
Phase structure of three and four flavor QCD

Christian S. Fischer,1 Jan Luecker,2,3 and Christian A. Welzbacher1
1Institut für Theoretische Physik, Justus-Liebig-Universität Gießen,

Heinrich-Buff-Ring 16, D-35392 Gießen, Germany
2Institut für TheoretischePhysik,UniversitätHeidelberg, Philosophenweg16,D-69120Heidelberg,Germany

3Institut für Theoretische Physik, Goethe-Universität Frankfurt,
Max-von-Laue-straße 1, D-60438 Frankfurt/Main, Germany

(Received 11 June 2014; published 28 August 2014)

We investigate the phase structure of QCD at finite temperature and light-quark chemical potential. We
improve upon earlier results for Nf ¼ 2þ 1 dynamical quark flavors and investigate the effects of charm
quarks in an extension to Nf ¼ 2þ 1þ 1. We determine the quark condensate and the Polyakov loop
potential using solutions of a coupled set of (truncated) Dyson-Schwinger equations for the quark and
gluon propagators of Landau gauge QCD. At zero chemical potential we find excellent agreement with
results from lattice-QCD. With input fixed from physical observables we find only a very small influence of
the charm quark on the resulting phase diagram at finite chemical potential. We discuss the location of the
emerging critical end point and compare with expectations from lattice gauge theory.
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I. INTRODUCTION

Heavy ion collision experiments at BNL, LHC and the
future FAIR facility are designed to probe the quark-gluon
plasma (QGP), the state of strongly interacting matter in the
early Universe a few microseconds after the big bang. In
the theoretical description of these experiments, in principle
two entire quark families have to be taken into account.
The effect of charm quarks on the equation of state (EoS)
is expected to become significant at top LHC energies
reaching temperatures several times the one of the QCD
crossover region for light quarks. Hydrodynamical descrip-
tions of the QGP in this temperature region therefore need
to incorporate the charm quark in their EoS. However, even
at smaller temperatures at or above the light-quark cross-
over region, the effects of charm quarks on the EoS and the
transition temperatures, although predicted to be small by
perturbation theory [1], may not be entirely negligible.
Precise results from ab initio calculations on the lattice at

zero chemical potential and physical quark masses are
available for Nf ¼ 2þ 1 flavors; see e.g. [2,3] and refer-
ences therein. For the corresponding case ofNf ¼ 2þ 1þ 1

flavors only preliminary results for transition temperatures
and the equation of state using staggered [4,5] and Wilson
type quarks [6] are available. One of the interesting results
of these studies is that charm quarks may not be treated in
quenched approximation, i.e. the backreaction of the charm
quarks onto the Yang-Mills sector of the theory is quanti-
tatively important [5].
While the lattice results provide excellent guidance for

zero baryon chemical potential μB, the situation becomes
much more challenging at μB ≠ 0 due to the fermion
sign problem. Various extrapolation methods on the lattice
agree with each other for μB=T < 1; see e.g. [7–9].

For μB=T > 1, however, uncertainties accumulate rapidly.
Thus other theoretical methods are mandatory to comple-
ment the lattice calculations.
In this work we use the approach via Dyson-Schwinger

equations (DSEs). We update previous calculations of the
Nf ¼ 2þ 1 case and estimate the influence of the charm
quark on the phase structure of QCD and the location of a
putative critical end point (CEP). One of the advantages of
this framework over model treatments is the direct acces-
sibility of the Yang-Mills sector of QCD thus rendering a
fully dynamical treatment of all members of the first two
quark families feasible. In order to make the necessary
truncations of the DSEs well controlled we use constraints
such as symmetries and conservation laws as well as
comparison with corresponding results from lattice calcu-
lations when available. The goal is then to tighten this
control to such an extent that reliable results for large
chemical potential become feasible.
The paper is organized as follows. In the next section we

explain our truncation scheme, which is built upon previous
work [10–12]. We use temperature dependent lattice data
for the quenched gluon propagator and implement the
backreaction of the quarks onto the gluons by adding the
quark-loop in the gluon-DSE. Compared to Ref. [11],
where first results for the Nf ¼ 2þ 1 phase diagram have
been reported, we correct the value of the input up/down
quark masses to their physical values, thus improving the
agreement with the lattice results at zero chemical potential.
We also detail a new procedure to fix the strength of the
quark-gluon interaction by solving meson Bethe-Salpeter
equations in the vacuum according to a novel method
introduced in Ref. [13]. In Sec. III B we present our
updated results for the Nf ¼ 2þ 1 case and compare with
the results of lattice QCD where available. In Sec. III C we
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discuss the effects of the charm quark on the QCD phase
diagram and conclude in Sec. IV.

