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We develop strategies for enhancing the signal/noise ratio for stochastically sampled correlation
functions. The techniques are general and offer a wide range of applicability. We demonstrate the potential
of the approach with a generic two-state system and then explore the practical applicability of the method
for single hadron correlators in lattice quantum chromodynamics. In the latter case, we determine the
ground state energies of the pion, proton, and delta baryon, as well as the ground and first excited state
energy of the rho meson using matrices of correlators computed on an exemplary ensemble of anisotropic
gauge configurations. In the majority of cases, we find a modest reduction in the statistical uncertainties on
extracted energies compared to conventional variational techniques. However, in the case of the delta
baryon, we achieve a factor of 3 reduction in statistical uncertainties. The variety of outcomes achieved for
single hadron correlators illustrates an inherent dependence of the method on the properties of the system
under consideration and the operator basis from which the correlators are constructed.
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I. INTRODUCTION

Monte Carlo calculations provide one of the few reliable
tools for investigating the properties of quantum field
theories nonpertubatively. The majority of zero-temperature
calculations rely on an accurate numerical estimation of
correlation functions at large Euclidean-time separations
in order to garner information about the spectrum of the
theory, and about matrix elements of operators in the
eigenbasis of the Hamiltonian. For systems with a discrete
spectrum (such as those confined to a finite box), corre-
lation functions will decay exponentially at late times. The
rate of the decay is determined by the lowest energy states
carrying the same quantum numbers as those of the
interpolating operators used to construct the correlation
function. The square root of the variance of such correla-
tors, however, will often have an exponential decay which,
by contrast, falls off at a slower rate in time. For correlators
constructed from underlying bosonic degrees of freedom,
this rate is determined by the vacuum energy, whereas for
those involving fermionic degrees of freedom, it is set by
the energy of the lightest state with appropriate valence
quantum numbers [1].
The relevant figure of merit for the numerical estimation

of any observable in a Monte Carlo simulation is the signal
to noise ratio (signal/noise), where the noise is taken to be
the square root of the variance divided by the total number
of samples. Because of the exponential degradation of
signal/noise with time separation, numerical studies of the
zero temperature properties of a theory can be quite

formidable. In the case of lattice quantum chromodynam-
ics (QCD), for example, a correlator for a single proton
with mass mp will have a signal/noise which falls off
exponentially in time separation with a decay rate of
mp − 3

2
mπ , where mπ is the mass of the pion (taking into

account the finite temporal extent, the degradation can be
even worse [2]). Since the physical proton mass is nearly
seven times that of the pion, a signal/noise problem is
expected. In this instance, the problem is found to be
challenging, but manageable. However, for systems
involving A nucleons, the decay rate is approximately
A times that of the proton. Thus, numerical study of
multinucleon systems beyond that of a few are forbid-
dingly costly in terms of computational resources.
Furthermore, the difficulty only worsens when consider-
ing correlation functions designed to extract the energies
of hadronic excited states.
Since the exponential degradation of signal to noise

becomes most severe at late times, a natural strategy for
combating the problem is to consider operators possessing
a greater overlap with the states of interest, thereby
suppressing excited state contamination at earlier time
separations, where correlators exhibit a larger ratio of
signal to noise. With that mindset, along with other
motivations, considerable attention has been devoted to
understanding how to extract ground and excited state
energies variationally from Hermitian matrices of correla-
tion functions [3–6] and from non-Hermitian matrices of
correlation functions [2,7,8]. From a practical standpoint,
these methods (hereafter referred to as “source optimiza-
tion” methods) are all rooted in finding solutions to a
generalized eigenvalue problem, but do not account for
the statistical uncertainties of the correlators involved.
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This could be particularly problematic if the correlator
possess some anomalously noisy matrix elements which
may spoil the analysis. Alternatively, analysis is possible by
performing multiexponential (matrix) fits to the correlation
functions in order to properly account for the presence of
excited state contamination. For large correlator matrices
and for the small ensembles often encountered in lattice
QCD, however, correlated multiexponential matrix fits are
often encumbered by the fact that they would require
inversion of a singular (or nearly singular) correlation
matrix.
In this paper, we propose a complementary tack for

mitigating signal/noise degradation in correlation functions
to the methods mentioned above. As we discuss below,
it is not possible to completely eliminate the exponential
degradation of signal/noise at late times in most correlation
functions. Accepting this, we explore whether or not an
enhancement of signal/noise is possible by exploiting the
interplay between the time-independent overlap factors
that enter into the signal/noise ratio. Theoretically, large
enhancements are possible, as we expose in a toy model.
In real numerical data from lattice QCD calculations, we
find that in most cases, a significant improvement in the
signal/noise of correlators is possible at intermediate and
late times. For the examples we consider, however, this
improvement typically translates into only a moderate
reduction in uncertainties in the energies determined from
them. Despite this, our study exposes a fascinating geom-
etry underlying signal/noise, which may serve as a useful
tool for further exploring its enhancement. Although the
strategies introduced here are primarily applied to two-
point correlators, we expect that similar approaches can
yield a reduction in uncertainties for three-point correlators
as well, and thereby a reduction in the uncertainties in
extracted matrix elements.
The organization of this paper is as follows. In Sec. II, we

establish the notational conventions used throughout, as
well as frame the problem we will address. We argue that in
addition to source optimization via variational techniques,
a different avenue for optimization is available for explo-
ration, which we refer to as “signal/noise optimization.” In
Sec. III, we demonstrate how signal/noise can be enhanced
for the case of a simple two state system. Despite its
simplicity, this example cleanly illustrates some of the
general features expected of the strategy, as well as some of
its deficiencies. In Sec. IV, we provide explicit formulas for
optimizing signal/noise which are applicable to any system
and valid for all time separations. In Sec. V, we propose
strategies for correlator optimization which utilize either
one, or a combination, of the source- and signal/noise-
optimization methods. In Sec. VI, we evaluate the various
strategies, applied to examples of single hadron correlation
functions in lattice QCD. A figure summarizing the efficacy
of some of the methods presented in this work, for an
exemplary lattice QCD data set, can be found in Sec. VI C.

In Sec. VII, we summarize our findings and discuss them in
a broader context.
Source optimization methods, such as the variational

method [3–6], will play an important role in our analysis of
the signal/noise landscape for correlation functions. To
facilitate the discussion, we review the approach, which is
generally applicable to Hermitian matrices of correlation
functions, in Appendix A. Our presentation of the method
is framed as an optimization problem, in the same spirit as
signal/noise optimization, with extrema determined by
solutions to a well-known generalized eigenvalue problem.
Finally, in Appendix B, we provide additional details on the
derivation of a result in Sec. IV F.

II. SIGNAL/NOISE FOR A GENERIC
CORRELATION FUNCTION

Consider anN0 × N matrix of correlation functions,C, in
Euclidean spacetime with matrix elements given by

CijðτÞ ¼ hΩjÔ0
ie−ĤτÔ†

j jΩi ¼
X
n

Z0
inZ

�
jne

−Enτ; ð1Þ

where Z0
in ¼ hΩjÔ0

ijni and Zjn ¼ hΩjÔjjni are overlap
factors (“Z factors”) associated with the respective sink and
source interpolating operators Ô0

i and Ôj, jni are the energy
eigenstates of the Hamiltonian Ĥ with associated energies
En (ordered such that En ≤ Em for n < m), and jΩi is the
vacuum state. Throughout, we adopt a notation where
primed quantities are associated with the sink operators,
and unprimed quantities are associated with the source
operators. The indices i and j run over the values
i ¼ 0;…; N0 − 1, and j ¼ 0;…; N − 1. We furthermore
assume that the operators Ô0

i and Ôj have the same
quantum numbers for all values of i and j. In the special
case where N0 ¼ N and Ô0

i ¼ Ôi for all i ¼ 0;…; N − 1,
then the matrix of correlation functions is Hermitian. A
generic correlation function can be constructed by taking
various linear combinations of source and sink interpolat-
ing operators, with relative weights specified by a complex
N-dimensional source vector ψ and a complex N0-dimen-
sional sink vector ψ 0. Without loss of generality, one can
assume that the source and sink vectors are normalized
such that ψ†ψ ¼ 1 and ψ 0†ψ 0 ¼ 1.
In the path-integral language, any fermionic degrees of

freedom may be “integrated out” leaving a path-integral
over purely bosonic degrees of freedom (and if necessary,
appropriate auxiliary fields) weighted by an appropriate
effective action. The correlation functions, in turn, may be
expressed as an expectation value, C ¼ hCi, over individual
correlators C which depend only on the remaining bosonic
degrees of freedom; the expectation value h� � �i is under-
stood as an average over the bosonic degrees of freedom,
weighted by the effective action. For any given choice of
source and sink vectors, the “signal” in a Monte Carlo
simulation is estimated by an ensemble average of ψ 0†Cψ ,
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and the associated uncertainty on the estimate (or “noise”)
is given by σcðψ 0;ψÞ= ffiffiffiffiffi

N
p

, where N is the size of the
ensemble,

σ2cðψ 0;ψÞ ¼ σ2ðψ 0;ψÞ − jψ 0†Cψ j2 ð2Þ

is the second central moment of the correlator distribution,
and

σ2ðψ 0;ψÞ ¼ ðψ 0 ⊗ ψ 0�Þ†Σ2ðψ ⊗ ψ�Þ; Σ2 ¼ hC ⊗ C�i:
ð3Þ

Note that ψ 0 ⊗ ψ 0� is an N02 dimensional vector, ψ ⊗ ψ� is
an N2 dimensional vector, and Σ2 is an N02 × N2 matrix. In
the proceeding discussion, it is useful to also define the
positive definite matrices

σ2ψ ¼ hCψψ†C†i; σ2ψ 0 ¼ hC†ψ 0ψ 0†Ci: ð4Þ

These matrices are N0 × N0 and N × N dimensional,
respectively, and satisfy the relations

σ2ðψ 0;ψÞ ¼ ψ 0†σ2ψψ 0 ¼ ψ†σ2ψ 0ψ : ð5Þ

The matrix Σ2 is itself a correlation function (hereafter
referred to as a “noise correlator”), which may be expanded
as

Σ2
ik;jlðτÞ ¼

X
n

~Z0
ik;n

~Z�
jl;ne−

~Enτ; ð6Þ

where ~En and ~Zn ( ~Z0
n) are the energies and overlap factors

associated with the “noise states,” jni. In this expression,
the sums on i and k run from 1;…; N0, j and l run from
1;…; N, and n labels the noise states carrying the appro-
priate valence quantum numbers.1 As with the states and
energies governing the signal correlator, the states and
energies governing the noise correlator are determined
purely by the (discretized, finite volume) Hamiltonian of
the system. The signal/noise ratio at a given time slice is
expressed up to an overall root-N scaling factor by

θcðψ 0;ψÞ ¼ jψ 0†Cψ j
σcðψ 0;ψÞ ; ð7Þ

or equivalently by

θcðψ 0;ψÞ ¼
�

1

θ2ðψ 0;ψÞ − 1

�
−1=2

; ð8Þ

where

θðψ 0;ψÞ ¼ jψ 0†Cψ j
σðψ 0;ψÞ : ð9Þ

Note that 0 ≤ θðψ 0;ψÞ ≤ 1 for all ψ 0 and ψ and that
θcðψ 0;ψÞ is a monotonically increasing function of
θðψ 0;ψÞ. To leading order in θ, θcðψ 0;ψÞ ¼ θðψ 0;ψÞ for
θðψ 0;ψÞ ≪ 1, and θcðψ 0;ψÞ diverges as θðψ 0;ψÞ → 1.
Since we are primarily interested in the former case, we
will often refer to both θcðψ 0;ψÞ and θðψ 0;ψÞ as the
signal/noise.
Let us now consider a correlator constructed using a

fixed source and sink vector. The late-time behavior of such
a correlation function is given by

ψ 0†Cψ ∼ ψ 0†Z0
0Z

†
0ψe

−E0τ; ð10Þ

up to relative corrections of order Δ ¼ e−ðE1−E0Þτ, where E0

(E1) is the energy of the lightest (first excited) state carrying
the quantum numbers of Ôi and Ô

0
j, and Z0 (Z0

0) is a vector
of overlap factors of the states created by the various
interpolating operators onto the ground state. By compari-
son, the late-time behavior of the variance is given by

σ2ðψ 0;ψÞ ∼ ðψ 0† ~Z0
0ψ

0Þðψ† ~Z0ψÞe− ~E0τ; ð11Þ

up to relative corrections of order ~Δ ¼ e−ð ~E1− ~E0Þτ, where ~E0

( ~E1) is the energy of the lightest (first excited) noise state
created with the appropriate valence quantum numbers, and
~Z0 ( ~Z0

0) is the associated overlap with the lightest noise
state. Note that, since σ2ðψ 0;ψÞ is positive-definite for all ψ
(ψ 0), it follows that ~Z0 ( ~Z

0
0) is positive-definite when viewed

as a two-index matrix. Combining these observations, we
see that the leading late-time scaling of the signal/noise
falls off exponentially as

θðψ 0;ψÞ ∼ jψ 0†Z0
0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ψ 0† ~Z0
0ψ

0
q jZ†

0ψ jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ† ~Z0ψ

q e−ðE0−1
2
~E0Þτ: ð12Þ

In particular, note that the signal/noise at late times is
factorizable. Returning to the example of the proton,
discussed in the introduction, one has E0 ¼ mp, whereas
~E0 ¼ 3mπ up to interaction effects, so the exponential
degradation of the proton signal/noise is as argued in Sec. I.
Although the time-dependent exponential fall-off of the

signal/noise is an inherent property of the correlators (i.e., it
is a property of the system and is independent of the choice
of source and sink), we nonetheless retain some control
over the ratio through the overlap factors. In particular, a
short calculation (see Sec. IVA for details) indicates that
the signal/noise is maximized at late times for source and
sink vectors given by

ψ 0
0 ∝ ð ~Z0

0Þ−1Z0
0; ψ0 ∝ ð ~Z0Þ−1Z0; ð13Þ

1In the case of fermions, the states may possess nontrivial
valence quantum numbers, attributed to the fact that the variance
of the correlator is taken after integrating out the fermions.
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and takes the maximum value

θðψ 0
0;ψ0Þ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0
0
†ð ~Z0

0Þ−1Z0
0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z†
0ð ~Z0Þ−1Z0

q
e−ðE0−1

2
~E0Þτ: ð14Þ

Note that in the weak-coupling limit, Σ2→C⊗C�, and
therefore one finds ~Z0 → Z0Z

†
0, ~Z0

0 → Z0
0Z

0
0
†, and ~E0 →

2E0 up to additive perturbative corrections in the coupling.
Additionally, one may confirm that ð ~Z0Þ−1 → Z0Z

†
0=jZ0j4

and ð ~Z0
0Þ−1 → Z0

0Z
0
0
†=jZ0

0j4, up to terms which are
divergent in the coupling, but orthogonal to Z0 and
Z0
0, respectively. As a consequence, θðψ 0

0;ψ0Þ tends to
unity in the limit, indicating that the fluctuations in the
correlator vanish as one might expect from turning off the
interactions.
Away from weak coupling, and particularly when θ ≪ 1,

one does not know a prioriwhether source and sink vectors
chosen to maximize the overlap with a desired state
(i.e., the practice often adopted by practitioners) exhibit
a signal/noise ratio that is comparable to that of the
maximal value, θðψ 0

0;ψ0Þ, or whether it is significantly
suppressed by comparison. The degree to which the
signal/noise becomes attenuated as a function of the
distance (appropriately defined) away from the optimal
choices, ψ 0

0 and ψ0, is an open question, and to our
knowledge has never been explored. In the following
sections, we address this question in detail and propose
several strategies for exploiting the interplay between the
overlap factors in this ratio which are valid not only at late
times where excited state contamination is absent, but also
at earlier times where is it present. We start by considering
the signal/noise for correlators in a general two-state
system, and then apply what we have learned to hadronic
correlation functions in QCD.We demonstrate that, counter
to intuition, it is in indeed advantageous in some cases to
forgo optimizing the overlap of interpolating operators onto
eigenstates in favor of signal/noise optimization via tuning
of the ratios of overlap factors that appear in Eq. (12).
Although our study focuses specifically on QCD, the
methods are general and applicable to stochastically
sampled correlators for any relativistic or nonrelativistic
quantum theory.

