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The chiral Lagrangian describing the low-energy behavior of Nf ¼ 2þ 1þ 1 twisted mass lattice QCD
is constructed through Oða2Þ. In contrast to existing results the effects of a heavy charm quark are
consistently removed. This Lagrangian is used to compute the pion and kaon masses to one loop in a regime
where the pion mass splitting is large and taken as a leading order effect. In comparison with continuum
chiral perturbation theory additional chiral logarithms are present in the results. In particular, chiral
logarithms involving the neutral pion mass appear. These predict rather large finite volume corrections in
the kaon mass which roughly account for the finite volume effects observed in lattice data.
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I. INTRODUCTION

Lattice simulations with twisted mass (tm) Wilson
fermions [1] exhibit various attractive advantages, the most
prominent one being automatic OðaÞ improvement at
maximal twist [2]. The European twisted mass collabora-
tion (ETMC) has been performing such simulations for a
number of years, both with 2 and 2þ 1þ 1 dynamical
quark flavors.1 A major disadvantage of twisted mass terms
is the explicit breaking of the flavor and parity symmetries,
which results in a mass splitting between the charged and
neutral pion masses.
This splitting is a lattice artifact; hence it vanishes in

the continuum limit and is not a fundamental concern.
However, a significant pion mass splitting entangles the
chiral and continuum extrapolation and might lead to non-
negligible systematic uncertainties in taking these limits.
Indeed, the splitting is rather large in practice at the lattice
spacings simulated. In particular the Nf ¼ 2þ 1þ 1 sim-
ulations show a large pion mass splitting. Table I of Ref. [4]
displays the neutral and charged pion masses for seventeen
ensembles generated by the ETMC. In seven ensembles the
neutral pion mass is less or about equal to 60% of the charged
pion mass, and in only four ensembles the splitting is less
than 15%. This is a sizable effect, and it is expected to modify
the way the chiral and continuum limit is approached.
The impact of the pion mass splitting can be assessed

using the appropriate chiral effective theory, so-called tm
Wilson Chiral Perturbation Theory (WChPT) [5–8]. In the
ensembles mentioned before the pion mass splitting is a
leading order (LO) effect. The consequences of this power
counting have been worked out in Ref. [9] for the pion
masses and the pion decay constant to one-loop order.
The main difference to the familiar continuum ChPT results

is the presence of chiral logarithms involving both the
charged and the neutral pion mass. If the mass splitting is
large the chiral extrapolation is influenced in a nontrivial
(but calculable) way.
A related source of systematic uncertainties is the finite

volume (FV) effects in the simulations. As already pointed
out in Ref. [10] the FVeffects are substantially larger if the
neutral pion mass is smaller than the charged one. Awidely
used rule of thumb states that FV effects may be ignored
if MπL is equal to or greater than 4. Even if this rule is
satisfied by the charged pion mass it may be violated
significantly by the neutral pion mass. Referring again to
Table I of Ref. [4] we find that 14 out of 17 ensembles
satisfy Mπ�L ≥ 3.8, while at the same time only six satisfy
Mπ0L ≥ 3.8. Three ensembles even have Mπ0L ≤ 2. Since
the FV effects are dominated by the smallest particle mass
one expects large FVeffects, much larger than the estimates
based on the charged pion mass.
With these remarks in mind it is natural to ask how

observables other than the pion mass and decay constant
are affected by a large pion mass splitting. In this paper we
give the answer for the simplest observable involving a
strange quark, the kaon mass.
Naively one may expect the calculation to be a straight-

forward extension of the one for the pions in Ref. [9]. This,
however, is not the case, for the following reason.
Twisted mass fermions always come in pairs. The Nf ¼

2þ 1þ 1 simulations by ETMC involve dynamical strange
and charm quarks, in addition to the light up and down
type quarks. The standard procedure for the construction of
tmWChPT can be applied if both fermions of a pair are
either light or heavy. In the first case both fermion flavors
give rise to pseudo–Goldstone bosons in the chiral effective
theory; in the latter they only contribute to the low-energy
couplings. For the Nf ¼ 2þ 1þ 1 case this means that the
standard procedure to construct tmWChPT treats theD and
Ds mesons as pseudo–Goldstone bosons just as the pions

1For a review of these simulations and the obtained results the
reader is referred to Ref. [3]
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and kaons. This 4-flavor WChPT has been set up some time
ago [11]. The case of degenerate kaon andD-meson masses
has been studied even earlier [12]. However, the results of
these papers are valid only for unphysically light charm
quarks. They are not applicable to the phenomenologically
interesting case with a physical charm quark mass.
For heavy charm quarks the construction of the chiral

effective theory needs one additional step. The starting
point is the Symanzik effective theory for 2þ 1þ 1 flavor
lattice theory. Before mapping this 4-flavor theory to ChPT
we integrate out charm and construct the effective
Symanzik theory for the three light flavors only. This
3-flavor Symanzik theory involves new effective operators
for the strange quark, generated by the off-diagonal
strange-charm interaction vertices at Oða; a2Þ present in
the 4-flavor theory. These new interaction terms can then be
mapped to WChPT using the standard spurion analysis.
Depending on the symmetry breaking properties of these
additional terms new spurion fields need to be introduced,
leading to new terms in the chiral effective theory. The
computation of the kaon mass in this effective theory is
then a straightforward extension of the calculation for the
pion masses in Ref. [9].

