
Nonperturbative renormalization of overlap quark bilinears
on 2þ 1-flavor domain wall fermion configurations

Zhaofeng Liu,1 Ying Chen,1 Shao-Jing Dong,2 Michael Glatzmaier,2 Ming Gong,2

Anyi Li,3 Keh-Fei Liu,2 Yi-Bo Yang,1 and Jian-Bo Zhang4

(χQCD Collaboration)

1Institute of High Energy Physics and Theoretical Physics Center for Science Facilities,
Chinese Academy of Sciences, Beijing 100049, China

2Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
3Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA

4Department of Physics, Zhejiang University, Hangzhou 311027, China
(Received 9 January 2014; published 19 August 2014)

We present renormalization constants of overlap quark bilinear operators on 2þ 1-flavor domain wall
fermion configurations. This setup is being used by the χQCD Collaboration in calculations of physical
quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale-
independent renormalization constant for the axial-vector current is computed using the Ward identity.
The renormalization constants for scalar, pseudoscalar, and vector currents are calculated in the RI-MOM
scheme. Results in the MS scheme are also given. The step scaling function of quark masses in the
RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea
quarks, each on two lattices with sizes 243 × 64 and 323 × 64 at spacings a ¼ ð1.73 GeVÞ−1 and
ð2.28 GeVÞ−1, respectively.
DOI: 10.1103/PhysRevD.90.034505 PACS numbers: 12.38.Gc, 11.15.Ha

I. INTRODUCTION

The overlap valence quark on 2þ 1-flavor domain wall
fermion (DWF) configurations has beenused to calculate the
strangeness and charmness in the nucleon [1] with high
precision. Because of the high degree of chiral symmetry of
these fermions, the calculation of the strangeness content is
free of the problemof largemixingwith the ūu and d̄dmatrix
elements due to the additive renormalization of the quark
mass that plagues theWilson fermions. In addition to having
small Oða2Þ discretization errors [2,3], the overlap fermion
that we use for the valence quarks in the nucleon can also be
used for the light and charm quarks with a small Oðm2a2Þ
error [4,5]. This allows us to calculate the charmonium and
charm-light mesons in addition to strangeness and charm-
ness content. The inversion of overlap fermions can be sped
up by using HYP smearing [6] and deflation with low
eigenmodes [5]. The χQCD Collaboration is determining
charm and strange quark masses [7] and other physical
quantities with the setup of overlap valence on the DWF sea.
The renormalization constants of quark bilinear operators
that are needed to match lattice results to those in the
continuum MS scheme are presented.
Nonperturbative renormalization is important in current

lattice calculations aiming at percent-level accuracy. As we
know, the convergence of lattice perturbative calculations is
often not satisfying, and lattice perturbation series rarely
extend beyond the one-loop level.
We use the RI-MOM scheme [8] to calculate renormal-

ization constants for flavor nonsinglet scalar, pseudoscalar,

vector, and axial-vector operators O ¼ ψ̄Γψ 0, where
Γ ¼ I; γ5; γμ; γμγ5, respectively (we will use S; P; V; A to
denote the four operators throughout this paper). The results
are converted to theMS scheme using ratios from continuum
perturbative calculations. Following Refs. [9,10], we also
calculate the step scaling function in the RI-MOM scheme
for quarkmasses. In this way, theOða2Þ discretization errors
are removed differently.
We have calculated the renormalization constants at two

lattice spacings with a−1 ¼ 1.73ð3Þ GeV and 2.28(3) GeV.
At each lattice spacing, there are three light sea quarkmasses.
At each light sea quark mass, we use eight valence quark
masses. The final results are obtained in the chiral limit of
both the sea and valence quark masses, which confirm ZS ¼
ZP and ZV ¼ ZA for overlap fermions. The main results of
this work are given in Tables III, IV, V, VI, VII and VIII.
We consider the systematic errors carefully. A main

source of systematic errors for ZS comes from the trunca-
tion of the perturbative ratio from the RI-MOM scheme to

the MS scheme. We obtain ZMS
S ð2 GeVÞ ¼ 1.127ð9Þð19Þ

on the coarse lattice and 1.056(6)(24) on the fine lattice,
where the first uncertainty is statistical and the second
systematic.
This paper is organized as follows. In Sec. II, we briefly

review the RI-MOM scheme and the overlap formalism.
The numerical results in the RI-MOM andMS schemes, the
analysis of systematic errors, and the calculation of the step
scaling function are given in Sec. III. Then we summarize
and conclude with some general remarks in Sec. IV.
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II. METHODOLOGY

The nonperturbative calculation of renormalization con-
stants in the RI-MOM scheme [8] is based on imposing
renormalization conditions on amputated Green functions
of the relevant operators in the momentum space. The
Green functions we need to compute include the quark
propagator

SðpÞ ¼
X

x

e−ipxhψðxÞψ̄ð0Þi; ð1Þ

the forward Green function

GOðpÞ ¼
X

x;y

e−ip·ðx−yÞhψðxÞOð0Þψ̄ðyÞi; ð2Þ

and the vertex function

ΛOðpÞ ¼ S−1ðpÞGOðpÞS−1ðpÞ: ð3Þ

The renormalization condition requires that the renormal-
ized vertex function at a given scale p2 ¼ μ2 coincides with
its tree-level value. That is to say,

Z−1
q ZO

1

12
Tr½ΛOðpÞΛtree

O ðpÞ−1�p2¼μ2 ¼ 1; ð4Þ

where Zq is the quark field renormalization constant with

ψR ¼ Z1=2
q ψ (the subscript “R” means after renormaliza-

tion) and ZO the renormalization constant for operator O
with OR ¼ ZOO. Equation (4) is defined in the quark
massless limit so that RI-MOM is a mass-independent
renormalization scheme. In practice, we do calculations at
finite quark masses and then extrapolate to the chiral limit.
For convenience, a projected vertex function is defined by