II. ORDER PARAMETERS FROM QCD
PROPAGATORS

In order to study the chiral and deconfinement transitions
in functional frameworks such as DSEs or the functional
renormalization group, one needs to specify proper order
parameters. For the chiral transition, the condensate of a
quark with flavor f, hψ̄ψif, can be extracted from the trace
of the quark propagator SfðpÞ via

hψ̄ψif ¼ Z2ZmNcT
X
n

Z
d3p
ð2πÞ3 TrD½S

fðpÞ�; ð1Þ

where Z2 is the quark wave function renormalization
constant, Zm the quark mass renormalization constant
and Nc ¼ 3 the number of colors. The sum is over
Matsubara frequencies ωn ¼ πTð2nþ1Þ and p¼ðωp; ~pÞ.
For all flavors with nonzero bare quark mass the condensate
is quadratically divergent and needs to be regularized. For
dimensional reasons, the divergent part is proportional to
the bare quark mass and therefore the difference

Δl;s ¼ hψ̄ψil −
ml

ms
hψ̄ψis ð2Þ

fulfils this purpose: the divergent part of the light-quark
condensate, l ∈ fu; dg, is canceled by the divergent part in
the strange quark condensate. At physical quark masses and
small chemical potential, the chiral transition is a crossover,
leading to ambiguities in the definition of a pseudocritical
temperature. In this work we use the maximum of the chiral
susceptibility

χhψ̄ψi ¼
∂hψ̄ψil
∂ml

; ð3Þ

as well as the inflection point of the condensate, i.e. the

maximum of ∂hψ̄ψil∂T .
The deconfinement transition has been studied with

functional methods via the dressed Polyakov loop
[10,11,14–16], the Polyakov loop potential [12,17,18]
and the analytic properties of the quark propagator
[19–21]. In this work we use the Polyakov loop potential
to determine the deconfinement transition at zero and finite
chemical potential.
In [18] the DSE for a background field Ā0 ¼ hA0i has

been introduced; see Fig. 1. Upon integration this DSE
yields the potential of the background field, which can be
connected to the Polyakov loop by

L½hA0i� ¼
1

Nc
TreigA0=T ≥ hL½A0�i: ð4Þ

That is, the Polyakov loop evaluated for the background
field is an upper bound for the Polyakov loop expectation
value. If we drop the two-loop diagrams (the last two in
Fig. 1), we are able to obtain this potential solely from the
QCD propagators. This has been used in [12] for the first
time for unquenched QCD and at finite chemical potential.
In the samework, it has also been shown that the deconfine-
ment transition temperature agrees with that obtained
from the dressed Polyakov loop. Given this agreement,
we use the minimum of the Polyakov loop potential in the
approximations discussed in [12,18] as an order parameter
for confinement here.
In order to determine these order parameters we need to

specify the propagators of QCD, i.e. the gluon, ghost
and quark propagators. To this end we use a combination
of lattice methods and solutions from Dyson-Schwinger
equations.

