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Ds mesons are studied in three quantum channels (JP ¼ 0þ, 1þ and 2þ), where experiments have
identified the very narrowD�

s0ð2317Þ, Ds1ð2460Þ and narrow Ds1ð2536Þ, D�
s2ð2573Þ. We explore the effect

of nearby DK and D�K thresholds on the subthreshold states using lattice QCD. Our simulation is done on
two very different ensembles of gauge configurations (2 or 2þ 1 dynamical quarks, Pion mass of 266 or
156 MeV, lattice size 163 × 32 or 323 × 64). In addition to q̄q operators we also include meson-meson
interpolators in the correlation functions. This clarifies the identification of the states above and below the
scattering thresholds. The ensemble with mπ ≃ 156 MeV renders the Ds1ð2460Þ as a strong interaction
bound state 44(10) MeV belowD�K threshold, which is in agreement with the experiment. TheD�

s0ð2317Þ
is found 37(17) MeV below DK threshold, close to the experiment value of 45 MeV. The narrow
resonances Ds1ð2536Þ and D�

s2ð2573Þ are also found close to the experimental masses.
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I. INTRODUCTION

During the past decade there have been significant
advances in our knowledge of charmed meson spectros-
copy. In the charm-strange meson sector, states consistent
with the expected positive parity Ds meson ground states
have been observed [1]. In the heavy charm quark limit [2]
these states can be grouped into two multiplets charac-
terized by j ¼ 1=2 and j ¼ 3=2, where j is the sum of the
strange quark spin and the (p-wave) orbital angular
momentum. Prior to their discovery the D�

s0 and Ds1 states
associated with the j ¼ 1=2 multiplet were expected to lie
above the DK and D�K thresholds, respectively, and to be
very broad since they could then break apart into s-wave
meson pairs.1 Instead, experiments found D�

s0 and Ds1
mesons which lie close to, but below, the DK and D�K
thresholds, respectively. These results, combined with the
surprisingly similar mass of D�

s0ð2317Þ to its nonstrange
partnerD0ð2400Þ led to many ideas such as tetraquarks (see
for example [3]), molecular states, etc. Particularly relevant
was the suggestion [4] that the coupling of c̄s to the DK
threshold plays an important dynamical role in lowering the

mass of the physical state. Several possibilities have been
discussed in [5].
Lattice QCD provides a nonperturbative framework to

calculate hadron properties and it has been applied exten-
sively to Ds spectroscopy [6–20]. Early quenched lattice
QCD calculations [6–12] which considered D�

s0 found
energy levels in line with quark model expectations [21],
that is, substantially above the physical DK threshold.
Later dynamical lattice QCD simulations [13–19] obtained
somewhat smaller D�

s0 masses but still generally larger
than the experimental value. In these simulations the D�

s0
andDs1 mesons were described using only quark-antiquark
interpolating operators. In a recent lattice study of
D�

s0ð2317Þ where operators for DK scattering states were
included in the operator basis good agreement with the
experimental value of the mass was found [20]. In Ref. [20]
the mass was no longer obtained directly from the two-
point meson correlation function but was inferred from
the scattering phase shift using Lüscher’s finite volume
method [22–25].
Separate from the comparison of the calculated mass to

the experimental value is the question of the mass relative
to the two meson scattering threshold. If the j ¼ 1=2
mesons D�

s0 and Ds1 had masses above the DK and
D�K thresholds they would likely have large widths
analogous to what is found for the j ¼ 1=2 mesons in
the D meson sector. Physically D�

s0 and Ds1 have masses
below the physical thresholds. However, the outcome from
lattice simulations seems to depend somewhat delicately on
up and down quark (equivalently, Pion) mass and choice of
operators. The quark mass dependence is delicate because
the D meson and Kaon have valence up and down quark
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1This is what is observed in the D meson sector [1]. Two very

broad states 0þ and 1þ decaying into s-wave meson pairs and two
higher-lying states 1þ and 2þ which are more narrow, presumably
decaying into d-wave pairs.
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content and would naturally be expected to be more
sensitive to Pion mass than the Ds interpolated as a c̄s
state. Present simulations [14,17,20] indicate that for Pion
masses substantially larger than physical and using only
a c̄s basis the D�

s0 will appear below the DK threshold.
However, in a near to physical light quark mass simulation
[20] the D�

s0 was above threshold using only a c̄s basis.
When scattering states are included in the simulation

one can, in addition to extracting masses, also calculate
scattering lengths. Although these are not amenable to
experimental determination for heavy-light mesons com-
parisons of results between different calculational
approaches can be made. For the DK system lattice
QCD results for scattering lengths have been already
presented in [26] and [20]. They have also been calculated
in effective field theories, for example, in [26–29]. The
dependence on mπ of the mass differences between
the scalar and pseudoscalar heavy-light mesons was
investigated in [30].
The phenomenological approach starts from experimen-

tal evidence and models the scattering amplitudes by
various methods. Unitarized chiral expansions have been
widely used. This allows then to vary the parameters and
trace the reaction of bound states and/or resonances.
Replacing the continuum space integrals by discrete sums
leads to discrete energy levels which then can be compared
with the results of the (ab initio) lattice calculations.
A chiral unitary coupled channel study claims that D�

s0
develops dynamically from DK and Dsη [31,32]. For a
dynamical coupled-channel approach for meson-meson in s
wave see also [33].
In this paper we present simulation results for the

complete set (JP ¼ 0þ, 1þ and 2þ) of low-lying positive
parity Ds mesons. For the JP ¼ 0þ and 1þ channels the
scattering method including two-meson operators in the
interpolating operator basis is used. While the results for
JP ¼ 0þ were presented previously [20], here all the details
of the calculation are discussed. For the D�

s2 only quark-
antiquark operators were used since it is expected to be
described well as a c̄s state (see Sec. III C); the same
approach was used in a previous study of D mesons [34].
When two-meson scattering operators are included the

lattice simulation becomes quite challenging due to the
presence of three and four point correlation functions.
These contain Wick contractions with what we term
backtracking loops (see, for example, Fig. 1). The calcu-
lation of these terms requires quark propagators which
connect different spatial points on the same lattice time
slice. Since the correlation functions are needed for all
lattice time distances a method that can calculate quark
propagators between any pair of lattice sites is required. For
this the distillation technique [35] is used. The essential
idea is that quark fields are smeared with a function that can
be expressed in terms of the eigenvectors of some con-
venient smearing operator (the three-dimensional lattice

Laplacian is used here). The eigenvectors can be contracted
with the quark propagators and these so-called perambu-
lators can be constructed and used as the basic building
blocks of correlation functions with any Wick contraction.
For our small lattices we use full distillation [35]. As

the lattice volume is increased the number of required
eigenvectors to keep the source profile roughly the same
physical size becomes eventually prohibitively large.
To remedy this issue for the ensemble of larger lattices used
in this work the stochastic distillation variant [36] is
employed. Stochastic distillation has been used previously
in Refs. [20,37,38]. See also Ref. [39] for a more general
discussion of stochastic methods.
Section II contains a discussion of the how the calcu-

lations were carried out. Details of the gauge configura-
tions, the distillation methods, extraction of phase shifts
and so on are presented. The results for D�

s0, Ds1 and D�
s2

are given in Sec. III with a summary and conclusion in
Sec. IV. Some details of the interpolating operators are
discussed in the Appendix.

II. ANALYSIS TOOLS

A. Simulation parameters

Two different methods (distillation [35] and stochastic
distillation [36]) are employed on two different ensembles
of gauge configurations. The parameters of the ensembles
are given in Table I.
Ensemble (1) has Nf ¼ 2 dynamical light quarks, a Pion

mass of 266 MeV and a coarser lattice spacing. It uses
improved Wilson fermions and had been produced in a
reweighting study [40,41]. The lattice size 163 × 32 and
physical volume are small enough that we can use the
standard distillation method [35] with a complete set of
perambulators (one for each time slice source vector set).
We have used this set previously and refer the readers to
these publications [34,42,44] for further details. The gauge
links are four-dimensional normalized hypercubic (nHYP)
smeared [45] with the same parameters used for generating
the gauge configurations [ðα1; α2;α3Þ ¼ ð0.75; 0.6; 0.3Þ].
For the calculation of the eigenmodes and the interpolating
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FIG. 1 (color online). Diagrammatic representation of the
triangle contribution Eq. (26) for Dþ

s → D0Kþ.
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fields containing covariant derivatives, we used no addi-
tional link smearing.
Ensemble (2) with Nf ¼ 2þ 1 dynamical quarks has

been generated by the PACS-CS Collaboration [43]. Sea
and valence quarks are nonperturbatively improved Wilson
fermions. It has finer lattice spacing and a Pion mass of
156 MeV. Due to the large lattices size 323 × 64 and larger
physical volume we used stochastic distillation [36]. For
the calculation of the eigenmodes and the interpolating
fields containing covariant derivatives, we used three-
dimensional hypercubic smearing (HYP) [46,47] in each
time slice.
For ensemble (1) the determination of the lattice

spacing was discussed previously [42]. For ensemble (2)
the value a ¼ 0.0907ð13Þ fm determined by the PACS-CS
Collaboration [43] is used. In the tables we give the
systematic errors due to the definition of the scale based
on the values given in Table I.
A word of caution is in order about the determination of

the lattice scale on both ensembles. While we used above
determinations for all values quoted in this paper, we
compared those values of the lattice spacing with the ones
we obtain calculating w0 from the Wilson gradient flow
method (for the method, c.f., [48,49]) and taking suitable
literature values for the physical value of w0 from other
lattice collaborations. Taking the physical 2 flavor value
from the Alpha Collaboration [50] and an estimate of the
quark mass dependence ofw0 from the Budapest-Marseille-
Wuppertal (BMW) Collaboration (Eq. (6.1) in [49]) we
obtain a 2.6% smaller lattice spacing for ensemble (1).

