
Radiative generation of lepton masses with the Uð1Þ0 gauge symmetry

Hiroshi Okada1,* and Kei Yagyu2,†
1School of Physics, KIAS, Seoul 130-722, Korea

2Department of Physics and Center for Mathematics and Theoretical Physics,
National Central University, Chungli 32001, Taiwan, Republic of China

(Received 17 May 2014; published 18 August 2014)

We revisit our previous model proposed by Okada and Yagyu [Phys. Rev. D 89, 053008 (2014)],
in which lepton masses, except the tauon mass, are generated at the one-loop level in TeV-scale physics.
Although in the previous work, rather large Yukawa coupling constants, i.e., greater than about 3, are
required to reproduce the muon mass, we do not need to introduce such largeOð1Þ couplings. In our model,
masses for neutrinos (charged leptons) are generated by higher-dimensional operators with two isospin
triplet (singlet and doublet) scalar fields, which are introduced at the one-loop level. Thus, the mass
hierarchy between neutrinos and charged leptons can be naturally described by the difference in the number
of vacuum expectation values of the triplet fields which must be much smaller than the vacuum expectation
values of the doublet field due to the constraint from the electroweak rho parameter. Furthermore, the
discrepancy in the measured muon anomalous magnetic moment (g − 2) from the prediction in the standard
model is explained by new particle contributions at the one-loop level. The collider phenomenology is
discussed, especially focusing on a signature from doubly charged scalar bosons at the LHC.
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I. INTRODUCTION

The standard model (SM) can successfully describe
almost all the phenomena at collider experiments even
after the discovery of the Higgs boson at the LHC [1].
However, it is well known that there are phenomena which
cannot be explained in the SM, such as the neutrino
oscillations, the existence of dark matter (DM), and baryon
asymmetry of the Universe. This strongly suggests that the
SM should be replaced by a new physics model giving an
explanation of these phenomena.
One of the attractive scenarios to explain tiny neutrino

masses is obtained in radiative seesaw models, in which the
dimension-five operator Lc

LLLΦΦ, where LL and Φ are,
respectively, the left-handed lepton doublet and the Higgs
doublet fields supplying Majorana-type neutrino masses,
is generated through quantum levels. Thanks to a loop
suppression factor, a new physics scale can be of order
1 TeV. Therefore, this class of models can be directly tested
at collider experiments. Furthermore, aDMcandidate can be
naturally obtained1 due to an unbroken discrete symmetry,
which is necessary to enclose a loop diagram generating
neutrino masses and to forbid lower order masses such as a
tree-level Dirac neutrino mass.
So far, various models have been constructed in this line.

The model by Krauss et al. has been proposed in the very
early stage [4,5], in which neutrino masses are generated

at the three-loop level, and its phenomenology at eþe−
colliders has been discussed in Ref. [6]. Another simple
model with one-loop induced neutrino masses has been
constructed by Ma [7–9], and its extensions have also been
discussed in Ref. [10]. The model by Aoki et al. [11–13] is
the three-loop radiative seesaw model, where the successful
scenario based on the electroweak baryogenesis [14] can be
realized. Models with radiative generations for Dirac-type
masses for neutrinos have been proposed in Ref. [15].
In addition to the above modes, there are a lot of papers
proposing various types of radiative seesawmodels [16,17].
Apart from neutrino masses, the masses of charged

leptons are also so small compared to the electroweak
scale, i.e., order of 100 GeV, especially the muon and
electron masses. In the SM, smallness of the charged-lepton
masses is just accommodated by taking the Yukawa
coupling constants to be Oð10−3Þ and Oð10−5Þ for the
muon and electron masses, respectively. In Refs. [18,19],
several models have been proposed, where charged-lepton
masses are radiatively induced.2 However, tiny neutrino
masses are not explained simultaneously in a given model.
In this paper, we would like to explain the following two

questions regarding the lepton masses by extending the
radiative seesaw mechanism: (1) why the lepton masses are
so small as compared to the electroweak scale, and (2) why
there is a large difference between masses of neutrinos
and those of the electron or muon. In Ref. [21], we have
proposed a new mechanism where Majorana masses of
neutrinos and Dirac masses of charged leptons are induced
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1There are other types of radiative seesaw models without

a DM candidate, e.g., the Zee model [2] and the Zee-Babu
model [3].

2In Ref. [20], the quark masses and mixing are radiatively
induced in a model with two Higgs doublet Higgs fields.
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from a different type of dimension-five operator:
Lc
LLLΔ0Δ1 and L̄LeRΦΔ0, respectively, where Δ0ðΔ1Þ is

a hypercharge3 Y ¼ 0ðY ¼ 1Þ isospin triplet scalar field,
and eR is the right-handed charged-lepton singlet fields. It
is known that the magnitude of the vacuum expectation
value (VEV) of triplet scalar fields is severely constrained
by the electroweak rho parameter; i.e., they have to be
smaller than order or 1 GeV. Therefore, for question (1),
smallness can be explained by the loop suppression factor
if the dimension-five operators are generated via loop levels
and the tiny VEVs of triplet scalar fields as well. In
addition, question (2) can be described by the difference
in the number of triplet VEVs for the generation of masses
for neutrinos and charged leptons.
We then have constructed a concrete renormalizable

model [21] incorporated the above mechanism, in which
both the dimension-five operators are induced at the one-
loop level. However, we need rather large Yukawa coupling
constants, such as ones greater than about 3, to reproduce
the muon mass. The main reason for this problem comes
from the too strong suppression by the triplet VEV for the
muon mass. Therefore, in this paper, we replace the one-
loop induced dimension-five operator L̄LeRΦΔ0 by a
dimension-seven operator L̄LeRΦχχχ with a SM gauge
singlet scalar field χ. We introduce an additional local
Uð1Þ0 symmetry which is spontaneously broken by the
singlet VEV, so that the singlet VEV is expected to be an
order of 1 TeV with an order-one Uð1Þ0 gauge coupling
constant to get a mass of the extra gauge boson to be
Oð1Þ TeV. Under these modifications, we can reproduce
the muon mass with Oð1Þ Yukawa coupling constants.
In our model, additional vectorlike charged leptons play

a crucial role in generating the lepton masses. Moreover,
the discrepancy in the observed muon anomalous magnetic
moment (muon g − 2) from the prediction in the SM can be
compensated by one-loop contributions of the additional
charged leptons with the mass of order 1 TeV. We then
discuss the collider phenomenology in the favored param-
eter regions by taking into account the masses of the muon,
neutrinos, muon g − 2, and DM physics.
This paper is organized as follows. In Sec. II, we define

our model, and we give the Lagrangian relevant to the
generation of the lepton masses. In Sec. III, several
observables in the lepton sector are calculated, e.g., masses
for the charged leptons and neutrinos, the muon g − 2, and
lepton flavor violating (LFV) processes. Section IV is
devoted to study the collider phenomenology of our model.
Conclusions and discussions are given in Sec. V. Explicit
formulas for the mass matrices for Higgs bosons are given
in the Appendix.

