40

�
; ð11Þ

AtðtÞ ¼ e
3

4π2

R
t

t0
dt0y2t

�
A0 −

1

8π2

Z
t

t0

dt0GAe
−3
4π2

R
t0
t0
dt00y2t

�
; ð12Þ

where we ignored the bino mass M1 and the relevant
Uð1ÞY gauge contributions due to their smallness. For
the complete expressions and derivation of the above
solutions, refer to the Appendix (setting ~m2 ¼ 0).
Here, fm2

hu0
; m2

uc
3
0; m

2
q30

; A0g denote the values of

fm2
hu
ðtÞ; m2

uc
3
ðtÞ; m2

q3ðtÞ; AtðtÞg at the GUT scale, and

X0 ≡m2
hu0

þm2
uc
3
0 þm2

q30
. g0 and m1=2 are the unified

gauge coupling and gaugino mass at the GUT scale,
respectively. FðtÞ in the above solutions is defined as

FðtÞ≡ 3

4π2
e

3

4π2

R
t

t0
dt0y2t

Z
t

t0

dt0y2t A2
t e

−3
4π2

R
t0
t0
dt00y2t

−
1

4π2

�
e

3

4π2

R
t

t0
dt0y2t

Z
t

t0

dt0G2
Xe

−3
4π2

R
t0
t0
dt00y2t −

Z
t

t0

dt0G2
X

�
:

ð13Þ

GA in Eq. (12) and G2
X in Eq. (13) are given, respectively,

by

GAðtÞ≡ 16

3
g23M3 þ 3g22M2 þ

13

15
g21M1

¼
�
m1=2

g20

��
16

3
g43 þ 3g42 þ

13

15
g41

�
; ð14Þ

G2
XðtÞ≡ 16

3
g23M

2
3 þ 3g22M

2
2 þ

13

15
g21M

2
1

¼
�
m1=2

g20

�
2
�
16

3
g63 þ 3g62 þ

13

15
g61

�
: ð15Þ

Note that FðtÞ is independent of fm2
hu0

; m2
uc
3
0; m

2
q30

g, so
fm2

hu0
; m2

uc
3
0; m

2
q30

g appear only in the first three terms in the

above RG solutions, Eqs. (9), (10), and (11).
FðtÞ depends on tan β in principle. But it turns out to be

almost insensitive to tan β. For instance, FðtÞ atQ ¼ 5 TeV
[¼ FðtTÞ] is estimated as

FðtTÞ ≈ f−1.03;−1.02g ×
�
m1=2

g20

�
2

ð16Þ

for ftan β ¼ 5; tan β ¼ 50g and A0 ¼ 0. Here, the numeri-
cal estimation for tan β ¼ 50 was performed by including
yb and yτ effects with m2

hd
¼ m2

ec
3
¼ m2

l3
¼ m2

0. For the

complete RG equation we used, see the Appendix. Thus,
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the last three terms in Eq. (9) at Q ¼ 5 TeV yield
f−1.43;−1.41g ×m2

1=2 for ftan β ¼ 5; tan β ¼ 50g and
A0 ¼ 0. Note that the FðtÞ term dominates over the last
two terms in Eq. (9) at Q ¼ 5 TeV. Although the last two
terms provide a positive coefficient ofm2

1=2, the large gluino
mass effect contained in FðtÞ flips the sign.
If the gauge sector’s contributions proportional to m2

1=2
are relatively suppressed, AtðtÞ and FðtÞ are simplified as
follows:

AtðtÞ ≈ A0e
3

4π2

R
t

t0
dt0y2t ; and

FðtÞ ≈ A2
0e

3

4π2

R
t

t0
dt0y2t

�
e

3

4π2

R
t

t0
dt0y2t − 1

�
: ð17Þ

In this case, fm2
hu
ðtÞ; m2

uc
3
ðtÞ; m2

q3ðtÞg thus reduce to

m2
hu
ðtÞ ≈m2

hu0
þ X0

2

�
e

3

4π2

R
t

t0
dt0y2t − 1

�

þ A2
0

2
e

3

4π2

R
t

t0
dt0y2t

�
e

3

4π2

R
t

t0
dt0y2t − 1

�
þ � � � ; ð18Þ

m2
uc
3
ðtÞ ≈m2

uc
3
0 þ

X0

3

�
e

3

4π2

R
t

t0
dt0y2t − 1

�

þ A2
0

3
e

3

4π2

R
t

t0
dt0y2t

�
e

3

4π2

R
t

t0
dt0y2t − 1

�
þ � � � ; ð19Þ

m2
q3ðtÞ ≈m2

q30
þ X0

6

�
e

3

4π2

R
t

t0
dt0y2t − 1

�

þ A2
0

6
e

3

4π2

R
t

t0
dt0y2t

�
e

3

4π2

R
t

t0
dt0y2t − 1

�
þ � � � ; ð20Þ

where “� � �” doesn’t contain m2
0 and A0. As emphasized in

Eq. (4), the most important notice should be taken here that

e
3

4π2

R
t

t0
dt0y2t ≈ 1

3
for t ¼ t0 þ log 102 GeV

MG
(≡tW) when tan β is

moderately small [8]. Thus, if universal soft squared masses
are assumed, m2

hu0
¼ m2

uc
3
0 ¼ m2

q30
≡m2

0, and A0 ¼ 0 is set

at the GUT scale, Eqs. (18)–(20) are recast into [8]

m2
hu
ðtWÞ≈

3m2
0

2

�
e

−3
4π2

R
t0
tW

dt0y2t −
1

3

�
þ���≈0.006m2

0þ���; ð21Þ

m2
uc
3
ðtWÞ≈

3m2
0

2

�
2

3
e

−3
4π2

R
t0
tW

dt0y2t þ 0

�
þ� � �≈ 1

3
m2

0þ �� � ; ð22Þ

m2
q3ðtWÞ≈

3m2
0

2

�
1

3
e

−3
4π2

R
t0
tW

dt0y2t þ1

3

�
þ���≈2

3
m2

0þ���; ð23Þ

where “� � �” doesn’t contain m2
0. Hence, m2

hu
ðtÞ almost

vanishes at the EW sale (t ≈ tW). It means that m2
hu

can be
light enough at the EW scale, almost independent of
m2

0, only if the “� � �” in Eq. (21) was also suppressed.
Sincem2

hu
is very insensitive tom2

0, even a large enoughm
2
0

guarantees the smallness ofm2
hu
at the EW scale, whereas it

makes stop masses quite heavy: m2
uc
3
ðtWÞ≈m2

0=3 and

m2
q3ðtWÞ≈2m2

0=3. In the FP scenario, therefore, the natu-
ralness of the EW scale and the Higgs mass is based on
natural tuning.
Although A0 is comparable to other soft parameters, m2

hu
can still remain small at the EW scale, provided
ðm2

hu0
; m2

uc
3
0; m

2
q30

; A2
0Þ are very specially related, satisfying,

e.g., m2
0ð1; 1þ x − 3y; 1 − x; 9yÞ at the GUT scale, where

x, y are arbitrary numbers [20]. However, such a relation
looks hard to realize in a supergravity (SUGRA) model.
For simplicity, we will assume in this paper that
jxj; jyj ≪ 1; namely, A0 is quite suppressed compared to
m2

0 (¼ m2
hu0

¼ m2
uc
3
0 ¼ m2

q30
). Actually, this is possible,

e.g., in the gauge mediated SUSY breaking scenario with
a GUT scale messenger. To get a universal soft squared
mass in the gauge mediation, the SM gauge group should
be embedded in a simple group at the GUT scale. However,
the effect by nonvanishing A0 on m2

hu
can be compensated

by another ingredient introduced later. Hence, the gravity
mediated SUSY breaking scenario with the universal
soft squared mass and A0 ≠ 0 can also be consistent with
the FP scenario.
Unlike the naive expectation, the low energy value of

m2
hu

is not sensitive to the stop masses in the FP scenario.
Hence, apparently, the naturalness of the Higgs boson
seems to be guaranteed in this framework. It is a result of
(1) the employed initial conditions, m2

hu0
¼ m2

uc
3
0 ¼

m2
q30

¼ m2
0 and A0 ¼ 0, and

(2) the accidental result, e
−3
4π2

R
t0
tW

dt0y2t ≈ 1
3
(natural tuning).