Assuming the same quark mass dependence and the
physical 2þ 1 flavor values from BMW [49] or the 2þ
1þ 1 flavor value from HPQCD [51] we end up with lattice
spacings a that are 4.4% or 2.1% larger than the value
determined by PACS-CS for ensemble (2). We stress that a
detailed investigation of scale setting on these lattices is
beyond the scope of our current paper and that the values
quoted in this paragraph should only serve to illustrate that
there is a potential additional uncertainty in setting the scale
which we are currently not able to take into account. Notice
that a change in scale would necessitate a retuning of charm
and strange quark hopping parameters which makes an ad-
hoc estimate of the full scale setting uncertainty on final
observables difficult.

1. The strange quark mass

In ensemble (1) the strange quark is included only as a
valence quark in the hadron propagators. To determine the
strange quark hopping parameter κs we calculated the
connected part of the ϕ meson. The tuning has been
discussed in Ref. [44] and with the final value of κs we
obtain mlat

ϕ ¼ 1015.8� 10.8 MeV which has to be com-
pared to the experimental mass mexp

ϕ ¼ 1019.455�
0.020 MeV.
For ensemble (2) the dynamic strange quark mass used in

[43] differs significantly from the physical value. We
therefore use a partially quenched strange quark mval

s ≠
msea

s and determine the hopping parameter κvals by mini-
mizing the difference of the ϕ meson mass from the
experimental mass and the difference of the unphysical
ηs meson from the value expected from a high-precision
lattice determination [51] mηs ¼ 688.5ð2.2Þ. The determi-
nations agree excellently and yield the value for κs in
Table I. The mass of the ϕ and ηs mesons for this value of κs
are listed along with a number of mass splittings in Table V.

2. The charm quark mass

The charm quark is treated as valence quark in both
ensembles. The Fermilab method [52,53] is used in an
approach similar to [54,55]. Details of the approach used
along with results for ensemble (1) have been published
previously in [34] and we refer the reader to this publication
for information on the method. Within this approach mass
splittings in the Ds spectrum are expected to be close to
physical and one therefore compares values of m − m̄ to
experiment. Here m̄ ¼ 1

4
ðmDs

þ 3mD�
s
Þ is the spin-averaged

ground state mass.
In the simplified form that we use [54,55], only the

charm quark hopping parameter κc is tuned nonperturba-
tively, while the clover coefficients cE and cB are set to the

tadpole improved value cE ¼ cB ¼ cðhÞsw ¼ 1=u30, where u0
denotes the average link. There are several ways of setting
u0 and we opt to use the Landau link on unsmeared gauge
configurations.

TABLE I. The gauge configurations of ensemble (1) have been
produced by [40,41] (for more details see [42]), Those of
ensemble (2) are due to the PACS-CS Collaboration [43].
In the table NL and NT denote the number of lattice points in
spatial and time directions, Nf the number of dynamical flavors
and a the lattice spacing. The Pion mass for ensemble (2) is taken
from [43].

Ensemble (1) Ensemble (2)

N3
L × NT 163 × 32 323 × 64

Nf 2 2þ 1

a½fm� 0.1239(13) 0.0907(13)
L½fm� 1.98(2) 2.90(4)
Lmπ 2.68(3) 2.29(10)
#configs 279 196
amπ 0.1673(16) 0.0717(32)
amK 0.3467(8) 0.2317(6)
κuðdynÞ 0.12830 0.13781
κuðvalÞ 0.12830 0.13781
csw 1.00000 1.71500
κsðdynÞ � � � 0.13640
κsðvalÞ 0.12610 0.13666
csw 1.00000 1.71500
κcðvalÞ 0.12300 0.12686
csw 1.75218 1.64978
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To tune the hopping parameter κc, the spin-averaged
kinetic mass (M2 below) of either heavy-light mesons or
charmonium is tuned to be close to the value obtained in
experiment. To disentangle the tuning procedures for
charmonium from the tuning of the strange quark mass
described above, we use the spin average of the 1 S
charmonium states and therefore tune ðmηc þ 3mJ=ΨÞ=4 to
its physical value. Determining the charm quark hopping
parameter therefore translates into determining the kinetic
mass M2 from the lattice dispersion relation [55]

EðpÞ ¼ M1 þ
p2

2M2

−
a3W4

6

X
i

p4
i −

ðp2Þ2
8M3

4

þ � � � ; ð1Þ

where p ¼ 2π
L q for a given spatial extent L.

In [34] two methods for fitting to the data are used and in
Tables II–IV we present the values obtained from methods
(1) and (2) of [34] on ensemble (2) for our final choice of κc
listed in Table I. Unlike the corresponding values for
ensemble (1) found in Tables II, III and IV of [34], the
results presented here take into account the correlation
between energy values at different momentum. For our
final data we use method (1) where the coefficientW4 of the
term breaking the rotational symmetry is neglected. By
comparison with method (2) we find that it is negligibly
small and we stress that the results from both methods are
consistent within uncertainties for both ensembles. For the

corresponding spin averages for ensemble (2) we use the
values of M1 in the tables.
It is worth noting that on both ensembles a physical

charmonium mass leads to somewhat lighter than physical
heavy-light and heavy-strange meson masses. This is a
result of subleading discretization effects which differ
between charmonium and heavy-light states. Therefore
we stress that our results will not be precision results,
which would need a continuum extrapolation.
To check our strange and charm quark mass we list

further relevant observables in Table V. Note that for these
numbers only, the spin averages are not from the dispersion
relation fits but instead are the ones derived from corre-
lators at momentum zero. These two choices agree well for
all values presented. For ensemble (2) mass differences
involving mesons with one or more charm quarks are all
close to their respective experiment values, however for
ensemble (1) (coarser lattice spacing, containing only two
flavors of light dynamical quarks), the D and Ds hyperfine
splittings deviate substantially from the experiment value.

TABLE II. Fit parameters obtained for spin-averaged charmo-
nium [ensemble (2)] with both tuning methods from [34]. The
values in the last two rows are in GeV, while all other values are in
lattice units. The first error on the kinetic mass M2 is statistical
while the second error is from the scale setting. The results forM4

are not used in our setup. The last row contains the experimental
value from [1].

Method (1) Method (2)

M1 1.20438(15) 1.20436(15)
M2 1.4073(59) � � �
M4 1.270(63) � � �
M2

M1

1.1685(49) 1.1632(42)

M2 [GeV] 3.062(13)(44) 3.048(11)(44)
Exp [GeV] 3.06861(18)

TABLE III. Same as Table II but for charm-strange (Ds)
mesons.

Method (1) Method (2)

M1 0.84606(28) 0.84601(28)
M2 0.9336(105) � � �
M4 0.959(71) � � �
M2

M1

1.1035(122) 1.0978(101)

M2 [GeV] 2.031(23)(39) 2.021(19)(29)
Exp [GeV] 2.07635(38)

TABLE IV. Same as Table II but for charm-light (D) mesons.
Notice that the value forM2 in physical units is based on a heavier
than physical light-quark mass.

Method (1) Method (2)

M1 0.80466(137) 0.80469(138)
M2 0.884(50) � � �
M4 0.98(38) � � �
M2

M1

1.099(61) 1.099(55)

M2 [GeV] 1.923(108)(28) 1.924(97)(28)
Exp [GeV] 1.97512(12)

TABLE V. Various meson masses and mass splittings (in MeV)
compared to their physical values from [1]. For the Pion and
Kaon we compare to the charged mesons. For the unphysical ηs
our values are compared to the value from HPQCD [51] at the
physical point (denoted by the asterisk). The error bars indicate
the uncertainty due to statistics and due to scale setting. The
results do not include infinite volume or continuum extrapola-
tions and are therefore not precision results, but demonstrate a
qualitative agreement with experiment.

Ensemble (1) Ensemble (2) Experiment

mπ 266(3)(3) 156(7)(2) 139.5702(4)
mK 552(1)(6) 504(1)(7) 493.677(16)
mϕ 1015.8(1.8)(10.7) 1018.4(2.8)(14.6) 1019.455(20)
mηs 732.3(0.9)(7.7) 692.9(0.5)(9.9) 688.5(2.2)*
mJ=Ψ −mηc 107.9(0.3)(1.1) 107.1(0.2)(1.5) 113.2(0.7)
mD�

s
−mDs

120.4(0.6)(1.3) 142.1(0.7)(2.0) 143.8(0.4)
mD� −mD 129.4(1.8)(1.4) 148.4(5.2)(2.1) 140.66(10)
2mD̄ −mc̄c 890.9(3.3)(9.3) 882.0(6.5)(12.6) 882.4(0.3)
2MD̄s

−mc̄c 1065.5(1.4)(11.2) 1060.7(1.1)(15.2) 1084.8(0.6)
mDs

−mD 96.6(0.9)(1.0) 94.0(4.6)(1.3) 98.87(29)
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B. Dispersion relation

For the analysis of the phase shifts discussed in
Sections II E and II F the dispersion relations for the
Kaon (K) and heavy meson (M) are needed. They are
given by

EMðpÞ ¼ M1 þ
p2

2M2

−
ðp2Þ2
8M3

4

; ð2Þ

EKðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ p2

q
; ð3Þ

which corresponds to the dispersion relation already used
for the heavy meson in method (1) of our tuning procedure
in II A 2. While Table IV lists the value obtained for the
spin average, we also need the values for D and D� mesons
separately, and they are listed in Table VI.
We obtained the energy values from correlators at

various momenta 0 ≤ japj ≤ 2
ffiffiffi
5

p
π=NL. For the vector

meson one has to take care of the possible irreducible
representations (irreps) of the symmetry groups for the
moving frame [56].

C. Distillation and stochastic distillation

In this section our notation for the distillation [35] and
the stochastic distillation approach [36] is presented. For
stochastic methods see also Ref. [39].