II. THE MODEL

We propose a radiative lepton mass model where both
Dirac charged-lepton (muon and electron) masses and
Majorana neutrino masses are generated at the one-loop
level. We introduce an extra local Uð1Þ0 (spontaneously
broken) and a discrete Z2 (unbroken) symmetry in addition
to the SM gauge symmetry. The particle contents and
charge assignment are shown in Table I. To avoid tree-level
mixing between the Z boson and a newUð1Þ0 gauge boson,
we take theUð1Þ0 charge for the doublet Higgs fieldΦ to be
zero.4 Under the requirement where all the terms given in
Eq. (1) are allowed, the Uð1Þ0 charges for fields listed in
Table I can be written in terms of those for Li

L, e
a
R, and Δ0

denoted by x, y, and z, respectively. In order to forbid
undesired terms giving tree-level masses for the charged
leptons and neutrinos, i.e., Lic

LΔ1L
j
L and Li

LΦe
a
R, z ≠ 0 and

x − y ≠ 0 must be satisfied, respectively. From the former
condition, Δ0 has to be a complex field. Such a complex
Y ¼ 0 triplet field has also been introduced in Ref. [22]
in a supersymmetric model. Notice here that the condition
x ≠ y suggests that the Uð1Þ0 symmetry cannot be iden-
tified as a lepton number symmetry. The scalar fields Φ3=2,
η, and S and the vectorlike charged leptons Eα are assigned
to be Z2 odd to enclose the loops in the diagrams for the
radiative generation of lepton masses.
Comparing the current model with the previous model,

the SM gauge singlet scalar field χ with a nonzero VEV
is additionally introduced, and the Y ¼ 0 triplet scalar field
Δ0 is extended to be the complex field as mentioned
above.5

The relevant Lagrangian to the radiative generations of
lepton masses is given as follows:

−L¼MαEα
RE

α
LþyiτLi

LΦτRþH:c:

þyaαS eaRE
α
LS

�þyiαη Li
LηE

α
Rþyiα3=2L

ic
L ðiτ2ÞΦ3=2Eα

LþH:c:

þκe1χ
2S2þκe2η

†ΦS�χþκνTrðΔ1 ·Δ0ÞðΦ†
3=2 ·ηÞþH:c:;

ð1Þ

where Mα is the mass of the αth vectorlike lepton, and a
pair of ·’s in the κν term denotes the contraction by the Pauli
matrices, i.e., ðA · BÞðC ·DÞ≡Pi¼1;2;3ðAτiBÞðCτiDÞ. We
note that the coupling constants yiαη , yaαS , and yiα3=2 are the
arbitrary complex 3 × α, 2 × α, and 3 × α matrices, respec-
tively. In Fig. 1, Feynman diagrams for the Dirac charged-
lepton masses and Majorana neutrino masses are shown.
Calculations of these diagrams are performed in the next
section.

3The definition of the hypercharge Y is given as Q ¼ Y þ T3

with Q and T3 being the electromagnetic charge and the third
component of the isospin.

4Although, in general, there is mixing from the gauge kinetic
term, we just drop such mixing term by hand.

5We can also construct another model without the Δ0 field by
changing the Uð1Þ0 charge assignment for fields, in which the
dimension-five operator Lc

LLLΔ0Δ1 for neutrino masses is
replaced by Lc

LLLΔ1χ.
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The scalar potential can be separated into the Z2-even, Z2-odd, and interaction parts due to the unbroken Z2 parity as

V ¼ VZ2-even þ VZ2-odd þ V int; ð2Þ

where each part is given by

VZ2-even ¼þm2
ΦΦ

†Φþm2
Δ1
TrðΔ†

1Δ1Þ þm2
Δ0
TrðΔ†

0Δ0Þ þm2
χχ

�χ þ λ1ðΦ†ΦÞ2 þ λ2½TrðΔ†
1Δ1Þ�2 þ λ3TrðΔ†

1Δ1Þ2

þ λ4½TrðΔ†
0Δ0Þ�2 þ λ5TrðΔ†

0Δ0Þ2 þ λ6ðχ�χÞ2 þ λ7ðΦ†ΦÞTrðΔ†
1Δ1Þ þ λ8ðΦ† ·ΦÞTrðΔ†

1 ·Δ1Þ þ λ9ðΦ†ΦÞTrðΔ†
0Δ0Þ

þ λ10ðΦ† ·ΦÞTrðΔ†
0 ·Δ0Þ þ λ11ðΦ†ΦÞχ�χ þ λ12TrðΔ†

1Δ1Þχ�χ þ λ13TrðΔ†
0Δ0Þχ�χ þ λ14TrðΔ†

1Δ1ÞTrðΔ†
0Δ0Þ

þ λ15TrðΔ†
1Δ0ÞTrðΔ†

0Δ1Þ þ λ16TrðΔ†
1Δ1Δ

†
0Δ0Þ þ λ0ΦTðiτ2ÞΔ†

1Φχ þ λ00Φ
†Δ0Φχ þH:c:; ð3Þ

VZ2-odd ¼ þm2
ηη

†ηþm2
3=2Φ

†
3=2Φ3=2 þm2

SS
�Sþ ξ1ðη†ηÞ2 þ ξ2ðΦ†

3=2Φ3=2Þ2 þ ξ3ðS�SÞ2 þ ξ4ðη†ηÞðΦ†
3=2Φ3=2Þ

þ ξ5jη†Φ3=2j2 þ ξ6ðη†ηÞS�S; ð4Þ

V int ¼ þκ1ðΦ†ΦÞðη†ηÞ þ κ2jΦ†ηj2 þ κ3ðΦ†ΦÞðΦ†
3=2Φ3=2Þ þ κ4jΦ†Φ3=2j2 þ κ5ðΦ†ΦÞS�Sþ κ6TrðΔ†

1Δ1Þη†η
þ κ7TrðΔ†

1 · Δ1Þη† · ηþ κ8TrðΔ†
1Δ1ÞΦ†

3=2Φ3=2 þ κ9TrðΔ†
1 · Δ1ÞΦ†

3=2 · Φ3=2 þ κ10TrðΔ†
1Δ1ÞS�Sþ κ11TrðΔ†

0Δ0Þη†η
þ κ12TrðΔ†

0 · Δ0Þη† · ηþ κ13TrðΔ†
0Δ0ÞΦ†

3=2Φ3=2 þ κ14TrðΔ†
0 · Δ0ÞΦ†

3=2 · Φ3=2 þ κ15TrðΔ†
0Δ0ÞS�Sþ κ16χ

�χη†η

þ κ17χ
�χΦ†

3=2Φ3=2 þ κ18χ
�χS�Sþ κe1χ

2S2 þ κe2η
†ΦS�χ þ κνTrðΔ1 · Δ0ÞðΦ†

3=2 · ηÞ þ ~κνTrðΔ1Δ0ÞðΦ†
3=2ηÞ þ H:c:

ð5Þ

The κe1, κe2, and κν terms in Eq. (5) already appeared in the Lagrangian in Eq. (1). The λ0 and λ00 terms in the last line in
Eq. (3) break accidental global Uð1Þ symmetries associated with the phase transformation of triplet scalar bosons, i.e.,
Δ0;1 → eiθ0;1Δ0;1, so that we can avoid the appearance of additional Nambu-Goldstone (NG) bosons.
The scalar fields can be parametrized as

Φ ¼
�
ϕþ

ϕ0

�
; η ¼

�
ηþ

η0

�
; Φ3=2 ¼

"
Φþþ

3=2

Φþ
3=2

#
; Δ1 ¼

2
4 Δþ

1ffiffi
2

p Δþþ
1

Δ0
1 − Δþ

1ffiffi
2

p

3
5; Δ0 ¼

2
4 Δ0

0ffiffi
2

p Δþ
0

Δ̄−
0 − Δ0

0ffiffi
2

p

3
5: ð6Þ

The neutral components of the above fields and the singlet scalar fields can be expressed as

TABLE I. The contents of lepton (upper table) and scalar boson (lower table) fields and their charge assignment under
SUð2ÞI × Uð1ÞY ×Uð1Þ0 × Z2, where Uð1Þ0 is the additional gauge symmetry. The Uð1Þ0 charges for Li

L, e
a
R, and Δ0 are, respectively,

denoted as x, y, and z, and those for all the other fields are expressed in terms of x, y, and z. The index iðaÞ for LLðeRÞ runs over the first,
second, and third (first and second) generations.

Fermions Li
L ¼ ðLe

L; L
μ
L; L

τ
LÞ eaR ¼ ðeR; μRÞ τR Eα

L Eα
R

SUð2ÞI ; Uð1ÞY 2;−1=2 1;−1 1;−1 1;−1 1;−1
Uð1Þ0 x y x −xþ 2y −xþ 2y
Z2 þ þ þ − −

Scalar bosons Φ Δ0 Δ1 η Φ3=2 S χ

SUð2ÞI ; Uð1ÞY 2; 1=2 3; 0 3; 1 2; 1=2 2; 3=2 1; 0 1; 0
Uð1Þ0 0 z −ð2xþ zÞ 2ðx − yÞ −2y y − x x − y
Z2 þ þ þ − − − þ
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ϕ0¼ 1ffiffiffi
2

p ðϕRþvϕþiϕIÞ; η0¼ 1ffiffiffi
2

p ðηRþiηIÞ;

Δ0
0 ¼ 1ffiffiffi

2
p ðΔ0RþvΔ0

þiΔ0IÞ; Δ0
1¼

1ffiffiffi
2

p ðΔ1RþvΔ1
þiΔ1IÞ;

S ¼ 1ffiffiffi
2

p ðSRþiSIÞ; χ¼ 1ffiffiffi
2

p ðχRþvχþiχIÞ; ð7Þ

where vϕ; vΔ0
, vΔ1

, and vχ are the VEVs of Φ, Δ0, Δ1,
and χ, respectively. The Fermi constant GF is given by
v2 ≡ v2ϕ þ 2v2Δ1

þ 4v2Δ0
¼ 1=ð ffiffiffi

2
p

GFÞ. Because Δ0 is the
complex field, Δ̄þ

0 does not correspond to ðΔ−
0 Þ�.

The electroweak rho parameter ρ deviates from unity due
to the nonzero value of vΔ0

and vΔ1
at the tree level as

ρ ¼ v2

v2 þ 2v2Δ1
− 4v2Δ0

: ð8Þ

The experimental value of the rho parameter is close to
unity so that the triplet VEVs must be much smaller than v
as seen in Eq. (8), and the upper limit is typically given as
order of 1 GeV.
We then calculate the masses of the Z2-odd scalar

bosons in the Appendix, and we also give details of the
discussion for mass matrices for the Z2-even scalar
bosons. The mass terms for the Z2-odd scalar bosons
can be written by

Vmass ¼ m2
Φþþ
3=2
Φþþ

3=2Φ
−−
3=2 þ ðΦþ

3=2; η
þÞM2

C

�
Φ−

3=2

η−

�

þ 1

2
ðSI; ηIÞM2

I

�
SI
ηI

�
þ 1

2
ðSR; ηRÞM2

R

�
SR
ηR

�
; ð9Þ

whereM2
C,M

2
I , andM

2
R are the 2 × 2mass matrices for the

singly charged, CP-odd, and CP-even scalar boson states,

respectively. All the masses of Z2-odd scalar bosons can
be extracted from the potential given in Eqs. (4) and (5).
The mass of the doubly charged scalar bosons is
calculated by

m2
Φþþ
3=2

¼ m2
3=2 þ

1

2
½κ4v2ϕ þ κ18v2χ þ ðκ9 − κ10Þv2Δ1

þ κ14v2Δ0
�:

ð10Þ

The elements of each mass matrix are obtained as

ðM2
CÞ11 ¼ m2

3=2 þ
1

2
½ðκ3 þ κ4Þv2ϕ þ κ17v2χ

þ ðκ8 þ κ9Þv2Δ1
þ κ13v2Δ0

�; ð11aÞ

ðM2
CÞ22 ¼ m̄2

η −
1

2
ðκ2v2ϕ þ κ16v2χ þ 2κ7v2Δ1

Þ; ð11bÞ

ðM2
CÞ12 ¼ −

κνffiffiffi
2

p vΔ1
vΔ0

; ð11cÞ

ðM2
I;RÞ11 ¼ m̄2

S ∓ κe1v2χ ; ð11dÞ

ðM2
I Þ22 ¼ ðM2

RÞ22 ¼ m̄2
η; ð11eÞ

ðM2
I;RÞ12 ¼∓ κe2

2
vϕvχ ; ð11fÞ

where

m̄2
S ¼m2

Sþ
1

2
ðκ5v2ϕþ κ18v2χ þ κ10v2Δ1

þ κ15v2Δ0
Þ;

m̄2
η ¼m2

η þ
1

2
½ðκ1þ κ2Þv2ϕþ κ16v2χ þðκ6þ κ7Þv2Δ1

þ κ11v2Δ0
�:

ð12Þ

The mass eigenstates for the CP-odd and CP-even scalar
states are obtained by introducing the mixing angles as