ΓOðpÞ≡ 1

12
Tr½ΛOðpÞΛtree

O ðpÞ−1�: ð5Þ

In the RI scheme, ZRI
q can be determined by [8]

ZRI
q ðμÞ ¼ −i

48
Tr

�
γν
∂S−1ðpÞ
∂pν

�

p2¼μ2
: ð6Þ

This is consistent with Ward identities so that the renorm-
alization constant in the RI scheme for the conserved vector
current is 1. However, on the lattice, it is not convenient to
do derivatives with respect to the discretized momentum.
Following Ref. [11], we shall use the renormalization of

the axial-vector current to set the scale. Since we can obtain
the renormalization constant ZWI

A of the local axial-vector
current from Ward identities, which equals ZRI

A in the RI
scheme, we can get ZRI

q from

ZRI
q ¼ ZWI

A
1

12
Tr½ΛAðpÞΛtree

A ðpÞ−1�p2¼μ2 : ð7Þ

Once we obtain ZRI
q , we use Eq. (4) to get ZS, ZP, and ZV

for the scalar, pseudoscalar, and vector currents. At tree
level, Λtree

O ðpÞ ¼ Γ for the quark bilinear operators.
The Green functions in Eq. (4) are not gauge invariant;

therefore, the calculation has to be done in a fixed gauge,
usually in the Landau gauge.
The massless overlap operator [12] is defined as

DovðρÞ ¼ 1þ γ5εðγ5DwðρÞÞ; ð8Þ

where ε is the matrix sign function and DwðρÞ is the usual
Wilson fermion operator, except with a negative mass
parameter −ρ ¼ 1=2κ − 4 in which κc < κ < 0.25. We set
κ ¼ 0.2 in our calculation, which corresponds to ρ ¼ 1.5.
The massive overlap Dirac operator is defined as

Dm ¼ ρDovðρÞ þm

�
1 −

DovðρÞ
2

�

¼ ρþm
2
þ
�
ρ −

m
2

�
γ5εðγ5DwðρÞÞ: ð9Þ

To accommodate the SUð3Þ chiral transformation, it is
usually convenient to use the chirally regulated field ψ̂ ¼
ð1 − 1

2
DovÞψ in lieu of ψ in the interpolation field and the

currents. This is equivalent to leaving the unmodified
currents and instead adopting the effective propagator

G≡D−1
eff ≡

�
1 −

Dov

2

�
D−1

m ¼ 1

Dc þm
; ð10Þ

where Dc ¼ ρDov
1−Dov=2

is chiral, i.e., fγ5; Dcg ¼ 0 [13]. With
the good chiral properties of overlap fermions, we should
get ZS ¼ ZP and ZV ¼ ZA. These relations are well
satisfied within uncertainties by our numerical results, as
will be shown later.

III. NUMERICAL RESULTS

Our configurations are generated by the RBC-UKQCD
Collaboration using 2þ 1-flavor domain wall fermions
[14,15]. The lattice sizes are 243 × 64 and 323 × 64.
On each lattice, there are three different light sea quark
masses. On the 243 × 64 lattice, they are ml=ms ¼ 0.005=
0.04; 0.01=0.04 and 0.02=0.04 in lattice units. On the
323 × 64 lattice, ml=ms¼0.004=0.03;0.006=0.03 and
0.008=0.03. We employ one HYP smearing on the gauge
fields [5] and then fix to the Landau gauge. The corre-
sponding rotation matrices are saved. Then the quark
propagators in the Landau gauge are rotated from those
already computed before the gauge fixing to save time by
avoiding doing inversions. The effects of smearing (one or
only a few iterations) on observables disappear in the
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continuum limit. Also, note that HYP smearing and gauge
rotation on a configuration commute. Thus, the effects on
vertex functions of smearing before or after gauge fixing, or
no smearing at all, differ by discretization effects at a fixed
lattice spacing. In Table I, we give the number of con-
figurations used in this work on each data ensemble. The
overlap valence quark masses in lattice units are given in
Table II. The corresponding pion masses are from about
220 to 600 MeV.
We use the antiperiodic boundary condition in the time

direction and the periodic boundary condition in the spacial
directions. Therefore, the momenta are

ap ¼
�
2πk1
L

;
2πk2
L

;
2πk3
L

;
ð2k4 þ 1Þπ

T

�
; ð11Þ

where kμ ¼ −6;−5;…; 6 on the L ¼ 24 lattice and
ki ¼ −6;−7;…; 6, k4 ¼ −5;−1;…; 6 on the L ¼ 32 lat-
tice. To reduce the effects of Lorentz noninvariant discre-
tization errors, we only use the momenta that satisfy the
condition

p½4�

ðp2Þ2 < 0.32; where p½n� ¼
X4

μ¼1

pn
μ; p2 ¼

X

μ

p2
μ:

ð12Þ

In other words, only those momenta pointing close to the
diagonal direction are used. However, as the statistical error
decreases (for example, by using momentum sources [16]),
the effects proportional to a2p½4�=p2 can be seen. To use all
momenta and systematically remove the hypercubic effects,
one can follow the method used in Refs. [17,18]. Another
way is to follow Ref. [9]. One can also use perturbative
calculations to subtract and suppress those effects as, for
example, in Ref. [19].