1. Distillation method

The basic idea is to use for the quark sources the
eigenvectors of the spatial lattice Laplacian in each time
slice. We denote an eigenvector in the time slice t by
við⃗x; c; tÞ (i denotes the index of the Laplacian eigenvector,
t denotes the time slice 0…NT − 1, ⃗x denotes the
spatial lattice position, while c denotes the color index
1…nc ¼ 3).
We arrange all eigenvectors in a matrix VðtÞ with the

eigenvectors as ncN3
L columns. The unit operator may be

written in terms of its spectral decomposition through the
eigenvectors,

VV† ¼ 1 ð4Þ

or, explicitly,

við⃗x; c; tÞv�i ð⃗x0; c0; tÞ ¼ δ⃗x⃗x0δcc0 ; ð5Þ

where we sum over paired indices. The sum over all
eigenvectors is truncated to a subset nv ≪ ncN3

L and
instead of the delta function δ⃗x;⃗x0 one obtains a
Gaussian-like shape [35].
We define the standard perambulators.

τᾱ β̄ij ðt0; tÞ ¼ v�i ð⃗x0; c0; t0ÞGᾱ β̄ ð⃗x0; c0; t0; ⃗x; c; tÞvjð⃗x; c; tÞ
¼ v�i ð⃗x0; c0; ᾱ; t0Þuᾱα0
× Gα0β0 ð⃗x0; c0; t0; ⃗x; c; tÞvjð⃗x; c; β̄; tÞuβ̄β0 : ð6Þ

HereG is the usual quark propagator and in the second step
we have introduced unit length spinors uð1Þ ¼ ð1; 0; 0; 0Þ,
uð2Þ ¼ ð0; 1; 0; 0Þ etc. which makes the role of the spin
indices explicit and which facilitates the later discussion of
stochastic distillation. In this expression and also further
down the notation ᾱ indicates that in this case the index is
considered fixed and not summed over. The extra index in
the vector is trivial, vjð⃗x; c; β; tÞ≡ vjð⃗x; c; tÞ. The peram-
bulators are thus propagators between quark sources
vjð⃗x; c; tÞ and v�i ð⃗x0; c0; t0Þ.
Once one has determined the perambulators τ, the

hadron propagator can be evaluated with high flexibility
in the interpolators. Projection to spatial momenta, different
Dirac and color structure and derivatives all can be defined
independent of the perambulators.
Consider, e.g., meson interpolators of the form

Mðp⃗; tÞ ¼ ūαð⃗x; a; tÞΓαβ
abð⃗x; ⃗y; p⃗; tÞdβ ð⃗y; b; tÞ; ð7Þ

where summation over ⃗x, ⃗y and pairs of colors ða; bÞ and
Dirac indices (α; β) is implied. The meson kernel includes
projection to spatial momentum p⃗ as well as possible
derivatives, color and Dirac structures. We omit all indices
for short-hand notation, writing

Mðp⃗; tÞ ¼ ūΓd: ð8Þ

Distillation introduces the (due to truncation approximate)
unit operator (quasi smearing operator) (4) in the form

Mðp⃗; tÞ ¼ ūVV†ΓVV†d: ð9Þ

Propagators for such interpolators may then be written

TABLE VI. The parameters for the dispersion relation (2) forD
and D� for both ensembles.

Ensemble (1) Ensemble (2)

D∶aM1 0.9801(10) 0.7534(12)
D∶aM2 1.107(12) 0.828(39)
D∶aM4 1.107(27) 0.89(23)
D�∶aM1 1.0629(13) 0.8217(16)
D�∶aM2 1.267(21) 0.905(66)
D�∶aM4 1.325(68) 0.98(51)
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hMðp⃗; t0ÞM†ðp⃗; tÞi
¼ hūVV†ΓVV†dd̄VV†Γ†VV†ui
¼ −hðV†ΓVÞðV†dd̄VÞðV†Γ†VÞðV†uūVÞi
¼ −tr½ðV†ΓVÞðV†GdVÞðV†Γ†VÞðV†GuVÞ�
¼ −tr½ϕðt0Þτðt0; tÞϕðtÞτðt; t0Þ�: ð10Þ

The brackets h…i denote the integration over the
Grassmann variables u; ū; d; d̄ and the extra minus sign
is due to anti-commuting ū from left to right. The time slice
positions have been indicated for convenience. We have
introduced the meson kernel ϕ for a given time slice
denoted by

ϕ ¼ V†ΓV; or

ϕαβ
ij ¼ v�i ð⃗x; cÞΓαβ ð⃗x; c; ⃗x0; c0Þvjð⃗x0; c0Þ; ð11Þ

where V and Γ also live on that time slice.
Using γ5-hermiticity, we have

τðt; t0Þ ¼ γ5τðt0; tÞ†γ5 or; short τij ¼ γ5τ
�
jiγ5: ð12Þ

2. Stochastic distillation

In distillation the number of Laplacian eigenvectors nv
grows with the physical volume in order to keep the
source profile constant in physical size.2 This leads to
technical problems for large volumes. As a remedy to this a
stochastic version of distillation was suggested in Ref. [36].
The number of sources nv is reduced by using stochastic
combinations instead of the eigenvectors. We discuss here
our implementation of that formalism.
For the notation we now define (for each quark species)

on each time slice vectors ρ½r� of 4nv random numbers,

ρα½r�i ≡ with ½ρα½r�i �r ¼ 0; ½ρα½r�i ρβ½r��j �
r
¼ δijδαβ; ð13Þ

(the greek indices are Dirac indices). We have introduced
the average ½…�r over the space S of random numbers ρ½r�.
In practice one has nr ≪ nv. For S we use the space of
uniformly distributed unimodular complex numbers. The
products v · ρ½r� provide stochastic sources for each r.
It is advantageous to partition the source vectors

into disjoint parts (indexed by b). For the projectors PðbÞ
(with P ¼ P2) we use nb diagonal nv × nv matrices with
diagonal elements assuming values 1 or 0, and

½PðbÞ�b ≡
Xnb
b¼1

PðbÞ ¼ 1nv×nv : ð14Þ

With their help we introduce the rectangular nv × nb
matrices ηα½r� with the matrix elements

ðηα½r�Þib ¼
X
j

PðbÞ
ij ρα½r�j : ð15Þ

Obviously

½ηα½r�ηβ½r�†�r ¼ 1nv×nvδαβ: ð16Þ

We can write the 4nb stochastic sources as scalar product

Sᾱ½r�b ð⃗x; c; tÞuᾱβ ¼
X
i

við⃗x; c; tÞηᾱ½r�ib uᾱβ; ð17Þ

and replace við⃗x; c; α; tÞ by Sᾱ½r�b ð⃗x; c; tÞ in (6). In this
expression and also further down the notation ᾱ indicates
that in this case the index is considered fixed and not
summed over. It will be shown below that Wick contrac-
tions expressed in terms of sources S will reduce to the
expressions in full distillation after averaging over noises r.
One now introduces stochastic perambulators3

T ᾱ β̄½r�
ib ðt; t0Þ ¼ v�i ðx⃗; c; ᾱ; tÞuᾱα0

×Gα0β0 ðx⃗; c; t; x⃗0; c0; t0ÞSβ̄½r�b ðx⃗0; c0; t0Þuβ̄β0 ; ð18Þ

where the noise vectors live in the corresponding time
slices. We could recover the standard perambulators
through

X
b

½Tαβ½r�
ib ðt; t0Þη�γ½r�jb �

r
¼ ταγij ðt; t0Þ: ð19Þ

The stochastic perambulators are propagators from the

ðnrnbÞ stochastic source vectors S½r�b to the sink vectors vi.
We will express all hadron propagators in terms of T.
In our approach we use two types of stochastic sources.

The first type (A) locates the sources on just one time slice.
For the partitioning projectors (eigenvector interlacing) in a
given time slice we choose

PðbÞ
nmðtÞ ¼ δnm

Xni−1
k¼0

δbþknb;m; ð20Þ

where b runs from 1 to nb ¼ nv=ni and ni is the number of
nonvanishing entries in each PðbÞ. For each configuration
we calculate NT=nti perambulators for the time slices with
distance nti located at t ¼ 0, nti, 2nti, etc.
The second set of sources (B) are time-interlaced sources

and have support simultaneously on several time slices
with distance nti. There are k ¼ 0…ðnti − 1Þ such sources

2As a rule of thumb one needs more than Oð64Þ vectors for a
box with spatial size 2 fm. For higher momenta even more vectors
are needed and eventually the approach may become inefficient.

3The so defined perambulators are “half”-stochastic; one could
also define them symmetrically.
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where the k-th of those has support on t ¼ k; kþ nti,
kþ 2nti;…. The perambulators of type (B) are used for the
backtracking quark lines on the sink time slices. For the
time-interlacing partitioning projectors PðbÞ we thus have

PðkÞ
nm ¼

XNT=nti−1

δ¼0

PðbÞ
nmðkþ δntiÞ: ð21Þ

Consider the correlation matrix from Eq. (10), replacing
τ by the stochastic perambulator T via (19)

tr½ϕðt0Þτðt0; tÞϕðtÞγ5τðt0; tÞ†γ5�
¼ tr½ϕðt0Þ½T ½r�ðt0; tÞη½r�†�rϕðtÞγ5½T ½r0�ðt0; tÞη½r0�†�†r0γ5�:

ð22Þ

For each r, r0 this may be rearranged

tr½ϕðt0ÞT ½r�ðt0; tÞðη½r�†ϕðtÞη½r0�Þγ5T ½r0�†ðt0; tÞγ5�r;r0
¼ tr½ϕðt0ÞT ½r�ðt0; tÞϕ̂½r;r0�ðtÞγ5T ½r0�†ðt0; tÞγ5�r;r0 ; ð23Þ

where we have introduced a modified meson kernel
operator

ϕ̂ᾱ β̄½r;r0�
bb0 ðtÞ ¼ Sᾱ½r��b ð⃗x; c; tÞuᾱα0Γα0β0 ð⃗x; c; ⃗x0; c0Þ

× Sβ̄½r
0�

b0 ð⃗x0; c0; tÞuβ̄β0 ð24Þ

at the source time slice (ᾱ; β̄ are external indices not
summed).
An alternative prescription to arrive at this form is to

insert (16) into the meson interpolator (9) at the source,
giving

Mðp⃗; tÞ ¼ ½ūVη½r�η½r�†V†ΓVη½r0�η½r0�†V†d�r;r0 : ð25Þ

This then together with (10) gives (23). This way the
“smeared” quark VV†q has been replaced by Vηη†V†q at
the source.
Since it is important for the practical implementation, let

us summarize the range of indices of the terms.
(i) Tαα0½r�

jb ðt0; tÞ for each b and r has a “left” index, j,
running over 1…nv and a “right” index, b, running
over 1…nb; it also has left and right Dirac indices α
and α0 (inherited from τ),

(ii) For ϕαα0
ij ðtÞ both indices i; j run over 1…nv and the

Dirac indices over 1…4.
(iii) For ϕ̂αα0½r;r0�

bb0 ðtÞ the indices b; b0 run over 1…nb and
the Dirac indices over 1…4.