A. Quark and gluon DSEs

The quark and gluon propagators at finite temperature T
and quark-chemical potential μ are given by

S−1ðpÞ ¼ i ~ωnγ4CðpÞ þ i~p ~γ AðpÞ þ BðpÞ; ð5Þ

DμνðpÞ ¼ PL
μνðpÞ

ZLðpÞ
p2

þ PT
μνðpÞ

ZTðpÞ
p2

; ð6Þ

with momentum p ¼ ðωn; ~pÞ, ωn ¼ πTð2nþ 1Þ for fer-
mions, ωn ¼ πT2n for bosons; and we use the abbreviation
~ωn ¼ ωn þ iμ. The projectors PL;T

μν are longitudinal (L)
and transversal (T) with respect to the heat bath and
given by

PT
μν ¼ ð1 − δμ4Þð1 − δν4Þ

�
δμν −

pμpν

~p2

�
; ð7Þ

PL
μν ¼ Pμν − PT

μν: ð8Þ

The DSE for the quark propagator is shown diagram-
matically in Fig. 2. In order to self-consistently solve this
equation, we need to specify the fully dressed gluon
propagator and quark-gluon vertex. Model calculations
[22,23] often use simple Ansätze for the gluon propagator
that do not take into account the proper temperature and
flavor dependence of the gluon self-energy. We prefer to
include these important effects by taking the Yang-Mills
sector of QCD into account and calculating the back-
reaction of the quarks onto the gluon explicitly. This

FIG. 1. The DSE for a background field Ā0.
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framework has been gradually evolved from the quenched
case, Nf ¼ 0 [10,24], to two flavor QCD [11,16,25] and
recently to Nf ¼ 2þ 1 [11]. It is extended here to include
effects of the charm quark. We believe such an approach
has two distinct advantages over simple modeling. On the
one hand it allows us to trace the effects of quark masses
and flavors as exposed in the Columbia plot explicitly in the
functional framework. On the other hand, it serves to
take into account the effects of chemical potential on the
gluon section of QCD explicitly, thereby rendering results
at finite chemical potential more reliable. Furthermore,
in our approach we have access to all fundamental degrees
of freedom of QCD, i.e. quark, gluon and ghost propa-
gators, at all values of T and μ. This allows for the
calculation of the Polyakov loop potential, see Fig. 1,
and in principle of the full effective action via the functional
flow equation.

The key idea of our truncation is to replace the
Yang-Mills self-energies of the gluon DSE with lattice
data for the quenched propagator. The resulting gluon
DSE is shown in Fig. 3 for 2þ 1þ 1 flavors. This
approximation misses unquenching effects in the Yang-
Mills self-energies. At zero temperature, the effects of this
approximation can be explicitly determined using the
framework of Ref. [26]; it is below the five percent level.
We will later on justify this approximation further, by
comparing the resulting unquenched gluon propagator with
corresponding lattice results for Nf ¼ 2.
With the quenched lattice input, the resulting DSEs for

the quark and gluon propagators read

½SfðpÞ�−1 ¼ Zf
2 ½Sf0ðpÞ�−1 þ CFZ

f
1Fg

2T
X
n

Z
d3l
ð2πÞ3 γμS

fðlÞΓf
νðl; p; qÞDμνðqÞ;

D−1
μν ðpÞ ¼ ½Dqu:

μν ðpÞ�−1 −
XNf

f

Zf
1F

g2

2
T
X
n

Z
d3l
ð2πÞ3 Tr½γμS

fðlÞΓf
νðl; q;pÞSfðqÞ�; ð9Þ

where q ¼ ðp − lÞ, Sf is the quark propagator for one specific flavor f ∈ fu; d; s; cg,CF ¼ N2
C−1
2NC

is the Casimir operator and
Γν the dressed quark-gluon vertex. The vertex and wave function renormalization constants are denoted by Z1F and Z2; for
the running coupling we use α ¼ g2=ð4πÞ ¼ 0.3. The remaining quantity to be determined is the dressed quark-gluon vertex
Γν. Here we use the same construction as in previous works (see e.g. [11]), which utilizes the first term of the Ball-Chiu
vertex, satisfying the Abelian Ward-Takahashi identity (WTI), multiplied with an infrared enhanced function Γðp2; k2; q2Þ
that accounts for the non-Abelian dressing effects and the correct ultraviolet running of the vertex. See Appendix for more
details on our vertex construction. The resulting expression reads