�
SI
ηI

�
¼ RðθIÞ

�
A1

A2

�
;

�
SR
ηR

�
¼ RðθRÞ

�
H1

H2

�
; with

RðθÞ ¼
�
cos θ − sin θ

sin θ cos θ

�
: ð13Þ

The mass eigenvalues and the mixing angles are given as

m2
A1;2

¼ 1

2

h
ðM2

I Þ11 þ ðM2
I Þ22

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðM2

I Þ11 − ðM2
I Þ22�2 þ 4ðM2

I Þ212
q i

; ð14aÞ

m2
H1;2

¼ 1

2

h
ðM2

RÞ11 þ ðM2
RÞ22

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðM2

RÞ11 − ðM2
RÞ22�2 þ 4ðM2

RÞ212
q i

; ð14bÞ

FIG. 1 (color online). Feynman diagrams for the one-loop
generation of the charged-lepton masses (upper panel) and
neutrino masses (lower panel). The particles indicated by red
have the Z2-odd parity. The blue dotted arrows in the lower
diagrams indicate the flow of lepton number, and the blue x
shows the lepton number violation with two units.
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sin 2θI ¼
2ðM2

I Þ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðM2

I Þ11 − ðM2
I Þ22�2 þ 4ðM2

I Þ212
p ¼ 2ðM2

I Þ12
m2

A1
−m2

A2

;

ð14cÞ

sin2θR¼−
2ðM2

RÞ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðM2

RÞ11− ðM2
RÞ22�2þ4ðM2

RÞ212
p ¼ 2ðM2

RÞ12
m2

H1
−m2

H2

:

ð14dÞ
We note that the mass difference between H1 and A1

and that of H2 and A2 are generated only through the κe1
term as seen in Eqs. (11d) and (14d), which is essentially
important to obtain the nonzero one-loop generated
masses of the charged leptons. The mixing angle for
the mass matrix M2

C is also given as

sin 2θC ¼ 2ðM2
CÞ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðM2
CÞ11 − ðM2

CÞ22�2 þ 4ðM2
CÞ212

p
≃ −

ffiffiffi
2

p
κνvΔ1

vΔ0

jm2
Φþ
3=2

−m2
ηþj

; ð15Þ

where m2
Φþ
3=2

¼ ðM2
CÞ11 and m2

ηþ ¼ ðM2
CÞ22. The approxi-

mation is valid as long as the triplet VEVs vΔ1
and vΔ0

are
quite smaller than vϕ and vχ . It is seen that the mixing
angle θC is much suppressed by vΔ1

and vΔ0
so that the

mass eigenstates for the singly charged scalar bosons are
almost the same as the corresponding weak eigenstates
Φ�

3=2 and η
�. We note that the lightest neutral scalar boson

can be a DM candidate.
In our model, there appears an additional neutral gauge

boson, a Z0 boson, from the Uð1Þ0 gauge symmetry. The
mass of the Z0 boson is given by the VEV of the singlet
scalar field vχ from the kinetic term

Lχ
kin ¼ jDμχj2 ¼ j½∂μ − igZ0 ðx − yÞ�χj2; ð16Þ

where gZ0 is the Uð1Þ0 gauge coupling constant. We then
obtain the mass of the Z0 boson by6mZ0 ¼ gZ0 jx − yjvχ . The
Z0 mass is constrained by the LEP II experiment depending
on the Uð1Þ0 charge of each field [23,24]. According to
Ref. [24], the magnitudes of the vector coupling vl and the
axial vector coupling al in the ll̄Z0 vertex defined by

Lint ¼ gZ0 l̄γμðvl − γ5alÞlZ0
μ ð17Þ

are constrained as

jvej <
ffiffiffi
π

p
mZ0

gZ0mZ
× 0.012; jalj <

ffiffiffi
π

p
mZ0

gZ0mZ
× 0.018; ð18Þ

at the 95% confidence level from the data of eþe− → eþe−,
μþμ− and are needed to calculate the one-loop diagrams for

the lepton masses discussed in the next section. In our
model, vl and al are given from Table I as

vl ¼ 1

2
ðxþ yÞ; al ¼ 1

2
ðx − yÞ: ð19Þ

The constraint given in Eq. (18) can be converted into the
constraint on vχ by using Eq. (19) and the mass formula for
Z0 as

vχ ≳ ð2.1 TeVÞ × jxþ yj
jx − yj ; vχ ≳ 1.4 TeV: ð20Þ

In the second condition, the dependence of the Uð1Þ0
charges is canceled so that vχ must be larger than 1.4 TeVat
least. We take vχ ¼ 3 TeV in the numerical analysis
discussed in the succeeding sections.

III. OBSERVABLES IN THE LEPTON SECTOR

In this section, we calculate mass matrices for neutrinos
and charged leptons and new contributions to the muon
anomalous magnetic moment. We also discuss the LFV
processes in our model. The relevant Lagrangian for the
lepton sector is given in Eq. (1) in the previous section.
First, we calculate the mass matrix for the charged

leptons, which is composed of the tree-level contribution
and the contribution from the one-loop diagram depicted in
Fig. 1:

Ml ¼Mtree
l þMloop

l ¼

0
BB@

ðMlÞloop11 ðMlÞloop12 ðMlÞtree13

ðMlÞloop21 ðMlÞloop22 ðMlÞtree23

ðMlÞloop31 ðMlÞloop32 ðMlÞtree33

1
CCA;

ð21Þ

where

Mtree
l ¼ vϕffiffiffi

2
p yiτ; ð22Þ

Mloop
l ¼

X
α

Mα

64π2
yiαη yaαS

�
sin 2θRF

�
m2

H1

M2
α
;
m2

H2

M2
α

�

þ sin 2θIF

�
m2

A1

M2
α
;
m2

A2

M2
α

��
: ð23Þ

The loop function is given as

Fðx; yÞ ¼
−x ln xþ y ln yþ xy ln x

y

ð1 − xÞð1 − yÞ : ð24Þ

We note that the tree-level contribution only gives the third
column of Ml, while the one-loop contribution gives the
remaining 3 × 2 part as expressed in the rightmost side in
Eq. (21). Thus, both contributions are necessary to get three6The contribution to mZ0 from vΔ0

and vΔ1
are neglected.
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mass eigenvalues. Notice here that Mloop
l becomes zero

when mH1
¼ mA1

and mH2
¼ mA2

are taken, which causes
sin θR ¼ − sin θI as seen in Eqs. (11f) and (14). Obviously,
Mloop

l also becomes zero in the case of θR ¼ θI ¼ 0.
Therefore, both κe1 and κe2 are required to be nonzero
to obtain nonzero masses for the charged leptons. In the
following, we consider the case with α ¼ 3. In fact,
although α ¼ 2 is enough to obtain three nonzero eigen-
values of Ml, that makes Ml to not be a diagonal form,7

and it causes dangerous LFV processes such as μ → eγ.
Second, the mass matrix for neutrinos is calculated by