II. TWISTED MASS WCHPT WITHOUT
A HEAVY CHARM

A. Symanzik effective theory

The starting point of our analysis is the Symanzik
effective action for 4-flavor twisted mass Lattice QCD,

Sð4ÞSym ¼
Z

d4xðLð4Þ
0 þ aLð4Þ

1 þ a2Lð4Þ
2 þ…Þ: ð1Þ

The leading order term Lð4Þ
0 is the continuum 4-flavor QCD

action with the quark mass matrix

Mð4Þ ¼
�
Ml 0

0 Mh

�
; ð2Þ

where Ml;h are the 2 × 2 matrices

Ml ¼ mþ iμlσ3γ5; ð3Þ

Mh ¼ mþ iμhσ1γ5 þ δσ3; ð4Þ

and σa denote the usual Pauli matrices.2 The parts Lð4Þ
1 ,

Lð4Þ
2 capture the cutoff effects of OðaÞ and Oða2Þ,

respectively [17].

We assume a charm quark mass much heavier than the
up, down and strange quark masses. In that case we can
integrate out the heavy charm and describe the light flavor
physics by an effective 3-flavor theory. In a subsequent
step we will map this effective theory into 3-flavor ChPT,
the low-energy effective theory involving only the degrees
of freedom that are sufficiently light for the chiral
expansion.
It is useful to keep this final goal in mind, since it allows

substantial simplifications in the following. In order to map
into ChPT we are mainly interested in the terms that break
chiral symmetry explicitly. The chiral symmetry breaking
pattern is mapped into ChPT by the standard procedure
called spurion analysis. Nonbreaking terms can be ignored
for our purpose. Moreover, different terms in the Symanzik
effective theory that break chiral symmetry in the same way
are mapped onto the same term in ChPT, so only one
representative spurion field for this particular breaking
pattern is sufficient [18].
It is also useful to keep in mind to which order in

the chiral expansion we want to construct the chiral
Lagrangian. For our purposes it is sufficient to construct,
beside the continuum parts, the terms of Oðap2; amq; a2Þ.
Including the well-known terms of continuum ChPT
through next-to-leading order (NLO) we then have the
complete Lagrangian to NLO in the generically small mass
(GSM) regime [19]. Also for our main goal, the calculation
of the kaon mass to one-loop order in the Aoki or large-
cutoff-effects (LCE) regime [19,20], these terms are suffi-
cient. This implies that we can ignore terms in the
Symanzik effective action that necessarily generate terms
of higher order in the chiral Lagrangian. These include all

terms in Lð4Þ
1 with more than one power of the quark masses

mq. Among the terms in L2 we need to consider only those
without a mass insertion.
In order to remove charm we first rotate from the twisted

to the physical basis in the strange-charm sector. In this
basis the quark mass matrix assumes the standard diagonal
form with real and positive entries. Performing the standard
field redefinition (“rotation”)

ψh → exp
�
−i

ωh

2
σ1γ5

�
ψh;

ψ̄h → ψ̄h exp
�
−i

ωh

2
σ1γ5

�
; ð5Þ

with

cotωh ¼
m
μh

; ð6Þ

the mass matrix in the heavy sector turns into Mh ¼
diagðm0 þ δ; m0 − δÞ, where m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ μ2h

p
denotes the

radial mass. Hence we identify the masses for the physical

2This mass term corresponds to the so-called perpendicular
choice according to Ref. [13], and it is usually employed by the
ETMC in their numerical simulations [14]. It leads to a real
fermion determinant [15] and has a symmetry that guarantees
degenerate masses for all kaons [16].
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strange and charm quark with ms ¼ m0 þ δ and
mc ¼ m0 − δ, respectively.3

In the physical basis the Lagrangian Lð4Þ
0 is flavor

diagonal. Integrating out charm thus simply amounts
to dropping the heavy charm quark part. The quark
mass matrix in the effective 3-flavor theory is the
3 × 3-matrix4

M ¼
�
Ml 0

0 ms

�
: ð7Þ

In Lð4Þ
1 there is only one term to consider [8], the Pauli term

Lð4Þ
1 ¼ ½ψ̄ lðσFÞψ l þ ψ̄hðσFÞψh�: ð8Þ

Here we introduced the shorthand notation σF ¼ iσμνFμν.
Note that we have dropped the unknown coefficient that is
multiplying this term. For our purposes this is sufficient.
Later on when we map to ChPT the coefficients in the
Symanzik effective theory will multiply the low-energy
coefficients (LECs) in the chiral Lagrangian. Since both are
unknown one usually combines them in single unknown
LECs [18].
The Pauli term is flavor diagonal in the twisted basis. In

the physical basis there appear off-diagonal terms between
the physical charm and strange quark fields,

aψ̄hðσFÞψh → a cosωhðψ̄ sσFψ s þ ψ̄cσFψcÞ
− ia sinωhðψ̄ sσFγ5ψc þ ψ̄cσFγ5ψ sÞ; ð9Þ

where the arrow represents the rotation in (5).
Consider first the term proportional to cosωh.