In our calculation, we require the same p4, p½4�, and p½6�
when averaging momentum modes with the same p2.
Therefore, we can estimate the Oða2p½4�=p2Þ lattice arti-
facts (ignoring higher terms). As we will show later,
those effects are not small in ZS. But because the condition
in Eq. (12) is used, the Oða2p½4�=p2Þ effects can be
absorbed into a simple Oða2p2Þ term within our statistical
uncertainty.
We use point source propagators in the Landau gauge to

evaluate all the necessary Green functions and vertex
functions. Momentum sources [16] can be used to improve
the signal-to-noise ratio. But for each momentum, one
inversion is needed, which is expensive for overlap fer-
mions. Thus, we use the point source propagators that can
be projected to many momenta. The statistical errors of our
final results are from jackknife processes.

A. Renormalization of the axial-vector
current from the Ward identity

The renormalization constant ZA can be obtained from
the axial Ward identity

ZA∂μAμ ¼ 2ZmmqZPP; ð13Þ

where Aμ and P are the local axial-vector current and the
pseudoscalar density, and Zm is the quark mass renorm-
alization constant with the renormalized massmR ¼ Zmmq.
Since Zm ¼ Z−1

P for overlap fermions, one can find ZA by
considering the matrix elements of both sides of Eq. (13)
between the vacuum and a pion,

ZA∂μh0jAμjπi ¼ 2mqh0jPjπi: ð14Þ

If the pion is at rest, then from the above equation one gets

ZA ¼ 2mqh0jPjπi
mπh0jA4jπi

; ð15Þ

where A4 ¼ ψ̄γ4γ5ψ̂ and P ¼ ψ̄γ5ψ̂ . To obtain the matrix
elements, we compute 2-point correlators

GPPð~p ¼ 0; tÞ ¼
X

~x

h0jPðxÞP†ð0Þj0i ð16Þ

and

GA4Pð~p ¼ 0; tÞ ¼
X

~x

h0jA4ðxÞP†ð0Þj0i: ð17Þ

When the time t is large, the contribution from the pion
dominates in both correlators. Then one has

TABLE II. Overlap valence quark masses in lattice units on the 243 × 64 and 323 × 64 lattices.

243 × 64 0.00620 0.00809 0.01020 0.01350 0.01720 0.02430 0.03650 0.04890
323 × 64 0.00460 0.00585 0.00677 0.00885 0.01290 0.01800 0.02400 0.03600

TABLE I. The number of configurations used in this work on
the 243 × 64 and 323 × 64 lattices. The residual masses of DWF
in lattice units mres are in the two-flavor chiral limit as given in
Ref. [14].

Label ml=ms Volume Nconf mres

c005 0.005=0.04 243 × 64 92 0.003152(43)
c01 0.01=0.04 243 × 64 88
c02 0.02=0.04 243 × 64 138
f004 0.004=0.03 323 × 64 50 0.0006664(76)
f006 0.006=0.03 323 × 64 40
f008 0.008=0.03 323 × 64 50
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ZWI
A ¼ lim

mq→0;t→∞

2mqGPPð~p ¼ 0; tÞ
mπGA4Pð~p ¼ 0; tÞ : ð18Þ

In Fig. 1 we show examples of ZWI
A obtained from

Eq. (18) before taking the valence quark massless limit
[denoted as ZWI

A ðamqÞ]. To take the limitmq → 0, we fit the
data to [11]

ZWI
A ðamqÞ ¼ ZWI

A ð1þ bAamqÞ: ð19Þ

After taking the valence quark massless limit, we get the
results of ZWI

A as given in Table III. In the last column of
Table III, the results at the light sea quark massless limit are
obtained by a linear extrapolation in ml þmres, where mres
is given in Table I.

B. Analysis of the quark propagator

At large momenta, because of the asymptotic freedom,
the quark propagator SðpÞ goes back to the free quark
propagator. In Fig. 2 we show examples of TrðS−1ðpÞÞ=12
as functions of the momentum scale for different bare
valence quark masses. As expected, TrðS−1ðpÞÞ=12 goes to
the bare quark mass value as the momentum scale
increases. The two graphs in Fig. 2 are for data ensembles
c01 and f006, respectively. The results from other ensem-
bles are similar.

Figure 3 shows examples of the quark field renormal-
ization constants ZRI

q as functions of the momentum scale
for different valence quark masses. ZRI

q is computed from
Eq. (7). As we can see, the quark mass dependence of ZRI

q is
quite small on both the L ¼ 24 and 32 lattices. The
symbols in Fig. 3 are on top of each other except at very
small a2p2.
In Landau gauge, the anomalous dimension of Zq is zero

at one loop. This is why in Fig. 3 the behavior of Zq is quite
flat up to Oða2p2Þ discretization errors.

C. Scalar density

After obtaining ZRI
q , one can now get ZRI

S from Eq. (4).
The projected vertex function ΓS [defined in Eq. (5)] and
ZRI
S as functions of the momentum scale for different

valence quark masses on ensemble f006 are shown
in Fig. 4.
Figure 5 shows ZRI

S as a function of the valence quark
mass at different momenta for ensemble c01. Apparently,
the dependence on amq is not linear. Thus, to go to the
chiral limit, we use

ZS ¼
As

ðamqÞ2
þ Bs þ CsðamqÞ ð20Þ

FIG. 1 (color online). Examples of ZWI
A ðamqÞ against valence quark masses. The left graph is for the L ¼ 24 lattice with sea quark

masses ml=ms ¼ 0.005=0.04. The right one is for the L ¼ 32 lattice with ml=ms ¼ 0.004=0.03.

TABLE III. ZWI
A on the 243 × 64 and 323 × 64 lattices.