ðMνÞij ¼
X
α

Mα

32π2
ðyiα�η yjα3=2 þ yjα�η yiα3=2Þ

× sin 2θCF

�m2
Hþ

1

M2
α
;
m2

Hþ
2

M2
α

�
: ð25Þ

The above mass matrices are diagonalized by introduc-
ing the following unitary matrices:

UlðM†
lMlÞU†

l ¼ diagðjmej2; jmμj2; jmτj2Þ; ð26Þ

UνMνUT
ν ¼ diagðmνe ;mνμ ;mντÞ; with jUPMNSj≡ jU†

lUνj;
ð27Þ

where UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata
matrix whose elements are given from neutrino oscillation
data [25].
We here take the following assumptions for the Yukawa

coupling constants as

M1 ¼ M2 ¼ M3 ¼ M;

yiαη ¼

0
BBB@

y11η y12η y13η

y12η y22η y23η

y13η y23η
y13η y23η
y12η

1
CCCA;

yaαS ¼
 
y11S 0 −y11S
0 y22S −y22S

!
; y1τ ¼ y2τ ¼ 0; ð28Þ

where all the Yukawa couplings yη, yS, and y3=2 are
assumed to be real. Under the above assumptions, the
mass matrix for the charged leptons is given as the diagonal
form by

Ml ¼ diag

�
~ye ~Ml; ~yμ ~Ml;

vϕffiffiffi
2

p y3τ

�
; ð29Þ

where

~ye ¼ ðy11η − y12η y13η =y23η Þy11S ; ~yμ ¼ ðy22η − y12η y23η =y13η Þy22S ;

ð30Þ

~Ml¼
M

64π2

�
sin2θRF

�
m2

H1

M2
;
m2

H2

M2

�
þsin2θIF

�
m2

A1

M2
;
m2

A2

M2

��
:

ð31Þ

From Eq. (29), we can naturally explain the muon
mass with the order-one coupling ~yμ when ~Ml is given
to be order of 0.1 GeV. Such a value of ~Ml can be
realized by taking M ¼ Oð1Þ TeV, sin 2θR;I ¼ Oð1Þ, and
Fðx; yÞ ¼ Oð0.1Þ.8 The important point here is that we
need almost the maximal mixing between the inert singlet S
and doublet η fields to reproduce the muon mass. That
affects the DM physics. Our DM candidate is similar to the
property of the isospin inert doublet field due to the
maximal mixing. One of the allowed regions of such a
DMmass is known as a resonant solution at aroundmh=2 if
the SM-like Higgs boson is the lightest scalar boson among
the neutral CP-even neutral bosons, in which the DM
candidate can satisfy the observed relic density [26] and the
direct detection [27,28]. On the other hand, once the DM
mass exceeds the masses of the W and Z bosons, the
annihilation cross section to explain the relic density
becomes large, e.g., heavier than Oð500Þ GeV [29].
Here we assume that the DM candidate has a mass at
around mh=2 so as to increase the testability of the
additional charged leptons Eα which can be important to
test our model at collider experiments as discussed in a later
section.
Regarding the neutrino masses and mixing, they can be

reproduced by taking appropriate values of the coupling
constant y3=2. The magnitude of the neutrino masses,
typically given as Oð0.1Þ eV, can be obtained in such
a way that sin 2θC is taken to be Oð10−11Þ with
M ¼ Oð1Þ TeV, yηy3=2 ¼ Oð1Þ, and F ¼ Oð1Þ. Such a
small mixing angle θC can be naturally explained by the
smallness of vΔ0

and vΔ1
. When the product of the triplet

VEVs vΔ0
× vΔ1

is taken to be order of ð1 MeVÞ2 with
κν ¼ Oð1Þ, we obtain Oð10−11Þ of the mixing angle θC.
The muon anomalous magnetic moment has been

measured at Brookhaven National Laboratory. The current
average of the experimental results is given by [30]

aexpμ ¼ 11659208.0ð6.3Þ × 10−10;

which has a discrepancy from the SM prediction by 3.2σ
[31] to 4.1σ [32] as

7Even in the case of α ¼ 2, we can obtain a diagonal form of
Ml with three nonzero eigenvalues by taking y3α�η ¼ 0. However,
in that case, it is difficult to reproduce the neutrino mixing.

8To reproduce the electron mass, we need to take the ratio of
the coupling constants ~ye=~yμ to be me=mμ ≃ 5 × 10−3.
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Δaμ ¼ aexpμ − aSMμ ¼ ð29.0� 9.0 to 33.5� 8.2Þ × 10−10: ð32Þ

In our model, the vectorlike charged leptons andZ2-odd scalar bosons can contribute to the la → lbγ processes as shown in
Fig. 2. The amplitude for these processes is calculated by

Δaab ≃
X3
α¼1

mμ

64π2Mα
ðyaαS ybαη þ ybαS yaαη Þ

�
sin 2θRG

�
m2

H1

M2
α
;
m2

H2

M2
α

�
þ sin 2θIG

�
m2

A1

M2
α
;
m2

A2

M2
α

��
; ð33Þ

with Gðx; yÞ ¼ 1 − 4xþ 3x2 − 2x2 ln x
2ð1 − xÞ3 −

1 − 4yþ 3y2 − 2y2 ln y
2ð1 − yÞ3 ; ð34Þ

where terms proportional to ðyaαS Þ2 and ðyaαη Þ2 and the Φ��
3=2

loop contributions are neglected because they are sup-
pressed by the factor of mμ=Mα compared to Eq. (33). By
taking the same assumptions given in Eq. (28), we obtain

Δaab ¼ 2

�
mμ

M2

�
×R × ðMlÞab; ð35Þ

where

R≡
sin 2θRG

�
m2

H1

M2 ;
m2

H2

M2

�
þ sin 2θIG

�m2
A1

M2 ;
m2

A2
M2

�
sin 2θRF

�
m2

H1

M2 ;
m2

H2

M2

�
þ sin 2θIF

�m2
A1

M2 ;
m2

A2
M2

� : ð36Þ

The contribution to the muon g − 2 is given by
Δaμμ ≡ Δaμ. From Eq. (37), we get the following simple
formula:

Δaμ ¼ sign½ðMlÞμμ� × 2

�
mμ

M

�
2

×R: ð37Þ

We note that there is no LFV contribution under the
assumption in Eq. (28) because the matrix Δaab has a
diagonal form.
In the following, we show numerical calculations for ~Ml

and Δaμ given in Eqs. (31) and (37) with m̄2
S ¼ m̄2

ηð≡m̄2Þ
for simplicity. In that case, the masses of neutral Z2-odd
scalar bosons and their mixing angels are given by

m2
H1;2

¼ m̄2 þ v2χ
2

�
κe1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e1 þ κ2e2v

2=v2χ
q �

;

m2
A1;2

¼ m̄2 þ v2χ
2

�
−κe1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e1 þ κ2e2v

2=v2χ
q �

;

sin 2θR ¼ − sin 2θI ¼
v
vχ

κe2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e1 þ κ2e2v

2=v2χ
q : ð38Þ

When κe1 is taken to be a positive value, the mass hierarchy
is determined by mH1

> mA1
> mH2

> mA2
. Therefore, A2

is the lightest neutral Z2-odd particle, and it corresponds to
the DM candidate. We discuss the case with κe1 > 0 in the
following calculations. As already explained above, the
mass of the DM candidate should be taken as half the Higgs
boson mass so that we take mA2

¼ 63 GeV. Instead of
fixing the physical masses of scalar bosons and mixing
angles, we choose κe1, κe2, vχð¼ 3 TeVÞ, mA2

ð¼ 63 GeVÞ
as the input parameters. In terms of these input variables,
we can rewrite Eq. (38) by

m2
H1

¼ m2
A2

þ v2χ
�
κe1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e1 þ κ2e2v

2=v2χ
q �

;

m2
H2

¼ m2
A2

þ v2χκe1;

m2
A1

¼ m2
A2

þ v2χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2e1 þ κ2e2v

2=v2χ
q

: ð39Þ

In Fig. 3, we show the contours of ~Ml and Δaμ × 109

denoted by black and red curves, respectively, on the
κe1-κe2 plane. The mass of the vectorlike leptons M is
taken to be 1500 GeV (upper-left panel), 1000 GeV (upper-
right panel), 750 GeV (lower-left panel), and 500 GeV
(lower-right panel). It is seen that theM dependence of ~Ml
is weak, while that of Δaμ is quite strong because of the
ðmμ=MÞ2 factor in Eq. (37). When we take κe2 ≳ 0.01
(κe2 ≳ 0.1 and κe1 ≳ 0.03), ~Ml > 0.01ð0.1Þ GeV can be
obtained. Regarding Δaμ, when M ¼ 1500 GeV and
500 GeV is taken, the value of Δaμ becomes smaller
than about 2.0 × 10−9 and larger than about 1.0 × 10−8,
respectively, in the regions of κe1 and κe2 shown in
Fig. 3. In the case of M ¼ 1000ð750Þ GeV, Δaμ≃
3.0 × 10−9 is obtained when we take κe1 ¼ 0.008 − 0.02
(κe1 ¼ 0.001 − 0.002 and κe2 ≲ 0.04). Therefore, M to be

FIG. 2 (color online). Dominant contributions to the la → lbγ
processes. The Φ��

3=2 loop contribution is neglected because
of the suppression by mμ=Mα as compared to the dominant
contributions.
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around 1 TeV is favored by the measurement of the
muon g − 2.
In Fig. 4, we show the contours of Δaμ × 109 on the

κe1 −M plane for the fixed values of κe2 to be 0.1 (left
panel) and 1 (right panel). We can expect that the result
does not change in the case with values of κe2 smaller than
0.1 as seen in Fig. 3. In both cases with κe2 ¼ 0.1 and 1,
when M is taken to be around 1000 GeV, we can get
Δaμ ≃ 3.0 × 10−9. When M is taken to be smaller (larger)
than about 700 (2000) GeV, Δaμ becomes larger (smaller)

than 5.0ð1.0Þ × 10−9, which are outside of the 2ðσÞ error of
the measured Δaμ.
In Fig. 5, we show the contour plots for the output values

ofmH1
(upper left),mH2

(upper right),mA1
(lower left), and

m̄ (lower right) on the κe1 − κe2 plane. The red, blue, and
green shaded regions satisfy ~Ml > 0.03 GeV and 2.0 ×
10−9 < Δaμ < 4.2 × 10−9 in the case of M ¼ 1250, 1000,
and 750 GeV, respectively. The condition for Δaμ corre-
sponds to the requirement where the prediction of Δaμ is
inside the 1ðσÞ error from the measurement. We can see that
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FIG. 3 (color online). Contour plots for ~Ml (black curves) and Δaμ × 109 (red curves) on the κe1–κe2 plane. We takeM ¼ 1500, 1000,
750, and 500 GeV in the upper-left, upper-right, lower-left, and lower-right panels, respectively.
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the shaded regions are shifted from the lower-left region
to the upper-right region on the κe1 − κe2 plane when the
value of M is changed from 750 to 1250 GeV. That is
because the prediction of Δaμ is getting smaller as M
is increased so to compensate the suppression by M,
we need larger values of κe1 and κe2. In the case of
M ¼ 750 GeV, the case with 220≲mH1

≲ 400 GeV,
180≲mA1

≲ 400 GeV, and 110≲mH2
≲ 220 GeV is

favored by g − 2 data and natural explanation for the muon
mass by means of ~Ml > 0.03 GeV. Similarly, in the
case of M ¼ 1000 GeV, the case of mH1

≳ 350 GeV,
mA1

≳ 250 GeV, and mA1
≳ 250 GeV is favored.

IV. COLLIDER PHENOMENOLOGY

In this section, we discuss the collider phenomenology
in our model. As seen in the Feynman diagrams shown
in Fig. 1, the vectorlike leptons E�

α ðα ¼ 1; 2; 3Þ play an
essential role to generate the masses of both charged

leptons and neutrinos. Therefore, the detection of E�
α is

important to test our model. In the following analysis, we
take the assumptions given in Eq. (28) and

yijη ¼ ȳη; for i ≠ j; y11η ¼ y22η ¼ 0: ð40Þ
The decay of E�

α depends on the mass spectrum for the
Z2-odd particles, some of which can be determined by
taking into account the muon mass and Δaμ as seen in
Fig. 5. As examples, we consider the benchmark points
listed in Table II. Among the Z2-odd particles, the mass of
Φ��

3=2 is not determined from experimental data. We can then
consider the two cases: (1) M < mΦþþ

3=2
and (2) M > mΦþþ

3=2
.

In case (1), E�
α can decay into l�φ0 (l ¼ e; μ, and τ) and

η�ν, where φ0 denotes the neutral Z2-odd scalar boson
(H1, H2, A1, and A2). On the other hand, in case (2), E�

α

can decay into Φ��
3=2l

∓ and Φ�
3=2ν via the y3=2 coupling in

addition to the decay modes listed above.
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FIG. 5 (color online). Contour plots for mH1
(upper-left panel), mH2

(upper-right panel), mA1
(lower-left panel), and m̄ (lower-right

panel) on the κe1–κe2 plane. The red and blue shaded regions satisfy ~Ml > 0.03 GeV, 2.0 × 10−9 < Δaμ < 4.2 × 10−9.