Integrating out charm amounts to dropping the charm field
part. The remaining strange quark contribution can be
combined with the Pauli term for the light flavors and we
obtain a Pauli term contribution in the 3-flavor theory that
can be conveniently written as

aL1 ¼ ψ̄AðσFÞψ : ð10Þ

Here ψ ¼ ðψ l;ψ sÞ comprises the light quark field doublet
and the strange quark field, and we introduced

A ¼ a diagð1; 1; cosωhÞ: ð11Þ

Thinking of the second term in Eq. (9) as an interaction
vertex, two of them can be combined, leading to a self-
energy diagram with an internal charm quark propagator.
Thus, integrating out charm we are left with a new Oða2Þ
term involving the strange quark fields only, which is
proportional to a2sin2ωhψ̄ sðσFÞ2ψ s. There exists no such

term involving the light quark fields. Thus, in analogy to
(10) and (11) we can write

a2L2;1 ¼ ψ̄BðσFÞ2ψ ; ð12Þ
where

B ¼ a2sin2ωhdiagð0; 0; 1Þ≡ a2sin2ωhPs: ð13Þ
For later use we have defined the projector Ps ¼
diagð0; 0; 1Þ on the strange quark sector. Note that this
term breaks chiral symmetry like a mass term since ðσFÞ2
commutes with γ5.

We also need to check the terms in a2Lð4Þ
2 for new

effective operators in the 3-flavor theory. Off-diagonal
strange-charm terms are not our concern since at least
two of those are needed for a diagonal strange-strange term.
Such a term is beyond the order we consider here.

We begin with the 4-quark operators in Lð4Þ
2 . The list of

relevant 4-quark operators is given in Ref. [18], Eq. (9), and
we follow the notation of this reference. Consider first the

4-quark term Oð6Þ
9 ¼ ðψ̄ψÞ2 in the 4-flavor theory. Rotating

to the physical basis and dropping the off-diagonal parts
and an irrelevant 4-charm-quark term we find

a2Oð6Þ
9 ¼ ðψ̄AψÞ2 þ 2a cosωhðψ̄AψÞψ̄cψc

− 2a2sin2ωhψ̄ sγ5ψcψ̄cγ5ψ s; ð14Þ

where we used A defined in (11). The first term here is the

Oð6Þ
9 analogue in the 3-flavor theory. Integrating out the

heavy charm quark results in a charm quark propagator in
the second and third term, leaving behind fermion bilinears
involving the light quark fields only. The third term leads to
a2sin2ωhψ̄ sψ s, which is an Oða2Þmass term for the strange
quark. It breaks chiral symmetry like the squared Pauli term
in (12); hence both are mapped onto the same term in ChPT
and for the spurion analysis in the next section we will need
only one of them. The second term in (14) generates

a2L2;2 ¼ ψ̄Cψ ; ð15Þ
with

C ¼ a2 cosωhdiagð1; 1; cosωhÞ ¼ a cosωhA: ð16Þ
Note that (15) is a (flavor dependent) mass term of Oða2Þ.
Next consider the 4-quark term Oð6Þ

10 ¼ ðψ̄γ5ψÞ2 in the
4-flavor theory. In this case we find

a2Oð6Þ
10 ¼ ðψ̄Aγ5ψÞ2 þ 2a cosωhðψ̄Aγ5ψÞψ̄cγ5ψc

− 2a2sin2ωhψ̄ sψcψ̄cψ s: ð17Þ

Besides the expected Oð6Þ
10 analogue we obtain again two

more terms. However, integrating out charm they generate

3We follow the conventions of ETMC and assume δ < 0.
4For simplicity we drop the superscript in quantities of the

3-flavor theory.
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the same effective operators as Oð6Þ
9 . Therefore, no addi-

tional spurion fields need to be introduced later on. The
same analysis applies to four more 4-quark operators listed

in Ref. [18]: Oð6Þ
13 −Oð6Þ

15 and Oð6Þ
18 . Again, none of them

requires the introduction of additional spurion fields
later on.
The remaining four 4-quark operators are all chiral

symmetry preserving and do not lead to additional spurion

fields. As a concrete example consider Oð6Þ
11 ¼ ðψ̄γμψÞ2.

Rotating to the physical basis this reads

a2Oð6Þ
11 ¼ a2ðψ̄γμψÞ2 þ 2a2ðψ̄γμψÞψ̄cγμψc

þ a2ðψ̄cγμψcÞ2: ð18Þ

Integrating out charm the last term can be ignored immedi-

ately. The first term results in the 3-flavor analogue ofOð6Þ
11 ,

while the second term leaves behind a new nontrivial term
in the effective 3-flavor theory. The form of this operator is
constrained by the symmetries of a2ðψ̄γμψÞψ̄cγμψc. For
our purposes here it is sufficient to know that this operator
too does not break chiral symmetry. It is therefore irrelevant
for the spurion analysis in the next section.
So far we have discussed the new operators in the

3-flavor Symanzik theory that are generated by integrating
out the heavy charm. We have seen that in all cases the
expected 3-flavor 4-quark operators also emerge. Among
those are also operators that break chiral symmetry.
However, for those the discussion in Ref. [18] applies:
Taking twice the spurion field introduced at OðaÞ is
sufficient to generate all terms in the chiral Lagrangian
that one would also obtain by introducing separate Oða2Þ
spurion fields.

