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We calculate the electromagnetic pion form factor in lattice QCD with 2þ 1 flavors of the dynamical
overlap quarks. Up and down quark masses are set below their physical values so that the system is in the
so-called ϵ regime with the small size of our lattice ∼1.8 fm. The finite volume corrections are generally
expected to be ∼100% in the ϵ regime. We, however, find a way to automatically cancel the dominant part
of them. Inserting nonzero momenta and taking appropriate ratios of the two- and three-point functions, we
can eliminate the contribution from the zero-momentum pion mode. Then the remaining finite volume
effect is a small perturbation from the nonzero modes. Our lattice data agree with this theoretical prediction
and the extracted pion charge radius is consistent with the experiment.
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I. INTRODUCTION

Dynamics of pions is governed by its nature as the
Nambu-Goldstone boson associated with the spontaneous
breaking of chiral symmetry in the vacuum of quantum
chromodynamics (QCD). Beyond the leading order in the
expansion in terms of pion momentum squared p2 and pion
mass squaredm2

π , it develops a nonanalytic functional form
[1,2] known as the chiral logarithm. For the charged pion
form factor FVðq2Þ as a function of the momentum transfer
q, in particular, the charge radius defined by

hr2iV ≡ 6
∂FVðq2Þ
∂q2

����
q2¼0

ð1Þ

is predicted to diverge in the limit of vanishing pion mass,
i.e., ∼ lnm2

π . In order for numerical computations of lattice
QCD to be reliable in reproducing the low-energy property
of the pions, it is crucial to confirm this remarkable
behavior.
In the lattice QCD simulations, approaching the chiral

limit is challenging because the computational cost to invert
the Dirac operator grows as 1=m2

π . Furthermore, finite
volume effect is expected to increase as mπ decreases.
Therefore, to avoid large systematic effect from the volume,
the overall cost increases much faster than 1=m2

π . Most of
the previous calculations, including our own work [3], have
been performed at large pion masses (≳300 MeV), and the
results for the pion charge radius were significantly lower
than the experimental value. Recent works [4–6] are

simulating lighter pions and the results are indeed showing
an increase towards the physical pion mass. However, in the
vicinity of the chiral limit, the violation of chiral symmetry
becomes an issue with the conventional lattice fermion
formulations, such as the Wilson fermions. They violate
the chiral symmetry at the order of a2Λ3

QCD [assuming the
OðaÞ-improved action], where ΛQCD (∼300 MeV) is the
typical scale of QCD. In the most recent dynamical
simulations, the lattice cutoff 1=a is around 3 GeV, and
the size of the violation is thus an order of 3 MeV, which is
only slightly below the physical up and down quark
masses. This implies that in the quark mass regime we
are interested in, the violation of chiral symmetry due to the
lattice artifact is as large as in magnitude the effect due to
the quark mass. A discretization effect in such a situation
could become sizable.
In this work we carry out a lattice calculation of the pion

charge radius near the chiral limit using the fermion
formulation that preserves exact chiral symmetry [7]. We
simulate lattice QCD with up and down quark masses
below the physical point, employing the overlap fermion
action [9,10]. This overlap fermion action has an exact
chiral symmetry through the Ginsparg-Wilson relation
[11,12]. In our numerical implementation, this relation is
kept at the level of 10−8 accuracy. Therefore, the chiral
logarithm is expected to have the same functional form as
the continuum theory. By obtaining a data point with an
extremely small pion and combining it with our previous
results at a larger mass region, we make an interpolation
into the physical point. This chiral interpolation can

PHYSICAL REVIEW D 90, 034506 (2014)

1550-7998=2014=90(3)=034506(8) 034506-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.034506
http://dx.doi.org/10.1103/PhysRevD.90.034506
http://dx.doi.org/10.1103/PhysRevD.90.034506
http://dx.doi.org/10.1103/PhysRevD.90.034506


suppress the systematic error from the mass dependence of
the data, and confirm if there is the expected divergent
behavior of the pion charge radius.
At the small quark mass (∼3 MeV), the finite volume