Γf
μðl; p; qÞ ¼ γμ · Γðl2; p2; q2Þ ·

�
δμ;4

CfðlÞ þ CfðpÞ
2

þ δμ;i
AfðlÞ þ AfðpÞ

2

�
; ð10Þ

Γðl2; p2; q2Þ ¼ d1
d2 þ x

þ x
Λ2 þ x

�
β0αðμÞ ln½x=Λ2 þ 1�

4π

�
2δ

ð11Þ

where l and p are fermionic momenta and q is the gluon
momentum. The dressing functions Af and Cf of the quark
propagators appearing in Eq. (10) introduce a temperature,
chemical potential and quark mass/flavor dependence of the
vertex along the WTI. The second term in Eq. (11) ensures
together with the gluon dressing functions the correct
logarithmic running of the loops in the quark and

gluon-DSE. Both scales Λ and d2 are fixed such that the
vertex matches the corresponding scales in the gluon lattice
data. In [10] these have been determined to d2 ¼ 0.5 GeV2

andΛ ¼ 1.4 GeV.Theanomalous dimension isδ ¼ −9Nc
44Nc−8Nf

and β0 ¼ 11Nc−2Nf

3
. The only free parameter of the interaction

is the vertex strength d1, which will be discussed below.

−1
+=

1−1−

FIG. 2. The DSE for the quark propagator. Large blobs denote
dressed propagators and vertices.

=
−1

+  2
−1

+
s

+
c

u/d

FIG. 3 (color online). The truncated gluon DSE for Nf ¼
2þ 1þ 1 QCD. The yellow dot denotes the quenched (lattice)
propagator.
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We identify the squared momentum variable x with the
gluon momentum q2 in the quark DSE and with the sum of
the two squared quark momenta l2 þ p2 in the quark loop.
This different treatment of the momentum dependence is
necessary to maintain multiplicative renormalizability of
the gluon-DSE [26]. The renormalization procedure of the
gluon DSE has been discussed in detail in [11].1

In general, the different quark flavors are coupled via the
DSE of the gluon propagator. This leads to a reaction of the
strange quark condensate to the chiral transition, as has
been shown in [11]. At the same time, the heavy strange
and charm quarks influence the light quarks and thus allow
for a study of their influence on the phase diagram in the
first place, as already discussed above. In principle, how-
ever, further coupling effects arise in the DSE for the quark-
gluon vertex, which are not covered by our truncation
scheme. These effects are 1=Nc-suppressed and may be
small. Nevertheless they should be explored in future work.
In order to fix the vertex strength d1 as well as the light,

strange and charm quark masses, we follow two strategies:
the first one (setup ANf

in the following) is to reproduce the
condensate from lattice QCD as a function of temperature
at μ ¼ 0 for Nf ¼ 2þ 1 flavors (similar to the previous
work Ref. [11]) and to add a charm quark without changing
d1. The second one (setup BNf

in the following) is to obtain
the masses and decay constants for the pseudoscalar π, K
and ηc mesons in the vacuum. This is done for Nf ¼ 2þ 1
and Nf ¼ 2þ 1þ 1 flavors separately. We will see below
that these two procedures lead to slightly different results,
which may be associated with the systematic error of our
approach.
For the setups B2þ1 and B2þ1þ1 we need to solve the

Bethe-Salpeter equations for pseudoscalar mesons in the
truncation scheme discussed above. Since our quark-gluon
vertex contains the quark dressing functions A and C
depending on the quark momenta, this cannot be performed
with the widely used rainbow-ladder kernel, but requires a
more advanced treatment. In the previous work Ref. [11]
the Gell-Mann–Oakes–Renner relation has been used
to fix the value of the light-quark mass ml and the ratio
ms=ml ¼ 27 subsequently determined the strange quark
mass ms. Recent progress in the construction of
Bethe-Salpeter kernels [13] allows us now to solve the
full Bethe-Salpeter equation including the Ball-Chiu vertex
construction. For all technical details in this respect we
refer the reader to Ref. [13].
Note that in general the parameter d1 could depend on

the quark flavor as well; see [27] for an explicit calculation
of the vertex strength for different quark masses. Especially
for the charm quark one might expect a significantly

reduced infrared strength of the vertex. We checked the
influence of the reduction of d1 for the charm quark by a
factor of 2, motivated by [27]. This leads to marginal
changes of our results which are within our estimated
precision. Therefore we keep d1 flavor independent.