Finally, we turn to the quark bilinears at Oða2Þ in Lð4Þ
2 .

Equation (8) in Ref. [18] lists eight of them. We need to
consider only those without any quark mass insertion,

which leaves Oð6Þ
1 −Oð6Þ

4 . These four operators do not
break chiral symmetry, which also implies that they are

flavor diagonal in the physical basis. For example, Oð6Þ
1 ¼

ψ̄D3ψ reads in the physical basis

a2Oð6Þ
1 ¼ a2ψ̄D3ψ þ a2ψ̄cD3ψc: ð19Þ

Integrating out charm we can simply drop the second term.
The remaining first part is still chiral symmetry preserving,
so no spurion field is needed to map it into ChPT. The same
holds for the other three quark bilinears at Oða2Þ.

B. Spurion analysis

The chiral Lagrangian is now constructed following the
familiar spurion analysis described in Ref. [18]. Each term
in the 3-flavor Symanzik effective action that breaks chiral
symmetry explicitly is made invariant by introducing a

spurion field which transforms nontrivially under chiral
transformations such that the whole term is invariant. These
spurion fields are then used in the chiral effective theory to
write down the most general chiral Lagrangian which is
invariant under chiral symmetry. Once this is achieved the
spurion field is set to its original value from the Symanzik
effective theory.
In the following we list all the representative spurion

fields we need for the construction of the chiral Lagrangian.
As explained before, there are many more terms in the
Symanzik effective action, but spurion fields that transform
the same way and have the same final value will lead to the
same term in the chiral Lagrangian. It is therefore enough to
consider only one representative field.
At Oða0Þ there is just the mass matrix spurion field

which transforms as usual [18]

M → LMR†; M† → RM†L†; ð20Þ

and its final value is given in (7). Note that the respective
mass matrix Ml reads

Ml ¼ mþ iμlσ3; ð21Þ

i.e. without the γ5 in the twisted mass contribution.
In order to make the term in (10) invariant we promote A

to a spurion field that transforms according to

A → LAR†; A† → RA†L†: ð22Þ

Its final value is given in (11).
At Oða2Þ we have found two new operators, cf. (12) and

(15). These are made invariant by the spurion fields B and
C. Both of them transform in the same way,

B → LBR†; B† → RB†L†;

C → LCR†; C† → RC†L†: ð23Þ

However, the final values are different; see Eqs. (13) and
(16), respectively.
Additional Oða2Þ spurions stemming from terms like the

first one in Eq. (14) need not be introduced, since these
transform the same way as squares of the spurion field A,
i.e. as A2; AA†; A†A; ðA†Þ2, and they have the same final
value [18].

C. The chiral Lagrangian

The chiral Lagrangian can now readily be written down.
The LO continuum part reads (in Euclidean space time)

L2 ¼
f2

4
h∂μΣ∂μΣ†i − f2

4
hχ†Σþ Σ†χi; ð24Þ

where h…i stands for the trace over flavor indices and
the LEC f is the pseudoscalar decay constant in the
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chiral limit.5 The field Σ ¼ ΣðxÞ is an element of SU(3)
containing the pseudoscalar fields in the usual way,

ΣðxÞ ¼ Σ1=2
V ΣpðxÞΣ1=2

V ; ð25Þ

ΣpðxÞ ¼ exp
�
2i
f

X8
a¼1

πaðxÞTa

�
: ð26Þ

ΣV denotes the ground state of the theory, defined as the
minimum of the potential energy (density). In continuum
ChPT it is simply the identity matrix and has no impact.
However, for twisted mass terms ΣV is nontrivial [21]. The
pseudoscalar fields πaðxÞ are real-valued, and we choose
the SU(3) group generators to be normalized according
to trTaTb ¼ δab=2. The subscript “p” in (26) refers to
physical fields, meaning that the mass terms for the
pseudoscalar fields are non-negative and that there are
no interaction terms involving less than three pseudosca-
lars. The parameter χ in the chiral Lagrangian contains the
second LO LEC B0 and the mass matrix M in (7) via

χ ¼ 2B0M: ð27Þ

Note that the mass matrix is not diagonal and real for
twisted mass terms, so χ† ≠ χ in general.
The NLO Lagrangian is the one given by Gasser and

Leutwyler in Ref. [22]. We omit a few terms that are not
needed for the calculations in this paper:

L4 ¼ −L1h∂μΣ∂μΣ†i2 − L2h∂μΣ∂νΣ†ih∂μΣ∂νΣ†i
− L3h∂μΣ∂μΣ†i2 þ L4h∂μΣ∂μΣ†ihχ†Σþ Σ†χi
þ L5h∂μΣ∂μΣ†ðχ†Σþ Σ†χÞi − L6hχ†Σþ Σ†χi2
− L7hχ†Σ − Σ†χi2 − L8hχ†Σχ†Σþ Σ†χΣ†χi: ð28Þ