III. TOY MODEL: TWO STATE SYSTEM

Before considering the general problem of signal/noise
optimization, let us first examine the signal/noise properties
for a two-state system. Without loss of generality, we may
consider a 2 × 2 matrix of correlation functions

C ∝ Z0Z
†
0 þ ΔZ1Z

†
1; ð15Þ

expressed in a basis where

Z0 ¼
�
1

0

�
; Z1 ¼

�
0

1

�
: ð16Þ

Note that if Zn and Z0
n differ in Eq. (1), one could always

perform a change of basis such that they are equal, provided
the source and sink operator basis is complete. We assume
such is the case for the two-state toy model we consider
here. The associated noise correlator is given by

Σ2 ∝ ~Z0
~Z†
0½1þOð ~ΔÞ� ð17Þ

at late times τ > ð ~E1 − ~E0Þ−1, with a positive-definite
ground state noise overlap factor given by

~Z0 ¼
�

a b

b� c

�
; ð18Þ

for some unknown parameters of a, b, and c, which are
system-dependent. Note that positivity of ~Z0 requires that
ac > jbj2, a > 0 and c > 0. Also note that the signal
correlator and the noise correlator may have different
quantum numbers, and therefore Δ need not equal ~Δ.
Furthermore, the number of noise states need not be the
same as the number of signal states.
We may begin by studying the signal/noise associated

with this system for arbitrary but equal source and sink
vectors parametrized by ψ 0ðω; δÞ ¼ ψðω; δÞ, and

ψðω; δÞ ¼
�

cosω

sinωeiδ

�
; ð19Þ

up to an overall irrelevant phase factor chosen so as to
make the upper component real. In this parametrization,
ω ∈ ½0; πÞ and δ ∈ ½−π=2; π=2Þ; all values of δ outside of
the specified domain can be mapped back into the domain
with an accompanied shift in ω and an overall phase
rotation. We explore the behavior of the signal/noise not
only as a function of these parametrization angles, but also
as a function of temporal extent τ, which is implicit in the
parameter Δ appearing in Eq. (15).
The signal/noise ratio for this simple model,

θ⋆ðω; δÞ ¼ θðψ 0ðω; δÞ;ψðω; δÞÞ, has the general functional
form

θ⋆ðω; δÞ

¼ θ⋆ð0; 0Þ
1þ Δtan2ω

1þ c
a tan

2ωþ 2
jbj
a cos ðargðbÞ þ δÞ tanω

;

ð20Þ

up to relative corrections in the noise of order ~Δ. A short
calculation shows that the signal/noise has a global maxi-
mum θ⋆ðω⋆; δ⋆Þ ¼ R⋆θ⋆ð0; 0Þ located at a critical point
ðω⋆; δ⋆Þ which satisfies argðbÞ þ δ⋆ ¼ π and

c
a
¼ R⋆ − 1þ Δtan2ω⋆

R⋆tan2ω⋆
;

jbj
a

¼ R⋆ − 1

R⋆ tanω⋆
: ð21Þ
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Constraints on the parameters R⋆, and ω⋆ follow from the
positivity requirements imposed on ~Z0; specifically, one
finds that R⋆ ≥ 1 and tanω⋆ ≥ 0 (i.e., 0 ≤ ω⋆ ≤ π=2). The
signal/noise for an arbitrary source and sink vector can be

expressed in terms of the parameters R⋆, ω⋆, δ⋆ and Δ.
Introducing the notation θ̂⋆ðω; δÞ ¼ θ⋆ðω; δÞ=θ⋆ðω⋆; δ⋆Þ
for the signal/noise normalized by its maximum value,
one finds

θ̂⋆ðω; δÞ ¼
1þ ρ⋆x2⋆ðωÞ

R⋆ þ ðR⋆ − 1Þx⋆ðωÞ½x⋆ðωÞ − 2 cosðδ − δ⋆Þ� þ ρ⋆x2⋆ðωÞ
; ð22Þ

where ρ⋆ ¼ Δ tan2 ω⋆ and x⋆ðωÞ ¼ tanω= tanω⋆. With
this parametrization, the normalized signal/noise ratios
for the ground and excited states are given by

θ̂⋆ð0; 0Þ ¼
1

R⋆
; θ̂⋆ðπ=2; 0Þ ¼

ρ⋆
R⋆ − 1þ ρ⋆

; ð23Þ

respectively.
The parameter ρ⋆ quantifies the amount of excited state

contamination that is present in a correlator with source and
sink vectors evaluated at the maximum of the signal/noise,
and depends on the temporal extent, τ, through Δ. In the
limit ρ⋆≪1, the ground state provides the dominant con-
tribution to the correlation function, either due to a suffi-
ciently small ω⋆ or due to an exponential suppression of the
excited state at late times. Interestingly, the functional form
of θ̂⋆ðω; δ⋆Þ in this regime is that of a Breit-Wigner dis-
tribution with a peak located at x⋆ðωÞ ¼ 1, and a half-width
at half maximum given by ðR⋆ − 1Þ−1=2. For a fixed R⋆, the
signal/noise associated with the excited state is given by

θ⋆ðπ=2; 0Þ ¼ θ⋆ð0; 0Þ
R⋆

R⋆ − 1þ ρ⋆
ρ⋆; ð24Þ

and is suppressed by OðΔÞ compared to the ground state.
Since the parameter R⋆ is only bounded from below by
unity, one finds from Eq. (23) that there always exists
an optimal source/sink vector which possesses better
signal/noise than one having perfect overlap with the ground
state. Furthermore, the maximum achievable enhancement
(as determined by R⋆ for the ground state) could theoreti-
cally be quite large, depending on the intrinsic properties of
the system as characterized by a, b, c, and Δ.
Notice from Eq. (21) that in the limit ρ⋆ → 0, the matrix

elements of ~Z0 satisfy

jbj2 ¼ ac

�
1 −

1

R⋆

�
; ð25Þ

and therefore the limit R⋆ → ∞ implies the limit
det ~Z0 → 0. The requirement that ~Z0 be near-singular in
order to achieve a large signal/noise enhancement is in fact
consistent with the form of Eq. (14). To better understand
the origins of a large enhancement in the toy model, let us
study the structure of ~Z0 in greater detail. The eigenvalues
of ~Z0, to leading order in 1=R⋆, are given by

λ0 ¼ a
�
cos2ω⋆
R⋆

þ � � �
�
; ð26Þ

and

λ1 ¼
a

sin2ω⋆

�
1 −

cos2ω⋆ð1þ sin2ω⋆Þ
R⋆

þ � � �
�
; ð27Þ

respectively, where θ⋆ð0; 0Þ ¼ a−1e−ðE0−1
2
~E0Þτ, or equiva-

lently, a−1 ¼ limτ→0θ⋆ð0; 0Þ. The corresponding eigenvec-
tors are given by

v0 ¼
�
1þ cos2ω⋆sin2ω⋆

R⋆

�
ψðω⋆; δ⋆Þ

−
cosω⋆sin2ω⋆

R⋆
Z0 þ � � � ; ð28Þ

and

v1 ¼
�
1 −

sin4ω⋆
R⋆

�
ψ

�
ω⋆ þ

π

2
; δ⋆
�
−
sin3ω⋆
R⋆

Z0 þ � � � :

ð29Þ

Note that the eigenvectors are orthonormal up to correc-
tions of orderOð1=R2⋆Þ. Expressing the noise overlap factor
and its inverse in terms of the eigenvectors and eigenvalues,
one finds to leading order in 1=R⋆ the expressions:

~Z0 ¼
a

sin2ω⋆
ψ

�
ω⋆ þ

π

2
; δ⋆
�
ψ†
�
ω⋆ þ

π

2
; δ⋆
�
þ � � � ð30Þ

and

ð ~Z0Þ−1 ¼
R⋆

acos2ω⋆
ψðω⋆; δ⋆Þψ†ðω⋆; δ⋆Þ þ � � � : ð31Þ

For the two-state system, we find that a large signal/noise
enhancement is possible at late times provided that ð ~Z0Þ−1
is expressible as an outer product of vectors, up to relative
corrections in 1=R⋆. It is no coincidence that the outer
product that is formed in Eq. (31) involves the optimal
vectors, ψðω⋆; δ⋆Þ; the result is generally true for systems at
late time, whenever the enhancement factor is large, and
follows directly from Eq. (13). Referring back to Eq. (14),
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one finds that in addition to the requirement that ~Z0 possess
a near-zero eigenvalue, the corresponding eigenvector must
also have an overlap onto Z0 which is parametrically larger
than that eigenvalue by comparison, in order to achieve
large signal/noise enhancements. This qualitative require-
ment not only holds for the two-state model, but also
extends trivially to many state systems.
It is instructive to also consider the effects on the

signal/noise enhancement at late times due to the sublead-
ing correction to the noise correlation function, which is of
order ~Δ. Using the eigenvalue and eigenvector results
above, we may explicitly compute the finite ~Δ corrections
to the signal/noise, evaluated at the critical angles ðω⋆; δ⋆Þ.
In particular, in the regime where ρ⋆ ≪ 1, it is given by

θ⋆ðω⋆; δ⋆Þ

¼ R⋆θ⋆ð0; 0Þ
½1þ R2⋆

a2cos4ω⋆
jψ†ðω⋆; δ⋆Þ ~Z1ψðω⋆; δ⋆Þj2 ~Δþ � � ��1=2

:

ð32Þ

From this expression, we see that the signal/noise enhance-
ment is set by R⋆ only in the regime where

R⋆ψ†ðω⋆; δ⋆Þ ~Z1ψðω⋆; δ⋆Þ
ffiffiffiffi
~Δ

p
≪ acos2ω⋆: ð33Þ

This inequality is always satisfied at sufficiently late times,
provided ω⋆ ≠ π=2. However, for earlier times, and for
sufficiently large R⋆, this inequality may be violated, and
the signal/noise enhancement will effectively be cut off by
the subleading contribution to the noise correlator. In that
regime, the signal/noise will instead behave as

θ⋆ðω⋆; δ⋆Þ ∼
cos2ω⋆

ψ†ðω⋆; δ⋆Þ ~Z1ψðω⋆; δ⋆Þ
e−ðE0−1

2
~E1Þτ: ð34Þ

In other words, in the limit of sufficiently large R⋆, it is
possible to choose the source/sink vectors so that the
leading contribution to the noise correlator is projected
away. Consequently, it is the subleading contribution
(the first excited noise state) that determines exponential
degradation of the signal/noise.
Turning now to the regime ρ⋆ ≫ 1, the optimal source

and sink is by happenstance such that the excited state is the
dominant contribution to the correlator whereas the ground
state is suppressed. Since Δ decays exponentially in time,
this regime can only be sustained for a short period before
an eventual transition into the former regime. Since ω⋆ is a
parameter intrinsic to the system, there is no guarantee that
a regime satisfying ρ⋆ ≫ 1 exists, as it would require an
exponential fine-tuning of ω⋆ in the vicinity of π=2 at late
times (the former regime by contrast is always guaranteed
for sufficiently late times). One might conclude, as a
general rule, that signal/noise enhancement for a given
excited state should therefore only involve mixing with
states that are higher in energy than the target state, rather
than lower in energy. In cases where the energy splitting is
sufficiently small and times are moderate, however, the
degree of fine-tuning required is relaxed making the
realization of such a regime more probable. Should such
a regime be realized for the system, then a significant
enhancement in signal/noise for the exited state is only
possible provided R⋆ ≳ ρ⋆.
Let us now consider the signal/noise landscape in these

two regimes as a function of ω and δ, given the parameters
R⋆, ω⋆, δ⋆ and ρ⋆. A density plot of θ̂⋆ðω; δÞ is provided in
Fig. 1 (left) for R⋆ ¼ 4 and ρ⋆ ¼ 0, and is representative of
the regime ρ⋆ ≪ 1. The ω dependence of the signal/noise
along a curve of constant δ ¼ δ⋆ is also plotted for various
values of R⋆ in Fig. 1 (right). The ground state in each
figure is located at x⋆ðωÞ ¼ 0, whereas the excited state
corresponds to the limits x⋆ðωÞ → �∞. These states have a
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FIG. 1 (color online). Left: Density plot of the signal/noise, θ̂⋆, as a function of the source and sink vector parametrization angles ω
and δ for R⋆ ¼ 4 and ρ⋆ ¼ 0 (lighter regions correspond to larger values of θ̂⋆). The signal/noise depends implicitly on ω through the
parameter x⋆ðωÞ, defined in Eq. (22). Right: Signal/noise as a function of x⋆ðωÞ, for R⋆ ¼ 1.1, 2, 4 and 10, ρ⋆ ¼ 0 and δ ¼ δ⋆. A source
with perfect overlap with the ground state corresponds to x⋆ðωÞ ¼ 0; a correlator with maximal signal/noise corresponds to x⋆ðωÞ ¼ 1.
Dashed curve in each plot correspond to the same values of R⋆ and δ⋆.