(iv) For diagrams with backtracking quark lines we also
need another (rectangular) version of the meson

kernel: ϕ̄αα0½r�
bi ðtÞ,where b run over 1…nb, the other

over 1…nv and the Dirac indices over 1…4.

In our implementation on the PACS-CS ensemble of
lattices of size 323 × 64 we use nv ¼ 192, ni ¼ 16 (thus
nb ¼ 12) and for the time interlacing nti ¼ 8. For each
gauge configuration we therefore compute eight stochastic
perambulators of type (A) for the time slices 0; 8; 16;…; 56
and eight time-interlaced perambulators (B) with simulta-
neous support on eight time slices each, as discussed above.
For each quark species we have nr ¼ 4 random vectors.

One has to use different vectors for the different quarks
lines in a diagram. We average over permutations of the
stochastic perambulators for different r. In total the Dirac
operator has to be inverted 2nbðNT=ntiÞnDnr ¼ 3072
times for each quark species. For this we use the highly
efficient SAP-GCR inverter from Lüscher’s DD-HMC
package [57,58].
For the calculation of the eigenmodes we use the

PRIMME package [59]. In particular, the routine
JDQMR_ETOL results in a fast determination for a small
to moderate number of eigenmodes. For a larger number
of eigenmodes the Arnoldi/Lanczos method [60]
(and variants) eventually outperforms this method. For
the methods implemented in PRIMME we also tried a
preconditioner using Chebychev polynomials, very similar
to the method described in [36]. The preconditioner greatly
improved the performance of the Arnoldi implementation
in PRIMME, while some other methods were largely
unaffected. For ensemble (1) we used JDQMR_ETOL
without preconditioner, while we used Arnoldi with pre-
conditioner for ensemble (2).

3. Sample diagram

As an example for a diagram involving backtracking
quark lines we consider the triangle diagram Dþ

s → D0Kþ
corresponding to cs̄ → cūus̄. The diagram in Fig. 1 should
be read clockwise to be translated to the following
expression (we omit the Dirac indices):

tr½ðϕ̂Ds
Þ½r1r2�b1b2

ðtÞðTsÞ½r2�b2i1
ðt; t0ÞðϕKÞi1i2ðt0Þ

ðTuÞ½r3�i2b3
ðt0; t0Þðϕ̄DÞ½r3�b3i3

ðt0ÞðTcÞ½r1�i3b1
ðt0; tÞ�

¼ tr½ðϕ̂Ds
Þ½r1r2�b1b2

ðtÞγ5ðTsÞ½r2��i1b2
ðt0; tÞγ5ðϕKÞi1i2ðt0Þ

ðTuÞ½r3�i2b3
ðt0; t0Þðϕ̄DÞ½r3�b3i3

ðt0ÞðTcÞ½r1�i3b1
ðt0; tÞ� ð26Þ

In this example the perambulator for the backtracking
quark line (at the sink) is of the time-interlaced type (B), the
others are of type (A). After the average ½::�r1;r2;r3 over a
large number of random numbers, the expression (26)
formally renders the expression in full distillation,

tr½ðϕDs
Þi5i6ðtÞðτsÞi6i1ðt; t0ÞðϕKÞi1i2ðt0Þ

ðτuÞi2i3ðt0; t0ÞðϕDÞi3i4ðt0ÞðτcÞi4i5ðt0; tÞ�:
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D. Evaluation of energy levels

The discrete energy levels were extracted from correla-
tions between sets of interpolating operators (discussed
later) using the variational method [22,61–63]. For a given
quantum channel one measures the Euclidean cross-
correlation matrix CijðtÞ ¼ hOiðtÞO†

jð0Þi between several
interpolators living on the corresponding Euclidean time
slices. The generalized eigenvalue problem,

CðtÞvðnÞðtÞ ¼ λðnÞðtÞCðt0ÞvðnÞðtÞ; ð27Þ

disentangles the eigenstates jni. From the exponential
decay of the eigenvalues λnðtÞ ∼ exp ð−Enðt − t0ÞÞ one
determines the energy values En of the eigenstates by
exponential fits to the asymptotic behavior. In order to
obtain the lowest energy eigenstates and energy levels
reliably one needs a sufficiently large set of interpolators
with the chosen quantum numbers (see Sec. II G).
Formally one expects reliable results for t in a range

between t0 and 2t0 [63]. In practice large values of t0 lead
to larger fluctuations and the correlation matrix may not
be positive definite any more. We use values up to t0 ¼ 3
(the first time slice is at t ¼ 0) and fit over a larger range
t0 < ta ≤ t ≤ tb to extract the asymptotic value. In general
a 2-exponential fit (one of the exponentials deals with the
admixture at small t) works over an extended range of t
values. We check the reliability of the result by comparing
with a 1-exponential fit over a smaller t range (i.e., starting
at larger ta).
For both ensembles t0 ¼ 2 was sufficient for quantum

numbers 0þ and 2þ, while we had to choose t0 ¼ 3 for 1þ.
We performed correlated fits for all energy levels using
either a one or two exponential shape, to make sure our
results are not affected by excited state contaminations.
The fit ranges and final fit shape chosen are indicated in the
tables of results. In the figures in Sec. III we show the
effective energies,

aEðnÞ
eff

�
tþ 1

2

�
¼ log

λðnÞðtÞ
λðnÞðtþ 1Þ : ð28Þ

The fits, however, are directly to λðnÞðtÞ.
All error values come from a single-elimination jack-

knife analysis, where the error analysis for p cot δðpÞ
includes also the input from the dispersion relation.

E. Scattering amplitude and phase shift above threshold

Assuming a localized interaction region smaller than the
spatial lattice extent Lüscher has derived a relation [22–25]
between the energy spectrum of meson-meson correlators
in finite volume and the infinite volume phase shift in the
elastic region and in the rest frame,

tan δðqÞ ¼ π3=2q
Z00ð1; q2Þ

; ð29Þ

where the generalized zeta function Zlm is given in [24].
The variable q is defined as the dimensionless product of
the momentum and the spatial lattice size,

q ¼ p
L
2π

: ð30Þ

The value of the momentum p ¼ jpj is obtained from the
energy value,

E ¼ ffiffiffi
s

p ¼ EMðpÞ þ EKð−pÞ; ð31Þ
where the dispersion relation for M ¼ D;D� and the Kaon
are given in Eqs. (2) and (3) in Sec. II B. We extract the
momentum by inverting the dispersion relation.
Equation (29) may be written as

p cot δðpÞ ¼ 2Z00ð1; ðpL2πÞ2Þ
L

ffiffiffi
π

p ; ð32Þ

which above threshold is the real part of the inverse elastic
scattering amplitude T.

F. Analytic continuation near threshold

The effective range approximation is a linear (in p2)
approximation ð1=a0 þ r0p2=2Þ of p cot δðpÞ valid near
above threshold. The partial wave scattering amplitude T
itself has a cusp (in the real part) at threshold. Above
threshold we have

T−1 ∝ p cot δðpÞ − ip: ð33Þ
Below threshold the phase space term −ip becomes real
jpj, thus the cusp. Lüscher’s formula defines the analytic
extrapolation of p cot δðpÞ (see Refs. [22–25,64]) which is
real above and below threshold, that is

T−1 ∝
2Z00

L
ffiffiffi
π

p − ip above threshold

T−1 ∝
2Z00

L
ffiffiffi
π

p þ jpj below threshold: ð34Þ

Thus the effective range approximation for the quantity
p cot δðpÞ can be continued below threshold as given by the
real functions

p cot δðpÞ ¼ 2Z00

L
ffiffiffi
π

p ≈
1

a0
þ 1

2
r0p2 þOðp4Þ; ð35Þ

and one can use the two data points (derived from the
energy levels above and below threshold) for an approxi-
mate determination of its parameters.
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The procedure we employ to obtain the bound state
position was proposed by NPLQCD for extracting an NN
bound state in future lattice simulations on a single volume
[65]. Below threshold −ip becomes jpj or, equivalently,
p → ijpj. In the limit of infinite volume, the T matrix has a
pole for real s below threshold when

ijpBj cot δðijpBjÞ þ jpBj ¼ 0 or cot δðijpBjÞ ¼ i;

ð36Þ
where pB is the binding momentum. It is then determined
as a solution of

1

a0
−
1

2
r0jpBj2 ¼ −jpBj: ð37Þ

(See e.g., the analysis in [66]).
At finite L, the lowest energy level corresponds to

cot δðpÞ ¼ iþ
X
n

1

ijnjjpjL e−jnjjpjL with n ∈ N3
L;

ð38Þ
which reproduces (36) for L → ∞. The above relation
contains all finite volume corrections e−jnjjpjL (see for
example [67,68]).
In our simulation the lowest energy levels correspond to

values cot δ equal to 0.84ð2Þi=0.86ð9Þi (for ensembles (1)
and (2) in the JP ¼ 0þ channel) and 0.87ð1Þi=0.88ð4Þi
(for the 1þ channel). One way to determine the shift of
the bound state position due to finite volume is to simulate
several volumes and extrapolate. The second possibility,
available on a single volume, is to apply the effective range
approximation near threshold. This allows us to get an
estimate of the binding momenta pB at which the infinite
volume pole condition (36) is satisfied; this is preferable
compared to simply using the finite volume value of the
lower state energy directly. Of course. simulations for
several volumes would be desirable to confirm this result.
In [31,32,66] synthetic data from coupled channel effective
field theory calculations are used to attack the inverse
problem of reconstructing bound state and scattering data
from the lowest energy levels obtained in finite volumes.
Solutions to inverse problems are not unique in general but
such comparisons with modeled data offer a practicable
approach to the problem. This, however, is outside the
scope of our present analysis.