The coefficients Li are the well-known Gasser-Leutwyler
(GL) coefficients.
The OðaÞ terms in the chiral Lagrangian are obtained

with the spurion field A. The spurion field A transforms like
the mass spurionM. Hence, we get the same terms as in L2

and L4 with M replaced by A [23]. The leading term reads

La ¼ −
f2

4
hρðΣþ Σ†Þi; ð29Þ

where ρ ¼ ρ† is defined by

ρ ¼ 2W0A: ð30Þ

W0 is a LEC of mass dimension 3, such that ρ has mass
dimension 2, just as χ. Note that ρ is not flavor diagonal for

cosωh ≠ 1. Therefore it cannot be taken out of the trace in
flavor space.
At higher order there are terms of Oðap2; aM; a2Þ

[18,23],

Lap2 ¼ W4h∂μΣ∂μΣ†ihρðΣþ Σ†Þi
þW5h∂μΣ∂μΣ†ðρΣþ Σ†ρÞi;

LaM ¼ −W6hχ†Σþ Σ†χihρðΣþ Σ†Þi
−W7hχ†Σ − Σ†χihρðΣ − Σ†Þi
−W8hχ†ΣρΣþ Σ†ρΣ†χi;

Lð1Þ
a2

¼ −W0
6hρðΣþ Σ†Þi2 −W0

7hρðΣ − Σ†Þi2
−W0

8hρΣρΣþ Σ†ρΣ†ρi: ð31Þ
The coefficientsWi;W0

i are dimensionless LECs, just as the

Gasser-Leutwyler coefficients. The superscript in Lð1Þ
a2

serves as a reminder that it does not contain all Oða2Þ
terms. Additional ones stem from the spurion fields B
and C, which read

Lð2Þ
a2

¼ −WBâ2sin2ωhhPsðΣþ Σ†Þi
−WCâ cosωhhρðΣþ Σ†Þi: ð32Þ

Here we introduced the scaled lattice spacing

â ¼ 2W0a; ð33Þ
which has dimension 2 and makes the new LECsWx in (32)
dimensionless.
In WChPT it is usually convenient to absorb the leading

OðaÞ term in (29) in the so-called shifted quark mass [5].
However, here this term is not flavor independent and it
depends on ωh. In order to discuss the dependence of the
pion and kaon masses on this angle we prefer to leave this
term explicit. We also keep the Oða2Þ terms in (32) explicit,
even though these are mass terms too.
Finally, we emphasize that all the LECs in the chiral

Lagrangian depend on the mass of the heavy charm quark.
Therefore, the LECs are constants only if the (physical)
charm quark mass is kept fixed.

III. PSEUDOSCALAR MASSES IN THE
LCE REGIME

A. Preliminaries

In this section we compute the pseudoscalar masses to
one-loop order in the LCE regime [8,20,24]. This regime
assumes that the Oða2Þ cutoff effects are of the same order
in the chiral expansion as the effects due to the quark
masses. More precisely, it assumes that the Oða2Þ terms in
the effective Lagrangian contribute to LO,

LLO ¼ L2 þ Lð1Þ
a2

þ Lð2Þ
a2
: ð34Þ5Our convention is such that fπ ¼ 92.21 MeV.

CHARMLESS CHIRAL PERTURBATION THEORY FOR … PHYSICAL REVIEW D 90, 034508 (2014)

034508-5



The Oða2Þ terms lead to the mass splitting between the
charged and the neutral pion [25]. This splitting is a LO
effect in the LCE regime counting. Thus, it is the appro-
priate one if the size of the splitting is observed to be of the
same order as the charged pion mass. As discussed in the
introduction this is indeed the case for a substantial part of
the ETMC data.
The Lagrangian (34) results in interaction vertices of

Oða2Þ. These contribute to the pseudoscalar masses at one
loop. Our calculation here follows the one in Ref. [9],
where the pion masses were computed in the 2-flavor
theory. The reader is referred to this reference for all aspects
of the calculation that are independent of the number of
flavors. In particular, we work at maximal twist only. This
simplifies the calculation significantly and it is the relevant
case for practical applications.

B. Gap equation and maximal twist

As a first step we need to compute the ground state ΣV.
The ground state is nontrivial (i.e. ΣV ≠ 1) since the light
sector is still formulated in the twisted basis. On the other
hand, we have already rotated the heavy sector into the
physical basis, so the nontrivial part of ΣV is in the light
sector only and the ground state assumes the form [19]

ΣV ¼
�
eiϕlσ3

1

�
: ð35Þ

ϕl is called the (light) vacuum angle. It is determined by
minimizing the potential energy density in the chiral
Lagrangian. The calculation is essentially as in the 2-flavor
case in Ref. [7], and we obtain the following gap equation:

2B0μl cosϕl ¼ sinϕlð2B0mþ 2 ~W0a − 2c2a2 cosϕlÞ:
ð36Þ

For better comparison with the 2-flavor result we have
defined the LEC combinations

c2 ¼ −32W0
68

W2
0

f2
ð37Þ

with W0
68 ¼ 2W0

6 þW0
8, and

~W0 ¼ W0

�
1þ 4â

f2
cosωhð4W0

6 þWCÞ
�
: ð38Þ

c2 is a well-known LEC in the 2-flavor theory. It determines
the phase structure of the theory [19,21] as well as the pion
mass splitting at tree level [25].
The gap equation has the same form as in the 2-flavor

theory discussed in [7]; the only difference is the explicit
appearance of ~W0 instead of W0 on the right-hand side
of (36).