effect is expected to be quite large for the lattice size
(∼1.8 fm) that we use. It is often mentioned in the literature
[13] thatmπL has to be larger than 4 in order to suppress the
finite volume effect at a few percent levels or lower. At our
simulated pion mass, Lmust be as large as 5–6 fm to satisfy
this criterion. In the regime where the near-zero modes
determine the dynamics, however, the dominant part of
the finite volume effects come from the zero-momentum
mode of the pions, while the higher energy states give
still exponentially small effects. (Note that the energy of
nonzero momentum modes in a finite volume satisfies
Eπ > 2π=L, and thus, EπL > 6.) Therefore, once we
remove the effect of the pion zero-momentum mode, the
remaining finite volume effect is manageable. For this
purpose, the so-called ϵ expansion [14–17] was developed
and applied to extract the low-energy constants of chiral
perturbation theory (ChPT).
The ϵ expansion is valid for a system where the pion

Compton wavelength exceeds L. In this ϵ regime, the zero-
momentum mode may rotate in the flavor group manifold
SUðNfÞ and therefore, should be treated nonperturbatively.
Such analysis leads to the prediction of the low-lying Dirac
operator eigenvalue spectrum [18–22], as well as the
pseudoscalar two-point functions [23,24]. These formulas
have rather complicated expressions containing Bessel
functions, but nicely describe the lattice data [25–35],
and are useful to determine the leading two low-energy
constants, the chiral condensate Σ, and pion decay
constant F.
In order to extract the pion form factor from the ϵ regime

lattice calculation, we need the ChPT prediction of the
three-point functions, which is not known in the literature,
except for the kaon sectors [36–38]. Even if such pre-
dictions were available, the analysis would require a
nontrivial task to disentangle the low-energy physics from
some complicated form of the Bessel functions coming
from the zero mode.
In this work, we would like to show a new direction,

using the ϵ expansion in a more indirect way. Namely, we
use the ϵ expansion of ChPT just for finding the combi-
nation of the correlators which has a small sensitivity to
the volume. We find that this is possible by inserting
nonzero momenta to the relevant operators (or simply
taking differences of them at different time slices), and
taking appropriate ratios of them. This procedure auto-
matically eliminates the leadingOð1Þ finite volume effects,
and the remaining next-to-leading order (NLO) contribu-
tions are expected to be a small perturbation [39,40].
This method considerably simplifies the analysis in the ϵ

regime. Since the dominance of the pion zero-mode
contribution in the finite volume effect is universal for

most correlators, we expect that the application of the
method is wider, e.g., other meson/baryon form factors.
Even in the p regime, our method suggests a way to
minimize the finite volume effects. In this work, we present
the result for the electromagnetic pion form factor as the
first example. Our lattice data for the electromagnetic form
factor agree with this theoretical expectation reasonably
well, yielding a consistent value of the pion charge radius
with the experiment.
This paper is organized as follows. In Sec. II, we revisit

the two-point functions in the ϵ regime of ChPT and
demonstrate how our new strategy works to automatically
cancel the dominant finite volume effects of the pion zero
mode. In Sec. III, we compute the ϵ expansion of the
three-point functions and find the ratios of the correlators
which are free from the pion zero mode’s contamination.
The result of our simulation is presented in Sec. IV and
we give our conclusion in Sec. V.

II. TWO-POINT FUNCTIONS IN THE ϵ REGIME

Let us consider the two-point correlators to illustrate our
idea. For simplicity, we consider two-flavor ChPT with a
degenerate quark mass m in a finite volume V ¼ L3T, of
which the boundary condition is set periodic in every
direction. Let us denote the chiral condensate by Σ and the
pion decay constant by F. Including the (sea) strange quark
is not difficult [41] and does not change the following
results at the leading order of ChPT.
In the ϵ expansion of ChPT, the pion’s zero-momentum

mode is exactly treated by performing a group integral over
SUðNfÞ, where Nf ¼ 2 is the number of flavors, while the
nonzero modes and their interactions are perturbatively
treated. Namely, it is a (weakly coupled) system of SUð2Þ
matrix model [or a Uð2Þ matrix model when the global
topological charge of the gauge field is fixed] and massless
fields.
A two-point correlation function of pseudoscalar density

operator PðxÞ separated by a four vector x ¼ ðt; x1; x2; x3Þ
is expressed as [41]