The first condition is associated with a model-building
problem. Actually, it can easily be realized in a large class
of simple SUGRA models. However, the second condition
would be a kind of fine-tuning condition, because the top
quark Yukawa coupling ytðtÞ and the interval of the energy
scales between the EWand the GUT scales should specially
be related. But it is not artificially designed. As mentioned
in the introduction, we will simply accept such a natural
tuning phenomenon.
However, the recent experimental results at the LHC

seem to spoil the nice picture of the original FP scenario.
Most of all, the gauge contributions in Eqs. (9)–(12) cannot
be ignored any longer, since the mass bound for the gluino
has been increased, M3 ≳ 1.4 TeV [11]. As a result, the
unified gaugino mass m1=2 should be heavier than at least
550 GeV. Since a large m2

1=2 leads to a large negative m2
hu

and large positive m2
uc
3
and m2

q3 at low energy, as seen in

BUMSEOK KYAE AND CHANG SUB SHIN PHYSICAL REVIEW D 90, 035023 (2014)

035023-4



Eqs. (9)–(11) and (16), −m2
hu
cannot be small enough at the

EW scale. A too large negative m2
hu

should be finely tuned
with jμj2 to be matched to M2

Z in Eq. (3). Moreover, the
observed Higgs mass, 126 GeV, is somewhat heavy as a
SUSY Higgs mass. Once we suppose A0 ≈ 0, a quite heavy
stop mass (∼5 TeV) is needed for explaining the observed
Higgs mass [2].1 A very large m2

1=2 for a 5 TeV stop mass

would require a serious fine-tuning between m2
hu

and jμj2
or m2

1=2 and m2
0. Alternatively, one can try to extend the

MSSM for raising the Higgs mass. However, many
extensions of the MSSM Higgs sector end up ruining
the FP scenario, as will be commented later.
Since the stops are decoupled around 5 TeV (t≡ tT),m2

hu
follows the RG running of the SM below t ≈ tT. Hence, the
FP mechanism based on the SUSY RG equations would not
work well anymore. Actually, Eq. (21) is valid when the
stop is not too much heavier than the Z boson. The heavy
fields’ correction to the RG solution can be estimated using
the formula on the Coleman-Weinberg’s effective potential
[21]. In fact, the RG solution is a result of one-loop effects
by massless fields, while the Coleman-Weinberg’s one-
loop effective potential is dominated by the heavy fields.
The signs of both loop effects are opposite. Thus, the low
energy value of m2

hu
below the stop decoupling scale is

roughly estimated as [1,22]

m2
hu
ðtWÞ ≈m2

hu
jΛT

þ 3jytj2
8π2

�
ð ~m2

t þm2
t Þ
�
log

~m2
t þm2

t

Λ2
T

− 1

�

−m2
t

�
log

m2
t

Λ2
T
− 1

��

≈m2
hu
jΛT

−
3jytj2
8π2

~m2
t ; ð24Þ

where mt ( ~mt) denotes the top quark (stop) mass, and the
cutoff ΛT [≈ð ~m2

t þm2
t Þ1=2] is the scale where the stops

are decoupled, and so m2
hu
jΛT

¼ m2
hu
ðtTÞ. Here, we set

m2
uc
3
≈m2

q3 ≡ ~m2
t for simple estimation. Note that

3jytj2
8π2

~m2
t ≈ ð800 GeVÞ2. Accordingly, m2

hu
at t ¼ tT (or

m2
hu
jΛT

) should be smaller than ð1 TeVÞ2 in order for
−m2

hu
at the EW scale to be smaller than ð1 TeVÞ2.

Since t ¼ tT is more or less far from tW , however, the
coefficient of m2

0 in Eq. (9) is not suppressed enough,
m2

hu
ðtTÞ ≈ 0.1m2

0 − � � �, where m2
0 > ð5 TeVÞ2 for

obtaining 5 TeV stop masses. Hence, m2
hu
ðtTÞ is quite

sensitive to m2
0, and it should be tuned with m2

1=2 in Eq. (9)

and/or jμj2. Thus, for a predictively small m2
hu
, the FP

should somehow appear around the stop decoupling scale
[13,14]. That is to say, the coefficient ofm2

0 should be much
closer to zero around the stop mass scale, as mentioned in
the introduction.
Figures 1(a) and 1(b) display the RG behaviors of

m2
hu

for m2
0¼ð7TeVÞ2, ð5 TeVÞ2, ð3 TeVÞ2, when

m1=2¼1TeV, A0 ¼ 0, tan β ¼ 5 [Fig. 1(a)] and tan β ¼
50 [Fig. 1(b)] with αG ¼ 1=25. Note that m1=2 ¼ 1 TeV
yields the gluino mass of 2.4 TeV at TeV scale, which is
well above the present experimental lower bound, 1.4 TeV
[11]. Although we presented the simple RG equations valid
for small tan β in Eqs. (5)–(7), the figures in Fig. 1 are based
on the full one-loop RG equations including yb and yτ with
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FIG. 1 (color online). RG evolutions of m2
hu

for m2
0 ¼ ð7 TeVÞ2 (red), ð5 TeVÞ2 (green), and ð3 TeVÞ2 (blue), and for (a) tan β ¼ 5

and (b) tan β ¼ 50, whenm1=2 ¼ 1 TeV and A0 ¼ 0. Here, we take αG ¼ 1=25. The unit of the vertical axis is ðGeVÞ2. The dotted lines
at t ≈ 0.92 denote the assumed stop decoupling scale, Q ¼ 5 TeV. t ≈ −2.3 [t ≈ 29.9] corresponds to Q ¼ 200 GeV
[Q ¼ 2 × 1016 GeV]. Below the stop decoupling scale, the above RG runnings must be modified. The above figures show that
the extrapolated FP, where m2

hu
is negative, appears at a relatively higher (lower) energy scale for small (large) tan β.

1To be precise, a 3–5 TeV stop mass is needed for a 126 GeV
Higgs mass at three-loop level when A0 ¼ 0. According to
Ref. [2], parametric uncertainty in the top quark mass
(mpole

t ¼ 173.3� 1.8 GeV) results in uncertainty of 0.5 to
2 GeV in the Higgs mass. Among public codes providing the
two-loop results, moreover, inconsistencies of up to 4 GeV are
observed. In this paper, we adopt the three-loop result of Ref. [2].
To be conservative, however, we will take 5 TeVas the stop mass
needed for the 126 GeV Higgs mass, although a stop mass lighter
than 5 TeV turns out to further decrease the fine-tuning.
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the universal boundary condition imposed also for m2
hd
,

m2
ec
3
, and m2

l3
. Figures 1(a) and 1(b) show that the FP is

located at a slightly higher (lower) energy scale for a small
(large) tan β. Table I lists the values of fm2

q3 ; m
2
uc
3
; m2

hu
g at

t ¼ tT (i.e., at Q ¼ 5 TeV) in these cases. It shows that
m2

hu
ðtTÞ is quite sensitive to m2

0, as mentioned above. For
tan β ¼ 50, particularly, the fine-tuning measure defined in
Ref. [23] is estimated as

Δm2
0
¼
���� ∂ logm

2
Z

∂ logm2
0

���� ¼
����m

2
0

m2
Z

∂m2
Z

∂m2
0

���� ≈ 875 ð25Þ

around the m2
0 ¼ ð7 TeVÞ2. A similar analysis with αG ¼

1=24 turns out to yield a worse result, Δm2
0
≈ 1474. They

are quite large. It is because the locations of their FPs are
too far from the point ðt ¼ tT; m2

hu
¼ 0Þ.

In order to getm2
hu
that is small enough and insensitive to

m2
0, the location of the FP needs to be moved somehow to a

position around the stop mass scale. See Fig. 2. ϵ in
Figs. 2(a) and 2(b) should be as small as possible for a
predictablem2

hu
at the EW scale. In addition, at a location of

the FP near t ¼ tT, m2
hu

should be in the range of
0≲m2

hu
≲ ð1 TeVÞ2. Since the heavy gluino makes a large

negative contribution to m2
hu
ðtTÞ, we need some other

ingredients to overcome the heavy gluino effect. Below
t ¼ tT , m2

hu
further decreases by ∼ð800 GeVÞ2 down to

t ¼ tW , as discussed in Eq. (24). In order to mitigate them2
0

dependence via ~m2
t in Eq. (24), reducing the fine-tuning, a

FP of m2
hu

appearing at a slightly lower energy scale than
(but still around) tT is more preferred: the coefficient of m2

0

in m2
hu
jΛT

needs to be of order Oð10−2Þ.

III. PRECISE FOCUSING

In this section, we will discuss how to move the FP to the
desirable locations presented in the previous section in the
ðt; m2

hu
ðtÞÞ space. We intend to argue that the Higgs mass

happens to be 126 GeV by 5 TeV stop mass, after m2
hu

at
t ¼ tT is made insensitive to m2

0. It would be a way to trim
the original idea of the natural tuning.

A. Pushing up the focus point to higher energy scale

As tan β increases, the size of the top quark Yukawa
coupling decreases. As a consequence, the factor

½e −3
4π2

R
t0
t

dt0y2t − 1
3
� in Eq. (21) vanishes at a lower energy

scale t (< tW) for a smaller yt. It implies that the FP moves
to a lower energy scale for a larger tan β [8,24]. The
numerical analysis including yb and yτ, Figs. 1(a) and 1(b),
confirm such a behavior of the FP. Since we intend to move
the FP in the higher energy direction, a large tan β is not
helpful.
A much larger top quark Yukawa coupling ytðtÞ at higher

energy scales can move the FP to a new location at a
higher energy scale. Actually, ytðtÞ can be easily raised at
higher energy scales, e.g., by introducing a new Yukawa
coupling of the Higgs boson. For instance, let us consider a
coupling between hu and a new singlet S in the next-to-
MSSM (NMSSM) [4]:

WS ¼ λShuhd þ � � � : ð26Þ

In this case, the RG equations of yt and λ are given by

8π2
d
dt

y2t ¼ y2t

�
λ2 þ 6y2t −

16

3
g23 − 3g22 −

13

15
g21

�
; ð27Þ

8π2
d
dt

λ2 ¼ λ2
�
4λ2 þ 3y2t − 3g22 −

3

5
g21

�
ð28Þ

for small tan β. Because of the additional positive contri-
bution by λ2 to the RG equation of yt, y2t becomes larger
than that in the absence of λ. Moreover, the λ coupling

TABLE I. Soft squared masses of the stops and Higgs boson at Q ¼ 5 TeV for m2
0 ¼ ð7 TeVÞ2, ð5 TeVÞ2, and ð3 TeVÞ2, when

m1=2 ¼ 1 TeV and A0 ¼ 0 with αG ¼ 1=25. The left (right) four columns correspond to the results of tan β ¼ 5 (tan β ¼ 50).

tan β ¼ 5 tan β ¼ 50

m2
0 ð7 TeVÞ2 ð5 TeVÞ2 ð3 TeVÞ2 m2

0 ð7 TeVÞ2 ð5 TeVÞ2 ð3 TeVÞ2
m2

q3ðtTÞ ð6.1 TeVÞ2 ð4.5 TeVÞ2 ð3.1 TeVÞ2 m2
q3ðtTÞ ð5.2 TeVÞ2 ð3.9 TeVÞ2 ð2.8 TeVÞ2

m2
uc
3
ðtTÞ ð4.6 TeVÞ2 ð3.4 TeVÞ2 ð2.4 TeVÞ2 m2

uc
3
ðtTÞ ð4.7 TeVÞ2 ð3.5 TeVÞ2 ð2.5 TeVÞ2

m2
hu
ðtTÞ ð1.3 TeVÞ2 −ð0.4 TeVÞ2 −ð0.9 TeVÞ2 m2

hu
ðtTÞ ð1.8 TeVÞ2 ð1.1 TeVÞ2 −ð0.6 TeVÞ2

(a) (b)

FIG. 2. Desirable locations of the focus point in the ðt; m2
hu
Þ

space. The straight lines sketch different RG evolutions ofm2
hu
for

variousm2
0s. tT corresponds to the assumed stop decoupling scale

(Q ¼ 5 TeV). ϵ needs to be as small as possible.
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introduces a positive contribution also to the RG equation
for m2

hu
:

16π2
d
dt

m2
hu

¼ 2λ2ðXλ þ A2
λÞ þ 6y2t ðXt þ A2

t Þ

− 6g22M
2
2 −

6

5
g21M

2
1; ð29Þ

where Xλ ≡ ðm2
hu
þm2

uc
3
þm2

q3Þ. It turns out, however, that
the FP’s location is too sensitive to λ. According to our
analysis, λ should be smaller than at least 0.1. Otherwise,
the FP moves too far away in the high energy direction. For
example, λ ¼ 0.6 and tan β ¼ 3moves the location of FP to
1013 GeV energy scale. Hence, the parameter window
satisfying the 126 GeV Higgs mass and the Landau pole
constraint in the NMSSM, 0.6≲ λ≲ 0.7 and 1 < tan β ≲ 3
[25], cannot be compatible with the FP scenario. As seen in
this example, extensions of the MSSM Higgs sector with a
new sizable Yukawa coupling, e.g., for raising the Higgs
mass could result in ruin of the FP scenario.2

The RG effect of λ coupling on yt can be reduced just by
assuming that S is superheavy and so decoupled at a very
high energy scale. One well-motivated superheavy particle
is the RH neutrino (Nc), which is introduced to explain the
smallness of the active neutrino mass through the seesaw
mechanism [26] by the superpotential,

WN ¼ yNl3huNc þ 1

2
MNNcNc; ð30Þ

where l3 is a lepton doublet in the MSSM. We assume that
the Majorana mass of Nc is MN ≈ 2 × 1014 GeV. If
the RH neutrino is embedded in a multiplet of a GUT
with the B − L charge, Eq. (30) can be naturally
obtained from the nonrenormalizable term in GUTs,
W ⊃ hHGihHGiNcNc=MP, where hHGi and MP are a
VEV of a GUT breaking Higgs boson (∼1016 GeV) and
the reduced Planck mass (≈2.4 × 1018 GeV), respectively.
ForMN ∼ 1014 GeV, the Yukawa coupling yN should be of
order unity to get a neutrino mass of order 0.1 eV. Here, we
suppose that only one Yukawa coupling with hu, yN is of
order unity: for simplicity, we assume that other Yukawa
couplings of hu to other RH neutrinos are small enough.
Accordingly, other RH neutrinos should be relatively
lighter than MN . Since Nc would be decoupled at a very
hight energy scale (Q ¼ MN ≈ 2 × 1014 GeV), its RG
effect on yt could be mild, and the FP would relatively
slowly move as yN varied. Consequently, m2

hu
at t ¼ tT

could become less sensitive to m2
0 [16]. If the heaviest RH

neutrino was lighter than ∼1013 GeV, its RG effect on yt

would be negligible because the required Yukawa coupling
becomes too small.
Similar to Eq. (29), the RG evolution of m2

hu
between

Q ¼ MG and Q ¼ MN is described by

16π2
d
dt

m2
hu

¼ 2y2NðXN þ A2
NÞ þ 6y2t ðXt þ A2

t Þ − 6g22M
2
2

−
6

5
g21M

2
1; ð31Þ

where the y2NXN [¼ y2Nðm2
hu
þm2

Nc þm2
l3
Þ] and y2NA

2
N

terms are additional positive contributions coming from
the RH neutrino. On the other hand, the RG equations for
m2

uc
3
and m2

q3 maintain the same forms with those in the

absence of the RH neutrino, Eqs. (6) and (7). They are just
affected only through the modified value of y2t ðXt þ A2

t Þ,
which appears also in Eq. (31). For the complete form of
the RG equations, refer to the Appendix. Because of the
y2NðXN þ A2

NÞ terms in Eq. (31), m2
hu
=m2

uc
3
and m2

hu
=m2

q3

more rapidly decrease from Q ¼ MG to Q ¼ MN than the
case without the RH neutrino. Below Q ¼ MN, however,
the RH neutrino becomes decoupled, and so m2

hu
, m2

uc
3
, and

m2
q3 respect the same RG equations with Eqs. (5)–(7).
Considering Eq. (9), one can see that the RG solution

of m2
hu

valid only below Q ¼ MN (t < tI) should be
written as

m2
hu
ðtÞ ¼ m2

huI
þ XI

2

�
e

3

4π2

R
t

tI
dt0y2t − 1

�
þ � � �

¼ XI

2

�
e

−3
4π2

R
tI
t

dt0y2t −
�
1 −

2m2
huI

m2
huI

þm2
uc
3
I þm2

q3I

��

þ � � � ; ð32Þ
where fm2

huI
; m2

uc
3
I; m

2
q3I

g denote the values of fm2
hu
; m2

uc
3
;

m2
q3g at Q ¼ MN , respectively, and XI ≡m2

huI
þm2

uc
3
Iþ

m2
q3I

. Note that “� � �” in Eq. (32) does not contain the
dependence of fm2

huI
; m2

uc
3
I; m

2
q3I

g. Comparing with Eq. (9),

fm2
hu0

; m2
uc
3
0; m

2
q30

g and X0 are replaced by fm2
huI

; m2
uc
3
I;

m2
q3I

g and XI in Eq. (32). On the contrary, y2t in Eq. (32) is
the same as y2t of Eq. (9) for t < tI, because y2t should be set
to explain the top quark mass at low energy and undergoes
the same RG evolution as the case of Eq. (9). The RH
neutrino makes y2t larger only above Q ¼ MN . Since
m2

huI
=m2

uc
3
I and m2

huI
=m2

q3I
are more suppressed at Q ¼

MN by the RH neutrino effect above Q ¼ MN , 1 −
2m2

huI
=ðm2

huI
þm2

uc
3
I þm2

q3I
Þ or 1 − 2m2

huI
=XI in Eq. (32)

is larger than that evaluated at Q ¼ MN in the absence of
the RH neutrino. As a result, exp½−3

4π2

R tI
t dt0y2t � − ð1 −

2m2
huI

=XIÞ vanishes at a t larger than tW . It implies that
a FP must still exist and appear at a scale higher than tW .

2With a relatively lighter stop mass (≲1 TeV), the (singlet)
extensions of the MSSM can significantly reduce the fine-tuning
by adding an additional tree level [4,5] or a radiative Higgs
mass [6].
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Therefore, we can move the FP to around t ¼ tT using a
sizable yN . We will discuss it again later.

B. Uplifting the focus point

Toward the desirable FP location, we need to somehow
lift up the FP in the ðt; m2

hu
ðtÞÞ space as mentioned

before. As a trial, let us turn on a small A0 in Eq. (12),
keeping m2

hu0
¼ m2

uc
3
0 ¼ m2

q30
¼ m2

0. Then Eq. (18) yields

m2
hu
ðtWÞ ≈ −A2

0=9. So the FP moves in the opposite direc-
tion to our desire. From Eqs. (9) and (16), increase of m2

1=2

also moves the FP in the negative direction. Because of the
experimental gluino mass constraint (M3 ≳ 1.4 TeV), how-
ever, one cannot decrease m2

1=2 sufficiently.