The gap equation determines the vacuum angle as a
function of the three mass parameters m; μl; μh and the
lattice spacing a. As has been shown in Ref. [7] maximal
twist and automatic OðaÞ improvement is achieved for
cosϕl ¼ 0. The gap equation (36) immediately tells us that
this is a solution only if

2B0mþ 2 ~W0a ¼ 0: ð39Þ
This equation determines the (critical) untwisted mass m to
LO. Note that m depends on μh and a, but it is independent
of μl. Note also that m enters (39) twice, not only explicitly
but also implicitly via cosωh. This dependence, however, is
expected to be very small since it is an Oða2Þ contribution
in (39).
In practice it is not necessary to satisfy (39) exactly. It

can be shown [7,8,26–28] that any mistuning of m that
leads to cosϕl ¼ OðaÞ is sufficient for automatic OðaÞ
improvement.
Equation (39) can be solved iteratively with the

approximate solution m ≈ −ðW0=B0Þa. Using this in
the expression (6) we find cosωh ¼ OðaΛ2

QCD=μhÞ. In
case of an infinitely heavy charm quark we have μh → ∞
and cosωh ¼ 0. We can assume this to still hold in good
approximation even for a finite μh, because the physical
charm quark mass is sufficiently heavy such that in the
ETMC lattice simulations we have μh ≫ aΛ2

QCD.

C. Tree-level masses and vertices

From now on we restrict ourselves to maximal twist in
both the heavy and the light sector, i.e. ωh ¼ ϕl ¼ π=2. In
this case the ground state reduces to ΣV ¼ diagðiσ3; 1Þ.
Expanding the LO Lagrangian to quadratic order in the
pseudoscalar fields the tree-level masses are easily com-
puted. The pion masses reproduce the familiar 2-flavor
results [7,8,25],

m2
π� ¼ 2B0μl ð40Þ

m2
π0
¼ m2

π� þ Δm2
π; Δm2

π ¼ 2c2a2: ð41Þ

The tree-level result for the four degenerate kaon masses
reads

m2
K ¼ B0ðms þ μlÞ −

2â2

f2
ð2W0

8 −WBÞ: ð42Þ

Finally, the eta mass is related to the kaon and pion mass by
the Gell-Mann–Okubo relation,

m2
η ¼

1

3
ð4m2

K −m2
π�Þ: ð43Þ

We emphasize that this relation does not hold for
nonmaximal twist angles. In that case additional Oða2Þ
contributions appear on the right-hand side of (43).
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The tree-level masses enter the propagators that appear
in the one-loop calculation. The only difference to the
propagators in continuum ChPT [22] is the mass splitting
between the charged and neutral pions, so one has to
keep track of the flavor indices for the pions in loop
diagrams.
The relevant vertices are obtained by expanding (34) to

four powers in the pseudoscalar fields. Expressed in terms
of the tree-level masses, (40)–(42), the vertices stemming
from L2 are the vertices known from continuum ChPT.
Additional vertices stem from La2 , and the Oða2Þ vertices
read

La2;4π ¼
8

3

â2

f4
W0

68π
2
3π

2 þ 1

2

â2

f4
W0

78π
04
h

þ 8

3

â2

f4
W0

78π
2
3π

2
8 þ

4ffiffiffi
3

p â2

f4
W0

78π3π8π
02
h ; ð44Þ

where we introduced the shorthand notation π2 ¼P
8
i¼1 π

2
i , π02h ¼π24þπ25−π26−π27 and W0

78 ¼ 2W0
7 þW0

8.
We emphasize that (44) is the result for maximal
twist. For arbitrary twist angles many more terms
contribute [29].
The vertices in (44) involve only two combinations

of unknown LECs, W0
68 and W0

78. The 2-flavor result
in Ref. [9] is correctly reproduced by dropping the
heavy kaon and eta field contributions. Note that the
LECs WB and WC do not appear explicitly. Their
effect is incorporated by expressing the vertices pro-
portional to the quark masses in terms of the pion and
kaon masses (40)–(42). This is expected, since the two

terms in Lð2Þ
a2

are mass terms and they could be
absorbed in a redefinition of the untwisted quark

mass. Doing this redefinition Lð2Þ
a2 would not appear

explicitly in the chiral Lagrangian.
Recall that the LEC W0

68 is proportional to the tree-level
pion mass splitting. Therefore, provided the mass splitting
is known from data, the associated four-pion coupling does
not involve an unknown LEC. This will play a crucial role
later on.
All the vertices lead to tadpole diagrams that contribute

to the various self energies of the pseudoscalars. These
diagrams result in standard divergent scalar integrals,
which are conveniently regularized by dimensional
regularization. The counterterms necessary for the
renormalization are supplied by the NLO Lagrangian
Lp2a2 þ LMa2 þ La4 . For the 2-flavor theory this
Lagrangian was derived in Ref. [9]. It is straightforward
to repeat the derivation for the 3-flavor theory. However,
for our purpose here it is not necessary to derive the
NLO Lagrangian completely. It is sufficient to derive
enough independent terms that provide the required
counterterms for the pseudoscalar masses.