hPðxÞPð0Þi ¼ X þ Y

�
1

V

X
p≠0

eipx

p2

�

þ Z

�
1

V

X
p≠0

eipx

ðp2Þ2
�
þ � � � ; ð2Þ

where X, Y, Z;… are nontrivial (Bessel) functions of mΣV
arising from the zero-mode integrals. Unlike the conven-
tional meson propagator, there is a constant term X, which
is a contribution purely from the zero mode. The second
and third terms represent the coupled contribution of the
zero modes to the nonzero modes described as a massless
scalar field. It is massless because the mass term is a small
perturbation in the ϵ expansion. Note that the p ¼ 0 part
contribution is absent in the momentum summations
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and this expression is manifestly free from infrared
divergences.
Since the nonzero modes are treated as massless bosons,

the correlation function projected onto zero spatial momen-
tum becomes a polynomial function of t, which is a
remarkable difference from the conventional exponential
function expð−mπtÞ in the conventional p regime. In fact,
this special property of the ϵ expansion was used to extract
the low-energy constants from finite volume lattice QCD
[28,30,32,42]. In this work we try to avoid the terms arising
from the zero-mode integral, which is characteristic of the ϵ
regime.
In fact, Eq. (2) can be written in a different form

hPðxÞPð0Þi ¼ X þ Y

�
1

V

X
p≠0

eipx

p2 þm2
π þ Δm2

π

�
þ � � � ;

Δm2
π ¼ −Z=Y −m2

π; ð3Þ

of which the difference from the original Eq. (2) is the
next-to-next-to-next-to-leading order. By a direct calcula-
tion of the zero mode [40], one can show

lim
mΣV→∞

Δm2
π ¼ 0; lim

mΣV→0
Δm2

π ¼
2

F2V
: ð4Þ

This expression suggests that if we can remove X and Y,
the remaining correlator looks almost the same as that
in the conventional p regime, except for a perturbative
correction to the pion mass. Note that even though the
relative correction to the pion mass is Oð1Þ its influence
to the correlator is small since the conditions
p2 ≫ m2

π and p2 ≫ Δm2
π are kept for any p2 in a finite

volume.

We proceed as follows. First, we insert a spatial
momentum p and subtract the correlator at a different time
slice tref in the case of p ¼ 0:

C2pt
PPðt;pÞ≡

Z
d3xe−ip·xhPðxÞPð0Þi; ð5Þ

ΔtC
2pt
PPðt; 0Þ≡ C2pt

PPðt; 0Þ − C2pt
PPðtref ; 0Þ; ð6Þ

and then, take a ratio of them,

C2pt
PPðt;pÞ

ΔtC
2pt
PPðt; 0Þ

¼ Eð0Þ sinhðEð0ÞT=2Þ
EðpÞ sinhðEðpÞT=2Þ ×

coshðEðpÞðt − T=2ÞÞ
coshðEð0Þðt − T=2ÞÞ − coshðEð0Þðtref − T=2ÞÞ ; ð7Þ

where EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

π þ Δm2
π

p
. Note that this ratio is

finite even in the limit Eð0Þ ¼ 0. We can thus eliminate the
leading zero mode’s contributions X and Y in (3). Here, tref
should be taken as large as possible to avoid the contami-
nation from the excited states, provided the data at tref is
statistically reliable.
In order to validate the idea based on the form (3) we

make a plot of the ratio C2pt
PPðt;pÞ=ΔtC

2pt
PPðt; 0Þ with

tref ¼ 16, for different momenta p in Fig. 1, and compare
with its expectation at the leading order in the ϵ expansion
in solid (neglecting Z) and dashed [we input ðm2

πþ
Δm2

πÞ1=2 ¼ 100 MeV] curves. The solid curves, at the
leading order of ChPT neglecting Z, have no free parameter
to tune, as they are simply constructed from massless

propagators. The agreement of the lattice data with the
expectation is fairly good. Also, we can see that the
difference from the massive correlators is tiny, although
some deviations are seen in higher momentum correlators,
which may imply momentum dependent higher-order
corrections from nonzero modes. This good agreement
indicates that the dominant part of the finite size effect or
the peculiarity of the ϵ regime is eliminated, and the
remaining nontrivial NLO contribution coming from the
Z term is small compared to the statistical fluctuation.