TABLE II. Benchmark input parameters and corresponding outputs. The masses in the outputs are calculated by using Eq. (39).

Input parameters Outputs

M mA2
κe1 κe2 mH1

mA1
mH2

m̄ ~Ml Δaμ
Benchmark I 750 GeV 63 GeV 0.001 −0.1 295 GeV 279 GeV 113 GeV 213 GeV 0.036 GeV 3.6 × 10−9

Benchmark II 1000 GeV 63 GeV 0.03 −0.1 744 GeV 533 GeV 523 GeV 528 GeV 0.097 GeV 3.2 × 10−9
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We focus on case (1) in the following, in which the decay
of E�

α becomes more sensitive to the structure of Yukawa
interactions related to the generation of the charged-lepton
masses. The sum of decay rates of E�

α defined by
ΓðE → XÞ≡PαΓðEα → XÞ are calculated as

ΓðE� → e�φ0
i Þ ¼

M
32π

ȳ2ηc2ηi

�
1 −

m2
φi

M2

�
2

; ð41aÞ

ΓðE� → τ�φ0
i Þ ¼

3M
64π

ȳ2ηc2ηi

�
1 −

m2
φi

M2

�
2

; ð41bÞ

ΓðE� → μ�φ0
i Þ ¼

M
32π

½ȳ2ηc2ηi þ ðy22S Þ2c2Si �
�
1 −

m2
φi

M2

�
2

;

ð41cÞ

ΓðE� → η�νÞ ¼ 7M
64π

ȳ2η

�
1 −

m2
ηþ

M2

�2

; ð41dÞ

where

φ0
i ¼ ðH1;H2;A1;A2Þ; cηi ¼ ðsinθR;cosθR; sinθI;cosθIÞ;

cSi ¼ ðcosθR; sinθR;cosθI; sinθIÞ; for ði¼ 1;2;3;4Þ:
ð42Þ

For the E� → η�ν mode, final states with νe, νμ, and ντ are
summed. The decay rates can be described by the ratio of
the two Yukawa couplings r≡ y22S =ȳη instead of y22S and ȳη.
From Eqs. (29) and (40), the product y22S × ȳη has to be
fixed by the muon mass, i.e., y22S × ȳη ≃ 2.94ð1.09Þ in
Benchmark I (II). Therefore, each of the Yukawa coup-
lings is determined by y22S ¼ ffiffiffiffiffiffiffiffiffiffiffi

2.94r
p ð ffiffiffiffiffiffiffiffiffiffiffi

1.09r
p Þ and ȳη ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

2.94=r
p ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1.09=r
p Þ in Benchmark I (Benchmark II).

We note that H1 and H2ðA1Þ can further decay into
A2Zð�ÞðH2Zð�ÞÞ, and η� can decay into W�ð�ÞA2.
In Fig. 6, we show the decay branching fraction of Eþ as

a function of the ratio r. The branching ratios for the
channel with a neutral Z2-odd scalar boson in the final state
are summed. The results in Benchmark I and Benchmark II
are shown as the solid and dashed curves, respectively.
From the requirement of perturbativity, i.e., y22S , ȳη < 2

ffiffiffi
π

p
,

we can find the lower and upper limits on r. The regions
between the two solid (dashed) vertical lines are allowed by
perturbativity in Benchmark I (II). We can see that in the
large r region, only the branching fraction of the μþφ0

mode increases as compared to all the other channels,
because only the E�μ∓φ0 vertex is enhanced by the large
y22S . Therefore, an excess in the muon plus missing trans-
verse momentum event can be a probe of the existence of
E�. However, such an excess can also be realized in a
supersymmetric model, e.g., from the smuon decay into the
muon and neutralino. We then have to measure signals

other than that of E�, such as the doubly charged scalar
bosons Φ��

3=2 , to test our model.
We, thus, consider signatures of Φ��

3=2 at the LHC. In case
(1), the same-sign dilepton plus missing energy event from
the decay ofΦþþ

3=2 as shown in Fig. 7 is expected at the LHC.
When we consider the case with r ≫ 1, one of the charged
leptons in the final state is more likely to be muon. This
signature with the μþlþ final state is important to dis-
criminate our model from the other models with doubly
charged scalar bosons. We note that the sum of the
production cross section for the pp→ γ�=Z�→Φþþ

3=2Φ
−−
3=2

and pp → Wþ� → Φþþ
3=2Φ

−
3=2 processes at the LHC with the

14 TeV energy is calculated about 0.21, 0.11, and 0.059 fb
in the cases of mΦþþ ¼ 800, 900, and 1000 GeV, respec-
tively, with taking the mass of Φ−

3=2 to be the same as that

of Φþþ
3=2 . For the calculation of the above cross sections,

we use CALCHEP [33] and CTEQ61 for the parton
distribution function.
Finally, we comment on signatures of another pair of

doubly charged scalar bosons Δ��
1 from the isospin triplet
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FIG. 6 (color online). Branching fractions of Eþ as a function
of the ratio r≡ y22S =ȳη. The mass of η� is taken to be m̄. The solid
and dashed curves are, respectively, the results in Benchmark I
and Benchmark II listed in Table II. lþφ0ðl ¼ e; μ; τÞ denotes
the sum of all the possible modes with a neutral Z2-odd scalar
boson φ0. The region between the solid (dashed) vertical lines is
allowed from the requirement of perturbativity, i.e., y22S , ȳη <
2
ffiffiffi
π

p
in Benchmark I (II).

FIG. 7 (color online). Signal processes from Φþþ
3=2 at the LHC.
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field. The tree-levelYukawa interaction forΔ��
1 is forbidden

by the Uð1Þ0 symmetry so that Δ��
1 cannot decay into the

same-sign dilepton unlike the minimal Higgs triplet model
(HTM) [34]. Thus, themain decaymode ofΔ��

1 is the same-
sign diboson; i.e., Δ��

1 → W�W� as long as Δ��
1 are the

lightest of all the other component fields inΔ1. Such a decay
mode can appear in the HTM with the case of a rather large
triplet VEV, i.e., larger than about 1 MeV. The collider
phenomenology for the diboson decay scenario had been
discussed in Refs. [35,36]. In Ref. [36], by using the LHC
data with the collision energy of 7 TeV and integrated
luminosity of 4.7 fb−1, the lower mass bound for the doubly
charged scalar bosons has been found to be about 60 GeV.