Indeed, the largest negative contribution to m2
hu

comes
from the gluino mass M3, as seen from Eqs. (13)–(16):
Equation (13) is dominated by the g23M3 and g23M

2
3 terms in

Eqs. (14) and (15), which eventually give a negative FðtTÞ
as seen in Eq. (16). A too large negative m2

hu
at the EW

scale should be fine-tuned with jμj2 to yield the desired size
of m2

Z. One way to compensate the negative gluino mass
effect on m2

hu
is to cancel it with the positive contribution

from the wino mass effect, sacrificing the gaugino mass
unification, M2

3 ≲M2
2, at the GUT scale [12,13]: such

nonuniversal gaugino masses at the GUT scale could
improve the FP behavior but also soften significantly the
limits on the gluino mass. Alternatively, a fine-tuning
between m2

0 and m2
1=2 could also leave a light enough

m2
hu
, as seen in Eqs. (9) and (16): a FP achieved through

such a fine-tuning can remain insensitive, e.g., to the
scaling of ðm2

0; m
2
1=2Þ → λ2ðm2

0; m
2
1=2Þ, keeping the ratio

between m2
0 and m2

1=2 [14]. However, the idea of natural
tuning is lost in this mechanism.
In this paper, we propose to consider the two-loop

gauge effects by the first and second generations of
hierarchically heavier sfermions, maintaining the gaugino
mass unification. Their two-loop Yukawa interactions are
extremely suppressed by their tiny Yukawa couplings.
For simplicity, we suppose a universal heavy mass for
them (≡ ~m2). If ~m2 ≫ m2

1=2, the RG running of ~m2 is
negligible. Then the gauge contributions to the RG
equations for the soft masses of the Higgs boson and
sfermions are modified as [17,27]

16π2
d
dt

m2
f ¼ −8

X
i¼3;2;1

Cf
i

�
g2i M

2
i −

~m2

4π2
g4i

�
þ � � �

¼ −8
X

i¼3;2;1

Cf
i

��
m1=2

g20

�
2

g6i −
~m2

4π2
g4i

�
þ � � � ;

ð33Þ

where f ¼ hu; uc3; q3, etc., and Cf
i denotes the Casimir

for f. With the universal soft mass condition, the

contributions by the “D-term” potential to Eq. (33)
vanish. Since g2i M

2
i s are always accompanied with

− ~m2

4π2
g4i in Eqs. (5)–(7), they all should be modified into

g2i M
2
i − ~m2

4π2
g4i . As a result, the heavy gluino effect can be

compensated to be milder by the ~m2 terms [18]. If ~m is
much heavier than the gluino mass, moreover, it can be
comparable to it or even dominate over it. Thus, a heavy
enough ~m2 could raise m2

hu
up even to a positive value at

t ¼ tT . Note that ~m2 does not appear in X0 in Eq. (9): the
heavier sfermions’ effects on Eqs. (5)–(8) via the Yukawa
interactions are extremely tiny. So ~m2 does not touch the
FP mechanism. Indeed, any Yukawa couplings and tan β
are not involved in g2i M

2
i − ~m2

4π2
g4i . Since both contribu-

tions originate from the gauge interactions, their relation
could be more easily realized in a UV model [28] than
the relation between m2

1=2 and m2
0. Note that they leave

intact the A-term RG equation Eq. (8). For the full
expressions of the semianalytic solutions, refer to the
Appendix.
The hierarchical mass pattern between the first/second

and the third generations can be realized by employing the
two different SUSY breaking mediations, e.g., the gravity
or gauge mediation and Uð1Þ0 mediation. For instance, the
first two generations of matter could carry nonzero (but
opposite) Uð1Þ0 charges and they could receive additional
Uð1Þ0 SUSY breaking mediation effects proportional to
their charge squareds [29] for their hierarchically heavier
masses [18,30]. Their desired relation could be achieved
from the hierarchy between g0 and the Uð1Þ0 gauge
coupling, and also the messengers’ masses with a common
SUSY breaking source. In such a setup, a relation between
~m2 and m2

1=2 could also be obtained. Since the third
generation of sfermions do not carry Uð1Þ0 charges, its
soft masses are determined only by the gravity mediation
effect. A0 can also remain small enough to avoid unwanted
color breaking minimum at low energies [31]. We will
propose a simple model realizing a desired relation between
them later.
To summarize our discussion so far, in Table II we

present the FP’s movements for the various variations of
parameters. We can move the FP into the desirable
positions of Fig. 2 by using, e.g., yN and ~m2.

C. Numerical results

Let us attempt to reduce the fine-tuning by introducing a
superheavy RH neutrino and taking heavy soft masses for

TABLE II. Movement of the focus point for increases of the
various parameters in the ðt; m2

hu
ðtÞÞ space.

Variations tan β⇑ y2t , λ2, y2N⇑ A2
0⇑ m2

1=2⇑ ~m2⇑

Focus point ⇐ ⇒ ⇓ ⇓ ⇑
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the first two generations of sfermions. Figures 3(a) and 3(b)
show the numerical results for the RG evolutions ofm2

hu
for

m2
0 ¼ ð9 TeVÞ2, ð7 TeVÞ2, and ð5 TeVÞ2, when fy2NI ¼

0.8; ~m2 ¼ ð15 TeVÞ2g and fy2NI ¼ 1.0; ~m2 ¼ ð20 TeVÞ2g,
respectively. Here, yNI means yN evaluated at the RH
neutrino decoupling scale (Q ¼ MN ≈ 2 × 1014 GeV). y2N
of y2NI ¼ 0.8 (1.0) reaches 0.95 (1.2) at the GUT scale,
while its RG evolution becomes frozen below Q ¼ MN. In
both cases, we set tan β ¼ 5 and m1=2 ¼ A0 ¼ 1 TeV with
αG ¼ 1=24. Note that m1=2 and A0 are Uð1ÞR breaking
parameters. Thus, e.g., if Uð1ÞR breaking scale is relatively
lower than the SUSY breaking scale, they can be smaller
than other soft SUSY breaking parameters, m2

0 and ~m2 as
desired. In Ref. [32], conformal sequestering was consid-
ered to suppress them. In “pure gravity mediation,” m1=2

and A0 are suppressed at the tree level [33]. Below the
seesaw scale, t ¼ tI ≈ 25.3 [Q ≈ 2 × 1014 GeV], the RH
neutrino is decoupled. Thus, m2

hu
s in Figs. 3(a) and 3(b)

follow the RG equations without the RH neutrino below
t ¼ tI, while they are governed by the full RG equations
including the RH neutrino between t ¼ t0 and t ¼ tI .
For the analyses in Figs. 3(a) and 3(b), we used the full
RG equations in the Appendix with the boundary
conditions, m2

hu
¼m2

uc
3
¼���¼m2

hd
¼���¼m2

Nc ¼m2
0 and

m2
uc
1;2

¼ m2
q1;2 � � � ¼ ~m2.

In Fig. 3(a) [3(b)], the FP appears at a slightly lower
(higher) scale than the stop decoupling scale
(t ¼ tT ≈ 0.92). Since m2

hu
is well focused in both cases,

m2
hu
ðtTÞ is quite insensitive to the various trial m2

0s as seen
in Table III: for 5 TeV < m2

0 < 9 TeV at the GUT scale,
m2

hu
just changes from −ð0.3 TeVÞ2 [ð0.6 TeVÞ2] to

ð0.9 TeVÞ2 [−ð0.2 TeVÞ2] at the stop decoupling scale.
Hence, for precise focusing, it is required that

0.8≲ y2NI ≲ 1.0 and ð15 TeVÞ2 ≲ ~m2 ≲ ð20 TeVÞ2;
ð34Þ

when tan β ¼ 5 and m1=2 ¼ A0 ¼ 1 TeV. Under the
situation that m2

hu
at t ¼ tT is insensitive to m2

0 and stop
masses, m2

0 can happen to be around ð8 TeVÞ2 at the
GUT scale, which leads to 5 TeV stop masses and the
126 GeV Higgs mass at the EW scale. However, if a
larger y2NI is taken, e.g., y2NI ¼ 1.4, the FP emerges
around t ≈ 3 (Q ≈ 40 TeV). For ~m2 ≳ ð24 TeVÞ2 and
y2NI ¼ 1.0, the EW symmetry breaking does not arise,
because m2

hu
ðtTÞ > ð1 TeVÞ2. Hence, the above range of

yN and ~m2 for a desirable FP needs to be supported by a
UV model. Once MN is fixed by a GUT as explained
above, however, the above range of y2NI could be
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FIG. 3 (color online). RG evolutions of m2
hu
for m2

0 ¼ ð9 TeVÞ2 (red), ð7 TeVÞ2 (green), and ð5 TeVÞ2 (blue), and for (a) y2NI ¼ 0.8,
~m2 ¼ ð15 TeVÞ2 and (b) y2NI ¼ 1.0, ~m2 ¼ ð20 TeVÞ2, when tan β ¼ 5 and m1=2 ¼ A0 ¼ 1 TeV with αG ¼ 1=24. The unit of the
vertical axis is ðGeVÞ2. Below the seesaw scale, t ¼ tI ≈ 25.3 [Q ≈ 2 × 1014 GeV], the RH neutrino is decoupled. The dotted lines at
t ≈ 0.92 denote the assumed stop decoupling scale, Q ¼ 5 TeV. Below the stop decoupling scale, the above RG runnings must be
modified. The above figures show that the (extrapolated) FP appears at desirable locations.