WILLIAM DETMOLD AND MICHAEL G. ENDRES PHYSICAL REVIEW D 90, 034503 (2014)

034503-6



normalized signal/noise given by Eq. (23). Similar plots are
shown in Fig. 2 (left and right) for the case where ρ⋆ ¼ 20,
and are representative of the regime ρ⋆ ≫ 1. Here, ones
finds only a modest signal/noise enhancement for the
excited state when R⋆ ¼ 4. The normalized signal/noise
increases with R⋆, however, and results in significant
enhancement once R⋆ ≳ ρ⋆. The normalized signal/noise
for the ground state is suppressed compared to the excited
state in this regime as a result of the optimal state having
poor overlap with the ground state.
Frequently, one is interested in the regime ρ⋆ ≈ 1, in

which correlators receive comparable contributions from
both the ground and excited states. In this regime, there is
an ambiguity as to whether the signal/noise enhancement
can be attributed to the ground state or the excited state.
One can crisply retain such a distinction, however, by
fixing the source vector so as to produce an eigenstate of the
Hamiltonian and then optimizing the sink vector ψ 0ðω; δÞ
with respect to its arguments. Particularly, let us consider a
source vector of the form ψn ¼ ðδn;0; δn;1Þ. Since the
correlator receives no contributions from states orthogonal
to the source in such cases, the temporal behavior will
remain that of a pure exponential rather than a sum of

exponentials. Contrary to intuition, by allowing the sink
vector to have a nonzero overlap with both states, an
enhancement in the signal/noise θnðω;δÞ¼θðψ 0ðω;δÞ;ψnÞ
is nonetheless possible.
As was the case for equal source and sink vectors,

we may define a normalized signal/noise by θ̂nðω; δÞ ¼
θnðω; δÞ=θnðωn; δnÞ, where ðωn; δnÞ maximizes θnðω; δÞ.
The normalized signal/noise may then be expressed as

θ̂nðω; δÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rn þ ðRn − 1ÞxnðωÞ½xnðωÞ − 2 cosðδ − δnÞ�
p ;

ð35Þ

where θnðωn; δnÞ ¼
ffiffiffiffiffiffi
Rn

p
θðψn;ψnÞ, Rn ≥ 1, and

x0ðωÞ ¼
tanω
tanω0

; x1ðωÞ ¼
cotω
cotω1

: ð36Þ

A plot of this quantity as a function of xnðωÞ is provided in
Fig. 3 (left) for various values of Rn and δ ¼ δn. The
parameters Rn, ωn, and δn are related to R⋆, ω⋆, δ⋆ and ρ⋆
in a well-defined way. Specifically, one obtains δn ¼ δ⋆,
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FIG. 2 (color online). Left: Same as Fig. 1 (left) for R⋆ ¼ 4 and ρ⋆ ¼ 20. Right: Same as Fig. 1 (right) for R⋆ ¼ 2, 4, 10 and 100,
ρ⋆ ¼ 20 and δ ¼ δ⋆.
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FIG. 3 (color online). Left: Normalized signal/noise θ̂n as a function of xnðωÞ for various values of Rn. Right:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rn=R⋆

p
as a function of

ρ⋆ for various values of R⋆.
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Rn ¼ R⋆
R⋆ − 1þ ρ⋆

R⋆ð1þ ρ⋆Þ − 1
; ð37Þ

and

tanω0 ¼ tanω⋆
R⋆ − 1

R⋆ − 1þ ρ⋆
; tanω1 ¼ tanω⋆

R⋆
R⋆ − 1

:

ð38Þ

To understand how the enhancement compares between
strategies, it is instructive to consider the ratio

1ffiffiffiffiffiffi
R⋆

p θnðωn; δnÞ
θðψn;ψnÞ

¼
ffiffiffiffiffiffi
Rn

R⋆

s
; ð39Þ

which may be expressed completely in terms of R⋆ and ρ⋆
using Eq. (37). This ratio, plotted in Fig. 3 (right) as a
function of R⋆ for various ρ⋆, provides a measure of the
amount of signal/noise enhancement achieved using a fixed
source (projected to an eigenstate), but expressed in terms
of the optimization parameters for an equal source and sink.
Note that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rn=R⋆

p
is bounded from above by unity, and

from below by maxð1= ffiffiffiffiffiffi
R⋆

p
; 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ⋆

p Þ. These bounds
lead to the inequalities

ffiffiffiffiffiffi
R⋆

p
θðψn;ψnÞ ≥ θnðωn; δnÞ

≥ max

 
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R⋆

1þ ρ⋆

s !
θðψn;ψnÞ; ð40Þ

which imply that the signal/noise enhancement for each
state (n ¼ 0, 1) is always greater than unity, but at best
1=

ffiffiffiffiffiffi
R⋆

p
that which is possible by considering equal source

and sink vectors. Furthermore, the signal/noise enhance-
ment inequalities are saturated in the late-time limit when
ρ⋆ ≪ 1. It is important to note that in exchange for the
sacrifice in signal/noise enhancement compared to the
equal source and sink case, the correlators under consid-
eration here remain completely free of contamination from
states other than the target state jni at early and inter-
mediate times. Consequently, they may actually lead to
better extractions of the eigenstates energies.
Finally, let us address an interesting puzzle which arises

from the results presented thus far. Imagine that we were to
make independent measurements of correlators using
source and sink vectors which have perfect overlap with
the ground and excited states. The state with optimal signal/
noise may then be constructed as a linear combination of
those independently measured correlators. Naive error
propagation tells us that the uncertainties should be added
in quadrature and therefore an enhancement in signal/noise
should not be possible. Yet the signal/noise analysis
presented above provides just the opposite conclusion.
This apparent paradox highlights the critical importance of

correlations between correlator matrix elements as a source
for “noise non-conservation” and suggests an important
lesson. The success of the signal/noise enhancement
strategies discussed here require that correlators be mea-
sured on the same ensemble, such that the correlations in
their statistical fluctuations are retained and therefore may
be exploited. The importance of correlations between
correlator matrix elements is explicitly demonstrated in
Sec. VI B for QCD correlators involving the rho meson.

IV. SIGNAL/NOISE OPTIMIZATION

Having discussed a simple system as motivation, we now
return to the general case of signal/noise optimization.
There are a number of different approaches that one can
take, as we set out in the following.

A. Fixed source and unconstrained sink

Assuming a fixed source vector, ψ , one may ask what
choice of sink vector, ψ 0, will maximize the signal/noise for
any given time slice. This is a straight-forward optimization
problem; to solve it, we introduce a Lagrange multiplier ξ0
in order to enforce the constraint ψ 0†ψ 0 ¼ 1. Since the
signal/noise is positive, the critical points of θðψ 0;ψÞ
subject to the constraint coincide with those of the function

Ξðψ 0;ψ ; ξ0Þ ¼ log θ2ðψ 0;ψÞ þ ξ0ðψ 0†ψ 0 − 1Þ: ð41Þ

Differentiating Ξ with respect to ψ 0† and ξ0 one obtains

Ξψ 0†ðψ 0;ψ ; ξ0Þ ¼ Cψ
ψ 0†Cψ

−
σ2ψψ

0

ψ 0†σ2ψψ 0 þ ξ0ψ 0;

Ξξ0 ðψ 0;ψ ; ξ0Þ ¼ ψ 0†ψ 0 − 1; ð42Þ

where we have introduced the short-hand notation

Ξψ 0†ðψ 0;ψ ; ξ0Þ ¼ ∂
∂ψ 0† Ξðψ 0;ψ ; ξ0Þ;

Ξξ0 ðψ 0;ψ ; ξ0Þ ¼ ∂
∂ξ0 Ξðψ

0;ψ ; ξ0Þ: ð43Þ

The critical points ψ 0
0 and ξ

0
0 are determined by solutions to

the equations

Ξψ 0†ðψ 0
0;ψ ; ξ

0
0Þ ¼ 0; Ξξ0 ðψ 0

0;ψ ; ξ
0
0Þ ¼ 0: ð44Þ

Noting that

ψ 0†Ξψ 0†ðψ 0;ψ ; ξ0Þ ¼ ξ0 ð45Þ

for all ψ 0, one finds the solutions

ξ00 ¼ 0; ψ 0
0 ¼ A0

0ðψÞσ−2ψ Cψ ; ð46Þ

where
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A0
0ðψÞ−2 ¼ ψ†C†σ−4ψ Cψ ð47Þ

is determined from the normalization condition on ψ 0
0.

In order to determine if this solution corresponds to a
maximum of θðψ 0;ψÞ, we must compute the second
derivatives of Ξðψ 0;ψ ; ξ0Þ taken with respect to ψ 0 and ξ0
(and their conjugates) and evaluated at the critical point.
Introducing the notation

Ξψ 0ψ 0†ðψ 0;ψ ; ξ0Þ ¼ ∂2

∂ψ 0∂ψ 0† Ξðψ 0;ψ ; ξ0Þ;

Ξψ 0†ψ 0†ðψ 0;ψ ; ξ0Þ ¼ ∂2

∂ψ 0†∂ψ 0† Ξðψ 0;ψ ; ξ0Þ;

Ξξ0ψ 0†ðψ 0;ψ ; ξ0Þ ¼ ∂2

∂ξ0∂ψ 0† Ξðψ 0;ψ ; ξ0Þ;

Ξξ0ξ0 ðψ 0;ψ ; ξ0Þ ¼ ∂2

∂ξ0∂ξ0 Ξðψ
0;ψ ; ξ0Þ; ð48Þ

the second derivatives evaluated at the critical point are
given by

Ξψ 0ψ 0†ðψ 0
0;ψ ; ξ

0
0Þ ¼ −

1

ψ 0
0
†σ2ψψ

0
0

σψ

�
1 −

σψψ
0
0ψ

0
0
†σψ

ψ 0
0
†σ2ψψ

0
0

�
σψ ;

ð49Þ

and

Ξψ 0†ψ 0†ðψ 0
0;ψ ; ξ

0
0Þ ¼ 0; Ξξ0ψ 0†ðψ 0

0;ψ ; ξ
0
0Þ ¼ ψ 0

0;

Ξξ0ξ0 ðψ 0
0;ψ ; ξ

0
0Þ ¼ 0: ð50Þ

Note that the optimization problem is constrained, so the
Hessian evaluated at the critical point is bordered, taking
the form

H ¼
�

h ψ 0
0

ψ 0
0
† 0

�
; h≡ Ξψ 0ψ 0†ðψ 0

0;ψ ; ξ
0
0Þ: ð51Þ

Since the upper left block of H satisfies the relation
hψ 0

0 ¼ 0, the eigenvectors of H are given by

W� ¼
�
ψ 0
0

�1

�
; W⊥

k ¼
�
w⊥
k

0

�
; ð52Þ

where ψ 0
0
†w⊥

k ¼ 0 (k ¼ 1;…; N0 − 1). The eigenvalues
associates with W� are �1; one can argue that the
eigenvalues associated with W⊥

k are all negative-definite
due to the fact that the subspace of h orthogonal to ψ 0

0 is
negative-definite (this can be seen, for example, by
expressing h in a basis where one of the basis vectors is
proportional to σψψ

0
0).

Given that the optimization problem involves a single
constraint, and the observation that there is only one

positive eigenvalue of H, it follows that the critical point
corresponds to a local maximum. Since the domain of
θðψ 0;ψÞ is compact (i.e., it is the space of complex unit
vectors ψ 0 for fixed ψ) and there are no other candidates for
a critical point, the local maximum is in fact a global
maximum. Given that the domain is compact, one might
wonder why, for a fixed ψ , there is not a second critical
point corresponding to a minimum of the signal/noise.
This is easily explained, however, by observing that the
signal/noise vanishes for an N0 − 1 dimensional complex
subspace defined by the vectors ψ 0 which are orthogonal to
Cψ . Since the signal/noise is not differentiable at the
boundary of this domain, there can be no critical points
associated with this region. Since there is only a single
critical point, corresponding to a maximum, it follows that
the signal/noise is a decreasing function of the sink vector;
the maximum signal/noise attainable, given a specified
source ψ , is therefore

θðψ 0
0;ψÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ†C†σ−2ψ Cψ

q
: ð53Þ

Note that in the late time limit, ψ 0
0 is expected to become

independent of ψ due to the factorization found in Eq. (12).
This independence is spoiled at earlier times, however, due
to the presence of excited state contamination and uncer-
tainties in the estimates of C and Σ2.

B. Unconstrained source and sink

Extremization of θðψ 0;ψÞ with respect to the sink, ψ 0,
and source, ψ , proceeds in a similar fashion. One must now
introduce an additional Lagrange multiplier to Eq. (41) to
enforce the normalization constraint ψ†ψ ¼ 1 on the source
vector. An analysis similar to the previous section yields the
critical points ψ 0

0 and ψ0 satisfying the dual relations

Cψ0

ψ 0
0
†Cψ0

¼ σ2ψ0
ψ 0
0

ψ 0
0
†σ2ψ0

ψ 0
0

;
C†ψ 0

0

ψ†
0C

†ψ 0
0

¼
σ2ψ 0

0
ψ0

ψ†
0σ

2
ψ 0
0
ψ0

; ð54Þ

subject to the constraints ψ 0
0
†ψ 0

0 ¼ 1 and ψ†
0ψ0 ¼ 1. Each

vector may be expressed as a nonlinear function of the
other,

ψ 0
0 ¼ A0

0ðψ0Þσ−2ψ0
Cψ0; ψ0 ¼ A0ðψ 0

0Þσ−2ψ 0
0
C†ψ 0

0; ð55Þ

with normalization factors given by

A0
0ðψ0Þ−2 ¼ ψ†

0C
†σ−4ψ0

Cψ0; A0ðψ 0
0Þ−2 ¼ ψ 0

0
†Cσ−4ψ 0

0
C†ψ 0

0;

ð56Þ

respectively. An examination of the second derivatives of
θðψ 0

0;ψ0Þ follows in an analogous manner to the previous
analysis. One can confirm that the critical points (there may
be more than one in the presence of statistical uncertainties
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and/or for early time extents) satisfying the above relations
indeed corresponds to a local maximum of θðψ 0;ψÞ.
Determining ψ0 and ψ 0

0 analytically from Eq. (55) is
rather nontrivial because of the nonlinearity of the expres-
sions, however, the optimal vectors may be found numeri-
cally using an iterative technique. Starting from an arbitrary
but appropriately normalized initial source/sink vector pair
ðψ 0½0�;ψ ½0�Þ one generates new vectors using the iterative
procedure

ψ 0½nþ1� ¼ A0
0ðψ ½n�Þσ−2

ψ ½n�Cψ ½n�;

ψ ½nþ1� ¼ A0ðψ 0½n�Þσ−2
ψ 0 ½n�C†ψ 0½n�: ð57Þ

If the procedure converges (a condition that must be
confirmed explicitly; we have found that this procedure
works well for the data sets we have explored numerically),
then the solution given by

ψ 0
0 ¼ lim

n→∞
ψ 0½n�;

ψ0 ¼ lim
n→∞

ψ ½n�; ð58Þ

is a local maximum of θðψ 0;ψÞ. At late times, the
convergence is expected to be rapid (in principle after only
a single iteration), since ψ 0

0 and ψ0 become independent of
each other up to excited state contamination and fluctua-
tions in the estimates of C and σ2. Alternatively, one may
find a global maximum of θðψ 0;ψÞ numerically using a
Monte Carlo technique such as simulated annealing, or a
combination of the two methods.
Finally, let us consider the special case where N ¼ M,

and C ¼ C†. An estimate of the correlator matrix will only
satisfy such a relation up to statistical uncertainties unless
the individual correlators contributing to the estimate also
satisfy C ¼ C†. Normally this situation does not occur, but
imposing such a condition on C (i. e., by taking only the
Hermitian part of C) is permitted, as it has no effect on the
ensemble average in the N → ∞ limit. Assuming such a
condition is imposed on C, one may confirm that ψ0 ¼ ψ 0

0

is a solution to Eq. (54). At sufficiently late times, this
solution must correspond to a global maximum of θ, as a
result of Eq. (12), although for intermediate times it need
not be. We will return to this important solution in later
sections.