G. Interpolating operators

Most lattice studies so far have relied exclusively on q̄q
interpolators. On the other hand we know that the mesons
couple to meson-meson channels and the energy spectrum
in the quantum channel will be affected at least in the
resonance region, in principle everywhere. If a resonance
has a small width in the meson-meson channel (i.e., it

couples weakly) then the effect will be small and the energy
levels will be close to noninteracting ones. This is in
particular the case for many heavy quark mesons with small
hadronic width and this explains the success of the single
hadron interpolator approach.
We have to stress that in quantum field theory the

identification of energy levels with interpolators can be
misleading. It is a combination of interpolating operators
used in the simulation that actually defines one physical
(eigen)state and its energy level. An example where this is
relevant is the D�

s0ð2317Þ, where without the meson-meson
scattering operators the mass obtained from the single
hadron approach is too high. Only a detailed analysis, like
in Sec. II E and Sec. II F can reveal the physical state.
Depending on the set of interpolators some contributing

states may be underrepresented in their weight. Although
one expects, that in simulations with fully dynamical
quarks the meson-meson intermediate states show up even
in q̄q correlators (of the single hadron approach) most
often there is no such signal observed. The addition of
meson-meson interpolators for relevant hadronic channels
results in a reliable spectrum. Furthermore, the inclusion of
scattering operators allows effective study of meson-meson
scattering and the emergence of resonances or bound states.
This motivates our choice of interpolators listed in the
Appendix. Our results confirm the importance of scattering
channels in a lattice QCD simulation.
We study the Ds channel for the quantum numbers

JP ¼ 0þ, 1þ and 2þ, the first two near the DK or D�K
thresholds, respectively. For this we use up to eight quark-
antiquark interpolating fields and up to three meson-meson
interpolators, all projected to total momentum zero. The
interpolating operators, which enter the meson kernels in
Eqs. (11) and (24), are in irreducible representations of the
octahedral group Oh and are listed in the Appendix.
For each spin and parity channel we have a correlation

matrix of the form

q̄q-type

DK-type

q̄q-type DK-type� −A1 −2B1

−2C1 2D1 − 4D2

�
; ð39Þ

which is evaluated using Wick contractions shown sym-
bolically in Fig. 2.
For the JP ¼ 0þ channel, where the D�

s0 is present, we
use four interpolators of type q̄q and three interpolators of
type DK in s wave. These are in the Aþ

1 irrep and are listed
in Table XIII and Eqs. (A1) of the Appendix.
In the JP ¼ 1þ channel, where both the Ds1ð2460Þ and

Ds1ð2536Þ are present, we use eight q̄q interpolators
and three D�K s-wave interpolators; all are in the Tþ

1 irrep
and listed in Table XIII and Eqs. (A2) of the Appendix.
The JP ¼ 2þ channel, where the D�

s2ð2573Þ resides, is
simulated using only two q̄q operators in the Tþ

2 irrep.
Interpolators are listed in Table XIII of the Appendix.
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III. RESULTS

A. D�
s0

Some results for this channel have already been pre-
sented in Ref. [20] and therefore we will be brief here. We

analyzed the contribution of the various interpolators to the
energy eigenstates by (a) the overlap factors hnjOii and the
eigenvectors and (b) by determining the eigenstates con-
sidering subsets of the complete set. Figure 3 shows the
impact of the DK operators on the determination of lowest

TABLE VIII. Aþ
1 : Scattering length and effective range computed from the linear interpolation between levels 1 and 2, and parameters

for the position of theD�
s0ð2317Þ bound statemB derived from the requirement cot δðpBÞ ¼ i. The second uncertainty given for values in

MeV corresponds to the uncertainty in the lattice scale a. The experimental value of mK þmD −mB is averaged over DþK0 and D0Kþ
thresholds.

Set aDK
0 [fm] rDK

0 [fm] ðapBÞ2 amB mK þmD −mB [MeV] mB − 1
4
ðmDs

þ 3mD�
s
Þ [MeV]

Ensemble (1)
−0.756ð25Þ −0.056ð31Þ −0.0250ð17Þ 1.2772(32) 78.9(5.4)(0.8) 287(5)(3)

Ensemble (2)
−1.33ð20Þ 0.27(17) −0.0060ð26Þ 0.9683(76) 36.6(16.6)(0.5) 266(17)(4)

Experiment
45.1 241.5

TABLE VII. Energy levels for irrep Aþ
1 . The superscript c indicates a correlated fit and m̄ ¼ 1

4
ðmDs

þ 3mD�
s
Þ.

Level t0 Basis Fit range Fit type χ2

d:o:f Ea E − m̄ [MeV] ðapÞ2 ap cotðδÞ p2 ½GeV2� p cotðδÞ [GeV]
Ensemble (1)
1 2 O1−7 4–15 2expc 0.07 1.2566(28) 254.1(4.3) −0.0347ð14Þ −0.1560ð59Þ −0.0881ð35Þ −0.2484ð94Þ
2 2 O1−7 4–15 2expc 0.15 1.3922(27) 470.0(4.0) 0.0364(14) −0.1722ð74Þ 0.0924(36) −0.274ð12Þ
3 2 O1−7 4–10 2expc 0.17 1.6124(69) 821(11) 0.1846(52) −0.526ð126Þ 0.4682(133) −0.84ð20Þ
Ensemble (2)
1 2 O1−7 3–12 2expc 0.44 0.9589(70) 245(15) −0.0092 ð24Þ −0.082 ð19Þ −0.0433 ð111Þ −0.178 ð41Þ
2 2 O1−7 3–11 2expc 1.71 1.0195(40) 377(9) 0.0130 (16) −0.049 ð15Þ 0.0616 (76) −0.107 ð32Þ
3 2 O1−7 3–11 2expc 0.66 1.1118(45) 578(10) 0.0531 (22) −0.053 ð49Þ 0.2515 (104) −0.114 ð106Þ

TABLE IX. Energy levels for irrep Tþ
1 for both ensembles and s-wave phase shifts extracted from them (time slices start from t ¼ 0

such that t0 ¼ 3 corresponds to the fourth time slice). The superscript c indicates a correlated fit and m̄ ¼ 1
4
ðmDs

þ 3mD�
s
Þ. For ensemble

(2) we show the fit result for two sets of interpolators to point out the possible systematic error due to the choice. The second level is
identified with Ds1ð2536Þ coupling weakly to s wave (see the discussion in the text); we therefore do not include it in the phase shift
analysis.

Level t0 Basis Fit range Fit type χ2

d:o:f Ea E − m̄ [MeV] ðapÞ2 ap cotðδÞ p2 ½GeV2� p cotðδÞ [GeV]
Ensemble (1)
1 3 O1;4;7–11 10–15 1expc 0.12 1.3340(28) 377.4(4.2) −0.0382ð11Þ −0.1701ð44Þ −0.0970ð29Þ −0.2709ð69Þ
2 3 O1;4;7−11 10–15 1expc 1.45 1.3761(75) 444(12)
3 3 O1;4;7−11 10–15 1expc 0.50 1.4645(38) 585.3(5.9) 0.0314(17) −0.1998ð101Þ 0.0796(44) −0.318ð16Þ
4 3 O1;4;7−11 4–11 2expc 0.54 1.6681(80) 909(13) 0.1707(52) −1.09ð38Þ 0.4330(132) −1.73ð60Þ
Ensemble (2)
1 3 O1;4;7−11 4–14 2expc 1.58 1.0260(52) 392(11) −0.0097ð19Þ −0.086ð14Þ −0.0460ð88Þ −0.188ð30Þ
2 3 O1;4;7−11 4–11 2expc 1.00 1.0791(47) 507(10)
3 3 O1;4;7−11 4–11 2expc 0.71 1.0811(64) 511(14) 0.0106(26) −0.071ð25Þ 0.050(12) −0.155ð54Þ
4 3 O1;4;7−11 4–11 2expc 0.45 1.1723(93) 710(20) 0.0506(45) −0.113ð116Þ 0.239(21) −0.24ð25Þ
1 3 O1;2;4;5;9;11 4–20 2expc 0.27 1.0259(35) 391.3(7.6) −0.0098ð13Þ −0.0867ð99Þ −0.0463ð63Þ −0.189ð22Þ
2 3 O1;2;4;5;9;11 4–12 2expc 0.89 1.0765(34) 501.3(7.4)
3 3 O1;2;4;5;9;11 4–12 2expc 1.80 1.0799(24) 508.7(5.2) 0.0101(11) −0.0762ð103Þ 0.0478(50) −0.166ð22Þ
4 3 O1;2;4;5;9;11 4–12 2expc 1.27 1.162(18) 688(40) 0.0458(85) −0.28ð55Þ 0.217(40) −0.6ð1.2Þ
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eigenstates. In this plot all time fit ranges for the
2-exponential fits are 3–10 and the results are compatible
with 1-exponential fits in the range 7–10. We only show the
lowest energy levels where a clear plateau behavior of the
effective energies is observed. Our final results have used
different fit ranges chosen optimally for the basis used.
Table VII gives the energy values for the eigenstates using
the complete operator basis for both ensembles.
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FIG. 2 (color online). Diagrammatic representation of the
necessary Wick contractions. Source and sink are indicated by
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1 : Effective energies as obtained for

various subsets of operators for ensemble (2). The horizontal
broken lines indicate the positions of Dð0ÞKð0Þ and Dð1ÞKð−1Þ
in the noninteracting case. The boxes indicate the operators
(listed in the Appendix) considered in each case [blue: q̄q, red:
Dð0ÞKð0Þ, green: Dð1ÞKð−1Þ].
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(2), see Table VIII, the dashed line indicates the threshold.
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energies of the lowest four energy levels. We compare the results
obtained including the D�K operators (circles, O1−11) with the
results obtained without those (stars, O1−8).The horizontal
broken lines in the upper plot indicate the positions of
D�ð0ÞKð0Þ and D�ð1ÞKð−1Þ in the noninteracting case. Note
the “missing state” in the second case.
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As discussed in more detail in Ref. [20] we identify the
lowest eigenstate as lying close to the bound state
D�

s0ð2317Þ and the level above threshold with the lowest
scattering state. With Lüscher’s relation (see Sec. II F) we
determine values of ReðT−1Þ and therefrom values of the
scattering length and the effective range (Table VIII and
Fig. 4). Our results are compatible with the analysis in
Ref. [26] where the authors performed a lattice calculation
in a variety of other channels and extracted the relevant
low-energy constants of the chiral effective field theory.
These low-energy constants were then used to predict the
DK (I ¼ 0) scattering length indirectly. The value based on
effective field theory given in [27] disagrees with [26] and
this work in sign and magnitude.
Our highest energy level lies comparatively close to the