243 × 64 ml=ms 0.02=0.04 0.01=0.04 0.005=0.04 ml þmres ¼ 0

ZWI
A 1.101(4) 1.115(6) 1.105(4) 1.111(6)

323 × 64 ml=ms 0.008=0.03 0.006=0.03 0.004=0.03 ml þmres ¼ 0

ZWI
A 1.075(1) 1.079(1) 1.080(1) 1.086(2)
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to fit our data and take Bs as the chiral limit value of ZS.
This fit function is inspired by Refs. [20,21]. The double
pole term in the above equation comes from the topological
zero modes of the overlap fermions. In a calculation of ZS
in the RI’ scheme [22], the curve up of ZS at small valence
quark mass is suppressed when the zero modes are
subtracted from the quark propagator.
The fits of the data to Eq. (20) have small χ2=dof

at all momentum scales. Examples are shown in Fig. 5.

The results of ZRI
S in the valence quark massless limit

as a function of the momentum scale for ensemble c005
are shown by the black diamonds in the left panel of
Fig. 6.
Then one can use conversion ratios calculated in

continuum perturbation theory to convert ZRI
S into the

MS scheme. In the quark massless limit, in Landau gauge
and to three loops, the conversion ratio for ZS and ZP
is [23,24]

ZRI
S

ZMS
S

¼ ZRI
P

ZMS
P

¼ 1 −
16

3

αs
4π

þ
�
−
1990

9
þ 89nf

9
þ 152ζ3

3

��
αs
4π

�
2

þ
�
−
6663911

648
þ 236650nf

243
−
8918n2f
729

þ 408007ζ3
108

−
4936ζ3nf

27
−
32ζ3n2f
27

þ 80ζ4nf
3

−
2960ζ5

9

��
αs
4π

�
3

þOðα4sÞ; ð21Þ

where nf is the number of flavors and ζn is the Riemann
zeta function evaluated at n.
The value of αsðμÞ is obtained by using its perturbative

running to four loops [25]. The β function in the MS
scheme to four loops is given in Ref. [26]. We take the

value ΛMS
QCD ¼ 339ð10Þ MeV for three flavors in the MS

scheme [27] to evaluate Eq. (21) numerically. For
example, the strong coupling constant at 2 GeV is

αMS
s ð2 GeVÞ ¼ 0.2787. The MS value ZMS

S as a function
of the scale a2p2 is shown by the red fancy crosses in the
left graph of Fig. 6.

To obtain ZMS
S ð2 GeVÞ, we first use the anomalous

dimension to four loops to evolve ZMS
S ða2p2Þ at the initial

renormalization scale ap to 2 GeV (inverse lattice spacings
1=a ¼ 1.73 GeV and 2.28 GeV are used, respectively).
Since ZS ¼ Z−1

m , we can use the mass anomalous dimen-
sion given in Ref. [24] for the perturbative running.
The blue crosses in the left graph of Fig. 6 show

ZMS
S ð2 GeV; a2p2Þ, which are the four-loop running results

from the initial renormalization scale ap to the scale 2 GeV.

ZMS
S ð2 GeV; a2p2Þ would lie on a horizontal line at large

FIG. 2 (color online). Examples of TrðS−1ðpÞÞ=12 as functions of the momentum scale for different bare valence quark masses. The
left graph is for the L ¼ 24 lattice with sea quark masses ml=ms ¼ 0.01=0.04. The right one is for the L ¼ 32 lattice with
ml=ms ¼ 0.006=0.03. The horizontal lines are the positions of the bare quark masses.
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a2p2 if there were no discretization errors (and if the
truncation error of the conversion ratio is small).
The solid blue line in the left panel of Fig. 6 is a linear fit

to the blue crosses with a2p2 > 5. This is to reduce
Oða2p2Þ discretization errors. After the extrapolation we

obtain ZMS
S ð2 GeVÞ ¼ 1.1397ð54Þ for c005, where the

error is only statistical. If we use the blue crosses with
a2p2 > 4 to do the extrapolation, then we find

ZMS
S ð2 GeVÞ ¼ 1.1451ð34Þ. The two numbers are in agree-

ment at one sigma. The difference introduced by the
different range of a2p2 will be included in the systematic
errors of our final results.

In the right panel of Fig. 6, we compare the different
orders of perturbative running in the MS scheme. As we
can see, the truncation error is quite small after two loops.
Only the one-loop running results do not agree with the
four-loop (NNNLO) running results. This is in contrast to
the truncation error of running in the RI-MOM scheme,
which we show in Fig. 7. The perturbative truncation error
for the running of ZRI

S is large even with four loops: The
three-loop and four-loop results are different from each
other. Similar behavior was also shown in Ref. [28]. With
the much better running behavior in the MS scheme, it is
preferred not to do the perturbative running of ZS in the

FIG. 3 (color online). Examples of ZRI
q as functions of the momentum scale for different valence quark masses. The left graph is for the

L ¼ 24 lattice with sea quark masses ml=ms ¼ 0.01=0.04. The right one is for the L ¼ 32 lattice with ml=ms ¼ 0.006=0.03.

FIG. 4 (color online). Examples of the projected vertex function ΓS and ZRI
S as functions of the momentum scale for ensemble f006.
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RI-MOM scheme. Nevertheless, if we use the a2p2

extrapolated result ZRI
S ð2 GeVÞ ¼ 0.8812ð41Þ after the

four-loop running and the conversion ratio 1.289614 from
Eq. (21) at 2 GeV from the RI to the MS scheme, we obtain

ZMS
S ð2 GeVÞ ¼ 1.1364ð53Þ. This is in agreement with the

above 1.1397(54).
We do a self-consistency check in Fig. 8 for the a2p2

extrapolation after the running in the MS scheme. The

black diamonds in the graph are ZMS
S ðpÞ at p ¼ 2, 2.5, 3,

3.5, 4, 4.5, 5 GeV obtained from a2p2 extrapolations after
the running in the MS scheme as described above for

getting ZMS
S ðp ¼ 2 GeVÞ. If the extrapolation works in

reducing discretization errors, then the black diamonds
should be well described by perturbative running in the MS
scheme. We run down the black diamonds to 2 GeV using
the four-loop perturbative running in the MS scheme. The
results are the magenta pluses which lie on a horizontal line
within errors. This indicates that the a2p2 extrapolation can

FIG. 6 (color online). The conversion and running of ZS in the valence quark massless limit on ensemble c005. Left panel: The black
diamonds are the values in the RI scheme. The red fancy crosses are those in the MS scheme. The blue crosses are the results evolved to
2 GeV in the MS scheme as a function of the initial renormalization scale. Right panel: Comparison of the different orders of perturbative
running in the MS scheme. The vertical line indicates p ¼ 2 GeV.