B. Quark masses and strength of the
quark-gluon interaction

In Tables I and II we summarize the resulting sets of
quark masses and vertex strengths d1 for this work. The sets
B2þ1 and B2þ1þ1 are obtained by solving the Bethe-
Salpeter equation as described above, while in set A2þ1

we choose d1 to match the chiral transition temperature at
zero chemical potential for Nf ¼ 2þ 1 taken from the
lattice [2], similar as in Ref. [11]. For set A2þ1þ1 we merely
added an additional charm quark. As can be seen in Tables I
and II, the ratio of the strange quark to light-quark mass
resulting from the fixing procedure using the Bethe-
Salpeter equation is ms=ml ≈ 26, which is very close to
the value ms=ml ≈ 27 used in [11]. The ratio of the charm
to strange quark mass for set B2þ1þ1 is mc=ms ≈ 14.
These results are within the same ballpark as results
from lattice calculations; see Refs. [28,29]. Note, however,
that the quark masses are renormalization point and
scheme dependent; a direct quantitative comparison is
therefore not easily possible. For sets A we choose the
ratio ms=ml ¼ 27 and inherited mc=ms ≈ 14 from set
B2þ1þ1 for comparability.
The quark masses depend on the renormalization point ζ,

m ¼ mðζÞ. We choose a rather large ζ ¼ 80 GeV here, in
order to be sufficiently far in the perturbative regime. The
seemingly small charm quark masses of mc ¼ 300 MeV
and mc ¼ 440 MeV are a result of this large renormaliza-
tion point. In Fig. 4 we show the quark mass function
Mðp2Þ ¼ Bðp2Þ=Aðp2Þ for all considered quark flavors to
illustrate its momentum dependence.

TABLE I. Current quark masses and vertex parameter d1 as
well as resulting mesonic properties in the vacuum for
Nf ¼ 2þ 1. The vertex strength d1 is given in GeV2, the other
values in MeV.

Set ml ms d1 mπ mK fπ fK

A2þ1 0.8 21.6 8.05 107 405 107 123
B2þ1 1.32 34.1 6.8 135 497 94 115

TABLE II. Current quark masses and vertex parameter d1 as
well as resulting mesonic properties in the vacuum for
Nf ¼ 2þ 1þ 1. The vertex strength d1 is given in GeV2, the
other values in MeV.

Set ml ms mc d1 mπ mK mηc fπ fK fηc
A2þ1þ1 0.8 21.6 300.0 8.05 109 412 2,364 95 113 270
B2þ1þ1 1.23 31.6 440.0 7.6 135 497 2,982 94 117 309

1Here we only mention that transverse projection in the gluon
DSE instead of the Brown-Pennington projection realized in [11]
does not lead to different results but only to a small shift in the
vertex strength parameter d1.
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III. RESULTS

A. Unquenched gluon propagator

First results for the unquenched gluon propagator
for Nf ¼ 2 and Nf ¼ 2þ 1 at finite temperature have
been reported in Ref. [11] and compared with the lattice
results of Ref. [30]. Here we give an update of this
comparison with an adjusted vertex strength d1 and light
quark mass ml in the manner of sets B. For Nf ¼ 2 we
fixed the parameter d1 and the light-quark mass using
its Bethe-Salpeter equation (BSE) to reproduce the vacuum
mass and decay constant of the pion. After that we
increased the light-quark mass until the result of its BSE
matched a pion mass of mπ ¼ 316 MeV, leading to d1 ¼
5.3 GeV2 and ml ¼ 7.95 MeV.
The results for the gluon dressing functions are shown in