Dsη s-wave threshold; we did not include such an operator
in our calculations. The effect of this channel on our highest
3rd level should be mild [for mπL ≈ 2.3 for ensemble (2)]
in our situation [31] and we do not use that level for the
effective range fit.
From the bound state condition (36) we obtain

the location of the D�
s0ð2317Þ bound state given in

Table VIII. The resulting mass is shown together with
other channels in Fig. 10.

B. Ds1

For the two ensembles we had to rely on slightly
different fit ranges. For ensemble (1) we used 1-exponential
fits, for ensemble (2) we used 2-exponential fits (and
checked consistency with 1-exponential fits). The final
results are summarized in Table IX. For ensemble (2) we
show the fit result for two sets of interpolators to point out
the possible systematic error due to that choice.

TABLE X. Comparison of the mass of Ds1ð2536Þ with
experiment.

Set
mDs1ð2536Þ −

1
4
ðmDs

þ 3mD�
s
Þ

[MeV]
mDs1ð2536Þ −mK −mD�

[MeV]

Ensemble (1)
444(12) −53(12)

Ensemble (2)
set 1 507(10) 56(11)
set 2 501(8) 50(8)

Experiment
459 31
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FIG. 7 (color online). Tþ
1 : Effective energies as obtained for various subsets of operators for ensemble (1) (lhs) and (2) (rhs). The fit

type and fit range is shown in Table IX. The horizontal broken lines indicate the positions of D�ð0ÞKð0Þ and D�ð1ÞKð−1Þ in the
noninteracting case. The boxes indicate the operators considered in each case (blue: q̄q, red: D�ð0ÞKð0Þ, green: D�ð1ÞKð−1Þ.
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1 : The upper figure shows the overlap

factors hnjOii for the lowest four eigenstates (ensemble (2), first
choice, see Table IX). The abscissa gives the operator number i
according to the order in Tables XIII (1-8) and (A2) (9-11). Below
the ratios hnjOii=maxmhmjOii for the same four eigenstates
are shown.
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Figures 5 and 6 demonstrate the typical behavior of the
effective energies for the two ensembles. For ensemble (1)
the highest level (actually the third for that set of operators)
has a plateau-like signal only when including the D�K
interpolators. In Fig. 6 we also plot the results of the 2- and
1-exponential fits (the errors of the asymptotic values are
given in Table IX).
In Fig. 7 we give an overview on the energy levels

resulting from different subsets of interpolators in the
variational analysis. One clearly sees that including the
D�ð0ÞKð0Þ interpolators 9 and 10 introduces new levels. In
ensemble (1) the signal for the 4th level is too noisy, when
considering all 11 interpolators, but is clearly seen for the
subset 1,4,7–11.
From ensemble (2) the effect is even more apparent:

Allowing for only the D�K interpolators one finds energies
very close to the noninteracting case. When coupling all
interpolators one finds level shifts due to interaction. For
this ensemble the 2nd and 3rd level are very close when
considering all types of interpolators, whereas in ensemble
(1) these are well separated. This supports the observation
that only one of the levels is dominated by D�K.

1. Interpretation of the energy levels

The lowest level is identified with the experimental state
Ds1ð2460Þ, below D�K threshold. It couples to D�K in s
wave even in the heavy quark (mc → ∞) limit [2]. The
level is seen already for q̄q interpolators alone but it is
down-shifted by about 20 MeV [ensemble (1)] or 33 MeV
[ensemble (2)] if the D�ð0ÞKð0Þ interpolators are included.
The second state in both ensembles is identified with

Ds1ð2536Þ. In ensemble (1) with the heavier Pion the state
lies below m�

D þmK, but in the ensemble (2) we find it
above this threshold. The mass of Ds1ð2536Þ is given
“naively” from the 2nd energy level in Table IX and
compared with experiment in Table X.
In the heavy quark limit, according to Ref. [2]Ds1ð2536Þ

does not couple to D�K in s wave. We find that the
composition of the states with regard to the q̄q operators is
fairly independent of whether the D�K operators are
included or not. This can be seen by the eigenvector
components as well as the overlap factors hn ¼ 2jO1−8i
obtained with or without including the D�K interpolators.
The level is not observed if onlyD�K interpolator are used.
As an example we show in Fig. 8 (upper plot) the overlap

factors hnjOii for the lowest four eigenstates (ensemble (2),
first choice, see Table IX). There is no absolute normal-
isation for the lattice interpolators, thus one cannot directly
compare the factors for the q̄q interpolators (1 ≤ n ≤ 8)
with those of the meson-meson interpolators (9 ≤ n ≤ 11).
Within the group of meson-meson interpolatorsD�ð0ÞKð0Þ
contributes most to level 3 andD�ð1ÞKð−1Þ is maximal for
level 4. The lower plot of Fig. 8 shows ratios of overlap
factors hnjOii=maxmhmjOii for the same four eigenstates.
In this case normalisation factors cancel and one sees for
each interpolator the relative amount of coupling to each
level, confirming the above observations.
Experimentally the state is above D�K threshold

but has - in spite of this-the very small decay width
Γ≃ 0.92 MeV; coupling in s and in d wave is observed.
The experiment gives g≃ 0.2 GeV (for a total width
Γ≡ g2p=s) which indeed seems mc suppressed in
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FIG. 9 (color online). Effective range fits for Tþ
1 , cf. Table XI.

Ensemble (1): black dots, ensemble (2): red open/full (set 1/2)
squares. The vertical arrows show the positions of the bound
state, see Table XI, the dashed line indicates the threshold.

TABLE XI. Tþ
1 Scattering length and effective range computed from the linear interpolation between levels 1 and 3, and parameters

for the position of theDs1ð2460Þ bound statemB derived from the requirement cot δðpBÞ ¼ i. The second uncertainty given for values in
MeV corresponds to the uncertainty in the lattice scale a. The experimental value of mK þmD� −mB is averaged over D�þK0 and
D�0Kþ thresholds.

Set aD
�K

0 [fm] rD
�K

0 [fm] ðapBÞ2 amB mK þmD� −mB [MeV] mB − 1
4
ðmDs

þ 3mD�
s
Þ [MeV]

Ensemble (1)
−0.665ð25Þ −0.106ð37Þ −0.0301ð15Þ 1.3511(35) 93.2(4.7)(1.0) 404.6(4.5)(4.2)

Ensemble (2)
set 1 −1.15ð19Þ 0.13(22) −0.0071ð22Þ 1.0336(60) 43.2(13.8)(0.6) 408(13)(5.8)
set 2 −1.11ð11Þ 0.10(10) −0.0073ð16Þ 1.0331(41) 44.2(9.9)(0.6) 407.0(8.8)(5.8)

Experiment
44.7 383
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comparison to g½D1ð2430Þ → D�π�≃ 2 GeV. So it is
reasonable to assume that the coupling Ds1ð2536Þ →
D�K in s wave is indeed small. Due to the small coupling
the “avoided level crossing” region is so narrow that we
may treat this state as decoupled from the D�K scattering
channel. Lüscher’s equation for δ0 then does not affect this
energy level. For this reason the corresponding value of
p cot δ0 is not provided in Table IX. Studies for different
volumes would be important to support this result.

2. Bound state and threshold behavior

As discussed in Sec. II F we can use the values of
p cot δðpÞ from Lüscher’s relation (29) to determine the
effective range parametrization near threshold, which is
shown in Figure 9. From levels 1 and 3 we find the values in
Table XI. The pole condition δðpBÞ ¼ i renders the pole for
the Ds1ð2460Þ bound state (B) with parameters given in

Table XI as well. The resulting mass is shown together with
other channels in Fig. 10.

C. D�
s2

Experiments observe the decay of D�
s2ð2573Þ → DK

(with a width of 17(4) MeV). The nearest meson-meson
energy level would be due to DK which have to be in d
wave thus carrying extra momentum. Unlike the 0þ and 1þ
states, this meson was predicted well in potential models
and is commonly expected to be described well as a c̄s
state. Our volume and number of configurations are
unsuitable to study d-wave scattering in this channel,
where we would expect very small shifts for a relatively
narrow resonance like the D�

s2ð2573Þ. Due to these
reasons we therefore use only quark-antiquark operators
and expect qualitative but not quantitative agreement with
experiment.
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FIG. 10 (color online). Resulting Ds spectrum for all channels. The masses are presented with respect to spin-averaged mass
1
4
ðmDs

þ 3mD�
s
Þ. The diamonds and crosses display our lattice results, while black full lines correspond to experiment. The magenta

diamonds show masses extracted via phase shift analysis and correspond to the pole position in the T matrix. Masses extracted as energy
levels in a finite box are displayed as blue crosses. The dotted lines correspond to DK andD�K lattice thresholds, while dashed lines on
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TABLE XII. Ground state energy for Tþ
2 . The superscript c indicates a correlated fit and m̄ ¼ 1

4
ðmDs

þ 3mD�
s
Þ is the spin-averagedDs

meson mass. The second uncertainty given for values in MeV corresponds to the uncertainty in the lattice scale a.

n t0 Basis Fit range Fit type χ2

d:o:f Ea E − m̄ [MeV]

Ensemble (1)
1 2 O1;2 11–17 1expc 0.28 1.3939(64) 473(10)(5)

Ensemble (2)
1 2 O1;2 3–14 2expc 1.06 1.0852(35) 520(8)(7)

Experiment
D�

s2ð2573Þ 496

LANG et al. PHYSICAL REVIEW D 90, 034510 (2014)

034510-14



We find the energy levels shown in Table XII.
Identifying this level “naively” with the D�

s2ð2573Þ gives
mass differences also shown in the table compared to the
experimental value.