TABLE III. Soft squared masses of the stops and Higgs boson at t ¼ tT ≈ 0.92 (Q ¼ 5 TeV) for m2
0 ¼ ð9 TeVÞ2, ð7 TeVÞ2, and

ð5 TeVÞ2, when tan β ¼ 5 and m1=2 ¼ A0 ¼ 1 TeV with αG ¼ 1=24. The left (right) four columns correspond to the results of fy2NI ¼
0.8; ~m2 ¼ ð15 TeVÞ2g [fy2NI ¼ 1.0; ~m2 ¼ ð20 TeVÞ2g].

tan β ¼ 5 y2NI ¼ 0.8 ~m ¼ 15 TeV tan β ¼ 5 y2NI ¼ 1.0 ~m ¼ 20 TeV

m2
0 ð9 TeVÞ2 ð7 TeVÞ2 ð5 TeVÞ2 m2

0 ð9 TeVÞ2 ð7 TeVÞ2 ð5 TeVÞ2
m2

q3ðtTÞ ð7.3 TeVÞ2 ð5.6 TeVÞ2 ð3.7 TeVÞ2 m2
q3ðtTÞ ð6.9 TeVÞ2 ð5.0 TeVÞ2 ð2.8 TeVÞ2

m2
uc
3
ðtTÞ ð5.7 TeVÞ2 ð4.3 TeVÞ2 ð2.8 TeVÞ2 m2

uc
3
ðtTÞ ð5.3 TeVÞ2 ð3.8 TeVÞ2 ð1.9 TeVÞ2

m2
hu
ðtTÞ ð0.9 TeVÞ2 ð0.5 TeVÞ2 −ð0.3 TeVÞ2 m2

hu
ðtTÞ −ð0.2 TeVÞ2 ð0.4 TeVÞ2 ð0.6 TeVÞ2
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regarded as another natural tuning, since y2N can be
determined by the active neutrino mass. The tuning issue
introduced for the desired ~m2 could be converted to a
model-building problem [28].
Similarly, Figs. 4(a) and 4(b) and Table IV present

the results of m2
hu

for m2
0 ¼ ð9 TeVÞ2, ð7 TeVÞ2, and

ð5 TeVÞ2, when tan β ¼ 50 and m1=2 ¼ A0 ¼ 1 TeV with
αG ¼ 1=24. Here, we take fy2NI ¼ 1.0; ~m2 ¼ ð15 TeVÞ2g
and fy2NI ¼ 1.2; ~m2 ¼ ð20 TeVÞ2g in Figs. 4(a) and 4(b),
respectively. y2N of y2NI ¼ 1.0 (1.2) reaches 1.25 (1.6) at the
GUT scale. Thus, the parameter ranges required for precise
focusing are

1.0≲ y2NI ≲ 1.2 and ð15 TeVÞ2 ≲ ~m2 ≲ ð20 TeVÞ2;
ð35Þ

when tan β ¼ 50 and m1=2 ¼ A0 ¼ 1 TeV. Particularly,
fy2NI ¼ 1.2; ~m2 ¼ ð20 TeVÞ2g leads to a quite exact focus-
ing, and so m2

hu
ðtTÞ is almost invariant under variation of

m2
0. Again, m

2
0 ≈ ð8 TeVÞ2 at the GUT scale happens to

yield 5 TeV stop masses and eventually the 126 GeV Higgs
boson mass. Around m2

0 ¼ ð8 TeVÞ2, the fine-tuning
measure is estimated as

Δm2
0
¼
���� ∂ logm

2
Z

∂ logm2
0

���� ≈ 66 and 306 ð36Þ

for fy2NI ¼ 1.0; ~m2 ¼ ð15 TeVÞ2g and fy2NI ¼ 1.2;
~m2 ¼ ð20 TeVÞ2g, respectively. They are remarkably
small compared to Eq. (25). Even for fy2NI ¼ 1.0;
~m2 ¼ ð10TeVÞ2; ð20TeVÞ2g, Δm2

0
turns out to be just

around 65–67. However, it is rather sensitive to y2NI:
e.g., for fy2NI ¼ 0.8; 1.2; ~m2 ¼ ð15 TeVÞ2g, Δm2

0
turns

out to be 438 and 290, respectively. With the hierarchy

~m=m1=2 ¼ 15–20, Δm2
0
can thus reduce to Oð102Þ or

smaller at one-loop level.3

As mentioned before, the case that the FP emerges at a
scale slightly lower than tT yields a smaller fine-tuning.
Once fm2

hu
; m2

hd
g are determined at low energy, μ

should be properly adjusted to give m2
Z ≈ ð91 GeVÞ2

as seen in Eq. (3). Actually, the RG equation for μ is
decoupled from those of {m2

q3 ; m
2
uc
3
; m2

hu
, etc.} at one-

loop level, and so its evolution does not affect our
previous discussions. For the case of a small enough

Δm2
0
, Δμ (¼ j2 μ2

m2
Z

∂m2
Z∂μ2 j) could become dominant over it

[36,37]. For m2
hu
ðtTÞ<ð1TeVÞ2, however, jμj2 should be

smaller than ð1 TeVÞ2. Thus, μ2=m2
Z [≈ −m2

hu
ðtWÞ=m2

Z]
in Δμ is not excessively large (< 100). Moreover, Δμ is
closely associated with the mechanism that μ is gener-
ated. If μ is generated at an intermediate scale (rather
than the GUT scale), ∂m2

Z=∂μ2 can reduce a bit, which
further decreases Δμ.

IV. Uð1Þ0 MEDIATION AND
PHENOMENOLOGICAL CONSTRAINTS

As seen above, the hierarchy of ~m=m1=2 ∼Oð10Þ is
essential for a successful FP scenario. It can be realized,
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6 107

8 107

t

m
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2
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FIG. 4 (color online). RG evolutions of m2
hu
for m2

0 ¼ ð9 TeVÞ2 (red), ð7 TeVÞ2 (green), and ð5 TeVÞ2 (blue), and for (a) y2NI ¼ 1.0,
~m2 ¼ ð15 TeVÞ2 and (b) y2NI ¼ 1.2, ~m2 ¼ ð20 TeVÞ2, when tan β ¼ 50 and m1=2 ¼ A0 ¼ 1 TeV with αG ¼ 1=24. The unit of the
vertical axis is ðGeVÞ2. Below the seesaw scale, t ¼ tI ≈ 25.3 [Q ≈ 2 × 1014 GeV], the RH neutrino is decoupled. The dotted lines at
t ¼ 0.92 denote the assumed stop decoupling scale, Q ¼ 5 TeV. Below the stop decoupling scale, the above RG runnings must be
modified. The above figures show that the (extrapolated) FP appears at desirable locations.

3Using the public codes, “SARAH4.2.2” [34] and
“SPheno3.3.2” [35] after properly modifying them, one could
estimate also other fine-tuning measures at two-loop level:
e.g., Δα ¼ f106; 32; 75; 543; 71g for α ¼ fm2

0; ~m
2; m1=2; A0; μg,

when yNI ¼ 0.8 and ~m2 ¼ ð15 TeVÞ2 with αGUT ≈ 1=25,
m1=2 ¼ ð1 TeVÞ2, and m2

0 ¼ A2
0 ¼ ð7 TeVÞ2. A0 of 7 TeV leads

to a relatively large ΔA0
. In this case, the stop mixing effect on the

Higgs mass is still negligible [ðAt= ~mtÞ2 ≈ 0.07] at low energies,
yielding m2

H ≈ ð126 GeVÞ2. The mass spectra for the neutralino,
charginos, and gluino are {454 GeV, 505 GeV, 519 GeV,
945 GeV}, {496 GeV, 944 GeV}, and 2.8 TeV, respectively,
with μ ≈ 510 GeV.