Fig. 5. We find large unquenching effects in both the
magnetic and electric part of the gluon propagator. These
affect the momentum dependence of the gluon with a large
reduction of the size of the bump in the nonperturbative
moment region. Furthermore, the quark loop effects even
invert the temperature dependence of the electric gluon
dressing function ZL: for the temperatures shown the bump
in the quenched dressing function increases with T [10],
whereas it decreases in the unquenched case. This pre-
diction of the DSE-framework has been verified by the
lattice calculations [30]. In general, the quantitative agree-
ment between the two approaches is very good and justifies
to some extent our truncation scheme.
In Fig. 6 we display our results for the gluon dressing

functions with physical up/down and strange quark masses
(set A2þ1). Compared to Fig. 5 we find a further reduction
of the bump in the dressing function due to the increased
screening effects of the lighter quarks. The results of Fig. 6
are our prediction for the unquenched gluon at physical
quark masses and should be checked by future lattice
calculations.
In order to gauge the effects of the charm quark on the

gluon we compare the Nf ¼ 2þ 1 and Nf ¼ 2þ 1þ 1

result (sets B2þ1 and B2þ1þ1) in Fig. 7(a) for T ¼
135 MeV, close to the pseudocritical temperature of
this parameter set. We observe a further reduction of the
dressing functions up to about 15 percent close to the
bump and the expected change in the large momentum
behavior due to different anomalous dimensions. Similar
changes can be observed in the transverse gluon dressing
function, not shown in the figure. A good measure for the
effects in the deep infrared is the change of the screening
mass

m2
screen ¼

�
p2

ZLðp2Þ
�
p2→0

ð12Þ

in the electric gluon, shown in Fig. 7(b). We observe that
for small temperatures, where the quark contribution to the
screening mass is small, charm quarks have a negligible
effect. At larger temperatures the effect of the charm quarks
is of the order of ten percent, growing to a factor of 4=3 for
asymptotic temperatures. In Sec. III C we will discuss the
consequences of these changes for the chiral and deconfine-
ment transition.
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FIG. 4 (color online). The vacuum quark mass function
Mðp2Þ ¼ Bðp2Þ=Aðp2Þ for light, strange and charm quarks in
parameter set B2þ1þ1.
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B. The QCD transition for Nf ¼ 2þ 1 quark flavors

Before we discuss the influence of the charm quark, we
present the updated results for the chiral and deconfinement
transition with Nf ¼ 2þ 1 physical up/down and strange
quark masses. In the left diagram of Fig. 8 we display the
regularized quark condensate as well as the Polyakov loop as
a function of temperature at zero chemical potential.
Compared to the results reported in Ref. [11] we have
corrected a factor of two in the determination of the up/down
quark mass. As a result, we find much better agreement with
the lattice data especially in the temperature region above the
chiral restoration, where the effects of the explicit chiral
symmetry breaking are most notable. As explained above,
the strength of the quark-gluon interaction, controlled by the
parameter d1, has been adjusted in our calculation such that
the transition temperature of the lattice data is reproduced.
The nontrivial result of our calculation is the perfect agree-
ment of the steepness of the chiral transition with the lattice
result (see Ref. [31] for a corresponding result in the
Polyakov loop quark-meson (PQM) model). This agreement
together with the agreement for the unquenched gluon
discussed above shows that our truncation scheme works

very well at zero chemical potential. The resulting transition
temperatures from the chiral susceptibility and the inflection
point of the light-quark condensate for set A2þ1 are

Tcjdhψ̄ψi
dm

¼ 160.2 MeV;

Tcjdhψ̄ψi
dT

¼ 155.6 MeV: ð13Þ

Our results for the QCD phase diagram at finite chemical
quark potential are shown in the right diagram of Fig. 8. We
extracted the (pseudo-) critical temperature of the chiral
transition from the inflection point, Eq. (3). Compared to
Ref. [11] we only find small corrections due to the
corrected light-quark masses. The chiral crossover, dis-
played by the dashed black line, becomes ever steeper with
increasing chemical potential and turns into a CEP at