IV. SUMMARY AND CONCLUSIONS

Lattice QCD is used to simulate DK and D�K
scattering in order to study the positive parity charmed
strange mesons D�

s0ð2317Þ, Ds1ð2460Þ, Ds1ð2536Þ and
D�

s2ð2573Þ. These mesons are interesting from a physics
point of view for two main reasons. First, the masses of
the scalar and axial vector mesons are close to their charm
light partners even though the strange quark is much
heavier than the light. Second, contrary to the expectation
from quark models, the D�

s0ð2317Þ and Ds1ð2460Þ are
both narrow below-threshold states. Many models and
lattice QCD studies attempted to understand this. In
lattice calculations, a combination of unphysical thresh-
olds and treatment within the single hadron approach
rendered the masses too high. In particular, the effects of
DK and D�K thresholds were not taken into account
explicitly.
In our simulation we include DK and D�K scattering

operators. We work with two quite different ensembles of
gauge configurations: ensemble (1) withNf ¼ 2 dynamical
fermions and mπ ≃ 266 MeV and ensemble (2) with
Nf ¼ 2þ 1 dynamical fermions and mπ ≃ 156 MeV.
The necessary correlators involve backtracking quark
loops and the calculation is made feasible by using the
standard distillation and—on large lattices—the stochastic
distillation method.
We determine the low-lying energy spectrum from

which the scattering amplitude near threshold is
derived via Lüscher’s finite volume method. This method
allows us to study successfully the threshold parameters
and near threshold resonance and bound states. We
extract the binding momenta and the masses of the
below-threshold bound states D�

s0ð2317Þ and Ds1ð2460Þ.
The final mass spectrum is compiled in Fig. 10 for both
ensembles.
JP ¼ 0þ-channel: The D�

s0ð2317Þ with JP ¼ 0þ ben-
efited most from the inclusion of scattering operators; the
level assigned to it in the single hadron approach was just
slightly above threshold and when DK scattering operators
were included it decoupled into two states, one attributed to
the scattering channel and the other to the physical bound
state. The analytical continuation of the scattering ampli-
tude combined with Lüscher’s finite volume method
allowed us to establish the existence of a below threshold
state with binding energy 37(17) MeV which is compatible
with the D�

s0ð2317Þ and which we therefore identify with
the D�

s0ð2317Þ.
JP ¼ 1þ-channel: The Ds1ð2460Þ with JP ¼ 1þ

appeared below threshold even in the single hadron

approach. However, the inclusion of D�K scattering oper-
ators significantly improved the signal and the detailed
analysis showed that Ds1ð2460Þ indeed has a considerable
four-quark component. Repeating a similar analysis as for
the scalar channel, we find the binding energy 44(10) MeV
of Ds1ð2460Þ in agreement with experiment. We also find
the narrow Ds1ð2536Þ, which is above threshold for
ensemble (2) with Pion masses close to physical.
Experiments find this state in d wave and s wave, while
the s-wave coupling is expected to disappear in the
mc → ∞ limit.
JP ¼ 2þ-channel: Here we did not include DK inter-

polators as the energy of the first such interpolator is far
above the lowest energy state. The mass of 2þ state
D�

s2ð2573Þ, obtained using just q̄q interpolators, is also
presented in Fig. 10.
Comparing the two ensembles, the overall agreement

with the observed Ds spectrum in Fig. 10 improves for
the ensemble with almost physical Pion mass. Unlike in
previous studies, an unambiguous signal for the D�

s0ð2317Þ
and Ds1ð2460Þ as strong interaction bound states below the
DK and D�K thresholds is obtained. To achieve this, close
to physical quark masses and the inclusion ofDK andD�K
operators in the basis of lattice interpolating fields were
crucial ingredients.
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APPENDIX: INTERPOLATORS

In this study quark-antiquark interpolating fields of the
type Os̄c

i ¼ s̄Aic as well as meson-meson interpolators are
used. All interpolators are projected to total momentum
zero. The operators are irreducible representations of the
octahedral group Oh.
The quark-antiquark interpolator kernels are given in

Table XIII for the three cases with JP ¼ 0þ (irrep Aþ
1 ), with

JP ¼ Tþ (irrep Tþ
1 ), and with JP ¼ 2þ (irrep Tþ

2 ),
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For the cases JP ¼ 0þ (irrep Aþ
1 Þ and JP ¼ 1þ (irrep Tþ

1 )
we also included meson-meson interpolators in swave. The
mesons are projected to p⃗ individually, and the total
momentum is zero.
For JP ¼ 0þ (irrep Aþ

1 Þ we use DK:

ODK
1 ¼ ½s̄γ5u�ðp⃗ ¼ 0Þ½ūγ5c�ðp⃗ ¼ 0Þ þ fu → dg;

ODK
2 ¼ ½s̄γtγ5u�ðp⃗ ¼ 0Þ½ūγtγ5c�ðp⃗ ¼ 0Þ þ fu → dg;

ODK
3 ¼

X
p⃗¼�ex;y;z2π=L

½s̄γ5u�ðp⃗Þ½ūγ5c�ð−p⃗Þ þ fu → dg:

ðA1Þ

For JP ¼ 1þ (irrep Tþ
1 ) we use D�K:

OD�K
1;k ¼ ½s̄γ5u�ðp⃗ ¼ 0Þ½ūγkc�ðp⃗ ¼ 0Þ þ fu → dg;

OD�K
2;k ¼ ½s̄γtγ5u�ðp⃗ ¼ 0Þ½ūγtγkc�ðp⃗ ¼ 0Þ þ fu → dg;

OD�K
3;k ¼

X
p⃗¼�ex;y;z2π=L

½s̄γ5u�ðp⃗Þ½ūγkc�ð−p⃗Þ þ fu → dg:

ðA2Þ

The index k denotes the polarization.
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TABLE XIII. Table of s̄c interpolators used for Ds mesons; in
addition we use DK and D�K interpolators for irreps Aþ

1 and Tþ
1 .

Interpolators are sorted by irreducible representation of the
octahedral group Oh and by the parity quantum number P.
The operators ∇k indicate covariant lattice derivatives. The
reduced lattice symmetry implies an infinite number of con-
tinuum spins in each irreducible representation of Oh. The Dirac
matrix for the time direction is denoted by γt.

Lattice
irrep

Quantum numbers JPC in
irrep

Interpolator
label Operator

Aþ
1

0þ; 4þ;… 1 q̄q0

2 q̄γi ⃗∇iq0
3 q̄γtγi ⃗∇iq0
4 q̄ ⃖∇i

⃗∇iq0

Tþ
1

1þ; 3þ; 4þ;… 1 q̄γiγ5q0

2 q̄ϵijkγj ⃗∇kq0

3 q̄ϵijkγtγj ⃗∇kq0

4 q̄γtγiγ5q0
5 q̄γ5 ⃗∇iq0
6 q̄γtγ5 ⃗∇iq0
7 q̄ ⃖∇iγjγ5 ⃗∇iq0

8 q̄ ⃖∇iγtγjγ5 ⃗∇iq0

Tþ
2

2þ; 3þ; 4þ;… 1 q̄jϵijkjγj ⃗∇kq0

2 q̄jϵijkjγtγj ⃗∇kq0

LANG et al. PHYSICAL REVIEW D 90, 034510 (2014)

034510-16

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevLett.66.1130
http://dx.doi.org/10.1103/PhysRevLett.94.162002
http://dx.doi.org/10.1103/PhysRevLett.91.012003
http://dx.doi.org/10.1103/PhysRevLett.91.012003
http://dx.doi.org/10.1103/PhysRevD.72.054029
http://dx.doi.org/10.1016/S0920-5632(96)00670-6
http://dx.doi.org/10.1016/S0920-5632(96)00670-6
http://dx.doi.org/10.1016/S0920-5632(97)00755-X
http://dx.doi.org/10.1016/S0920-5632(97)00755-X
http://dx.doi.org/10.1103/PhysRevD.62.074503
http://dx.doi.org/10.1103/PhysRevD.62.074503
http://dx.doi.org/10.1103/PhysRevD.62.114507
http://dx.doi.org/10.1103/PhysRevD.62.114507
http://dx.doi.org/10.1103/PhysRevD.68.071501
http://dx.doi.org/10.1016/S0920-5632(03)02571-4
http://dx.doi.org/10.1016/S0920-5632(03)02571-4
http://dx.doi.org/10.1016/j.physletb.2003.07.017
http://dx.doi.org/10.1103/PhysRevD.84.074505
http://dx.doi.org/10.1103/PhysRevD.84.074505
http://dx.doi.org/10.1103/PhysRevD.84.054505
http://dx.doi.org/10.1103/PhysRevD.84.054505
http://dx.doi.org/10.1088/1742-6596/426/1/012017
http://dx.doi.org/10.1088/1742-6596/426/1/012017
http://dx.doi.org/10.1007/JHEP05(2013)021
http://dx.doi.org/10.5506/APhysPolBSupp.6.991
http://dx.doi.org/10.5506/APhysPolBSupp.6.991
http://arXiv.org/abs/1310.5513
http://dx.doi.org/10.1103/PhysRevLett.111.222001
http://dx.doi.org/10.1103/PhysRevD.32.189
http://dx.doi.org/10.1007/BF01211589
http://dx.doi.org/10.1007/BF01211097
http://dx.doi.org/10.1016/0550-3213(91)90366-6
http://dx.doi.org/10.1016/0550-3213(91)90584-K
http://dx.doi.org/10.1103/PhysRevD.87.014508
http://dx.doi.org/10.1103/PhysRevD.82.054022


[28] Z.-W. Liu, Y.-R. Liu, X. Liu, and S.-L. Zhu, Phys. Rev. D
84, 034002 (2011).