BUMSEOK KYAE AND CHANG SUB SHIN PHYSICAL REVIEW D 90, 035023 (2014)

035023-10



e.g., by employing also the Uð1Þ0 mediated SUSY breaking
[29]. Let us consider the following interaction among
vectorlike superfields:

W ¼ ðM þ θ2FÞXXc þ y1XΦΨc þ y2XcΦcΨ

þMΦΦΦc þMψΨΨc; ð37Þ

where M and F denotes the scalar and F-components of a
spurion superfield (Σ) parametrizing SUSY breaking effect.
MΦ;Ψ (∼MG) and y1;2 are dimensionful and dimensionless
parameters, respectively. For the above superpotential, one
can assign, e.g., Uð1ÞR charges of 2 and 1 to Σ and
fΦ;Φc;Ψ;Ψcg, respectively. fX;Xcg, which are neutral
under Uð1ÞR, play the role of the messenger for SUSY
breaking effects on the MSSM sector. While fX;Xcg are
Uð1Þ0 charged but SM singlet superfields, fΦ;Φcg are
superfields carrying both Uð1Þ0 and SM gauge charges.
fΨ;Ψcg carry only SM gauge quantum numbers. In the
Uð1Þ0 mediated SUSY breaking scenario [29], the Uð1Þ0
gaugino mass (≡M ~Z0) is of order ðg2~Z0=16π2ÞF=M. On the
other hand, the soft squaredmasses of Uð1Þ0 charged scalars,
i.e., the first and second generations of sfermions in our case
are given byM ~Z0, ~m2 ∼ ðq2i g2~Z0=16π2ÞM2

~Z0 .m2
0 can be induced

just through the ordinary gravity mediated SUSY breaking
effect, which is always there. Thus, the soft squared masses
for the third generation of sfermions are given by m2

0.
Since the SM charged superfields have Yukawa inter-

actions with the messengers, the threshold correction to the
wave function renormalization for Ψc has the following
form:

ΔZΨc ∼
y21

16π2
log jM þ θ2Fj2: ð38Þ

It contributes to the MSSM gaugino masses:

m1=2

g2G
∼ −

1

8π2
Tr½T2

GðΨcÞ�½logZΨc �jF

¼ O
�

y21
ð16π2Þ2

F
M

�

¼ O
�
M ~Z0

16π2

�
: ð39Þ

We regard it as the dominant contribution to the MSSM
gaugino masses. Hence, in this setup, we can achieve the
desired hierarchy, ~m=m1=2 ∼Oð4πÞ.
According to the effective SUSY (or “more minimal

SUSY”), the masses of the first two generations of
sfermions are required to be about 5–20 TeV in order to
avoid the SUSY flavor and SUSY CP problems, while
the third ones and gauginos are lighter than 1 TeV for
naturalness of the Higgs boson [19]. In our case, the third
generations of sfermions are heavier than 1 TeV, but the
naturalness problem can be addressed depending on the
FP scenario. As in the effective SUSY, the hierarchically
heavy masses for the first two generations of sfermions
(15–20 TeV) with CP violating phases of Oð0.1Þ can solve
the SUSY flavor and SUSY CP problems. In Ref. [17], it
was pointed out that such heavy masses for the first two
generations of sfermions drive the stop mass squared too
small or even negative at the EW scale via RG evolutions.
As seen in Tables III and IV, however, such a thing does not
occur. It is because the gluino mass is quite heavy in our
case. Moreover, the initial value of stop squared masses at
the GUT scale, m2

0, can be quite large without a serious
fine-tuning only if m2

hu
ðtÞ is well focused near the stop

mass scale.
Since all the sfermions are very heavy in this model, the

pair annihilation cross section of the lightest neutralino is
quite suppressed, and so it would overclose the Universe.
However, this problem could be resolved, e.g., if a
sufficient amount of entropy is somehow produced after
thermal freeze-out of the neutralino [16]. In this paper, we
do not discuss this issue in detail. Instead, let us discuss
phenomenological constraints coming from flavor viola-
tions in more detail.
In the squark mass matrix, the diagonal components,

(1, 1) and (2, 2), are almost degenerate with a squared mass
of ð15–20 TeVÞ2, e.g., by the Uð1Þ0 SUSY breaking
mediation, while the (3, 3) is filled dominantly by the
gravity mediation effect, which is quite suppressed com-
pared to the (1, 1) and (2, 2) components. In the other
components, nonzero values can be generated by a Uð1Þ0
breaking effect. (We do not specify a Uð1Þ0 breaking
mechanism here.) After diagonalization in the fermionic
quarks sector, (1, 2), (2, 1), and ði; 3Þ, ð3; iÞ can be induced
after Uð1Þ0 breaking.

TABLE IV. Soft squared masses of the stops and Higgs boson at t ¼ tT ≈ 0.92 (Q ¼ 5 TeV) for m2
0 ¼ ð9 TeVÞ2, ð7 TeVÞ2, and

ð5 TeVÞ2, when tan β ¼ 50 and m1=2 ¼ A0 ¼ 1 TeV with αG ¼ 1=24. The left (right) four columns correspond to the results of
fy2NI ¼ 1.0; ~m2 ¼ ð15 TeVÞ2g [fy2NI ¼ 1.2; ~m2 ¼ ð20 TeVÞ2g].

tan β ¼ 50 y2NI ¼ 1.0 ~m ¼ 15 TeV tan β ¼ 50 y2NI ¼ 1.2 ~m ¼ 20 TeV

m2
0 ð9 TeVÞ2 ð7 TeVÞ2 ð5 TeVÞ2 m2

0 ð9 TeVÞ2 ð7 TeVÞ2 ð5 TeVÞ2
m2

q3ðtTÞ ð6.3 TeVÞ2 ð4.8 TeVÞ2 ð3.1 TeVÞ2 m2
q3ðtTÞ ð5.9 TeVÞ2 ð4.2 TeVÞ2 ð2.1 TeVÞ2

m2
uc
3
ðtTÞ ð5.9 TeVÞ2 ð4.4 TeVÞ2 ð2.9 TeVÞ2 m2

uc
3
ðtTÞ ð5.5 TeVÞ2 ð3.9 TeVÞ2 ð2.1 TeVÞ2

m2
hu
ðtTÞ ð1.2 TeVÞ2 ð0.8 TeVÞ2 ð0.4 TeVÞ2 m2

hu
ðtTÞ ð0.7 TeVÞ2 ð0.7 TeVÞ2 ð0.7 TeVÞ2
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The (1, 2) and (2, 1) components affect, e.g., K-K̄
mixing. The amplitude of K-K̄ mixing by the squark
mixing is roughly estimated as [1,38]

MKK̄ ≈
4α23
~m2
q

�
Δ ~m2

q

~m2
q

�
2

; ð40Þ

where ~m2
q ≈ ð20 TeVÞ2, and Δ ~m2

q denotes the off-diagonal
component of the squark mass matrix. Note that RG
runnings of the heavy masses for the first two generations
of sfermions are negligible [17,18], and so their low energy
values are almost the same as those at the GUT scale.
Since the SM still explains the observed data well,
Eq. (40) should be smaller than the SM prediction,
MSM

KK̄≈α22sin
2θccos2θcðm2

c=M4
WÞ, where θc stands for the

Cabibbo mixing angle. The conditionMKK̄≪MSM
KK̄ yields

�
Δ ~m2

q

~m2
q

�
≪ 1.6 × 10−1 ×

�
~mq

20 TeV

�
: ð41Þ

If the mixing among the d-type quarks is given fully by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix (or a similar
order mixing matrix) and the elements induced by gravity
mediation are of order TeV2, this constraint can be
satisfied.4

Unlike the quark sector, the lepton sector requires large
mixing to explain the observed neutrino oscillations.
Thus, although (1, 1) and (2, 2) components of the slepton
mass matrices acquire very large squared masses
[≈ð15–20 TeVÞ2] from the Uð1Þ0 mediation effect, other
components can also receive large squared masses after
diagonalization of the fermion mass matrices. Nonzero off-
diagonal components in the slepton matrix can induce
lepton flavor violations (LFV), which is absent in the SM.
The branching ratio for μ− → e−γ by such a slepton mixing
is estimated as [38]

BRðμ− → e−γÞ
BRðμ− → e−νμν̄eÞ

¼ 12πα3

G2
F ~m4

l

�����I3ðxÞðδl21ÞLL þM ~γ

mμ
I1ðxÞðδl21ÞLR

����
2

þL↔ R

�

≈ 6.7× 10−13 ×

�ð20 TeVÞ4
~m4
l

�

×

����� 112 ðδl21ÞLL þ
M ~γ

2mμ
ðδl21ÞLR

����
2

þL↔ R

�
; ð42Þ

where the functions of x, I3ðxÞ, and I1ðxÞ approach to 1=12
and 1=2, respectively, for x≡M2

~γ= ~m
2
e ≪ 1. ~ml is the mass

of the first or second generation of SUð2ÞL doublet
(i.e., LH) slepton. ðδl21ÞLR is associated with the A-term
vertex proportional to a very small Yukawa coupling. It is
at most of order mμ= ~me, which suppresses the second
term, because the photino mass M ~γ would be smaller than
1 TeV in our case. This process is possible through, e.g.,
the ~ν1;2-chargino and ~e1;2-neutralino loops. Even if the
slepton mixing ðδl21ÞLL is of order unity, sleptons of
20 TeV are heavy enough to meet the current bound,
BRðμ− → e−γÞ < 5.7 × 10−13 [40].
Similarly, such heavy slepton masses suppress also