FIG. 5 (color online). ZRI
S as a function of the valence quark mass at two momentum scales for ensemble c01. The curves are fits to

Eq. (20).
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indeed reduce Oða2p2Þ discretization effects, and the
higher order effects are small.
The blue crosses in Fig. 6 (left panel) do not necessary

have the same p½4�=ðp2Þ2 value because the momentum
modes we use are not exactly in the same direction. To see
how the difference in p½4�=ðp2Þ2 affects our final result, we
use the three-term function

ZS ¼ ZS þ c1ða2p2Þ þ c2
a2p½4�

p2
ð22Þ

to fit the blue crosses in Fig. 6 (left panel) with a2p2 > 5.
Here other possible terms proportional to a2p½6�=ðp2Þ2,

a4ðp2Þ2, etc. are ignored since Eq. (22) can already fit the
data. The comparison of the three-term fit with the a2p2

extrapolation is shown in Fig. 9. Compared with the simple
a2p2 extrapolation, the three-term fit visibly decreases
χ2=dof. The red line in Fig. 9 shows the fit function with

the third term c2
a2p½4�
p2 subtracted. The Oða2p½4�=p2Þ effects

are not small since the red line is quite different from the
blue data points. However, from the three-term fit we get

ZMS
S ð2 GeVÞ ¼ 1.1372ð54Þ, which is in good agreement

with 1.1397(54) from the a2p2 extrapolation. This means
that, with our statistical errors and with the condition in
Eq. (12), the effects due to the difference in the directions of
the momenta can be ignored.
Comparing the slope in our a2p2 extrapolation with that

in Fig. 2 of Aoki [28] (with NNNLO perturbative running),
we find a larger a2 effect in our data. A similar size of
slopes was also seen in Refs. [29,30], where gauge fields
were also smeared, for renormalization constants. It is
possible that our gauge smearing is related to the size of the
slope in the a2p2 extrapolation. It is discussed in Ref. [10]
that link smearing may lower the upper end of the RI-MOM
window and enhance a2 effects. A study to compare our
results with thin link results would be interesting to better
understand the slope.
The values of ZMS

S ð2 GeVÞ on all ensembles are col-
lected in Table IV, where we have used a2p2 > 5 for the
a2p2 extrapolations on the L ¼ 24 lattices and a2p2 > 3 on
the L ¼ 32 lattices.
From the values on all six ensembles with different sea

quark masses on the L ¼ 24 and 32 lattices, we do a

FIG. 9 (color online). Comparison of the three term fit Eq. (22)
with the a2p2 extrapolation. The blue crosses are the results
evolved to 2 GeV in the MS scheme as a function of the initial
renormalization scale. The red line shows the three term
fit function with the third term c2

a2p½4�

p2 subtracted. The blue line
is the a2p2 extrapolation.

FIG. 8 (color online). Self-consistency check for the a2p2

extrapolation in the MS scheme. See text.

FIG. 7 (color online). Comparison of the different orders of
perturbative running in the RI-MOM scheme. The vertical line
indicates p ¼ 2 GeV.

ZHAOFENG LIU et al. PHYSICAL REVIEW D 90, 034505 (2014)

034505-8



simultaneous linear extrapolation in the renormalized light

sea quark mass to obtain ZMS
S in the sea quark massless

limit. The fit function is

ZðmR
l Þ ¼ Zð0Þ þ c ·mR

l ; where mR
l ¼ ðml þmresÞZsea

m :

ð23Þ

Here Zsea
m ¼ 1.578ð2Þ on the L ¼ 24 lattice and 1.573(2) on

the L ¼ 32 lattice were given in Ref. [14]. The slopes of the
two lines for the coarse and fine lattices are required to be
the same.
The extrapolation is shown in Fig. 10, which has a

good χ2=dof. We do a simultaneous fit because the three
light sea quark masses on the L ¼ 32 lattice are close to
each other, and thus the data have less control on the slope.

Finally, we get ZMS
S ðL ¼ 24Þ ¼ 1.1272ð87Þ and ZMS

m ðL ¼
24Þ ¼ 1=ZMS

S ¼ 0.887ð7Þ at 2 GeV. For the fine lattice we

find ZMS
S ðL ¼ 32Þ ¼ 1.0563ð64Þ and ZMS

m ðL ¼ 32Þ ¼
0.947ð6Þ.
We also did separate linear extrapolations in light sea

quark masses on the coarse and fine lattices. The results are
in agreement with those from the simultaneous fit. The
change in the center values will be taken as one source of
the systematic errors, as discussed below.