III. THREE-POINT FUNCTIONS IN THE ϵ REGIME

In this section, we apply the idea of eliminating the
zero-mode contribution to the three-point function. For this
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FIG. 1 (color online). Ratio, C2pt
PPðt;pÞ=ΔtC

2pt
PPðt; 0Þ, of two-

point correlators at different momenta where we set tref ¼ 16.
Lattice data are plotted together with the expectation of ChPT at
the leading order without mass (ignoring Z) (solid curve) and
with mass ðm2

π þ Δm2
πÞ1=2 ¼ 100 MeV (dashed curve). Different

symbols represent p ¼ ð1; 0; 0Þ, (1, 1, 0), (1, 1, 1), and (2, 0, 0) in
units of 2π=L. Here, the rotationally symmetric correlators are
averaged in the data.
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purpose, we first consider the ϵ expansion of the pion form
factor within the framework of ChPT, since the finite
volume effect is dominated by the lightest degrees of
freedom, i.e., the pion. In the physical pion form factor,
on the other hand, the contribution beyond the leading
terms of the ϵ expansion becomes important as suggested
by the fact the vector pole dominance 1=ð1 − q2=m2

VÞ
describes the data quite well [3,43]. Such higher-order
contributions are irrelevant to the study of the leading finite
volume effect considered in this work.

It is straightforward to extend the analysis of the two-
point function described in the previous subsection to the
case of three-point function. It is expressed as a series, of
which each term is a product of the constant due to zero-
mode integrals and the massless propagators of the ξ field
such that they connect to form the three-point function.
When the propagator must carry nonzero momentum, the
constant term due to the zero-mode integral cannot arise.
In the case of our “pseudoscalar-(zero-component)

vector-pseudoscalar” correlator, the series is expressed by

hPðxÞV0ðyÞPðzÞi ¼ A
1

V

X
p≠0

ip0

p2
ðeipðx−yÞ þ eipðy−zÞÞ

þ B
1

V2

X
p≠0

X
p0≠0

ðip0 þ ip0
0Þeipðx−yÞeip

0ðy−zÞ

p2p02 FVððp − p0Þ2Þ þ � � � ; ð8Þ

where FVðq2Þ denotes the vector form factor of the pion
(which is equivalent to our target electromagnetic form
factor when the up and down quarks are degenerate), and A,
B;… are dimensionful constants, including the contribu-
tions from the pion zero mode.
Inserting an initial (spatial) momentum pi to PðxÞ, and a

final momentum pf to PðzÞ, we define a three-point function

C3pt
PVPðt; t0;pi;pfÞ≡

Z
d3xe−ipi·x

×
Z

d3zeipf ·zhPðxÞV0ðyÞPðzÞi; ð9Þ

where we assume t ¼ x0 − y0 < T=2, and t0 ¼ y0 − z0 <
T=2. As in the discussion of the two-point function, we then
define a difference operator ΔtfðtÞ ¼ fðtÞ − fðtrefÞ with a
fixed value of tref . It should not be confused with the
conventional derivative operator ∂t. Here, the choice
for tref is more restricted than in the case of two-point
functions, since it should satisfy both of tþ tref ≪ T and
t0 þ tref ≪ T to avoid the contribution of the unusual modes
wrapping around the lattice. In the following analysis, we
choose tref ¼ T=3 ¼ 12, and use the data at t < tref
and t0 < tref .
We construct the following three ratios:

R1
Vðt; t0; jpij; jpfj; q2Þ≡

1

N3pt
jpi j;jpf j

P
fixedjpij;jpf j;q2

C3pt
PVPðt;t0;pi;pfÞ
EðpiÞþEðpfÞ�

1

N2pt
jpi j

P
fixedjpijC

2pt
PPðt;piÞ

��
1

N2pt
jpf j

P
fixedjpf jC

2pt
PPðt0;pfÞ

� ; ð10Þ

R2
Vðt; t0; jpij; 0; q2Þ≡

1

N3pt
jpi j

P
fixedjpij;q2Δt0C

3pt
PVPðt; t0;pi; 0Þ

1

N2pt
jpi j

P
fixedjpijC

2pt
PPðt;piÞ½−Δt0∂t0C

2pt
PPðt0; 0Þ þ EðpiÞΔt0C

2pt
PPðt0; 0Þ�

; ð11Þ

R3
Vðt; t0; 0; 0; q2 ¼ 0Þ≡ ΔtΔt0C

3pt
PVPðt; t0; 0; 0Þ

−ΔtC
2pt
PPðt; 0ÞΔt0∂t0C

2pt
PPðt0; 0Þ − Δt∂tC

2pt
PPðt; 0ÞΔt0C

2pt
PPðt0; 0Þ

; ð12Þ

where q2 ¼ ðpi − pfÞ2 − ðEðpiÞ − EðpfÞÞ2. Here, the correlators that are equivalent under cubic rotations are averaged.