C. Fixed source and constrained sink

Next, let us briefly consider a constrained optimization
problem for the sink vector ψ 0, given a fixed source vector
ψ . The constraints we would like to impose are of the form
ϕ0†ψ 0 ¼ 0 for some arbitrary N0 × P0 matrix ϕ0 of rank
P0<N0. The constraints on ψ 0 may be imposed by intro-
ducing a P0-dimensional vector of Lagrange multipliers ζ0.
Extremizing the signal/noise subject to these constraints
yields the critical point ψ 0

0 which satisfies the relations

Cψ
ψ 0
0
†Cψ

−
σ2ψψ

0
0

ψ 0
0
†σ2ψψ

0
0

þ ξ0ψ 0
0 þ ϕ0ζ0 ¼ 0; ð59Þ

where ψ 0
0
†ψ 0

0 ¼ 1 and ϕ0†ψ 0
0 ¼ 0. After left multiplying

Eq. (59) by ϕ0†σ−2ψ , one may solve for ζ0 in terms of ϕ0 and
ψ , up to an irrelevant constant of proportionality. Inserting
the expression for ζ0 back into Eq. (59), yields the solution

ψ 0
0 ¼ A0

0ðψÞσ−1ψ P0
ψσ

−1
ψ Cψ ; ð60Þ

where

P0
ψ ¼ 1 − σ−1ψ ϕ0ðϕ0†σ−2ψ ϕ0Þ−1ϕ0†σ−1ψ ð61Þ

is a Hermitian projection operator satisfying P0
ψ
2 ¼ P0

ψ ,
P0

ψ ¼ P0
ψ
†, and P0

ψσ
−1
ψ ϕ0 ¼ 0. The normalization factor for

the solution is given by

A0
0ðψÞ−2 ¼ ψ†C†σ−1ψ P0

ψσ
−2
ψ P0

ψσ
−1
ψ Cψ : ð62Þ

These solutions may be of use when optimizing the signal/
noise of an excited state at asymptotically late times, where
maintaining orthogonality of the optimized sink with lower
energy eigenstates is desirable, as was discussed in Sec. III
for the toy model. For example, by choosing ϕ0 equal to the
source-optimized vector(s) for the ground state estimated at
one or more time slices, one may then optimize the signal/
noise of the first excited state while introducing only
minimal ground state contamination.

D. Constrained source and sink

The results of the previous subsection may be trivially
extended to the case of a constrained sink vector, ψ 0, and a
constrained source vector, ψ . The constraints are imposed
by the conditions ϕ0†ψ 0 ¼ 0 for some arbitrary N0 × P0
matrix ϕ0 of rank P0 < N0 and ϕ†ψ ¼ 0 for some arbitrary
N × P matrix ϕ of rank P < N. Extremizing the signal/
noise with respect to ψ 0 and ψ , subject to the constraints
yields the dual relations

ψ 0
0 ¼ A0

0ðψ0Þσ−1ψ0
P0

ψ0
σ−1ψ0

Cψ0;

ψ0 ¼ A0ðψ 0
0Þσ−1ψ 0

0
Pψ 0

0
σ−1ψ 0

0
C†ψ 0

0; ð63Þ

where

P0
ψ0

¼ 1 − σ−1ψ0
ϕ0ðϕ0†σ−2ψ0

ϕ0Þ−1ϕ0†σ−1ψ0
;

Pψ 0
0
¼ 1 − σ−1ψ 0

0
ϕðϕ†σ−2ψ 0

0
ϕÞ−1ϕ†σ−1ψ 0

0
; ð64Þ

and

A0
0ðψ0Þ−2 ¼ ψ†

0C
†σ−1ψ0

P0
ψ0
σ−2ψ0

P0
ψ0
σ−1ψ0

Cψ0;

A0ðψ 0
0Þ−2 ¼ ψ 0

0
†Cσ−1ψ 0

0
Pψ 0

0
σ−2ψ 0

0
Pψ 0

0
σ−1ψ 0

0
C†ψ 0

0: ð65Þ
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These relations may be solved using the iterative approach
discussed in Sec. IV B.

E. Steepest ascent

The methods of Secs. IVA–IV D provide a linear algebra
prescription for finding source and sink vectors which
extremize the signal/noise, subject to possible constraints
ðϕ0;ϕÞ. Alternatively, we may explore signal/noise opti-
mization as a continuous process by considering a trajec-
tory of steepest ascent along the signal/noise landscape,
starting from some initial sink and source vectors ψ 0½0� and
ψ ½0�. Infinitesimal steps of size ϵ taken along the path of
steepest ascent are enumerated as follows:

ψ 0½nþ1� ¼ ψ 0½n� þ ϵη0ðψ 0½n�;ψ ½n�Þ
jψ 0½n� þ ϵη0ðψ 0½n�;ψ ½n�Þj ;

ψ ½nþ1� ¼ ψ ½n� þ ϵηðψ 0½n�;ψ ½n�Þ
jψ ½n� þ ϵηðψ 0½n�;ψ ½n�Þj ; ð66Þ

where

η0ðψ 0;ψÞ ¼ R0
�

Cψ
ψ 0†Cψ

−
σ2ψψ

0

ψ 0†σ2ψψ 0

�
;

ηðψ 0;ψÞ ¼ R
�

C†ψ 0

ψ†C†ψ 0 −
σ2ψ 0ψ

ψ†σ2ψ 0ψ

�
; ð67Þ

and

R0 ¼ 1 − ϕ0ðϕ0†ϕ0Þ−1ϕ0†; R ¼ 1 − ϕðϕ†ϕÞ−1ϕ†; ð68Þ

provided ϕ0†ψ 00 ¼ 0 and ϕ†ψ0 ¼ 0. As in Sec. IV B, this
procedure yields a local maximum given by Eq. (58). Note
that the trajectory of steepest ascent provides a natural
means for interpolating between the initial vectors ψ 0½0� and
ψ ½0� and the signal/noise optimized vectors ψ 0

0 and ψ0. This
may be particularly useful in the case where the initial
vectors correspond to source-optimized vectors, and allows
for a more detailed investigation of the interplay between
signal/noise enhancement and excited state contamination,
as will be explained below. Note that this strategy also
extends trivially to the case of a fixed source vector; there
one need only update ψ 0½n� according to Eq (66), while
updating the source vector according to ψ ½nþ1� ¼ ψ ½n�.

F. Construction of an optimal basis

The optimal signal/noise ratio, given by Eq. (14), is
invariant under C → UCV†, where U and V are unitary
transformations corresponding to rotations of the source
and sink interpolating operators. One may exploit this
property in order to construct a unique basis for classifying
operators according to their signal/noise. The orthonormal
basis vectors, ψ 0

α (α¼0;���;N0−1) and ψα (α¼0;���;N−1),
are defined such that the following properties are satisfied:

θðψ 0
α;ψ0Þ ¼ maxψ 0θðQ0

α−1ψ
0;ψ0Þjψ 0¼ψ 0

α
;

α ¼ 0; � � � ; N0 − 1;

θðψ 0
0;ψαÞ ¼ maxψθðψ 0

0;Qα−1ψÞjψ¼ψα
;

α ¼ 0; � � � ; N − 1; ð69Þ

where

Q0
α ¼ 1 −

Xα
γ¼0

ψ 0
γψ

0
γ
†; Q0

−1 ¼ 1;

Qα ¼ 1 −
Xα
γ¼0

ψγψ
†
γ ; Q−1 ¼ 1; ð70Þ

are Hermitian projection operators satisfying Q0
α
2 ¼ Q0

α

and Q2
α ¼ Qα, and where

ψ 0†
αψ 0

β ¼ δαβ; ψ†
αψβ ¼ δαβ: ð71Þ

The right-hand-side of Eq. (69), for each component α,
should be interpreted as finding the maximum value of
θðψ 0;ψÞ by varying ψ 0 (at fixed ψ0) or ψ (at fixed ψ 0

0)
within a subspace orthogonal to basis vectors labeled by
β < α. Following this convention, the basis vectors will be
ordered such that

θðψ 0
0;ψαÞ ≥ θðψ 0

0;ψαþ1Þ;
θðψ 0

α;ψ0Þ ≥ θðψ 0
αþ1;ψ0Þ; ð72Þ

for each α. The basis vectors, ψ 0
α, and ψα, may be found by

solving a generalized set of equations for the critical points:

Cψ0

ψ 0
α
†Cψ0

¼ σ2ψ0
ψ 0
α

ψ 0
α
†σ2ψ0

ψ 0
α
þ
Xα
β¼0

ξ0αβψ
0
β;

C†ψ 0
0

ψ†
αC†ψ 0

0

¼
σ2ψ 0

0
ψα

ψ†
ασ2ψ 0

0
ψα

þ
Xα
β¼0

ξαβψβ; ð73Þ

where ξ0αβ and ξαβ are Lagrange multipliers introduced to
enforce the orthonormality constraints on ψ 0

α and ψα,
respectively. Despite the formidable appearance of these
equations, an explicit solution exists (the derivation is
nontrivial; see Appendix B for details), and is given
recursively by

ψ 0
α ¼ Aαðψ0ÞQ0

α−1σ
−2
ψ0
ψ 0
α−1; α > 0

ψα ¼ Bαðψ 0
0ÞQα−1σ

−2
ψ 0
0
ψα−1; α > 0; ð74Þ

where Aαðψ0Þ and Bαðψ 0
0Þ are normalization factors given

by
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A−2
α ðψ0Þ ¼ ψ 0

α−1
†σ−2ψ0

Q0
α−1σ

−2
ψ0
ψ 0
α−1;

B−2
α ðψ 0

0Þ ¼ ψ†
α−1σ

−2
ψ 0
0
Qα−1σ

−2
ψ 0
0
ψα−1; ð75Þ

for α > 0. Provided ψ 0
0 and ψ0 are initially determined, an

orthonormal basis can then be constructed iteratively using
the relations provided above.
Interestingly, despite the fact that θðψ 0;ψÞ is itself a

nonlinear function of ψ 0 and ψ , under the transformation
C → UCV†, the basis transforms linearly as ψ 0

α → Uψ 0
α

and ψα → Vψα. Furthermore, regardless of the basis in
which C is presented, working in the signal/noise basis, the
matrix elements

θαβ ¼ θðψ 0
α;ψβÞ ð76Þ

are uniquely determined. Given the above ordering of basis
vectors, it is reasonable to expect the hierarchy in signal/
noise,

θαβ ≳ θαþ1;β;

θαβ ≳ θα;βþ1;

θαβ ≳ θαþ1;βþ1; ð77Þ

although this would need to be confirmed explicitly in each
case. The advantage of working in the optimal signal/noise
basis is that it allows one to easily classify and identify
which elements in a matrix of correlators have the least
significant signal/noise. One might then excise poorly
determined components of the correlation function before
further analysis. Such a strategy might be particularly
useful for analysis using variational methods for extracting
excited states, which, in practice, requires well-determined
matrix elements to work effectively. Finally, we note that
although a maximal signal/noise basis was constructed for
both the source and the sink, one could develop a similar
construction for just the sink (given a fixed source) or just
the source (given a fixed sink).

G. Maximal signal/noise

Throughout the discussion thus far, we have considered
signal/noise optimization of correlation functions of the
particular form ψ 0†Cψ . The most general linear combina-
tion of the correlation functions under consideration,
however, takes an even more generic form, namely
TrΦ†C, where Φ is an arbitrary complex N0 × N matrix.
Optimization of the signal/noise for this correlator can be
achieved using the results of the previous sections by
combining the source and sink indices together into a single
collective index. In particular, one may regard the N0 × N
dimensional matrix C instead as an N0N × 1 dimensional
matrix, and Φ as an N0N dimensional “sink” vector. The
“source” vector in this case is just a one-dimensional vector
normalized to unity. The full (unconstrained) optimization

of the signal/noise of this correlator will yield the maximum
achievable signal/noise of all the methods presented, and
we use this to define θmax. However, the combination of
correlation matrix elements so determined is not a bi-local
correlation function. Interestingly, one may easily prove
that at asymptotically late times, the critical value for Φ0

which maximizes the signal/noise is given by

Φ0 ∝ ð ~Z0
0Þ−1Z0

0Z
†
0ð ~Z0Þ−1; ð78Þ

and does yield a bi-local correlation function. Furthermore,
the signal/noise θmax is identical to that of Eq. (14). This
need not be the case, however, at earlier time separations.
We may regard θmax, evaluated at every time slice, as a

measure by which to normalize the signal/noise achieved
by all other optimization strategies. For convenience, we
introduce a normalized signal/noise ratio,

θ̄ðψ 0;ψÞ ¼ θðψ 0;ψÞ
θmax

; ð79Þ

for bilocal correlators constructed with source and sink
vectors ψ 0 and ψ . This quantity is bounded from above by
unity and from below by zero, and at sufficiently late times
is independent of time separation (i.e., the time-dependent
exponentials cancel exactly between numerator and
denominator) provided there is a gap in the noise spectrum.
In our analysis of hadron correlators in lattice QCD
presented in Sec. VI C, this measure of signal/noise will
be used extensively.

H. Multiple time slices

The signal/noise optimization methods presented thus far
may be extended over multiple time slices, labeled by τk for
k ¼ 0;…; Q − 1 (which need not be consecutive) in order
to account for temporal correlations that are often found to
be important in correlator data. The individual correlators
can be expressed as a Q ×Q block-diagonal matrix

C ¼

0
BBBBB@

Cðτ0Þ
Cðτ1Þ

. .
.

CðτQ−1Þ

1
CCCCCA; ð80Þ

with each block component of size N0 × N. The expect-
ation value of this correlator is given by C ¼ hCi and the
associated Q2 ×Q2 block noise matrix is given by

Σ2 ¼ hC ⊗ C�i − C ⊗ C�; ð81Þ

where each block component is of size N02 × N2. Note
that, although C is block-diagonal, Σ2 has nontrivial off-
diagonal block matrix elements because of temporal
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correlations. Since correlators formed from C will involve
multiple time slices, we must impose constraints on the sink
and source vectors,

ψ 0 ¼

0
BBBBB@

ψ 0ðτ0Þ
ψ 0ðτ1Þ

..

.

ψ 0ðτQ−1Þ

1
CCCCCA; ψ ¼

0
BBBBB@

ψðτ0Þ
ψðτ1Þ

..

.

ψðτQ−1Þ

1
CCCCCA; ð82Þ

in order to preserve their overall normalization as well as
the time-independence of the orientation of the subvectors
for each block. Specifically, they must satisfy the normali-
zation conditions

ψ 0†ψ 0 ¼ Q
w02 ; ψ†ψ ¼ Q

w2
; ð83Þ

for some w02 and w2 (defined later) and

ψ 0†ðτ0Þψ 0ðτ0Þ ¼ 1; ψ†ðτ0Þψðτ0Þ ¼ 1: ð84Þ

The constraints on the time-independent orientation of the
source and sink vectors are imposed by the conditions

ϕ0†ψ 0 ¼ 0; ϕ†ψ ¼ 0; ð85Þ

where ϕ0 and ϕ are Q × ðQ − 1Þ bidiagonal matrices of the
form

ϕ0† ¼

0
BBBBB@

1 −w0ðτ1Þ
1 −w0ðτ2Þ

. .
. . .