Besides the statistical error, we consider the following
systematic errors of ZS. The error budget of ZS in the chiral
limit is given in Table V.
First of all, high order terms that were ignored in the

conversion ratio, Eq. (21), from the RI scheme to the MS
scheme give truncation errors. To reduce this error, one uses
ZRI
S at large a2p2. In our work, we use a2p2 > 5 on the

L ¼ 24 lattice, which means p > 3.87 GeV. On the L ¼
32 lattice, we use a2p2 > 3 or p > 4.02 GeV. At
p ¼ 4 GeV, the numerical value of Eq. (21) is

ZRI
S

ZMS
S

ðp ¼ 4 GeV; nf ¼ 3Þ

¼ 1 − 0.424αs − 0.827α2s − 1.944α3s þ � � �
¼ 1 − 0.092 − 0.039 − 0.020þ � � � ; ð24Þ

where we have used αMS
s ð4 GeVÞ ¼ 0.2160. The Oðα3sÞ

term is about 2.4% of the total ratio. The ignored Oðα4sÞ
term is further suppressed by a factor of αs. Assuming its
coefficient is 3 times larger than that for theOðα3sÞ term, we
get a ∼1.5% truncation error.
The uncertainty of the coupling constant αs in Eq. (21) is

another source of error. If we use ΛMS
QCD ¼ 349 MeV

instead of 339 MeV to evaluate αs, the center value of

ZMS
S ð2 GeVÞ changes by 0.3% on both lattices.

The perturbative running of ZMS
S from an initial scale p to

2 GeV uses four-loop results of the anomalous dimension.
The Oðα4sÞ term contributes less than 0.02% to the total
running in our range of the initial scale a2p2. Thus, this
systematic error can be safely ignored.
To determine where 2 GeV is, we need the values of our

lattice spacings. The variation of lattice spacings in the

range of one sigma leads to ∼0.5% change in ZMS
S ð2 GeVÞ.

In the extrapolation of ZMS
S ð2 GeV; a2p2Þ to reduce

Oða2p2Þ discretization errors, the fit range of a2p2 intro-
duces a 0.4% error on the L ¼ 24 lattice and a 0.1% error
on the L ¼ 32 lattice. Here we vary a2p2 > 5 to> 4 on the
L ¼ 24 lattice and a2p2 > 3 to > 2 on the L ¼ 32 lattice.
Finally, we consider the error due to the extrapolation in

the light sea quark mass. As mentioned above, one can do

FIG. 10 (color online). Linear extrapolation of ZMS
S to the light

sea quark massless limit.

TABLE IV. ZMS
S ð2 GeVÞ on the 243 × 64 and 323 × 64 lattices.

Ensemble c02 c01 c005 ml þmres ¼ 0

ZMS
S ð2 GeVÞ 1.1545(74) 1.1361(82) 1.1397(54) 1.1272(87)

ensemble f008 f006 f004 ml þmres ¼ 0

ZMS
S ð2 GeVÞ 1.074(10) 1.0714(64) 1.0574(65) 1.0563(64)

TABLE V. Error budget of ZMS
S ð2 GeVÞ in the chiral limit.

Source Error (%, L¼24) Error (%, L¼32)
Statistical 0.8 0.6

Truncation (RI to MS) 1.5 1.4
Coupling constant 0.3 0.3
Perturbative running <0.02 <0.02
Lattice spacing 0.5 0.4
Fit range of a2p2 0.4 0.1
Extrapolation in mR

l 0.2 1.8
Total systematic uncertainty 1.7 2.3
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separate and simultaneous fits to the data on the coarse and
fine lattices. The difference in the center values is taken as a
systematic error.
In total, adding all systematic errors quadratically, we

find a 1.7% error for ZS on the coarse lattice and 2.3% on
the fine lattice. Putting the statistical and systematic errors

together, we have ZMS
S ð2 GeVÞ ¼ 1.127ð9Þð19Þ on the

coarse lattice and 1.056(6)(24) on the fine lattice. The
statistical error is much smaller than the systematic error.

D. Step scaling function of the quark mass

We can use the above-obtained ZMS
S ð2 GeVÞ to deter-

mine strange and charm quark masses [7] in the MS
scheme. Another way is to first consider the continuum
limit of renormalized RI data (quark mass, for example) at a
fixed physical scale and then convert to the MS scheme by
perturbation theory at a high enough scale. This strategy
was used in, for example, Ref. [31]. In this way, a2p2

extrapolation of the renormalization constants at large
p is not used to avoid possible lattice artifacts: the upper
edge of the RI-MOM window may be reduced by link
smearing [10].
To use the above strategy to determine quark masses, we

need the RI-MOM step scaling function in the continuum
limit to run up to a high scale where the perturbative
conversion ratio to the MS scheme can be used. Following
Refs. [9,10], we calculate the step scaling function in the
RI-MOM scheme for the quark mass as below. Define a
ratio

ROðμ; a; mqÞ ¼
ΓAðμ; a; mqÞ
ΓOðμ; a; mqÞ

¼ ZOðμ; a; mqÞ
ZA

: ð25Þ

With ZA determined, for example, as in Sec. III A, one can
get the renormalization constant

ZOðμ; aÞ ¼ ZA lim
mq→0

ROðμ; a; mqÞ: ð26Þ

A ratio of the RO’s at different scales is the step scaling
function

ΣOðμ; sμ; aÞ ¼ lim
mq→0

ROðsμ; a; mqÞ
ROðμ; a; mqÞ

¼ lim
mq→0

ZOðsμ; a; mqÞ
ZOðμ; a; mqÞ

:

ð27Þ

Its continuum limit is

σOðμ; sμÞ ¼ lim
a→0

ΣOðμ; sμ; aÞ ¼
ZOðsμÞ
ZOðμÞ

: ð28Þ

For the quark mass renormalization, using Zm ¼ 1=ZS we
have

Σmðμ; sμ; aÞ ¼ lim
mq→0

ZSðμ; a; mqÞ
ZSðsμ; a; mqÞ

¼ limmq→0ZSðμ; a; mqÞ
limmq→0ZSðsμ; a; mqÞ

: ð29Þ

To calculate Σmðμ; sμ; aÞ in the RI-MOM scheme, we use
ZRI
S , which are already in the valance quark massless

limit as computed in Sec. III C, for example, the black
diamonds in the left panel of Fig. 6 for ensemble c005.
After a linear extrapolation to the light sea quark massless
limit (ml þmres ¼ 0) of those ZRI