N3pt
jpij;jpf j and N

2pt
jpij denote the numbers of correlators to be averaged. For R2

V in (11) we can interchange the role of initial and

final states and include the case of jpij ¼ 0 and jpfj ≠ 0.
Using the expression in (8), it is not difficult to confirm that these ratios Rk¼1;2;3

V share the same leading order contribution
in ChPT, i.e.,
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Rk¼1;2;3
V ðt; t0; jpij; jpfj; q2Þ ¼

B
Y2

FVðq2Þ þ � � � : ð13Þ

Then, one can eliminate the zero-mode contribution B=Y2

by taking their ratios. Noting FVð0Þ ¼ 1, we can extract the
form factor through the ratios

F1
Vðt; t0; q2Þ≡ R1

Vðt; t0; jpij; jpfj; q2Þ
R3
Vðt; t0; 0; 0; 0Þ

; ð14Þ

F2
Vðt; t0; q2Þ≡ R2

Vðt; t0; jpij; 0; q2Þ
R3
Vðt; t0; 0; 0; 0Þ

: ð15Þ

They should become independent of t and t0 as long as the
ground state pion dominates the correlator.
So far we have not given an explicit form of FVðq2Þ in

the ϵ expansion since it may contain the physics at higher
orders, as well as those beyond ChPT, as explained above.
In particular, we do not ignore the pion mass, which
appears at the higher order in the ϵ expansion, in the
momentum transfer and simply assume the dispersion
relation of the pion energy: EðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

π

p
in the

following analysis. As shown in the previous section, we
expect that inclusion of the mass should not change the
analysis very much, as it is a NLO effect. The possible
distortion of the dispersion relation due to the NLO finite
volume effects will be discussed later.
Because of the zero-mode fluctuation, there is an unusual

contribution which includes the scalar form factor of the
pion [39]. But this diagram has a pion propagator directly
connecting the two pseudoscalar sources, and thus, is
expected to be exponentially small. Since the diagram
has different t and t0 dependences of F1;2

V ðt; t0; q2Þ, we can,
in principle, numerically confirm if it is really small or not.
Here, and in the following, we simply ignore this con-
tribution [we do not observe any unusual t and t0 depend-
ences of F1;2

V ðt; t0; q2Þ in the following analysis].
As a final remark of this section, we would like to note

that taking ratios is not a new idea but has been widely used
for different purposes. The ratio method nonperturbatively
cancels the renormalization factors of the operators, makes
the effect of excited modes easier to be detected, and so on.
Our work shows the ratio (after inserting momenta) is also
helpful to remove the dominant part of finite volume
effects.

IV. LATTICE RESULTS

We use gauge configurations of size 163 × 48 generated
with the Iwasaki gauge action and 2þ 1 dynamical flavors
of overlap quark action. At β ¼ 2.3, the value of lattice
cutoff 1=a ¼ 1.759ð8Þð5Þ GeV [a ∼ 0.112ð1Þ fm] is
obtained using the Ω-baryon mass as an input. The lattice
size in the physical unit is thus L ∼ 1.8 fm.

In this work, we focus on an ensemble with the smallest
up-down quark mass, ma ¼ 0.002, among a set of ensem-
bles with various sea quark masses. This value roughly
corresponds to 3 MeV in the physical unit, and the pion
mass at this value ismπ ∼ 99 MeV [42], which is below the
physical point. For the strange quark, we choose its mass
almost at the physical value, msa ¼ 0.080. In this setup the
pions are in the ϵ regime (mπL ∼ 0.90), while kaons remain
in the p regime.
Along the hybrid Monte Carlo simulation, the global

topological charge is fixed at Q ¼ 0. Since its effect is
encoded in the pion zero mode, the Q dependence does not
appear in the ratios of our correlators at the leading order
of ChPT.
The correlation functions are calculated using the