.

1 −w0ðτQ−1Þ

1
CCCCCA;

ð86Þ

and

ϕ† ¼

0
BBBBB@

1 −wðτ1Þ
1 −wðτ2Þ

. .
. . .

.

1 −wðτQ−1Þ

1
CCCCCA; ð87Þ

and where each entry is proportional to a unit block matrix
of appropriate dimensionality (either N0 × N0 for ϕ0 or
N × N for ϕ). Note that the second set of conditions
enforces agreement of source and sink vectors between
neighboring time slices up to the arbitrary, real, and time-
dependent proportionality constants wðτkÞ. In particular,
the constraints require ψðτk−1Þ ¼ wðτkÞψðτkÞ for the source
vectors (for each value of k) and similar relations for the

sink vectors. Combining these with the normalization
conditions, one finds

1

w02 ¼
1

Q

XQ−1

k¼0

Yk
j¼0

1

w02ðτjÞ
;

1

w2
¼ 1

Q

XQ−1

k¼0

Yk
j¼0

1

w2ðτjÞ
;

ð88Þ

with w0ðτ0Þ ¼ wðτ0Þ≡ 1. Generally the weights may be
specified arbitrarily, however, a particularly simple but
useful choice is one which satisfies

w0ðτkÞwðτkÞ ¼
ψ 0†ðτkÞCðτkÞψ 0ðτkÞ
ψ 0†ðτkÞCðτk−1Þψ 0ðτkÞ

; ð89Þ

so that the correlator evaluated at each time slice contrib-
utes equal weight in the optimization.
The fixed source and unconstrained sink optimization of

Sec. IVA and the unconstrained source and sink optimi-
zation of Sec. IV B may be extended to multiple time slices
using the results of Sec. IV C and Sec. IV D. In particular,
one may use the solutions Eq. (60) and Eq. (63), respec-
tively, to impose the temporal constraints given by Eq. (85).
In the former case, one should take wðτkÞ ¼ 1 for all k (and
w0ðτkÞ chosen arbitrarily), whereas in the latter one may
take w0ðτkÞ ¼ wðτkÞ. In either case, to a first approxima-
tion, one may take w0ðτkÞwðτkÞ ≈ eE0 for the optimization.
This approximation may then be refined using the opti-
mized solutions and Eq. (89) in successive iterations of
the optimization procedure. Further constraints on ψ 0ðτkÞ
and/or ψðτkÞ, such as those of Sec. IV C and Sec. IVD, may
be imposed by considering direct product constraint con-
ditionsof the form ðϕ0† ⊗ ϕ0†Þψ 0 ¼ 0 and ðϕ† ⊗ ϕ†Þψ ¼ 0,
where ϕ0 (ϕ) are the Q × ðQ − 1Þ block matrices defined
above, and ϕ (ϕ0) are N × N (N0 × N0) time-independent
constraint matrices associated with each time slice.

I. General properties of optimization

Finally, let us summarize some intuitive and easily
proved properties of the results of this section, as well
as their implications. Within each of the optimization
strategies discussed above, the maximum achievable sig-
nal/noise for any N0 × N matrix of correlators C is greater
than or equal to the maximum signal/noise achieved by
considering any of its sub-matrices. This result follows
from the fact that the critical vectors found for any sub-
matrix lie within a subspace of the possible vectors of the
full matrix. It is therefore always advantageous to consider
the optimization strategies discussed here using the largest
possible basis of observables allowed within the confines of
the available computational resources. In the context of
lattice QCD, fermion propagators generated from a given
quark source are computationally costly, so obtaining a
large basis of source observables may not be practical.
However, highly efficient algorithms have recently been
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developed for performing quark-contractions at the sink
(with an eye towards performing first principles nuclear
physics calculations), making the generation of a large
basis of sink observables not only feasible, but computa-
tionally negligible compared to the other stages of the
lattice simulation [9–14].
As with any extremization problem, imposing con-

straints on the search domain can only decrease the
maximum achievable signal/noise. It follows that the
maximum signal/noise is achieved via the maximal sig-
nal/noise optimization described in Sec. IVG, followed by
that of Sec. IV B (as previously discussed, these two
approaches converge in the late time limit). Imposing
further constraints by either fixing the source, as in
Sec. IVA, or by imposing orthogonality conditions on
the sink, as in Sec. IV C, can only further diminish the
signal/noise enhancement of the correlator. It is important
to note that imposing such constraints may ultimately
lead to advantages, however, when it comes to fitting
correlators and extracting energies, as they allow for greater
control over the excited state contamination introduced
by signal/noise optimization. In Sec. V, we will discuss
further how various strategies may be combined to yield
the greatest signal/noise of the final result, namely, the
energies extracted from correlators.

V. CORRELATOR OPTIMIZATION STRATEGIES

Let us now consider the application of the optimiza-
tion methods introduced in Sec. IV toward enhancement
of signal/noise in correlation functions, and ultimately to
the reduction of uncertainties in the energies extracted
from them. In the above discussions, we have shown
how one may optimize the signal/noise based on a
particular time slice (or multiple time slices), however in
practice, carrying out such an optimization may, in turn,
introduce excited state contamination at early times,
potentially nullifying any gains in signal/noise of the
extracted energies. It is therefore crucial that we under-
stand the interplay between signal/noise enhancement
and excited state contamination in the various strategies
we consider. Here, we discuss possible approaches,
which combine the ideas of signal/noise-optimization
in Sec. IV and source-optimization reviewed in
Appendix A, with the mindset of balancing such
considerations. In Sec. VI, we will explore the perfor-
mance of some of these methods using numerical data
from lattice QCD.

A. Signal/noise optimized source and sink

In this first scheme, one begins by choosing reference
times, τs and τn, at which to evaluate the signal and noise
correlators (C and Σ2), appearing in Eq. (9). Although the
signal/noise of the correlator is, strictly speaking, only
properly defined for τs ¼ τn, these times may be chosen

independently for the purpose of signal/noise optimization.
When contributions from higher energy states in C and Σ2

(evaluated at τs and τn, respectively) are negligible, one
may verify that the choice τs ≠ τn leads at most to an
overall time-dependent re-scaling of θ, which has little
impact on the solutions ψ 0

0 and ψ0 in the limit of infinite
statistics.
The advantage of using separate time slices to define the

signal and noise becomes apparent when one considers the
statistical uncertainties in C and Σ2, separately. As was
argued in Sec. I, the signal/noise associated with the
stochastic estimate of the signal decays exponentially with
time at a rate governed by E0 − 1=2 ~E0. On the other hand,
the signal/noise associated with the stochastic estimate of
the noise itself (i.e., the second moment of the correlator
distribution divided by the square root of the fourth
moment) is often approximately independent of time at
late times. In the case of QCD, for example, according to an
argument attributed to Savage (see [15] and references
therein), both the second and fourth moments of the
individual correlator distribution have a fall-off governed
by pions, the latter of which falls off at twice the rate of the
former, up to corrections attributed to interactions. Thus the
signal/noise decay rate associated with a stochastic estimate
of the variance of a baryonic correlator is approximately
constant.
From a practical standpoint, one may find it advanta-

geous to choose τs < τn in order to ensure that the
estimates for both C and Σ2 individually possess relative
statistical uncertainties which are much smaller than
unity. If τs were chosen so large that the uncertainties
in C are comparable to C itself, then the errors on the
signal/noise optimized source and sink vectors will
possess Oð1Þ errors or larger, rendering them unreliable.
Since the signal/noise associated with the variance
estimate is often independent of time, however, τn may
in principle be chosen arbitrarily large, and in particular
large enough so as to remove the excited state correc-
tions, ~Δ, defined in Sec. II.
Accounting for such considerations, one may use

Eq. (57) to obtain source and sink vectors,ψ 0
0, andψ0, which

may be used to construct a single signal/noise-optimized
correlator. Using the methods of Sec. IV F, one may also
develop an entire source and sink basis in which the
signal/noise of the correlation matrix is ordered. As pre-
viously noted, although this strategy generally achieves
an enhanced signal/noise over all times (despite the
analysis being carried out at a particular τs and τn), it
provides little control over the degree of excited state
contamination introduced by the optimization at earlier
times. Such excited state contamination may be removed
by imposing constraints on the optimization, or accounted
for by a subsequent multiexponential fit to the various sub-
matrices (or individual matrix elements), with emphasis
placed on those with greatest signal/noise.

WILLIAM DETMOLD AND MICHAEL G. ENDRES PHYSICAL REVIEW D 90, 034503 (2014)

034503-14



B. Variational source and signal/noise optimized sink

Let us assume that for a given correlator, C, we have
obtained a source vector, ψn, which has a maximal overlap
with the ground state, or a particular excited state labeled by
n. In the case where C ¼ C†, this vector may have been
obtained by solving the generalized eigenvalue problem
represented by Eq. (A2) for some reference time τ0, and
then selecting a source vector solution ψnðτ1Þ at a second
time slice τ1 > τ0 as a representative source-optimized
vector. The time slice τ1 should be chosen such that the
source vector provides the best possible approximation of
the nth eigenstate of the Hamiltonian, up to corrections
associated with excited state contamination and errors
which may be attributed to statistical fluctuations in the
estimate. For non-Hermitian matrices C, the Matrix-Prony
method or some other technique [2,7,8] may provide a
viable alternative for finding such a source with optimal
overlap onto a particular state.
If the source vector ψnðτ1Þ had a perfect overlap with the

ground state, then the correlator ψ 0†CðτÞψnðτ1Þ for any ψ 0

would be monotonically decreasing function of τ, despite
the fact that the sink vector differs from the source vector.
In practice this is not the case, however, since a loss in
positivity can enter through the exponentially small excited
state contamination and through the statistical noise enter-
ing into the estimate of ψnðτ1Þ. For a sufficiently large
basis, and for a well-chosen source vector, such a loss in
positivity is expected to be negligible until late time
separations, at which point a small residual ground state
overlap could dominate.2 Assuming such an optimized
source vector is found, one may use the methods of Sec. IV
A to optimize the sink vector at reference times τs and τn so
as to maximize the signal/noise of ψ 0†CðτÞψnðτ1Þ.
Alternatively, one may optimize the sink vector using
the methods of Sec. IV C in order to impose constraints
on ψ 0, such as that it should be orthogonal to Cðτ0Þψmðτ1Þ
for m < n (up to fluctuations in the estimate). As argued in
Sec. III, such a strategy may offer a compromise between a
reduction of excited state contamination, and enhancement
of signal/noise that is favorable for extracting energies with
minimal uncertainty.

C. Variational method with noisy correlator projection

Let us next consider individual correlators that are
Hermitian, and given by

~CðτÞ ¼ Cðτ0Þ1=2CðτÞCðτ0Þ1=2; ð90Þ

for some reference time τ0, such that ~CðτÞ ¼ h ~CðτÞi. Note
that the eigenvalues of ~CðτÞ, denoted by λnðτÞ, will coincide
with the principle correlators obtained from a variational
analysis of the correlator CðτÞ [e.g., the solutions to the
generalize eigenvalue problem, defined in Eq. (A3)]. Note
that the normalized correlator is defined so that ~Cðτ0Þ ¼ 1
and λnðτ0Þ ¼ 1. We may further consider the critical
vectors ψ0 ¼ ψ 0

0 corresponding to a solution to Eq. (54)
applied to ~C at time slices τs and τn and the signal/noise
basis developed from them. Let us define the individual
correlators, ~GðτÞ, in this basis and the expectation value,
~GðτÞ ¼ h ~GðτÞi, which retains the property that ~Gðτ0Þ ¼ 1.
Since the transformation to the signal/noise basis is unitary,
~GðτÞ has eigenvalues ~λnðτÞ ¼ λnðτÞ which coincide with
those of ~CðτÞ.
Note that the rows and columns of ~GðτÞ are structured

according to signal/noise. One may therefore define a
ðN − RÞ × ðN − RÞ dimensional “reduced” correlator
matrix ~GðrÞ by eliminating the last R rows and columns,
which are associated with the matrix elements of ~GðτÞ that
have the smallest signal/noise. Diagonalizing the reduced
correlator matrix produces eigenvalues

~λðrÞn ðτÞ ¼ e−Enðτ−τ0Þ; ð91Þ

up to relative corrections to the nth eigenvalue, scaling as
e−ðEN−R−EnÞτ in the range τ0 < τ < 2τ0. Although the
systematic effects from excited state contamination in this
approach are parametrically larger than those of the original
matrix, a reduction in statistical uncertainties attributed to
excision of the noisiest components of ~GðτÞ may offer
some advantages in situations where the systematic errors
are smaller than statistical errors. In such situations, the
method offers an avenue for placing both sources of
uncertainty on an equal footing, and is in some sense a
generalization of the pruning techniques discussed in [16].

VI. APPLICATIONS: LATTICE QCD
CORRELATION FUNCTIONS

In this section, an exploration of the optimization
strategies outlined in Sec. V is performed for matrices of
single hadron correlation functions obtained from lattice
QCD studies. Particularly, we consider a Hermitian 26 × 26
matrix of rho meson correlators obtained from the Hadron
Spectrum Collaboration, and approximately Hermitian
5 × 5 matrices of pion, proton and delta correlators.

2For an excited state, the correlator will decay exponentially
for intermediate times with a decay rate equal to the excited state
energy. However, one might expect an eventual (and potentially
sudden) transition to an exponential with decay rate equal to the
ground state energy arising from a small but finite overlap
attributed to statistical fluctuations. If one already has a precise
estimate of the ground state, this contribution can be incorporated
into the fit model. In the case of the ground state, the finite
temporal extent of the lattice geometry may give rise to thermal
contamination in which hadronic states propagate both forward
and backward in time. Depending on interactions, such states
may appear to have energies below the ground state but with
exponentially suppressed overlap factors [2].
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The former data was used in a study reported in [17],
whereas the latter data are closely related to those used in
[8]. We refer the reader to those studies (also see related
works [18]) for complete details of the measurements, and
here describe only the relevant aspects which are required
for this exploration.
All correlator measurements were performed on aniso-

tropic gauge-field configurations that were generated
by the Hadron Spectrum Collaboration using an Nf ¼
2þ 1 flavor tadpole-improved clover fermion action and
Symanzik-improved gauge action [19,20]. The rho meson
correlators were measured on lattices of size 243 × 128,
whereas the other correlators were measured on lattices of
size 203 × 128. All lattices were generated with an
anisotropy factor bs=bτ ≈ 3.5, where bs ¼ 0.1227ð8Þ fm
and bτ are the spatial and temporal lattice spacings,
respectively, and with quark masses corresponding to a
pion mass, mπ ≈ 390 MeV, and a kaon mass, mK≈
546 MeV. For the remainder of this section, we work in
lattice units, explicitly setting bτ to unity.
Rho correlators were measured on an ensemble of N ¼

566 configuration using a basis of 26 zero-momentum
projected operators belonging to the T−

1 irreducible repre-
sentation of the octahedral group with parity,OD

h . The other
correlators were generated on an ensemble of N ¼ 305
configurations using interpolating operators composed of
Oð30Þ randomly placed Gaussian-smeared sources and
zero-momentum projected Gaussian-smeared sinks, lead-
ing to a stochastically approximated wall source (these
correlator matrices are therefore not strictly Hermitian, but
are numerically close to Hermitian). Throughout the study,
we take C ¼ C† for each individual correlator in the
ensemble, as is allowed by the symmetries.