S , we obtain Σmðμ; sμ; aÞ
by using Eq. (29) and the interpolations explained below.
The scales p in physical units for ZRI

S ða2p2; aÞ at our two
lattice spacings do not exactly match in the data. Therefore,
we interpolate the lattice data ZRI

S ða2p2; aÞ in a2p2 with the
ansatz

c−1
a2p2

þ cl lnða2p2Þ þ c0 þ c1ða2p2Þ: ð30Þ

The first term in the above comes from the 1=p2 behavior
of possible nonperturbative effects at low momenta.
c1ða2p2Þ takes care of the discretization effects. The other
terms mimic the running of the operator. We fit our data
with the above ansatz in the whole range of momenta
available. Then we interpolate to some physical scales
p ¼ μ, which are chosen to be the same at the two lattice
spacings.
The step scaling function of the mass in the RI-MOM

scheme from μ ¼ 1.4 GeV to a higher scale sμ which is in
the range [1.4 GeV, 3 GeV] is plotted in Fig. 11. We choose
the relatively small value 1.4 GeV to follow Ref. [10].
Another reason is that Oða2μ2Þ discretization errors are
smaller at lower μ. In the graph the red crosses are the step

FIG. 11 (color online). The step scaling function for Zm and its
value extrapolated to the continuum in the RI-MOM scheme.
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scaling function on the coarse lattice, and the blue squares
are on the fine lattice. Then we consider the continuum
limit of Σmðμ; sμ; aÞ at given μ and sμ. The magenta
octagons are from linear extrapolations in a2 to the

continuum limit. Because there are only two lattice
spacings, the extrapolated results have large error bars.
The black curve is the four-loop perturbative result for the
RI-MOM scheme for comparison.
ZRI
S ðμÞ at the physical scale μ ¼ 1.4 GeV (no a2p2

extrapolation as in Sec. III C is performed) at the two
lattice spacings can be obtained by interpolations. Fitting
our RI scheme data (for example, black diamonds in the left
panel of Fig. 6) with the ansatz Eq. (30) in the whole range
of momenta available, we get ZRI

S ð1.4 GeVÞ ¼ 0.7317ð72Þ
for ensemble c005. Similarly, we obtain the values on other
ensembles. Results on all ensembles are given in Table VI.
A simultaneous fit to ZRI

S using Eq. (23) to go to the light
sea quark massless limit gives us the numbers in the last
column of Table VI.
As we have calculated, the step scaling function in the

continuum limit for the mass in the RI-MOM scheme is

σmð1.4 GeV; 2 GeVÞ ¼ ZRI
m ð2 GeVÞ

ZRI
m ð1.4 GeVÞ ¼ 0.723ð39Þ:

ð31Þ

This can be used to run up to 2 GeV from 1.4 GeVafter one
gets the RI-MOM scheme quark masses in the continuum

limit. The conversion ratio ZMS
S =ZRI

S from the RI to the MS
scheme from Eq. (21) at 2 GeV is 1.289614, which can then
be used to obtain quark masses in the MS scheme.
If we take the two numbers in the last column of

Table VI, divide them by the number in Eq. (31), and
convert to the MS scheme by using 1.289614, then we get
1.165(67) and 1.081(62) for the coarse and fine lattice,
respectively. They are in agreement with the two numbers

TABLE VI. ZRI
S ðμ ¼ 1.4 GeVÞ on the 243 × 64 and 323 × 64

lattices.

Ensemble c02 c01 c005 ml þmres ¼ 0

ZRI
S ð1.4 GeVÞ 0.852(19) 0.782(14) 0.7317(72) 0.653(14)

Ensemble f008 f006 f004 ml þmres ¼ 0

ZRI
S ð1.4 GeVÞ 0.772(18) 0.682(10) 0.6606(74) 0.606(11)

FIG. 13 (color online). Examples of fittings of ZRI
P to Eq. (32) for ensemble c01.

FIG. 12 (color online). An example of ZRI
P as a function of the

momentum scale for ensemble c01 for different valence quark
masses.
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in the last column of Table IV, although here the error bar
is large.

E. Pseudoscalar density

The pseudoscalar renormalization constant ZRI
P from

Eq. (4) is shown in Fig. 12 for ensemble c01. Because
of the coupling to the Goldstone boson channel [8], the
projected vertex function ΓP is divergent in the valence
quark massless limit. This nonperturbative contamination is
suppressed at large scales as 1=p2. The singular behavior in
ZRI
P at small a2p2 as shown in Fig. 12 is due to this

contamination. To remove this nonperturbative effect, we
fit 1=ZRI

P at each given a2p2 to the ansatz [32]

Z−1
P ¼ A

amq
þ Bþ CðamqÞ; ð32Þ

where A;B and C are three fit parameters. Then Zsub
P ¼ B−1

is the value we take in the valence quark chiral limit.
In Fig. 13 we show some examples of the fitting of ZRI

P to
Eq. (32) at some given a2p2. All the fittings have small

χ2=dof. After obtaining Zsub
P in the RI scheme, we use

Eq. (21) to convert to the MS scheme. The results are
shown by the red fancy crosses in Fig. 14. Similar to the
analysis of ZS, we use the quark mass anomalous dimen-
sion to evolve Zsub

P;MS
ða2p2Þ to 2 GeV in the MS scheme and

obtain the blue crosses in Fig. 14. Then a linear fit in a2p2

(the blue solid line in Fig. 14) to the data at a2p2 > 5 is
used to extrapolate awayOða2p2Þ discretization errors. We
finally find Zsub

P;MS
¼ 1.164ð22Þ at 2 GeVon ensemble c01.