[29] X.-G. Wu and Q. Zhao, Proc. Sci., QNP (2012) 087.
[30] D. Bećirević, S. Fajfer, and S. Prelovsek, Phys. Lett. B 599,

55 (2004).
[31] A. Martínez Torres, L. R. Dai, C. Koren, D. Jido, and E.

Oset, Phys. Rev. D 85, 014027 (2012).
[32] D. Gamermann, E. Oset, D. Strottman, and M. Vicente

Vacas, Phys. Rev. D 76, 074016 (2007).
[33] M. Döring, J. Haidenbauer, U.-G.Meißner, and A. Rusetsky,

Eur. Phys. J. A 47, 163 (2011).
[34] D. Mohler, S. Prelovsek, and R. M. Woloshyn, Phys. Rev. D

87, 034501 (2013).
[35] M. Peardon, J. Bulava, J. Foley, C. Morningstar, J. Dudek,

R. Edwards, B. Joó, H.-W. Lin, D. Richards, and K. Juge
(Hadron Spectrum Collaboration), Phys. Rev. D 80, 054506
(2009).

[36] C. Morningstar, J. Bulava, J. Foley, K. J. Juge, D. Lenkner,
M. Peardon, and C. H. Wong, Phys. Rev. D 83, 114505
(2011).

[37] C. Morningstar, J. Bulava, B. Fahy, J. Foley, Y. C. Jhang, K.
J. Juge, D. Lenkner, and C. H. Wong, Phys. Rev. D 88,
014511 (2013).

[38] C. Jost, B. Knippschild, C. Urbach, and F. Zimmermann,
arXiv:1311.5469.

[39] J. Foley, K. Jimmy Juge, A. Ó Cais, M. Peardon, S. M.
Ryan, and J.-I. Skullerud, Comput. Phys. Commun. 172,
145 (2005).

[40] A. Hasenfratz, R. Hoffmann, and S. Schaefer, Phys. Rev. D
78, 014515 (2008).

[41] A. Hasenfratz, R. Hoffmann, and S. Schaefer, Phys. Rev. D
78, 054511 (2008).

[42] C. B. Lang, D. Mohler, S. Prelovsek, and M. Vidmar, Phys.
Rev. D 84, 054503 (2011).

[43] S. Aoki et al., Phys. Rev. D 79, 034503 (2009).
[44] C. B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek, Phys.

Rev. D 86, 054508 (2012).
[45] A. Hasenfratz, R. Hoffmann, and S. Schaefer, J. High

Energy Phys. 05 (2007) 029.
[46] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504

(2001).
[47] A. Hasenfratz, R. Hoffmann, and F. Knechtli, Nucl. Phys. B

Proc. Suppl. 106, 418 (2002).

[48] M. Lüscher, J. High Energy Phys. 08 (2010) 071.
[49] S. Borsányi et al., J. High Energy Phys. 09 (2012)

010.
[50] M. Bruno and R. Sommer, Proc. Sci., LATTICE (2013) 321.
[51] R. J. Dowdall, C. T. H. Davies, G. P. Lepage, and C.

McNeile, Phys. Rev. D 88, 074504 (2013).
[52] A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie,

Phys. Rev. D 55, 3933 (1997).
[53] M. B. Oktay and A. S. Kronfeld, Phys. Rev. D 78, 014504

(2008).
[54] T. Burch, C. DeTar, M. Di Pierro, A. X. El-Khadra, E. D.

Freeland, S. Gottlieb, A. S. Kronfeld, L. Levkova, P. B.
Mackenzie, and J. N. Simone, Phys. Rev. D 81, 034508
(2010).

[55] C. Bernard et al. (Fermilab Lattice Collaboration, MILC
Collaboration), Phys. Rev. D 83, 034503 (2011).

[56] L. Leskovec and S. Prelovsek, Phys. Rev. D 85, 114507
(2012).

[57] M. Lüscher, J. High Energy Phys. 12 (2007) 011.
[58] M. Lüscher, J. High Energy Phys. 07 (2007) 081.
[59] A. Stathopoulos and J. R. McCombs, ACM Trans. Math.

Softw. 37, 21 (2010).
[60] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK

Users’ Guide: Solution of Large-Scale Eigenvalue
Problems with Implicitly Restarted Arnoldi Methods
(SIAM, New York, 1998).

[61] C. Michael, Nucl. Phys. B259, 58 (1985).
[62] M. Lüscher and U. Wolff, Nucl. Phys. B339, 222

(1990).
[63] B. Blossier, M. Della Morte, G. von Hippel, T. Mendes, and

R. Sommer, J. High Energy Phys. 04 (2009) 094.
[64] M. Döring, U.-G. Meißner, E. Oset, and A. Rusetsky, Eur.

Phys. J. A 47, 139 (2011).
[65] S. R. Beane, W. Detmold, K. Orginos, and M. J. Savage,

Prog. Part. Nucl. Phys. 66, 1 (2011).
[66] M. Albaladejo, C. Hidalgo-Duque, J. Nieves, and E. Oset,

Phys. Rev. D 88, 014510 (2013).
[67] S. Sasaki and T. Yamazaki, Phys. Rev. D 74, 114507

(2006).
[68] S. R. Beane, E. Chang, W. Detmold, H. W. Lin, T. C. Luu,

K. Orginos, A. Parreño, M. J. Savage, A. Torok, and A.
Walker-Loud (NPLQCD Collaboration), Phys. Rev. D 85,
054511 (2012).

Ds MESONS WITH DK AND D � K … PHYSICAL REVIEW D 90, 034510 (2014)

034510-17

http://dx.doi.org/10.1103/PhysRevD.84.034002
http://dx.doi.org/10.1103/PhysRevD.84.034002
http://dx.doi.org/10.1016/j.physletb.2004.08.027
http://dx.doi.org/10.1016/j.physletb.2004.08.027
http://dx.doi.org/10.1103/PhysRevD.85.014027
http://dx.doi.org/10.1103/PhysRevD.76.074016
http://dx.doi.org/10.1140/epja/i2011-11163-7
http://dx.doi.org/10.1103/PhysRevD.87.034501
http://dx.doi.org/10.1103/PhysRevD.87.034501
http://dx.doi.org/10.1103/PhysRevD.80.054506
http://dx.doi.org/10.1103/PhysRevD.80.054506
http://dx.doi.org/10.1103/PhysRevD.83.114505
http://dx.doi.org/10.1103/PhysRevD.83.114505
http://dx.doi.org/10.1103/PhysRevD.88.014511
http://dx.doi.org/10.1103/PhysRevD.88.014511
http://arXiv.org/abs/1311.5469
http://dx.doi.org/10.1016/j.cpc.2005.06.008
http://dx.doi.org/10.1016/j.cpc.2005.06.008
http://dx.doi.org/10.1103/PhysRevD.78.014515
http://dx.doi.org/10.1103/PhysRevD.78.014515
http://dx.doi.org/10.1103/PhysRevD.78.054511
http://dx.doi.org/10.1103/PhysRevD.78.054511
http://dx.doi.org/10.1103/PhysRevD.84.054503
http://dx.doi.org/10.1103/PhysRevD.84.054503
http://dx.doi.org/10.1103/PhysRevD.79.034503
http://dx.doi.org/10.1103/PhysRevD.86.054508
http://dx.doi.org/10.1103/PhysRevD.86.054508
http://dx.doi.org/10.1088/1126-6708/2007/05/029
http://dx.doi.org/10.1088/1126-6708/2007/05/029
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1016/S0920-5632(01)01733-9
http://dx.doi.org/10.1016/S0920-5632(01)01733-9
http://dx.doi.org/10.1007/JHEP08(2010)071
http://dx.doi.org/10.1007/JHEP09(2012)010
http://dx.doi.org/10.1007/JHEP09(2012)010
http://dx.doi.org/10.1103/PhysRevD.88.074504
http://dx.doi.org/10.1103/PhysRevD.55.3933
http://dx.doi.org/10.1103/PhysRevD.78.014504
http://dx.doi.org/10.1103/PhysRevD.78.014504
http://dx.doi.org/10.1103/PhysRevD.81.034508
http://dx.doi.org/10.1103/PhysRevD.81.034508
http://dx.doi.org/10.1103/PhysRevD.83.034503
http://dx.doi.org/10.1103/PhysRevD.85.114507
http://dx.doi.org/10.1103/PhysRevD.85.114507
http://dx.doi.org/10.1088/1126-6708/2007/12/011
http://dx.doi.org/10.1088/1126-6708/2007/07/081
http://dx.doi.org/10.1145/1731022.1731031
http://dx.doi.org/10.1145/1731022.1731031
http://dx.doi.org/10.1016/0550-3213(85)90297-4
http://dx.doi.org/10.1016/0550-3213(90)90540-T
http://dx.doi.org/10.1016/0550-3213(90)90540-T
http://dx.doi.org/10.1088/1126-6708/2009/04/094
http://dx.doi.org/10.1140/epja/i2011-11139-7
http://dx.doi.org/10.1140/epja/i2011-11139-7
http://dx.doi.org/10.1016/j.ppnp.2010.08.002
http://dx.doi.org/10.1103/PhysRevD.88.014510
http://dx.doi.org/10.1103/PhysRevD.74.114507
http://dx.doi.org/10.1103/PhysRevD.74.114507
http://dx.doi.org/10.1103/PhysRevD.85.054511
http://dx.doi.org/10.1103/PhysRevD.85.054511