A. Analysis details

To illustrate the interplay between signal/noise enhance-
ment and excited state contamination, it is helpful to
consider plots of the effective mass, defined by

meffðτÞ ¼ −
1

Δτ
log

ψ 0†Cðτ þ ΔτÞψ
ψ 0†CðτÞψ : ð92Þ

In the case where ψ 0†Z0
n ≠ 0 and Z†

nψ ≠ 0 for all n, the
effective mass has a late-time behavior given by

meffðτÞ ∼ E0 þ
�
ψ 0†Z0

1Z
†
1ψ

ψ 0†Z0
0Z

†
0ψ

�

×
1 − e−ðE1−E0ÞΔτ

Δτ
e−ðE1−E0Þτ þ…; ð93Þ

up to exponentially small corrections attributed to excited
state contamination. For source-optimized correlators con-
structed such that ψ 0†Z0

m ¼ 0 or Z†
mψ ¼ 0 for statesm < n,

the late-time limit ofmeffðτÞwill converge to the energy En,
rather than E0. For this study, we always take Δτ ¼ 1.
Fully correlated, multiexponential, χ2 minimizing fits

are performed on correlation functions over a time range
τ ∈ ½τmin; τmax� in order to extract the low-lying energies
of the system. Statistical uncertainties on all quantities
(e.g., correlation functions, effective masses, extracted
energies, etc.) are determined using bootstrap resampling.
Systematic uncertainties associated with excited state
contamination in the correlator fits are accounted for by
varying the minimum time value τmin of the temporal range
over which the fit was performed. Similarly, systematic
errors associated with finite temperature effects (attributed
to “around the world” propagation of states in time) are
studied by varying the maximum time value τmax in the
temporal range over which the fits were performed. For the
proton, delta, and rho, such finite temperature effects are
found to be negligible; for the pion, however, such effects
are significant and accounted for by including a backward-
propagating pion in the multiexponential fit.

B. Signal/noise landscape for the rho

Before proceeding with the full analysis of hadron data,
it is instructive to explore the signal/noise landscape for an
approximately diagonal 2 × 2 rho correlator matrix, the
results of which may be directly compared with those of the
toy model introduced in Sec. III. Starting from the original
26 × 26 matrix of rho correlation functions, we use the
variational approach of Appendix A with τ0 ¼ 3 to find
approximate eigenstates of the Hamiltonian. The associated
source-optimized source and sink vectors are selected at
time slice τ1 ¼ 14. We then consider the signal/noise
associated with correlators evaluated at time slices
τs ¼ τn ¼ 14, working in a basis where the estimated
correlation function is diagonal. For this analysis, we study
the signal/noise as a function of mixing angles between
only two approximate eigenstates; this is achieved by
truncating the 26 × 26 individual correlator matrices C to
a 2 × 2 sub-matrix in the diagonal basis at time slice
τs ¼ τn. Note that in this basis, the individual correlators C
themselves are not diagonal, but the expectation value
C ¼ hCi is diagonal up to statistical fluctuations and
systematic errors associated with a finite basis for τ ≳ τ0.
For a given 2 × 2 truncation of the rho correlator matrix,

and a sink vector parametrized by Eq. (19), we explore how
the signal/noise varies as a function of the mixing angles
ðω; δÞ. As in Sec. III, we consider cases where the source
vector is equal to either the sink vector, ground state vector
(ψ0), or excited state vector (ψ1). For the correlator matrix
considered, we find that the signal/noise is only marginally
enhanced by allowing mixing between the ground and first
excited state, whereas the enhancement is considerably
more significant when mixing the ground and second
excited state. For the purpose of demonstrating the
method, and visualization of the signal/noise landscape,
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we therefore concentrate for the moment on the latter case.
In more practical applications, such as those considered in
the following subsection, mixing between all 26 low-lying
states is considered in order to achieve a maximal enhance-
ment in signal/noise.
A density plot of the signal/noise landscape θ⋆ for the

rho is presented in Fig. 4 (left) for the case of equal source
and sink vectors. In this example, a maximum enhancement
R⋆ ¼ 1.51ð6Þ is achieved at ω⋆ ¼ 0.70ð3Þ when δ⋆ ¼ 0. A
plot of the signal/noise as a function of the mixing angle ω
for fixed δ ¼ 0 is plotted in Fig. 4 (right). The error bands
in this plot indicate 1σ uncertainties associated with the
signal/noise. Note that at ω ¼ π=2, the normalized signal/
noise is nonzero due to the presence of excited state
contamination. By extremizing the signal/noise, one may
determine both ω⋆ and R⋆, and by comparing the relative
magnitudes of the diagonal elements of the correlator at
τs ¼ τn, one may determine the amount of excited state
contamination Δ in the signal. Using these values as input
parameters for the two-state model function given by
Eq. (22), we obtain a curve [solid line in Fig. 4 (right)]

that is qualitatively consistent with the signal/noise error
bands shown in the figure. Deviations are presumably
attributed to finite ~Δ effects (excited states) in the noise,
which have been omitted from the toy-model analysis.
Similar plots are displayed in Fig. 5 (Fig. 6) for the case
where the source is chosen to have maximal overlap with
the ground (second excited) state. The normalized signal/
noise θ̂0 (θ̂1) has a maximum enhancement

ffiffiffiffiffiffi
R0

p ¼ 1.40ð4Þ
[
ffiffiffiffiffiffi
R1

p ¼ 1.82ð6Þ] at ω0 ¼ 0.81ð2Þ [ω1 ¼ 0.89ð1Þ]; using
the results obtained by extremizing the signal/noise as input
parameters for the model function, Eq. (35), we obtain
curves which are also consistent with the signal/noise error
bands shown in the figures.
Note that the numerical values obtained for ðR⋆;ω⋆Þ

and ðRn;ωnÞ fail to satisfy the relations given by Eq. (37)
and Eq. (38). This may be traced to the fact that
corrections to the noise, governed by ~Δ, were omitted
from the model. If ~Δ is not negligible, the presence of such
effects may lead to significant deviations in the relations.
The size of the effects may be estimated by diagonalizing
the noise correlator and comparing the lowest two
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FIG. 4 (color online). Left: Landscape of the normalized signal/noise θ̂⋆ðω; δÞ for a 2 × 2 rho correlator with mixing between the
ground state and second excited state. The stochastically estimated ground and excited states corresponds to ω ¼ 0 and ω ¼ π=2,
respectively. Right: Normalized signal/noise (indicated by 1σ error bands) as a function of the mixing angle ω for fixed δ ¼ δ⋆. The
maximum signal noise is achieved at the angle ω⋆, indicated by 1σ error bands (dashed, vertical lines). The solid curve corresponds to
the two-state theoretical model for θ̂⋆ðω; 0Þ using Eq. (22).
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FIG. 5 (color online). Same as Fig. 4 for θ̂0ðω; δÞ.
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eigenvalues; carrying out such an analysis yields ~Δ ≈ 1=5
for the choice of τn under consideration. Despite the
presence of ~Δ corrections, the functional form of the toy-
model results given by Eq. (22) and Eq. (35) nonetheless
appear to provide a good qualitative description for the
enhancement properties of the system as a function of ω.

Evidently most of the finite ~Δ effects can be absorbed into
the parameters ðR⋆;ω⋆Þ and ðRn;ωnÞ rather than leading
to corrections to the functional form of the toy model
expression for the signal/noise.
In Fig. 7, Fig. 8, and Fig. 9 (left), we demonstrate the

impact of mixing ground and excited states on correlation
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FIG. 7 (color online). Left: Effective mass plots associated with the correlators ψ†
0Cψ0 (ground), ψ†

1Cψ1 (excited), and
ψ†ðω⋆; δ⋆ÞCψðω⋆; δ⋆Þ (mixed), where ψðω; δÞ is parametrized by Eq. (19) and C is an approximately diagonal 2 × 2 rho correlator.
The optimal angles ðω⋆; δ⋆Þwere obtained by optimizing θ⋆ðω; δÞ at a fixed time slice τs ¼ τn, indicated by the dashed line. Right: Ratio
of the optimized signal/noise θ⋆ðω⋆; δ⋆Þ and ground state signal/noise θ⋆ð0; 0Þ as a function of time, for time-independent ðω⋆; δ⋆Þ. The
solid band indicates the 1σ uncertainties on the enhancement factor R⋆ obtained from optimizing θ̂⋆ðω; δÞ.
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FIG. 6 (color online). Same as Fig. 4 for θ̂1ðω; δÞ.
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FIG. 8 (color online). Same as Fig. 7 for the correlators ψ†
0Cψ0 (ground), ψ†

1Cψ1 (excited), and ψ†ðω0; δ0ÞCψ0 (mixed).
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functions over the full time extent. In particular, we show
the effective masses obtained for both the ground and
second excited states. These were constructed from
source-optimized source and sink vectors obtained from
a variational analysis at time slice τ1. Overlaid on the same
plots are effective masses for correlators constructed from
the signal/noise-optimized vectors determined at τs ¼ τn
(indicated by a vertical dashed line) using each of the three
optimization strategies discussed. A signal/noise-opti-
mized correlator obtained for equal source and sink
vectors is displayed in Fig. 7 (left). In this case, one
finds considerable excited state contamination in the
signal/noise-optimized correlator at intermediate time
extents compared to the source-optimized correlators,
but also a significant enhancement in the signal/noise
over the entire time range of the data. Signal/noise-
optimized correlators obtained with fixed, source-
optimized sources are shown in Fig. 8 and Fig. 9 (left)
for the ground and excited states, respectively. In the former
case, the excited state contamination is in large part removed.
In the latter case, however, small levels of ground state
contamination in the estimate of the excited state source
vector (presumably because of statistical fluctuations)

becomes the dominant contribution to the correlator at
late times. The signal/noise optimized effective mass in
Fig. 9 (left) diverges at some intermediate time slice prior to
converging to the value for the ground state energy because
of a relative sign in the ground and excited state overlap
factors appearing in the correlator (for this construction, the
source and sink differ, so positivity is not guaranteed).
For the signal/noise enhancement of the excited state
correlator to be profitable in this case, one requires either
an extremely precise estimate of the excited state source
vector so as to minimize the ground state contamination,
or a precise estimate of the ground state so that that its
role may be included into the energy-extracting fit. The
conclusion drawn from this example is perhaps not so
surprising: signal/noise enhancement of correlators asso-
ciated with a given state is most profitable when mixing
with states of higher energy. To mix with lower energy
states requires precision determinations of the source-
optimized excited-state source vector.
In Figs. 7,8, and 9 (right), we show the signal/

noise enhancement achieved with signal/noise-optimized
correlator, compared to either the ground or excited state
correlators, as a function of time separation. Indicated on
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FIG. 9 (color online). Same as Fig. 7 for the correlators ψ†
0Cψ0 (ground), ψ†

1Cψ1 (excited), and ψ†ðω1; δ1ÞCψ1 (mixed).
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correlator on each bootstrap ensemble. The analysis is performed by retaining the correlations between the matrix elements of C
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these plots (horizontal bands indicating 1σ uncertainties)
are the enhancement factors (R⋆,

ffiffiffiffiffiffi
Rn

p
, respectively) found

by the signal/noise optimization procedure at time slice
τs ¼ τn. Although the signal/noise enhancement is per-
formed at a single time-slice in these examples (indicated
by a vertical dashed line), we find that it is nonetheless

sustained over a wide range of time slices. This behavior
follows naturally from our arguments that the enhancement
is associated with an optimization of time-independent
overlap factors.
In Sec. III, we argued the importance of retaining

correlations between matrix elements in order to achieve
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FIG. 11 (color online). Top: Normalized signal/noise for the pion correlator at a fixed τs ¼ τn along a path of steepest ascent as a
function of the ascent time. Trajectories are shown for a fixed source and unconstrained sink vector (left) and for unconstrained, but
equal, source and sink vectors (right). In both plots, point (I) corresponds to a correlator constructed from equal source and sink vectors
chosen to produce an optimal ground state, point (II) corresponds to some intermediate points along the trajectory, and point (III)
corresponds to signal/noise optimized correlators. Center: Effective mass plots for the correlators described above as a function of time
separation, τ (shown in color; the effective mass associated with point (I) is shown in light gray in each plot for comparison). The dashed
line indicates the value of τs ¼ τn used for the signal/noise optimization. Bottom: Corresponding normalized signal/noise as a function
of the time separation.
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an enhancement in signal/noise using the optimization
techniques introduced in Sec. V. To see explicitly the role
of such correlations, we may compare the signal/noise
optimization in the case of the two-state rho system by
retaining them and also by discarding them in our analysis.
We illustrate this effect by considering the distributions for
ω⋆ and R⋆ obtained by extremizing estimates of θ⋆ðω; 0Þ
on bootstrap resampled correlators. Bootstrap ensembles
were generated such that the matrix elements retained their
correlations (correlated) and such that the correlations were
removed by an independent resampling of each matrix
element (uncorrelated). On each bootstrap ensemble, an
estimator for θ⋆ðω; δÞ was constructed and maximized to

obtain estimates of ω⋆, R⋆ and δ⋆. The distributions for ω⋆
and R⋆ generated from the bootstrap analysis are plotted in
Fig. 10 for both the correlated and uncorrelated cases (by
construction of the analysis, δ⋆ ¼ 0 in all cases). We find
that in the former case, the distributions are well-localized
about a central value which is consistent with the results of
Fig. 4, whereas in the later case they are not. Interestingly,
one finds that an enhancement in signal/noise always
possible (i.e., R⋆ > 1) for uncorrelated matrix elements,
however, such an enhancement on average is less that that
of the correlated case and may no longer be attributed to the
tuning of overlap factors, but rather the tuning of statistical
fluctuations which are ensemble and time-slice specific.
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FIG. 12 (color online). Same as Fig. 11, for the proton ground state.
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C. Comparison of strategies for single
hadron correlators

Here, we provide a comparison of strategies for deter-
mining the energies of hadron states using some of the
methods outlined in Sec. V. In particular, we consider
correlators constructed from source-optimized source and
sink vectors, a source-optimized source and signal/noise-
optimized sink vector, and signal/noise-optimized source
and sink vectors. In all cases, we focus on the ground state
energy, and in addition, we consider the first excited state
energy for the rho. In the case of the 26 × 26 rho correlator
matrix, we determine the source optimized vectors using

the variational techniques described in Appendix A with
τ0 ¼ 3 and τ1 ¼ 14. In the case of the pion, proton and
delta correlator matrices, the variational technique produces
ground state correlators that are statistically indistinguish-
able from those produced by using the least contaminated
diagonal element of the correlator matrix, indicating that
the different Gaussian smearings that were used in the
sources and sinks were not sufficiently orthogonal for the
variational approach to work well. The correlators con-
structed from the variationally determined source and sink
vectors, however, possessed considerably larger uncertain-
ties by comparison. For these systems, we therefore opt to
use the least contaminated matrix element as a proxy for a
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FIG. 13 (color online). Same as Fig. 11, for the delta ground state.