τ− → e−γ [BRðτ− → e−γÞ < 3.3 × 10−8 [41]] and τ− →
μ−γ [BRðτ− → μ−γÞ < 4.4 × 10−8], which are actually
much less stringent, because they are still involved in
those processes. Even if the first two generations of
sleptons are quite heavy, however, τ can still decay with a
sizable rate through the ~ν3L-chargino and ~e3L-neutralino
loops without a slepton mixing insertion, provided that
the τ–e or τ–μ mixing in the fermion sector is large [42].
So it is desirable to assume that the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix comes dominantly
from the neutrino sector [18], only if the first two
generations of sleptons are quite heavy. Then additional
large off-diagonal components of sneutrino mass matrix,
which are induced after diagonalization of the neutrino
mass matrix, can suppress the unwanted τ− → e−γ
and τ− → μ−γ.
Now we propose a model, in which the PMNS matrix

results from mixing of the neutrino sector. Let us introduce
extra singlet fields. Their charge assignments under Uð1Þ0
and Uð1ÞR are listed in Table V. One can see that the
charged lepton mass matrix should have a diagonal form at
the renormalizable level because of the Uð1Þ0 and Uð1ÞR
symmetries. Through the Uð1Þ0 mediated SUSY breaking
mechanism, sfermions with nonzero Uð1Þ0 charges receive
quite heavy soft masses. Hence, as discussed above, LFV
can adequately be suppressed by Uð1Þ0. Note that the RH
neutrinos, νc1;2;3, carry only the Uð1ÞR [and Uð1ÞB−L]
charge(s). So they can freely be mixed. Note that the
mixing in the RH (s)neutrino sector is almost irrelevant to
LFV, while RH neutrinos’ mixing still contributes to the
PMNS matrix.
The superpotential of the neutrino sector consistent with

Uð1Þ0 × Uð1ÞR is written as

TABLE V. Uð1Þ0 and Uð1ÞR charges for various superfields.
The MSSM Higgs doublets are neutral under both symmetries.
The subscripts of the MSSM superfields are family indices. Uð1Þ0
is assumed to be broken by nonzero VEVs of ~Z1;2 around the
GUT scale.

Superfields l1;2 ec1;2 l3; ec3; ν
c
1;2;3 S1;2 Sc1;2 Z1;2

Uð1Þ0 �2 ∓2 0 ∓2 �1 �1
Uð1ÞR 1 1 1 1 1 0

4In fact, even ~m2
q ≈ ð10 TeVÞ2 is enough to avoid the SUSY

flavor and SUSY CP problems in the quark sector [39].
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WN ¼
X

i¼1;2;3

�
yiνl3huνci þ

1

2
Mijνci ν

c
j þðλi1Z2Sc1þ λi2Z1Sc2Þνci

�

þ
X
k¼1;2

½ykSlkhuSkþ λkZZkSkSck� þMSS1S2þMScSc1S
c
2;

ð43Þ

where Mij (fMS;MScg) denotes dimensionful parameters
of order 1014 GeV or smaller (1016 GeV or smaller),
while ys and λs are dimensionless ones. [Mij breaks
Uð1ÞB−L.] In terms of Eq. (43), Nc in Eq. (30) can be
identified as ðy1ννc1 þ y2ννc2 þ y3ννc3Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðyiνÞ2

p
, and yN asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy1νÞ2 þ ðy2νÞ2 þ ðy3νÞ2
p

. The other two components
orthogonal to Nc have no direct couplings to the MSSM
lepton doublets. They obtain such couplings via the
mediation of fS1;2; Sc1;2g after ~Z1;2 get GUT scale VEVs,
breaking Uð1Þ0, and fS1;2; Sc1;2g are integrated out. We
assume that the resulting effective Dirac Yukawa couplings
are somewhat smaller than yN . The sizable (effective) Dirac
Yukawa couplings could radiatively generate the mixing
soft mass squareds such as ðΔ ~m31ÞLL, ðΔ ~m32ÞLL, etc. for
sneutrinos via the RH neutrino-Higgsino loops above the
seesaw scale.5 As discussed above, however, such mixing
terms cannot give rise to sizable LFV because the heavy
soft masses for sleptons should always be involved there.
After integrating out the RH neutrinos νc1;2;3, the general
results of the type-I seesaw mechanism can eventually be
reproduced. Unlike the charged lepton sector, the neutrinos
can thus fully be mixed below the seesaw scale, yielding
the desired form of the PMNS matrix in principle. In a
similar way, one can achieve the CKMmixing of the quarks
by introducing extra vectorlike quarks at the GUT scale,
which play the role of the mediators fS1;2; Sc1;2g. However,
the absence of the extra vectorlike charged leptons guar-
antees the almost diagonal mass matrix for the SM charged
leptons even at low energies.

V. CONCLUSION

According to the recent analysis based on three-loop
calculations, the radiative correction by 5 TeV stop masses
can support the 126 GeV Higgs mass without a large stop
mixing effect. The 5 TeV stop decoupling scale is much
higher than the FP scale determined in the original FP
scenario. As a result, m2

hu
evaluated at low energy becomes

sensitive to m2
0 chosen at the GUT scale, and so to the low

energy value of stop mass, unlike the original FP scenario.
Moreover, the present high gluino mass bound (≳1.4 TeV)
results in a too large negative m2

hu
at low energy, which

gives rise to a serious fine-tuning problem in the MSSM
Higgs sector.

In this paper, we have discussed how the location of the
FP changes under various variations of parameters. In
particular, we noted that the FP can move to the desirable
location under increases of both the Yukawa coupling of a
superheavy RH neutrino to the Higgs, and the masses of the
first and second generations of sfermions. On the other
hand, the “λ coupling” in the NMSSM should be more
suppressed than 0.1 to be consistent with the FP scenario, if
it is introduced.
We have shown that an order one Dirac Yukawa coupling

(∼1.0) of the superheavy RH neutrino (∼1014 GeV) at the
seesaw scale can move the FP to the desired stop decou-
pling scale, and two-loop gauge interactions by the hier-
archically heavy masses (15–20 TeV) of the first
two generations of sfermions can effectively compensate
the heavy gluino effects in the RG evolution of m2

hu
.

Here, we set the Uð1ÞR breaking soft parameters,
m1=2 ¼ A0 ¼ 1 TeV, at the GUT scale. The gaugino mass
unification is maintained in this setup. Such heavy masses
of the RH neutrino and the first two generations of
sfermions can also provide a natural explanation of the
small active neutrino mass via the seesaw mechanism, and
suppress the flavor violating processes in SUSYmodels. At
the new location of the FP, m2

hu
can be insensitive to m2

0 or
trial heavy stop squared masses, remarkably improving the
naturalness of the small EW scale. Under this setup, the
126 GeV Higgs mass can be naturally explained by an
accidentally selected m2

0 of about ð8 TeVÞ2, which gives
5 TeV stop mass at low energy.
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APPENDIX A

In the Appendix, we present the full RG equations
utilized in our analyses and some semianalytic solutions on
which the discussions in the main text are based. The
notations here follow those of the main text of this paper.

1. The full RG equations

The RG equations for the gauge couplings, g3;2;1 and
gaugino masses,M3;2;1 are integrable. The RG solutions for
them are given by [1]

5If the Uð1Þ0 breaking scale and the mass scale of SðcÞ1;2 are lower
than the seesaw scale, they are not radiatively generated at all,
even with sizable Dirac neutrino Yukawa couplings.
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g2i ðtÞ ¼
g20

1 − g2
0

8π2
biðt − t0Þ

; and
MiðtÞ
g2i ðtÞ

¼ m1=2

g20
; ðA1Þ

where bi (i ¼ 3; 2; 2) denotes the beta function coeffi-
cients for the case of the MSSM field contents,
ðb3; b2; b1Þ ¼ ð−3; 1; 33

5
Þ. t parametrizes the renormaliza-

tion scale Q, t − t0 ¼ log Q
MG

. The relevant superpotential
in this paper is

W ⊃ ytq3huuc3 þ ybq3hddc3 þ yτl3hdec3 þ yNl3huNc

þ 1

2
MNNcNc þ μhuhd; ðA2Þ

where q3 (l3) and fuc3; dc3g (ec3) stand for the third
generations of quark (lepton) doublet and singlets. The
Majoran mass of the RH neutrino Nc is assumed to be
MN ≈ 2 × 1014 GeV. Thus, below the energy scale of
MN , the RH neutrino Nc is decoupled from dynamics.
The one-loop RG equations for the above renormalizable
couplings are given by

8π2
dy2t
dt

¼ y2t

�
6y2t þ y2b þ y2N −

16

3
g23 − 3g22 −

13

15
g21

�
; ðA3Þ

8π2
dy2b
dt

¼ y2b

�
y2t þ 6y2b þ y2τ −

16

3
g23 − 3g22 −

7

15
g21

�
; ðA4Þ

8π2
dy2τ
dt

¼ y2τ

�
3y2b þ 4y2τ þ y2N − 3g22 −

9

5
g21

�
; ðA5Þ

8π2
dy2N
dt

¼ y2N

�
3y2t þ y2τ þ 4y2N − 3g22 −

3

5
g21

�
; ðA6Þ

8π2
dμ2

dt
¼ μ2

�
3y2t þ 3y2b þ y2τ þ y2N − 3g22 −

3

5
g21

�
; ðA7Þ

and the RG equations of the A-term coefficients
corresponding to the Yukawa couplings of Eq. (A2) are

8π2
dAt

dt
¼ 6y2t At þ y2bAb þ y2NAN −

16

3
g23M3

− 3g22M2 −
13

15
g21M1; ðA8Þ

8π2
dAb

dt
¼ y2t At þ 6y2bAb þ y2τAτ −

16

3
g23M3

− 3g22M2 −
7

15
g21M1; ðA9Þ

8π2
dAτ

dt
¼ 3y2bAb þ 4y2τAτ þ y2NAN − 3g22M2 −

9

5
g21M1;