The values of Zsub
P;MS

ð2 GeVÞ on all ensembles are

collected in Table VII. In the last column of Table VII,
the sea quark massless limit values of Zsub

P;MS
are given. They

are obtained from a simultaneous linear extrapolation in the
renormalized light sea quark mass to Zsub

P;MS
on both L ¼ 24

and 32 lattices. The extrapolation is shown in Fig. 15 with
the fit function given in Eq. (23). Comparing the numbers
in Table VII with those in Table IV, we see that ZS ¼ Zsub

P is
well satisfied within errors.
Similar to the analysis for ZS, we summarize the

systematic errors as well as the statistical error in

FIG. 14 (color online). The conversion and running of Zsub
P in

the valence quark massless limit on ensemble c01. The black
diamonds are the values in the RI scheme. The red fancy crosses
are those in the MS scheme. The blue crosses are the results
evolved to 2 GeV in the MS scheme as a function of the initial
renormalization scale.

TABLE VII. Zsub
P;MS

ð2 GeVÞ on the 243 × 64 and 323 × 64
lattices.

Ensemble c02 c01 c005 ml þmres ¼ 0

Zsub
P;MS

ð2 GeVÞ 1.190(28) 1.164(22) 1.161(14) 1.138(25)

Ensemble f008 f006 f004 ml þmres ¼ 0

Zsub
P;MS

ð2 GeVÞ 1.102(24) 1.089(19) 1.065(21) 1.063(21)

FIG. 15 (color online). Linear extrapolation of Zsub
P;MS

to the
light sea quark massless limit.

TABLE VIII. Error budget of Zsub
P;MS

ð2 GeVÞ in the chiral limit.

Source Error (%, L¼24) Error (%, L¼32)
Statistical 2.2 2.0

Truncation (RI to MS) 1.5 1.4
Coupling constant 0.3 0.3
Perturbative running <0.02 <0.02
Lattice spacing 0.5 0.4
Fit range of a2p2 0.1 0.1
Extrapolation in mR

l 0.6 3.8
Total systematic uncertainty 1.7 4.1
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Table VIII. Unlike ZMS
S , the statistical error of Zsub

P;MS
is

about the same size as the systematic error.

F. Vector current

The renormalization constant in the RI scheme for the
local vector current for different valence quark masses on
data ensemble c01 are shown in Fig. 16. Here, using
Eq. (4), we have averaged μ ¼ 1; 2; 3; 4 for the vector
current. The valence quark mass dependence for ZRI

V is
small so that the symbols in Fig. 16 for different masses are
almost on top of each other. ZRI

V is scale independent when
the renormalization scale is big. This is confirmed in

Fig. 16. At scales a2p2 > ∼3, ZRI
V is flat up to discretization

errors.
In Fig. 17, the ratio ZRI

V =ZRI
A for ensemble c01 is shown.

Going to the chiral limit, we use a linear extrapolation in the
valence quark mass for ZRI

V =ZRI
A . The left panel in Fig. 17

shows an example of such extrapolations. As we can see on
the right panel of Fig. 17, at large momentum scales,
ZRI
V =ZRI

A ¼ 1; i.e., ZRI
V ¼ ZRI

A is satisfied as expected.
The results of ZRI

V =ZRI
A for the other five ensembles are

similar to those for ensemble c01.

IV. SUMMARY

In this work, we obtain the renormalization constants for
quark bilinear operators for the setup of an overlap valence
quark on 2þ 1-flavor domain wall fermion configurations.
We calculate those constants nonperturbatively by using the
Ward identity and the RI-MOM scheme. The matching
factors from the lattice to the continuumMS scheme for the
scalar, pseudoscalar, vector, and axial-vector currents are
obtained. ZS ¼ ZP and ZV ¼ ZA are confirmed for overlap
fermions. The step scaling function of quark masses in the
RI-MOM scheme is also calculated. By using the step
scaling function in the continuum limit, the renormalized
quark mass in the RI-MOM scheme can be run up to a high
scale and then be converted to the MS scheme. Our main
results are collected in Tables III, IV, V, VI, VII and VIII.
These matching factors are important components in the
lattice determination of physical quantities such as quark
masses, quark condensates, and pseudoscalar meson decay
constants.
The statistical error of ZS can reach less than 1%, which

is much smaller than its systematic error. A big contribution

FIG. 16 (color online). Examples of ZRI
V as functions of the

momentum scale for ensemble c01.

FIG. 17 (color online). Left panel: ZRI
V =ZRI

A against the valence quark mass from ensemble c01 at a certain momentum scale and a
linear extrapolation to amq ¼ 0. Right panel: ZRI

V =ZRI
A in the valence quark massless limit as a function of the momentum scale for

ensemble c01.
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of the systematic error comes from the perturbative con-
version ratio from the RI-MOM scheme to the MS scheme.
The RI-SMOM scheme [33] was shown to have conversion
ratioswhich convergemuch faster [34,35], aswell as smaller
nonperturbative effects. In the RI-SMOM scheme, the
momentum magnitudes of the Green functions of the
relevant operators are symmetric. However, in this work
our boundary condition in the time direction is antiperiodic.
This limits the number of symmetric momentum combina-
tions (actually, we cannot have exact symmetric momentum
combinations). To shrink the systematic error, one can use a
periodic boundary condition in the time direction or twisted
boundary conditions [9] with the RI-SMOM scheme.
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