WILLIAM DETMOLD AND MICHAEL G. ENDRES PHYSICAL REVIEW D 90, 034503 (2014)

034503-22



correlator constructed from source-optimized source and
sink vectors in our analysis.
Let us begin with the ground state correlators. In

Figs. 11–14, we consider correlators generated from
source and sink vectors obtained at points along a path of
steepest ascent on the signal/noise landscape, following the
methods described in Sec. IV E. The trajectory of ascent
begins with source and sink vectors which have been
source optimized. We consider ascents on two different
signal/noise landscapes. In one case (left), the landscape is
defined by the space of all sink vectors, while holding the
source vector fixed, whereas in the other case (right) we

consider the landscape obtained by constraining the source
and sink vectors to be equal. By considering the trajectory of
ascent in these ways we are able to continuously interpolate
between source-optimized correlators and signal/noise-
optimized correlators. We consider three points along the
trajectory: the source optimized starting point (I), some
arbitrarily chosen intermediate point (II) and the signal/
noise optimized end point (III). The signal/noise ratios
as a function of the trajectory time, τascent ¼ ϵn [where
ϵ ¼ 0.0001 is the step size and n corresponds to the nth
iteration of Eq. (66)], are illustrated in the figures (top), with
the points (I), (II), and (III) indicated along the trajectories.
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FIG. 14 (color online). Same as Fig. 11, for the rho ground state.
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The signal/noise is normalized in the figures by themaximum
signal/noise, θmax, obtained by using the optimization
procedure discussed in Sec. IVG. The optimization along a
path of steepest ascent is performed in all cases using
τs ¼ τn ¼ 20.
For the first rho excited state, shown in Fig. 15, we

follow the same procedure as the ground states. In addition,
we impose constraints on the sink and/or source, requiring
that they remain orthogonal to all ground state vectors
obtained variationally at time slices τ ¼ 13–20. Such
constraints prevent the correlator from potentially becom-
ing ground-state dominated within that time interval as a

result of the presence of statistical fluctuations. Note that
point (I) along the steepest ascent trajectory corresponds to
the variationally obtained source and sink vectors for the
first excited state. As such, the vector only approximately
respects the orthogonality constraints imposed. All sub-
sequent points along the trajectory have the constraint fully
imposed, however, giving rise to the discontinuity in the
signal/noise trajectory at the initial ascent time.
The effective mass associated with correlators con-

structed from source and sink vectors at positions (I),
(II), and (III) are displayed in Figs. 11–15 (center), along
with the corresponding signal/noise as a function of time
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FIG. 15 (color online). Same as Fig. 11, for the first rho excited state.
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FIG. 16 (color online). Top: Extracted energy of the pion, from single- (circle), double- (square), and triple-exponential (diamond)
fits to the correlators shown in Fig. 11 (center) as a function of τmin. Results are shown for signal/noise-optimized correlators with a
fixed (left) and unconstrained (right) source, and for the respective cases labeled (I), (II), and (III). A horizontal band indicates the
1σ error about the central value estimate of the energy quoted in [8]. Center: Corresponding χ2=d:o:f: obtained for each fit. The
horizontal line indicates the χ2=d:o:f: ¼ 1.1 threshold used to define an acceptable fit. Fit results associated with the earliest τmin
satisfying χ2=d:o:f: < 1.1 are indicated with vertical dashed lines, and provided in Table I. Bottom: Relative uncertainties on the
extracted energy as a function of τmin.
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separation (bottom). Note that the normalized signal/noise
associated with the correlators may slightly exceed unity
because the uncertainties were determined via a bootstrap
analysis of the correlation functions, which are subject to
statistical variation, whereas the normalization factor was
determined by extremizing the signal/noise ratio. In the

case of the pion ground state, a sustained signal/noise
enhancement of approximately 1.2 is achieved for the
correlator, whereas for the proton, delta, and rho ground
states, a sustained enhancement ranges from approximately
2 to 3. In each case, significant excited state contamination
is introduced when source and sink vectors are left unfixed
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FIG. 17 (color online). Same as Fig. 11, for the proton ground state. Fit results associated with the earliest τmin satisfying
χ2=d:o:f: < 1.1 are indicated with vertical dashed lines, and provided in Table II.
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in the optimization. Such contamination is suppressed for
the pion, proton, and delta, and to a lesser extent the rho,
when the source is held fixed and equal to a source
optimized source vector.
For each ground state correlation function, we perform

fully correlated, multiexponential fits to the data, scanning

in τmin for fixed τmax ¼ 40 and 45; for the first rho excited
state, we consider τmax ¼ 30 and 35. Fits were performed
using single-, double- and triple-exponential model fit
functions. Results obtained for the extracted energies in
each fit are shown in Figs. 16–20 (top), along with
previously determined estimates of the extracted energies
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FIG. 18 (color online). Same as Fig. 11, for the delta ground state. Fit results associated with the earliest τmin satisfying χ2=d:o:f: < 1.1
are indicated with vertical dashed lines, and provided in Table III.
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obtained from the significantly higher statistics calculations
of [8] (1σ uncertainties are indicated by a horizontal band),
where available. As in Figs. 11–15, results are shown for
correlators obtained at points (I), (II), and (III) along the

paths of steepest ascent for fixed (left) and unconstrained
(right) sources. Also shown in Figs. 16–20 (center) is the
corresponding goodness of fit, as quantified by the χ2 per
degree of freedom (d.o.f). Variation in the fit results with

0.148
0.150
0.152
0.154
0.156
0.158

E

I

0.148
0.150
0.152
0.154
0.156
0.158

E

II

0 5 10 15 20 25 30 35
0.148
0.150
0.152
0.154
0.156
0.158

min

E

III

0.148
0.150
0.152
0.154
0.156
0.158

E

I

0.148
0.150
0.152
0.154
0.156
0.158

E

II

0 5 10 15 20 25 30 35
0.148
0.150
0.152
0.154
0.156
0.158

min

E

III

0.0

0.5

1.0

1.5

2.0

2
d.

o.
f.

I

0.0

0.5

1.0

1.5

2.0

2
d.

o.
f.

II

0 5 10 15 20 25 30 35
0.0

0.5

1.0

1.5

2.0

min

2
d.

o.
f.

III

0.0

0.5

1.0

1.5

2.0
2

d.
o.

f.

I

0.0

0.5

1.0

1.5

2.0

2
d.

o.
f.

II

0 5 10 15 20 25 30 35
0.0

0.5

1.0

1.5

2.0

min

2
d.

o.
f.

III

0.0
0.1
0.2
0.3
0.4
0.5

10
0

E
E I

0.0
0.1
0.2
0.3
0.4
0.5

10
0

E
E II

0 5 10 15 20 25 30 35
0.0
0.1
0.2
0.3
0.4
0.5

min

10
0

E
E III

0.0
0.1
0.2
0.3
0.4
0.5

10
0

E
E I

0.0
0.1
0.2
0.3
0.4
0.5

10
0

E
E II

0 5 10 15 20 25 30 35
0.0
0.1
0.2
0.3
0.4
0.5

min

10
0

E
E III

FIG. 19 (color online). Same as Fig. 11, for the rho ground state. Fit results associated with the earliest τmin satisfying χ2=d:o:f: < 1.1
are indicated with vertical dashed lines and provided in Table IV.
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τmax is found to be negligible, and therefore all results are
displayed for τmax ¼ 45 (ground states) and τmax ¼ 35
(excited rho state). The specific values of τmin used for
the fits may be inferred from these plots. Only fit results
yielding a χ2=d:o:f: < 2 and a statistically-meaningful,
stable extraction of the energy are displayed.

In Figs. 16–20 (bottom), we show the percent deviation
associated with the 1σ statistical uncertainties, δE, on the
extracted energies, E, obtained from a bootstrap analysis of
each fit. We may use this quantity to directly compare the
noise reduction associated with the fit results of each
correlation function, given a choice of τmin. For a fixed
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FIG. 20 (color online). Same as Fig. 11, for the first rho excited state. Fit results associated with the earliest τmin satisfying
χ2=d:o:f: < 1.1 are indicated with vertical dashed lines, and provided in Table V.
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τmin chosen to yield good fit results (i.e., τmin values for
which χ2=d:o:f:≲ 1 when possible, and for which the fit
result is robust against small variations about τmin) for all
three correlators, (I), (II), and (III), along the path of steepest
ascent, we find that statistical errors on the extracted energies
decrease by an amount which is commensurate with the
enhancement of the correlator signal/noise.
It is often possible to achieve good fits at earlier values

of τmin for the source-optimized correlators (I) compared
to the intermediate correlator (II) and signal/noise-
optimized correlator (III). To make a fair comparison
of the uncertainties in energies extracted from correlators
at different τmin, we start by defining a threshold
χ2=d:o:f:, below which, the fit is deemed acceptable.
Note that the precise value is not relevant, so long as it is
consistent among all the correlators, and is small enough
to reasonably ignore possible systematic effects (particu-
larly those attributed to excited state contamination at
early τmin). For this study, we choose the threshold value
to be 1.1. For each correlator, we define the best
acceptable fit result to be one which has a χ2=d:o:f: less
than the threshold value, and the earliest possible τmin.
This typically corresponds to the acceptable fit with the
smallest uncertainty. The selected fits are indicated in
Figs. 16–20 (vertical dashed lines), and the numerical

results are also provided in Tables I–V. Note that for
some correlators, the χ2=d:o:f: obtained from the fits
exceed the chosen threshold value for all τmin, and
therefore fit results for those correlators are excluded
from the analysis. In the tables, we use bold typeface to
identify the best-fit energy result yielding the smallest
statistical uncertainties for each hadron type. In all cases,
we find that the energies have smaller statistical uncer-
tainties when extracted from correlators obtained using
some form of signal/noise optimization (either fixed or
unconstrained). Although we find only a modest impro-
vement in uncertainties for energies extracted for the
pion,3 proton, rho ground state, and first rho excited state
using signal/noise optimization, the delta exhibits a
threefold enhancement in signal/noise compared to that
obtained from source-optimized correlators.
We summarize the best fit results for energies extrac-

ted from source-optimized correlators and signal/noise

TABLE I. Multiexponential (i.e., nexp ¼ 1; 2 and 3 exponential) least-squares fit results for the pion ground state energy, E, and
associated statistical uncertainties, δE, χ2=d:o:f, and fit quality, Q. Results are provided for both fixed (left) and unconstrained (right)
sources, corresponding to correlators of type (I), (II), and (III) displayed in Fig. 11. The fit result yielding the smallest statistical
uncertainty is indicated in bold typeface (in cases of a tie, the fit with the lowest χ2=d:o:f was selected). Fit results were omitted in cases
where the χ2=d:o:f: exceeded a threshold value of 1.1 for all τmin. Tabulated fit results are indicated in Fig. 16.

Label nexp τ range EðδEÞ χ2=d:o:f Q τ range EðδEÞ χ2=d:o:f Q

I 1 � � � � � � � � � � � � � � � � � � � � � � � �
I 2 � � � � � � � � � � � � � � � � � � � � � � � �
I 3 � � � � � � � � � � � � � � � � � � � � � � � �
II 1 � � � � � � � � � � � � � � � � � � � � � � � �
II 2 � � � � � � � � � � � � � � � � � � � � � � � �
II 3 � � � � � � � � � � � � � � � � � � � � � � � �
III 1 � � � � � � � � � � � � 21–45 0.06938(25) 1.05 0.40
III 2 � � � � � � � � � � � � 7–45 0.06930(25) 1.02 0.44
III 3 � � � � � � � � � � � � 1–45 0.06928ð25Þ 0.90 0.64

TABLE II. Same as Table I, for the proton ground state. Tabulated fit results are indicated in Fig. 17.

Label nexp τ range EðδEÞ χ2=d:o:f Q τ range EðδEÞ χ2=d:o:f Q

I 1 19–45 0.20850(83) 1.09 0.34 19–45 0.20850(83) 1.09 0.34
I 2 12–45 0.20770(112) 1.06 0.38 12–45 0.20770(112) 1.06 0.38
I 3 � � � � � � � � � � � � � � � � � � � � � � � �
II 1 � � � � � � � � � � � � � � � � � � � � � � � �
II 2 � � � � � � � � � � � � � � � � � � � � � � � �
II 3 � � � � � � � � � � � � � � � � � � � � � � � �
III 1 27–45 0.20747ð70Þ 0.90 0.57 � � � � � � � � � � � �
III 2 8–45 0.20591(89) 1.04 0.41 � � � � � � � � � � � �
III 3 1–45 0.20581(95) 0.92 0.62 � � � � � � � � � � � �

3The majority of pion correlators produce an unacceptable fit,
although the ground state energies are in good agreement with
each other, and with the high precision determination of [8]. The
improvement in the uncertainties of the signal/noise-optimized
correlators is marginal compared to the source-optimized corre-
lator in all cases.

WILLIAM DETMOLD AND MICHAEL G. ENDRES PHYSICAL REVIEW D 90, 034503 (2014)

034503-30



optimized correlators in Fig. 21 (left). The former is
defined as the fit result obtained for the energy with
smallest uncertainties, among correlators of type (I) listed
in Tables I–V. The latter correspond to energies in
Tables I–V listed in bold typeface, and are either of
type (II) or (III). With exception to the first rho excited
state energy, all fit results in Fig. 21 (left) are consistent
within statistical uncertainties, and systematic uncertain-
ties from reasonable variations of the fit range are
negligible. The first rho excited state energy has signifi-
cant systematic uncertainties attributed to a drift in the
energy as a function of τmin (see Fig. 20), but these
uncertainties are comparable in magnitude for both
source- and signal/noise-optimized correlators, and

therefore we omit them from the comparison. In
Fig. 21 (right) we show a summary plot of the corre-
sponding relative uncertainties obtained for each of the
extracted energies.
Let us conclude this section by noting that a more

significant reduction in noise for the extracted energies
may be possible by performing a combined fit of the
signal/noise-enhanced correlator(s) in the late time
regime, and source-optimized correlators in the early time
regime. It is presently unclear whether the marginal
improvements in signal/noise for some of these correlators
is a result of the nature of the system itself, or whether it is
a reflection of the specifics of the correlators currently at
our disposal.

TABLE III. Same as Table I, for the delta ground state. Tabulated fit results are indicated in Fig. 18.