ðA10Þ

8π2
dAN

dt
¼ 3y2t At þ y2τAτ þ 4y2NAN − 3g22M2 −

3

5
g21M1:

ðA11Þ
Below the scale of MN , the RG evolutions of yN and AN
become frozen, and they should be decoupled from the
above equations.
The RG evolutions for the soft squared masses are

governed by the following equations:

16π2
dm2

hu

dt
¼ 6y2t ðXt þ A2

t Þ þ 2y2NðXN þ A2
NÞ − 6g22M

2
2

−
6

5
g21M

2
1 þ

~m2

4π2

�
6g42 þ

6

5
g41

�
; ðA12Þ

16π2
dm2

uc
3

dt
¼ 4y2t ðXt þ A2

t Þ −
32

3
g23M

2
3 −

32

15
g21M

2
1

þ ~m2

4π2

�
32

3
g43 þ

32

15
g41

�
; ðA13Þ

16π2
dm2

q3

dt
¼ 2y2t ðXt þ A2

t Þ þ 2y2bðXb þ A2
bÞ

−
32

3
g23M

2
3 − 6g22M

2
2 −

2

15
g21M

2
1

þ ~m2

4π2

�
32

3
g43 þ 6g42 þ

2

15
g41

�
; ðA14Þ

16π2
dm2

hd

dt
¼ 6y2bðXb þ A2

bÞ þ 2y2τðXτ þ A2
τÞ − 6g22M

2
2

−
6

5
g21M

2
1 þ

~m2

4π2

�
6g42 þ

6

5
g41

�
; ðA15Þ

16π2
dm2

dc
3

dt
¼ 4y2bðXb þ A2

bÞ −
32

3
g23M

2
3 −

8

15
g21M

2
1

þ ~m2

4π2

�
32

3
g43 þ

8

15
g41

�
; ðA16Þ

16π2
dm2

ec
3

dt
¼ 4y2τðXτ þ A2

τÞ −
24

5
g21M

2
1 þ

~m2

4π2

�
24

5
g41

�
;

ðA17Þ

16π2
dm2

l3

dt
¼ 2y2τðXτ þ A2

τÞ þ 2y2NðXN þ A2
NÞ − 6g22M

2
2

−
6

5
g21M

2
1 þ

~m2

4π2

�
6g42 þ

6

5
g41

�
; ðA18Þ

16π2
dm2

Nc

dt
¼ 4y2NðXN þ A2

NÞ; ðA19Þ

where Xt, Xb, Xτ, and XN are defined as Xt≡m2
hu
þ

m2
uc
3
þm2

q3 , Xb≡m2
hd
þm2

dc
3
þm2

q3 , Xτ≡m2
hd
þm2

ec
3
þm2

l3
,
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and XN ≡m2
hu
þm2

Nc þm2
l3
, respectively. The ~m2 terms

denote the contributions coming from the two-loop gauge
interactions by the first and second generations of sfer-
mions, which are assumed to be hierarchically heavier than
the third ones. The RG running of ~m2 is negligible [17,18],
and so its low energy value is almost the same as that at
the GUT scale. Here, we suppose a universal soft mass for
the first two generations of sfermions, which eliminates the
contributions by the D-term potential from the above
equations. Since these effects are comparable to the one-
loop gauginomass terms,we take them into account.m2

N and
XN as well as yN and AN are dropped out from the above
equations below Q ¼ MN.

2. Semianalytic RG solutions

Let us present our semianalytic solutions to the RG
equations. When tan β is small enough and the RH
neutrino is decoupled, the RG evolutions of the soft mass
parameters, m2

hu
, m2

uc
3
, m2

q3 , and At are approximately
simplified as

16π2
dm2

hu

dt
¼ 6y2t ðXt þ A2

t Þ − 6g22M
2
2 −

6

5
g21M

2
1

þ ~m2

4π2

�
6g42 þ

6

5
g41

�
; ðA20Þ

16π2
dm2

uc
3

dt
¼ 4y2t ðXt þ A2

t Þ −
32

3
g23M

2
3 −

32

15
g21M

2
1

þ ~m2

4π2

�
32

3
g43 þ

32

15
g41

�
; ðA21Þ

16π2
dm2

q3

dt
¼ 2y2t ðXt þ A2

t Þ −
32

3
g23M

2
3 − 6g22M

2
2

−
2

15
g21M

2
1 þ

~m2

4π2

�
32

3
g43 þ 6g42 þ

2

15
g41

�
;

ðA22Þ

8π2
dAt

dt
¼ 6y2t At −

16

3
g23M3 − 3g22M2 −

13

15
g21M1

≡ 6y2t At −GA: ðA23Þ

Summation of Eqs. (A20), (A21), and (A22) yields the RG
equation for Xt:

dXt

dt
¼ 3y2t

4π2
ðXt þ A2

t Þ −
1

4π2
G2

X: ðA24Þ

In Eqs. (A23) and (A24), GA and G2
X are defined as

GAðtÞ≡
�
m1=2

g20

��
16

3
g43 þ 3g42 þ

13

15
g41

�
; ðA25Þ

G2
XðtÞ≡

�
m1=2

g20

�
2
�
16

3
g63 þ 3g62 þ

13

15
g61

�

−
~m2

4π2

�
16

3
g43 þ 3g42 þ

13

15
g41

�
; ðA26Þ

respectively, assuming MiðtÞ
g2i ðtÞ

¼ m1=2

g2
0

(i ¼ 3; 2; 1).

The solutions of At and Xt are given by

AtðtÞ ¼ e
3

4π2

R
t

t0
dt0y2t

�
A0 −

1

8π2

Z
t

t0

dt0GAe
−3
4π2

R
t0
t0
dt00y2t

�
;

ðA27Þ

XtðtÞ ¼ e
3

4π2

R
t

t0
dt0y2t

×

�
X0 þ

Z
t

t0

dt0
�

3

4π2
y2t A2

t −
1

4π2
G2

X

�
e

−3
4π2

R
t0
t0
dt00y2t

�
;

ðA28Þ
where A0 and X0 denote the GUT scale values of At and Xt,
A0 ≡ Atðt ¼ t0Þ, and X0≡Xtðt¼ t0Þ¼m2

hu0
þm2

uc
3
0þm2

q30
.

With Eqs. (A24), (A27), and (A28), one can solve
Eqs. (A20), (A21), and (A22):

m2
hu
ðtÞ ¼ m2

hu0
þ X0

2

�
e

3

4π2

R
t

t0
dt0y2t − 1

�
þ 1

2
FðtÞ

−
�
m1=2

g20

�
2
�
3

2
fg42ðtÞ − g40g þ

1

22
fg41ðtÞ − g40g

�

þ
�

~m2

4π2

��
3fg22ðtÞ − g20g þ

1

11
fg41ðtÞ − g40g

�
;

ðA29Þ

m2
uc
3
ðtÞ ¼ m2

uc
3
0 þ

X0

3

�
e

3

4π2

R
t

t0
dt0y2t − 1

�
þ 1

3
FðtÞ

þ
�
m1=2

g20

�
2
�
8

9
fg43ðtÞ − g40g −

8

99
fg41ðtÞ − g40g

�

−
�

~m2

4π2

��
16

9
fg23ðtÞ − g20g −

16

99
fg21ðtÞ − g20g

�
;

ðA30Þ

m2
q3ðtÞ ¼ m2

q30
þ X0

6

�
e

3

4π2

R
t

t0
dt0y2t − 1

�
þ 1

6
FðtÞ

þ
�
m1=2

g20

�
2
�
8

9
fg43ðtÞ − g40g −

3

2
fg42ðtÞ − g40g

−
1

198
fg41ðtÞ − g40g

�

−
�

~m2

4π2

��
16

9
fg23ðtÞ − g20g − 3fg22ðtÞ − g20g

−
1

99
fg21ðtÞ − g20g

�
; ðA31Þ

where FðtÞ is defined as
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FðtÞ≡ e
3

4π2

R
t

t0
dt0y2t

Z
t

t0

dt0
3

4π2
y2t A2

t e
−3
4π2

R
t0
t0
dt00y2t

−
1

4π2

�
e

3

4π2

R
t

t0
dt0y2t

Z
t

t0

dt0G2
Xe

−3
4π2

R
t0
t0
dt00y2t −

Z
t

t0

dt0G2
X

�
:

ðA32Þ
Note that FðtÞ in Eq. (A32) is independent of the initial
values for the squared masses, m2

hu0
, m2

uc
3
0, and m2

q30
. Using

Eq. (A1), one can obtain the following useful results:

Z
t

t0

dt0g2i M
2
i ¼

4π2

bi

�
m1=2

g20

�
2

fg4i ðtÞ − g40g; ðA33Þ

Z
t

t0

dt0g2i Mi ¼
8π2

bi

�
m1=2

g20

�
fg2i ðtÞ − g20g; ðA34Þ

Z
t

t0

dt0g4i ¼
8π2

bi
fg2i ðtÞ − g20g: ðA35Þ
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