smeared sources with the form of exponential function.
To improve the statistical signal, the so-called all-to-all
propagator technique is employed. Namely, the low-energy
part of the correlator is calculated from 160 eigenmodes of
the Dirac operator and averaged over different source
points, while the higher-mode contribution is estimated
stochastically with the dilution technique [44]. For Δt for
the zero-momentum correlator, we use the reference time
slice at tref ¼ 12. For the derivative operator ∂t, we
approximate it by a simple forward subtraction: ∂tfðtÞ ¼
fðtþ 1Þ − fðtÞ.
We use 148 configurations sampled from 2500 trajecto-

ries of the run. The auto-correlation time of the correlators
is different depending on the position and momenta. The
longest one, from the two-point function with zero momen-
tum, is around 7 trajectories. The statistical errors in the
analysis are estimated by the jackknife method after
binning data in every 20 trajectories.
Figure 2 presents our lattice data of F1

Vðt; t0; q2Þ at
ðp2

i ;p
2
f;q

2Þ ¼ ð2; 1; 1Þ (top panel) and F2
Vðt; t0; q2Þ at

ðp2
i ;p

2
f;q

2Þ ¼ ð1; 0; 1Þ (bottom panel). The momenta are
labeled in the units of 2π=L. The ratio F2

V defined in (15) is
used when either initial or final spatial momentum is zero
with tref ¼ 12. To estimate EðpÞ, which is involved in the
definition of R1

V in (10), we use the dispersion relation
EðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

π

p
. We find a plateau for time separations

where t and t0 are greater than 5, which is also stable against
the change of tref in the range 9 ≤ tref ≤ 12 (tref should
satisfy tþ t0 þ tref ≪ T). We fit the data by a constant; the
fit results are shown in the plots as well as the fit range.
We plot FVðq2Þ obtained at various q2 in Fig. 3. They are

obtained at various combinations of pi and pf listed in
Table I. For comparison, we also plot the data in the p
regime (at ma ¼ 0.015) [43]. Apparently, the new data in
the ϵ regime show a steeper slope near the origin, which
indicates a larger value of the pion charge radius.
We fit the form factor FVðq2Þ to a function

FVðq2Þ ¼
1

1 − q2=m2
V
þ a1q2 þ a2ðq2Þ2; ð16Þ
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which is motivated by the vector dominance hypothesis and
corrections are added as a polynomial. The same function
was also used in our previous analysis of the p regime data
[3]. Since our calculation of the vector meson mass on the ϵ
regime ensemble is too noisy to be useful, we use the
physical ρ meson mass, 770 MeV, as an input to (16) and
treat a1 and a2 as free parameters. The fit curve goes
through the lowest four jq2j points as shown in Fig. 3. The
χ2=d:o:f. is below 1.0 in this case. When we include higher
jq2j points, the fit becomes worse and χ2=d:o:f. increases
up to 2.5.
The result for the charge radius at our simulated mass is

hr2iV ¼ 0.63ð08Þð11Þ fm2 ðat m ¼ 0.002Þ; ð17Þ

where the first error is statistical and the second is
systematic, as explained below. The central value is larger
than the experimental value, 0.452ð11Þ fm2.
Although the main part of the pion zero mode’s effects is

removed, the systematic error due to finite volume remains
the dominant one. First, since the momentum space is
discrete, the number of data points near q2 ¼ 0 is limited.
The choice of the fitting range and/or fitting function affects
the determination of the slope at q2 ¼ 0 by 12%. Here we
assign the variation of the fit results as the systematic effect.
[The central value is taken from the fit of the lowest four
jq2j point to (16).] In addition to the model function (16),
we attempt a simple polynomial function of second order
(dashed curve in Fig. 3) in this analysis.
Second, the dispersion relation may be distorted in the ϵ

regime. By an estimate at the next-to-leading order ChPT, it
can be shown that a distortion of the form EðpÞ →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Zmm2

π

p
with Zm ∼ 2 is expected [39]. Since the

relation EðpÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

π

p
is used when constructing R1

V ,
as given in (10), this effect may induce a bias as large
as ∼10%.
Finally, the effect of nonzero modes appeared to be non-

negligible on our small lattice [39]. We estimate its size as
8%. In total, we assign 17% as the total size of the
systematic error by adding these sources in quadrature.
This is shown in (17) as our estimate of the systematic error.
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FIG. 2 (color online). F1
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are plotted with different symbols. A constant fit and their error
are shown by bands.
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TABLE I. Combinations of initial and final momenta taken in
the calculation. The momentum components are given in units of
2π=L. Those equivalent under cubic rotations are averaged,
though not listed.