Label nexp τ range EðδEÞ χ2=d:o:f Q τ range EðδEÞ χ2=d:o:f Q

I 1 25–45 0.2616(38) 0.95 0.52 25–45 0.2616(38) 0.95 0.52
I 2 � � � � � � � � � � � � � � � � � � � � � � � �
I 3 � � � � � � � � � � � � � � � � � � � � � � � �
II 1 20–45 0.2652ð13Þ 0.95 0.53 21–45 0.2679(14) 1.03 0.42
II 2 15–45 0.2617(25) 0.94 0.55 15–45 0.2637(26) 1.07 0.37
II 3 � � � � � � � � � � � � � � � � � � � � � � � �
III 1 � � � � � � � � � � � � 26–45 0.2658(15) 0.85 0.65
III 2 � � � � � � � � � � � � 12–45 0.2630(15) 0.91 0.60
III 3 � � � � � � � � � � � � 5–45 0.2633(18) 1.03 0.41

TABLE IV. Same as Table I, for the rho ground state. Tabulated fit results are indicated in Fig. 19.

Label nexp τ range EðδEÞ χ2=d:o:f Q τ range EðδEÞ χ2=d:o:f Q

I 1 27–45 0.15120(43) 0.97 0.49 27–45 0.15120(43) 0.97 0.49
I 2 7–45 0.15144(32) 1.08 0.34 7–45 0.15144(32) 1.08 0.34
I 3 � � � � � � � � � � � � � � � � � � � � � � � �
II 1 � � � � � � � � � � � � 30–45 0.15233ð25Þ 1.09 0.36
II 2 � � � � � � � � � � � � � � � � � � � � � � � �
II 3 � � � � � � � � � � � � � � � � � � � � � � � �
III 1 30–45 0.15187(29) 0.87 0.60 35–45 0.15268(34) 0.74 0.67
III 2 9–45 0.15078(29) 1.07 0.37 14–45 0.15190(26) 0.96 0.53
III 3 4–45 0.15113(37) 1.03 0.41 6–45 0.15165(29) 1.03 0.42

TABLE V. Same as Table I, for the first rho excited state. Tabulated fit results are indicated in Fig. 20.

Label nexp τ range EðδEÞ χ2=d:o:f Q τ range EðδEÞ χ2=d:o:f Q

I 1 12–35 0.3135(14) 0.97 0.50 12–35 0.3135(14) 0.97 0.50
I 2 6–35 0.2928(115) 1.05 0.39 6–35 0.2928(115) 1.05 0.39
I 3 5–35 0.2802(82) 0.98 0.49 5–35 0.2802(82) 0.98 0.49
II 1 16–35 0.3110(24) 0.96 0.50 18–35 0.3129(21) 0.99 0.46
II 2 7–35 0.2914(87) 1.07 0.36 7–35 0.3066(43) 0.96 0.53
II 3 � � � � � � � � � � � � 2–35 0.3077(58) 1.09 0.34
III 1 16–35 0.3145(15) 0.83 0.66 17–35 0.3202ð11Þ 1.05 0.40
III 2 5–35 0.3116(29) 1.00 0.47 7–35 0.3128(27) 0.94 0.55
III 3 2–35 0.2959(112) 0.58 0.96 2–35 0.3111(39) 0.93 0.57
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VII. DISCUSSION AND CONCLUSION

In this paper, we have developed a set of strategies for
increasing the signal/noise in stochastic estimates of
correlation functions that, counterintuitively, involve a
tuning of source and sink interpolating operators away
from those that have maximal overlap with the eigenstates
of the system. These strategies are implemented primarily
via linear algebra and are computationally inexpensive to
apply. We have demonstrated in a two-state toy model
that, with such tuning, it is possible to achieve dramatic
enhancements in signal/noise compared to that achieved
using source-optimized sources and sinks. Furthermore,
such enhancements can occur without introducing signifi-
cant excited state contamination in correlators at early
times, either as a result of fortune, or by imposing
appropriate constraints on the source and/or sink vectors.
The methods we advocate are applicable to both ground

and excited states. We provide explicit formulas for the
signal/noise-optimized source and sink vectors expressed
in terms of a given correlator matrix and its associated noise
correlator. The results allow for arbitrarily imposed con-
straints on either the source vector, sink vector, or both. We
furthermore describe possible ways of combining source-
optimization and signal/noise-optimization strategies,
which may be of use for extracting better estimates of
energies from current correlator data. We apply some of the
proposed methods to examples of QCD data, specifically
focusing on single hadron correlation functions. Although
the signal/noise enhancement in the correlators themselves
show promise, ranging from enhancement factors of
approximately 1.2 for pions and 2–3 for the proton, delta
and rho, the associated enhancements found in the energies
extracted from multiexponential fits of the correlators are,
in most cases, less impressive (one notable exception is the
delta ground state energy, which exhibited a threefold
enhancement over that extracted from a source-optimized

correlator). The loss in enhancement for energies is traced
to the introduction of excited state contamination as early
times as a result of a finite operator basis and/or contami-
nation from all states due to statistical noise. At present, it
remains unclear whether the situation might be improved
upon by considering a larger, or improved, basis of
interpolating operators, or whether those QCD correlators
fundamentally lack the qualities required for achieving the
large enhancements that appear possible in the toy model.
Had the enhancements been more substantial in the
correlator data, it is likely that more significant gains in
signal/noise for extracted energies would follow. Despite
the varied results, we remain optimistic that the methods
may be profitably applied to other systems, possibly
including multihadron correlators, where a greater freedom
in the kinds of interpolating operators used might be
exploited. An interesting avenue to investigate further is
whether forming correlators with interpolating operators
carrying unequal quantum numbers (for example, differing
in momentum, spin, parity or any other quantum number
that is not conserved for a fixed, stochastically generated
background field configuration) might yield an additional
signal/noise enhancement through the techniques we have
discussed. Although the correlations between operators of
differing quantum numbers vanish in the limit of infinite
statistics, nontrivial contributions to the noise correlator
arise, which may, in turn, be profitably exploited.
We have argued that the maximum achievable signal/

noise enhancement in correlators is determined, in part, by
the number and choice of interpolating operators used in
their construction. However, even in the limit that the basis
of interpolating operators is complete, there remains a
fundamental limit on the amount of enhancement that is
possible, determined entirely by the lowest energy signal
and noise states. In the context of lattice simulations, an
interesting direction to consider is whether it is possible to
favorably manipulate the properties of the noise states by

Source optimized
Signal noise optimized

p
0.05

0.10

0.15

0.20

0.25

0.30

0.35
E

Source optimized
Signal noise optimized

p
0.0

0.5

1.0

1.5

10
0

E
E

FIG. 21 (color online). Left: Extracted energies for the pion (π), proton (p), delta (Δ), rho ground state (ρ), and first rho excited state
(ρ�). Energies are determined using the best fit result among correlators of type I (source-optimized) and best fit result among correlators
of type II and III (signal/noise-optimized) obtained from Tables I–V; the latter are indicated in bold typeface in the tables. Right:
Corresponding relative errors for each of the selected fit results.
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introducing finite volume artifacts via appropriately chosen
boundary conditions, or discretization artifacts through the
introduction of higher dimension operators (which would
have no effect on the continuum limit of the theory). In the
former case, for example, the boundary conditions may be
chosen so as to eliminate the lowest energy noise state,
resulting in modest gains in signal/noise (see, e.g., the
references [21,22]). In the latter case, the presence of
discretization artifacts can lead to a reduction in the energy
splittings between signal and noise ground states, thereby
decreasing the decay rate for signal/noise degradation.
Such an approach has been used to significantly reduce
signal/noise in the case of heavy quarks [23,24]. In these
approaches, the finite volume and lattice spacing effects
which are present in measured quantities may subsequently
be removed by conventional infinite volume and continuum
limit extrapolations. It would be interesting to explore
whether finite volume or lattice artifacts can be exploited,
in the same spirit, in order to favorably alter the character of
the overlap factors appearing in the signal/noise ratio,
ultimately allowing for a greater enhancements than what
is inherently allowed by the physical (i.e., continuum limit
and infinite volume) signal and noise states.
It is interesting to consider the origin of noise in

correlation functions, here specifically focusing on QCD.
Given the ultimate goal of finding a correlation function in
which signal/noise remains constant in time, so that a
significant increase in statistical precision is feasible with a
polynomial increase in computational effort, it is important
to ascertain whether this is practical, or indeed possible. To
achieve such a correlator, we would require that the
associated noise correlator have vanishing, or exponentially
small, overlap onto the eigenstates of the noise system with
energies below twice the energy of the state that we are
attempting to extract. That is, we would need to project
against a subspace in the noise correlator spanned by such
states. Note that such a projection, if it were possible,
would coincide with signal/noise optimization in the limit
of exponential enhancement at late times. This connection
was explicitly made for the toy model in Sec. III, were we
demonstrated how a large signal/noise enhancement for the
ground state is, in part, limited by the subleading contri-
butions to the noise correlator; orthogonalizing the sources
against these subleading noise states results in the removal
of such a cutoff on the enhancement.
Let us explore the feasibility of this goal further, by

focusing on the case of A-nucleon correlators with a ground
state of energy, EAN . In this case, the most relevant degrees
of freedom contributing to the noise are the pions, as they
are the lightest states. At a fixed volume, V ¼ L3, and
quark mass, mq, there are a finite number of noise-creating
pion states, with gaps between the states controlled (up to
the effects of hadronic interactions) by mπ and L, and
energies ~En≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3Aπþð2π=LÞ2n

p
up to some ~Enmax

≲ 2EAN ,
where E3Aπ is the ground state energy for 3A pions at rest.

The multiplicity of these states is given by the number of
ways of partitioning the integer n into 3A sums of three
squares. One may explicitly evaluate the total number of
such states with vanishing total momentum between the
energies E3Aπ and 2EAN , and find that it scales asymptoti-
cally as ∼ðL

ffiffiffiffiffiffiffiffi
δE2

p
Þ3ð3A−1Þ at large volume, where δE2 ¼

4E2
AN − E2

3Aπ . Note that this estimate neglects isospin-
dependent prefactors which can only further increase the
estimate by a volume-independent multiplicative amount. As
thevolumebecomes large, or asmq=ΛQCD decreases (thereby
making pions relatively lighter than typical hadrons), the
number of such states dramatically increases with the afore-
mentioned scaling (for a purely fermionic system, this scaling
is cut off by the total number of states that can be represented
on the discrete set of points), and consequently, the task of
constructing a source and sink interpolating operator that is
orthogonal to these noise states becomes increasingly diffi-
cult. Indeed, it is clear that the problem scales exponentially in
the atomic numberA, explicitly showing the close connection
to the sign problem that hampers calculations at nonzero
baryon chemical potential [25].
In [2], it was argued that by using sinks that individually

project baryons in a multiple baryon correlation function to
zero momentum, the overlap of the noise correlator onto the
state with three pions at rest is suppressed by the volume
(the quarks in the individual correlator, C, and the anti-
quarks in C� are near each other only 1=V of the time
relative to forming baryon and antibaryon states). This
seems sensible, but as the volume becomes large, the
exponential proliferation of states that contribute to noise
will overwhelm the polynomial suppression of the overlap
onto individual states, making extraction of signals increas-
ingly problematic. Even if the space of states that we want
to avoid was of manageable dimension, a critical problem is
that one does not directly control the source and sink
interpolators for the noise correlator, and as discussed at
length in the current work, they arise as the outer products
of the interpolators in the original correlator. Unless the
eigenstates of the noise correlator are also outer product
states, and there is no reason that they should be, then it is
in principle not possible to fully orthogonalize against
them. The best one can do along these lines is reduce the
overlap, and explore the interplay between the resulting
signal/noise enhancement and contamination from unde-
sired states, as advocated in this study.4
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APPENDIX A: SOURCE OPTIMIZATION

A standard approach for analysis of correlators is the
variational method [3–6], a linear algebra-based approach
for finding linear combinations of interpolating fields having
maximal overlap with the low-lying states of the system. The
method can be framed as an optimization problem similar to
that for signal/noise, and we refer to this as “source opti-
mization”. Let us specialize to the case where N0¼N, and
C ¼ C†. Given equal source and sink vectors, ψ 0 ¼ ψ , the
correlation function is positive-definite and a monotonically
decreasing function of time separation. We may therefore
find source and sink vectors having maximal overlap with
the eigenstates of the system by extremizing the function

ρðψ ; ξÞ ¼ − log

�
ψ†Cψ
ψ†C0ψ

�
− ξðψ†ψ − 1Þ ðA1Þ

with respect to ψ and ξ at every time slice, givenC0 ¼ Cðτ0Þ
evaluated at a reference time slice, τ0. There are N such
critical points corresponding to theN lowest energy states of
the system. Explicitly, the critical points at each time slice, τ,
are given by solutions to the generalized eigenvalue problem:

CðτÞψnðτÞ ¼ λnðτÞCðτ0ÞψnðτÞ; n ¼ 0;…; N − 1.

ðA2Þ
One can prove that the eigenvalues obtained in this approach
satisfy

λnðτÞ ¼ e−Enðτ−τ0Þ; ðA3Þ
up to relative corrections of order e−ðEN−EnÞτ within the time
interval τ0 < τ < 2τ0, and for τ0 sufficiently large [6].
Furthermore, the correlator overlap factors and source
vectors satisfy

Z†
mψn ¼ δm;n; ðA4Þ

up to exponentially suppressed corrections for τ within this
regime. In addition to the excited state contamination which
arises from the use of a limited basis of interpolating fields, a
secondary source of contamination coming from all states
may be attributed to fluctuations in the estimate of the
correlator matrix. In Sec. V C, we have outlined how one
might reduce the overall uncertainties in variational calcu-
lations in cases when the statistical uncertainties dominate
the systematic uncertainties.

APPENDIX B: DERIVATION OF EQ. (74)

In this section, we derive Eq. (74) from Eq. (73). We
focus only on the solution for ψ 0

α, since the solution for
ψα follows from an identical analysis. To begin, note that
by left-multiplying both sides of the first equation in
Eq. (73) by ψ 0

α
† one finds that ξαα ¼ 0. Combining this

observation with the fact that ψ 0
0 ∝ Cψ0, we may reexpress

the equation as

ψ 0
0

ψ 0
α
†ψ 0

0

¼ ψ 0
α

ψ 0
α
†σ2ψ0

ψ 0
α
þ
Xα−1
β¼0

ξ0αβσ
−2
ψ0
ψ 0
β: ðB1Þ

From the structure of this formula, one can verify by
induction that σ−2ψ0

ψ 0
α is a linear combination of vectors ψ 0

β
for β < αþ 1. The most general expression for ψ 0

α must
therefore be of the form

ψ 0
α ¼

Xα−1
β¼0

yαβψ 0
β þ yασ−2ψ0

ψ 0
α−1 ðB2Þ

for some undetermined coefficients yαβ and yα. By exploit-
ing the orthonormality of ψ 0

α, one finds

yαβ þ yαψ 0
β
†σ−2ψ0

ψ 0
α−1 ¼ 0; β < α: ðB3Þ

Plugging the result for yαβ back into the above expression,
one arrives at

ψ 0
α ¼ yα

�
1 −

Xα−1
β¼0

ψ 0
βψ

0
β
†
�
σ−2ψ0

ψ 0
α−1: ðB4Þ

The term in brackets is identified withQ0
α−1 and the overall

coefficient yα is identified with the normalization fac-
tor Aαðψ0Þ.
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