D. One-loop results

In order to present our results it is useful to follow [22]
and introduce

μP ¼ m2
P

32π2f2
log

m2
P

μ2
; P ¼ π�; π0; K; η ð45Þ

as a shorthand notation for the chiral logs. Various
combinations of GL coefficients appear and we introduce
L46 ¼ 2L6 − L4 and L58 ¼ 2L8 − L5. With these defini-
tions the NLO results for the charged pion and the kaon
mass read

M2
π� ¼ m2

π�

�
1þ μπ0 −

1

3
μη þ 8

m2
π�

f2
ðL46 þ L58Þ

þ 16
m2

K

f2
L46 þ C1

â2

f4

�
; ð46Þ

M2
K ¼ m2

K

�
1þ 2

3
μη þ 8

m2
π�

f2
L46 þ 8

m2
K

f2
ð2L46 þ L58Þ

�

−
1

2
Δm2

πμπ0 þ
8â2

f2
W0

78μK þ C2

â2m2
π�

f4

þ C3

â2m2
K

f4
þ C4

â4

f6
: ð47Þ

Here the coefficients Ci are (combinations of) LECs
in the NLO Lagrangian. We introduced appropriate
inverse powers of f such that these coefficients are
dimensionless.6

A rather trivial check of our results is whether the correct
continuum limit is reached. Indeed, for â → 0 we have
mπ0 → mπ� and our results reproduce the corresponding
ones of continuum ChPT. The charged pion mass has been
computed in 2-flavor tmWChPT in [9], and (46) reproduces
this result as well once the contributions from the kaon and
the eta are dropped.
In case of the kaon mass the first line in (47) is again

the continuum ChPT result of Gasser and Leutwyler.
The second line contains the corrections due to the
nonzero lattice spacing. The analytic corrections are
expected. For example, away from the continuum limit
one expects the GL coefficients to depend on the lattice
spacing. Expanding Lijðâ2Þ ¼ Lijðâ2 ¼ 0Þ þ Δijâ2 the
analytic terms in the continuum part generate the
contributions proportional to C2 and C3. The new
additional chiral logs involving the neutral pion and
the kaon cannot be guessed from the continuum result
which contains an eta chiral log only. The new chiral
logs stem entirely from the two Oða2Þ vertices in the
first line of (44).

6In that respect our convention differs from the one in Ref. [9]
where dimensionful Cis were introduced.
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For the neutral pion mass we find to NLO

M2
π0
¼ m2

π�

�
1þ 2μπ� − μπ0 −

1

3
μη þ 8

m2
π�

f2
ðL46 þ L58Þ þ 16

m2
K

f2
L46 þ ~C1

â2

f4

�

þ Δm2
π

�
1 − 4μπ0 − 2μK −

2

3
μη þ ~C2

m2
K

f2
þ ~C3

â2

f4

�
þ 32

3

â2

f2
W0

78μη: ð48Þ

The coefficients ~Ci are NLO LECs different from the ones
in (46) and (47). Also this result converges to the correct
continuum limit, and it reproduces the result in the 2-flavor
theory if we drop all the contributions associated with
the kaon and the eta. Taking the difference M2

π0
−M2

π� we
obtain the pion mass splitting to NLO. It has a rather
complicated mass dependence with chiral logs involving
all pseudoscalars.

E. Finite volume corrections and a first numerical test

In deriving our results we assumed an infinite space-time
volume. Corrections due to a finite spatial volume [30]
are easily included. The FV corrections essentially amount
to a simple replacement of the chiral logarithms, μP →
μP þ δFV;P. Following the notation of Ref. [31] the FV
correction is given by

δFV;P ¼ m2
P

32π2f2
~g1ðmPLÞ; ð49Þ

with ~g1 containing a sum over modified Bessel functions.
The function ~g1 drops off exponentially for large argu-
ments, so we may expect the dominant source for FV
corrections in the kaon mass to be given by the neutral pion
contribution. Note that our result makes a definite pre-
diction for these FV corrections provided the pion mass
splitting is known.
The ETMC has generated lattice data for two different

volumes keeping the other parameters fixed [14]. These
data can be used for a first test of our results. For
convenience we have summarized the relevant data in
Table I. On the two lattices the central values for the kaon
mass differ by 0.8%. The statistical errors are about 0.1%
and 0.16%, respectively, so a FV effect is noticeable in
the kaon mass.