ðaqÞ2 pi pf q

0.0380 (0, 0, 0) (1, 0, 0) (1, 0, 0)
0.0560 (0, 0, 0) (1, 1, 0) (1, 1, 0)
0.0699 (0, 0, 0) (1, 1, 1) (1, 1, 1)
0.1281 (0, 1, 0) (1, 1, 0) (1, 0, 0)
0.3084 (0, −1, 0) (1, 0, 0) (1, 1, 0)
0.4366 (0, 0, −1) (1, 1, 0) (1, 1, 1)
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Because it is large, other sources, such as those from
discretization effect, are expected to be subdominant.
Figure 4 shows the dependence of hr2iπV on the pion mass

squared. The result (17) is plotted together with our
previous calculation at heavier pions [43]. It is clear that
the ϵ regime result (circle) is much higher than the points
abovemπ ≳ 300 MeV (square). It indicates the existence of
the strong (logarithmic) curvature of the pion charge radius
near the chiral limit.
Finally, we interpolate the data to the physical pion

mass. We use the functions suggested by the SUð2Þ and
SUð3Þ ChPT. At the next-to-leading order, they are

hr2iπV ¼ −
1

NF2
ð1þ 6Nlr

6Þ −
1

NF2
ln
m2

π

μ2
; ð18Þ

and

hr2iπV ¼ 1

2NF2
ð−3þ 24NLr

9Þ −
1

NF2
ln
m2

π

μ2

−
1

2NF2
ln
m2

K

μ2
; ð19Þ

for SUð2Þ and for SUð3Þ, respectively, with N ¼ ð4πÞ2 and
F the pion decay constant in the chiral limit. The param-
eters lr

6 and L
r
9 are relevant low-energy constants in SUð2Þ

and SUð3Þ ChPT, respectively. The result for the charge
radius at the physical pion mass is

hr2iV ¼ 0.49ð4Þð4Þ fm2 ðat physical pointÞ; ð20Þ

where the first error is statistical and the second is
systematic, including the one in (17) as well as the variation

due to the choice of the chiral fit functions. That includes
the ChPT formulas and a polynomial function at the
second order.
Through the ChPT fits, we also obtain F and lr

6 (or L
r
9).

The value for F is lower than its physical value:
57(8)(10) MeV and 60(9)(9) MeV for the SUð2Þ and
SUð3Þ fits. This is consistent with our previous extensive
analysis of the pion mass and decay constant in two-flavor
QCD [45]. The low-energy constants, in the conventional
notations, we obtained in this analysis are

l̄6 ¼ −6Nlr
6ðμ ¼ mπÞ ¼ 7.5ð1.3Þð1.5Þ; ð21Þ

Lr
9ðμ ¼ 770 MeVÞ ¼ 2.4ð0.8Þð1.0Þ × 10−3: ð22Þ

These values are also smaller than their phenomenological
estimates, which may indicate that next-to-next-to-leading
order corrections are not negligible, in our p regime data
points.

V. DISCUSSIONS AND CONCLUSIONS

In this work, we propose a method to calculate the pion
form factor in the ϵ regime. Inserting momenta to the
operators, and taking appropriate ratios of them, we can
eliminate the dominant contribution from the pion zero
mode. A tree-level analysis of the vector pion form factor in
the ϵ regime confirms this observation; the result for the
pion charge radius is consistent with the experiment,
showing the existence of a logarithmic divergence towards
the chiral limit.
This cancellation of the zero mode occurs only at the

leading order, and there should be nontrivial corrections at
the next-to-leading order. This remaining finite volume
effects are turned out to be sizable in the presented
calculation. On the lattice of size L ∼ 3 fm or larger, such
effect would be reduced to a few % level. One may also use
the twisted boundary condition for the valence quarks,
although we need a study of the partially quenched effect in
the ϵ regime analysis of ChPT.
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