V. CONCLUSIONS AND DISCUSSIONS

We have modified our previous model in Ref. [21] with
the one-loop generation of masses for neutrinos, muon, and
electron. The masses of a muon and electron are induced by
the L̄LeRΦχχχ operator, and those of neutrinos are generated
from the Lc

LLLΔ0Δ1 operator. The doublet VEV vϕ and
singlet VEV vχ are, respectively, determined by the Fermi
constantGF and the Z0 mass, where the latter VEV has to be
above 1TeV from the constraint from theLEP II experiment.
On the other hand, the triplet VEVs must be smaller than
about 1 GeV due to the constraint from the electroweak rho
parameter. Therefore, the mass hierarchy between neutrinos
and charged leptons can be naturally described by the
suppression of the triplet VEVs for the neutrino masses
with Oð1Þ Yukawa coupling constants y22S and ȳη.
In our model, the lightest Z2-odd neutral scalar boson

can be a DM candidate, and A2 corresponds to it when κe1
is taken to be a positive value. The mass of DM is set to be
mh=2 in order to satisfy the relic density and the constraint
from the direct detection.
Under the assumptions given in Eq. (28) and the require-

ment from the DM physics, we have calculated the muon
g − 2 and ~Ml. We have found that the mass of vectorlike
charged leptons E�

α to be around 1 TeV is favored by taking
into account the above observables as seen in Fig. 5.
We have studied the decay property of E�

α whose decay
branching fractions are shown in Fig. 6 with the two
benchmark parameter sets withM < mΦþþ

3=2
. We have found

that E�
α can mainly decay into a muon plus neutral Z2-odd

scalar bosons. We also have discussed the signature from
doubly charged scalar bosons Φ��

3=2 and Δ��
1 .
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APPENDIX: HIGGS SECTOR WITH THE Z2
EVEN PART

In this appendix, we give the mass formulas for the
Z2-even Higgs bosons in which we neglect the terms
proportional to v2Δ1

, v2Δ0
, and vΔ0

vΔ1
.

From the tadpole conditions, the scalar invariant mass
parameters m2

Φ, m
2
χ , m2

Δ1
, and m2

Δ0
can be rewritten by

m2
Φ ≃ λ0vΔ1

vχ þ
λ00ffiffiffi
2

p vΔ0
vχ − λ1v2ϕ −

λ12
2

v2χ ;

m2
χ ≃ 1

2

�
λ0

vΔ1

vχ
þ λ00ffiffiffi

2
p vΔ0

vχ
− λ11

�
v2ϕ − λ6v2χ ;

m2
Δ0

≃ 1

2

�
λ00vχffiffiffi
2

p
vΔ0

− λ9

�
v2ϕ −

λ13
2

v2χ ;

m2
Δ1

≃ 1

2

�
λ0

vχ
vΔ1

− λ̄

�
v2ϕ −

λ12
2

v2χ ; ðA1Þ

where λ̄≡ λ7 þ λ8.
There are one pair of doubly charged states, four pairs of

singly charged states, and four CP-odd and four CP-even
states. First, the mass of the doubly charged Higgs boson
Δ�� is calculated as

m2
Δþþ

1

≃
�
λ0
2

vχ
vΔ1

− λ8

�
v2ϕ: ðA2Þ

Second, we discuss the masses of the singly charged
scalar states. Because one of four pairs corresponds to the
NG boson state which are absorbed into the longitudinal
component of the W boson, we can obtain the block
diagonal form of the matrix, in which the NG mode is
separated into the physical singly charged scalar bosons.
When we define the mass matrix for the singly charged
state in the basis of ðϕþ;Δþ

1 ;Δ
þ
0 ; Δ̄

þ
0 Þ with Δ̄þ

0 ¼ Δ̄−�
0 , it

can be given as

OT
CM̄

2
COC ≃

2
666666664

0 0 0 0ffiffi
2

p
λ0
0

4

v2ϕvχ
vΔ0

0 λ10
2
v2ϕ

1
2

�
vχ
vΔ1

λ0 − λ8
�
v2ϕ −λ00vΔ1

vχ

λ0
0

2
ffiffi
2

p v2ϕvχ
vΔ0

3
777777775
; ðA3Þ
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where

OC ≃

2
6666666664

−1 0

ffiffi
2

p
vΔ1
vϕ

− 2vΔ1
vϕ

−
ffiffi
2

p
vΔ1
vϕ

0 −1 0ffiffi
2

p
vΔ0
vϕ

1ffiffi
2

p 0 − 1ffiffi
2

pffiffi
2

p
vΔ0
vϕ

− 1ffiffi
2

p 0 − 1ffiffi
2

p

3
7777777775
: ðA4Þ

Third, two of the four CP-odd states correspond to the NG bosons which are absorbed by the longitudinal component of
the Z boson and additional neutral gauge boson from the Uð1Þ0 symmetry. Therefore, the mass matrix for the CP-odd states
in the basis of ðϕI; χI;Δ1I;Δ0IÞ can be expressed by the block diagonal form with a nonzero 2 × 2 submatrix as

OT
I M̄

2
IOI ≃

2
666664

0 0 0 0

0 0 0 0

λ0
0

2
ffiffi
2

p v2ϕvχ
vΔ0

λ0vϕvΔ0

λ0
2

v2ϕvχ
vΔ1

3
777775; ðA5Þ

where

OI ≃

2
66666664

1ffiffi
2

p rþ − 1ffiffi
2

p r− 0
2vΔ1
vϕ

−
ffiffi
2

p
rþ

vχ
v̄ −

ffiffi
2

p
r−

vχ
v̄

vΔ0
vχ

vΔ1
vχffiffi

2
p
rþ

vΔ1
vϕ

−
ffiffi
2

p
r−

vΔ1
vϕ

0 −1ffiffi
2

p
rþ

vΔ0
v̄ −

ffiffi
2

p
r−

vΔ0
v̄ 1 0

3
77777775
; ðA6Þ

with r� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4v2χ=v2ϕ

qr
.

Finally, the mass matrix for the CP-even states in the basis of ðϕR; χR;Δ1R;Δ0RÞ is given by

M̄2
R ≃

2
66666666664

2λ1v2ϕ
�
λ11vχ − λ0vΔ1

− λ0
0ffiffi
2

p vΔ0

�
vϕ ½−λ0vχ þ ðλ7 þ λ8ÞvΔ1

�vϕ
�
− λ0

0ffiffi
2

p vχ þ λ9vΔ0

�
vϕ

1
2

�
4λ6v2χ þ λ0

vΔ1v
2
ϕ

vχ
þ λ0

0ffiffi
2

p vΔ0v
2
ϕ

vχ

�
λ12vχvΔ1

− λ0
2
v2ϕ λ13vχvΔ0

− λ0
0

2
ffiffi
2

p v2ϕ

λ0
2

vχv2ϕ
vΔ1

0ffiffi
2

p
λ0
0

4

v2ϕvχ
vΔ0

3
77777777775
: ðA7Þ
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