The charged pion mass is about 310 MeV on both
lattices, while the neutral pion is significantly lighter
with Mπ0=Mπ� ≈ 0.48 and 0.57, respectively. So the data
is in the LCE regime and our results of the last
subsection are applicable. With our result (47) the relative
shift of the kaon mass caused by the neutral pion log,
ϵr;π0 ¼ jMKðL1Þ −MKðL2Þj=MKðL2Þ, reads

ϵr;π0 ¼
1

128π2m2
Kf

2
ðΔm2

πm2
π0
~g1ðmπ0LÞjL¼L1

− Δm2
πm2

π0
~g1ðmπ0LÞjL¼L2

Þ: ð50Þ

In principle the quantities Δm2
π and m2

π0
are independent

of the volume and could be taken out of the difference on
the right-hand side. In practice, however, we use the
measured values for the pseudoscalar masses and the
decay constant. The difference is of higher order in
the chiral power counting. Still, the data for the neutral
pion mass differ noticeably on the two lattices, although
the significance of this difference is questionable in view
of the large statistical error. We choose to take the
measured central values for the two neutral pion masses
and compute ϵr following (50). The result for this
procedure reads

ϵr;π0 ≈ 0.0024ð7Þ: ð51Þ

The error in this estimate is completely dominated by the
error for the neutral pion mass. The estimate (51) falls
short by a factor 3 in explaining the observed FV effect.
Nevertheless, it has the correct order of magnitude. In
contrast, the FV shift due to the eta leads to a shift
ϵr;η ≈ 5 × 10−5.7 This is about 50 times smaller than the
π0 contribution and cannot explain the measured FV
effect. Note that the eta contribution is the only one in
both continuum ChPT and in WChPT in the GSM regime
at NLO. Higher order corrections from the charged pion
are captured in the resummed formulas of Ref. [31]. This
contribution is estimated to be of the same order but
smaller than the neutral pion contribution (51).8 More
data at various volumes and with different pion mass
splittings are needed to fully settle the origin of the

TABLE I. Data for pseudoscalar masses and the pion decay
constant taken from Refs. [4,14]. The data for the decay constant
is divided by

ffiffiffi
2

p
in order to account for the different normali-

zation used in [14] for the decay constant. The data were
generated with β ¼ 1.9 corresponding to a lattice spacing
a ≈ 0.09 fm. More details can be found in Ref. [14].

Ensemble aMπ� aMπ0 aMK afπ L=a

A40.32 0.1415(04) 0.0811(50) 0.25666(23) 0.04802(13) 32
A40.24 0.1445(06) 0.0694(65) 0.25884(43) 0.04644(25) 24

7The eta mass is given by (43). Alternatively it can be taken
from Ref. [32] with no difference on our estimate.

8See Fig. 5 of Ref. [31].
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observed FV correction. Still, it seems safe to conclude
that the FV correction due to the neutral pion needs to be
included in analyzing the ETMC data.

IV. CONCLUDING REMARKS

Current twisted mass lattice QCD simulations show a
sizable pion mass splitting due to explicit flavor symmetry
breaking. Twisted mass WChPT provides formulas which
can be used to assess the impact of a large pion mass
splitting on the chiral extrapolation and on FV corrections
caused by small neutral pion masses. In the case of 2-flavor
WChPT such formulas were already derived some
time ago.
The extension to 3-flavor WChPT is slightly nontrivial.

The reason is the charm quark that forms a twisted mass
doublet together with the strange quark. This ties together
strange and charm even if the charm quark is too heavy for
the D mesons to be described by ChPT. In order to
construct the 3-flavor WChPT Lagrangian we first inte-
grated out the charm quark on the level of the Symanzik
effective theory. The resulting 3-flavor theory contains
more terms in the effective action than a 3-flavor theory
without charm. Still, the standard spurion analysis can be
applied to this effective action and the 3-flavor chiral
Lagrangian can be constructed as usual.
Based on this 3-flavor chiral Lagrangian we computed

the pseudo–Goldstone boson masses to NLO in the LCE
regime. As anticipated, additional chiral logs proportional
to a2 show up at this order, leading to a modified quark
mass dependence. The final results contain quite a few
additional LECs, and it remains to be seen if there are
enough data to resolve all the additional terms in chiral fits.
The additional chiral logs imply additional FV correc-

tions, in particular FV corrections from the neutral pion.
Since this is by far the lightest pseudoscalar, these FV
corrections are the dominant ones. The LECs entering this
correction are directly related to the pion mass splitting.
Therefore, these FV corrections are a parameter free

prediction of our results if the mass splitting is known.
A first comparison with numerical data showed that these
FV corrections are in the ballpark, but cannot explain alone
the observed FVeffects in the kaon mass. A careful analysis
including the higher order FV corrections due to the
charged pion is needed to shed light on this issue.
A natural next step is the computation of the decay

constants in the 3-flavor theory. It requires the expression
for the physical axial vector currents, which can be
constructed following the steps we used for the construc-
tion of the effective Lagrangian. We expect modifications
of the chiral formulas analogous to the ones we found for
the masses, in particular larger FV corrections caused by
neutral pion logs.
It is also interesting to study scattering processes.

Pion-pion scattering was studied in Ref. [24,33], and it
was shown that the π-π scattering length provides a handle
to compute the pion mass splitting without the need to
compute disconnected diagrams. Looking at the interaction
vertices in (44) we expect that the K-K scattering length
provides a handle on the LEC W0

78.
We finally remark that the 3-flavor Lagrangian derived

here is also the first step for the description of the mixed
action simulations of the ETMC. In order to avoid an
unwanted mixing in the heavy sector, simulations with
Osterwalder-Seiler valence quarks [34] are performed as
described in [15]. Mixed action ChPT [35,36] takes into
account the different discretization effects in the valence
and sea sector. The chiral Lagrangian for the latter is the
one we have derived here.
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