ðTc; μcqÞ ¼ ð115; 168Þ MeV: ð14Þ

The deconfinement transition line is determined via
the minimum of the Polyakov loop potential [12]. The
relatively large difference of chiral and deconfinement
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transition temperatures at small μ is in part an effect
of using the inflection point for the Polyakov loop potential
on the one hand and on the other hand applying the
maximum of the susceptibility in the chiral transition. In
[12] the inflection point has been used for both order
parameters, yielding closer critical temperatures. At large
chemical potential, the deconfinement transition line
meets the chiral one at the CEP. To better guide the eye,
we have also marked lines with ratios of baryon chemical
potential over temperature μB=T ¼ 2 and μB=T ¼ 3, fur-
ther underlining that the CEP occurs at rather large
chemical potential.
In order to gauge the quality of our result, a couple of

comments are in order. First, note that in our representation
of the quark-gluon interaction via Eqs. (10)–(11) no explicit
effects of the back coupling of mesons and baryons onto the
quark propagator have been included. In principle, such
effects are encoded in the details of the Dyson-Schwinger
equation for the vertex and have been made explicit in
Ref. [34]. In the vacuum, these effects are included implic-
itly within the form of our vertex Ansatz Eqs. (10)–(11)
and the choice of the parameter d1. At μ ¼ 0 and finite
quark mass these effects appear to be unimportant, as
demonstrated by the agreement with the quark condensate
from the lattice, as discussed above. At finite chemical
potential, however, meson and baryon effects in the vertex
introduce an additional temperature and chemical poten-
tial dependence of the quark-gluon interaction on top of
the ones already covered by our Ansatz. For example, in
PQM studies mesonic fluctuations have been found to
have a large effect on the position of the CEP; see
[35,36]. Furthermore baryon effects, which are certainly
important in the low temperature, large chemical potential
region in the vicinity of the nuclear liquid-gas transition,
may be crucial. Whether these contributions have a large
impact on the location (or even on the very existence) of the
CEP needs to be checked in future work.

It is tempting to compare our result for the chiral
transition line with the lattice extrapolations. To this end
we also display in Fig. 8 the extrapolation of the curvature
of the chiral transition line from Nf ¼ 2þ 1 lattice results
of different groups at imaginary and zero chemical potential
[9,32,33] into the real chemical potential region (for recent
results with Nf ¼ 2 see [37]). Overall, the agreement
between the lattice extrapolation and our DSE results is
quite satisfactory. However, we wish to add that a similar
caveat as for the DSEs may also apply to the lattice
extrapolation. Since the effects of baryons on the chiral
transition are small at small chemical potential they are not
reflected in the curvature extracted from the lattice results
and therefore it remains an open question to what extent an
extrapolation to large chemical potential can be trusted.
Thus the close agreement of both approaches, although
interesting, may very well not be the final word.

C. Including the charm quark: Nf ¼ 2þ 1þ 1

As explained above, there are two possibilities of how
the charm quark can be added to our truncation. First the
interaction strength d1 from the Nf ¼ 2þ 1 case can be
kept fixed and the charm quark merely be added to the
system. Such a procedure leads to a reduction of the
chiral and deconfinement transition temperatures of ΔT ≈
23 MeV for all values of the chemical potential. This
procedure, however, does not reflect the physics of the
charm quark properly and leads to a gross overestimation of
its effects. Instead, we follow another procedure and
determine the vertex strength d1 as well as the current
quark masses using input from hadron physics at T ¼ 0, as
described in Sec. II B (setups B2þ1 and B2þ1þ1). Our result
for the corresponding phase diagram is shown in Fig. 9,
where we used the chiral susceptibility to determine the
chiral transition. Note that the transition temperature for
Nf ¼ 2þ 1 is lower by about ΔT ≈ 20 MeV compared to
the one discussed in Sec. III B, due to the different
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FIG. 8 (color online). Left diagram: regularized chiral condensate and the Polyakov loop for Nf ¼ 2þ 1 quark flavors (set A2þ1) as a
function of temperature at zero quark chemical potential μq ¼ 0. Right diagram: phase diagram for Nf ¼ 2þ 1 quark flavors. Shown
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procedure of fixing the interaction strength. One can view
this difference as the systematic uncertainty of our trunca-
tion scheme. The influence of the charm quark on the chiral
and deconfinement transition is almost negligible apart
from a small shift of the critical end point towards smaller
chemical potential. This confirms our expectations from the
unquenched gluon propagator. Despite a 15 percent effect
at large momenta, the low momentum change in the
propagator is small enough not to affect the chiral and
deconfinement properties of the theory. Ultimately, this is
tied to the fact that thermal effects in the charm quarks are
small due to its large mass. Since the vacuum effects of the
charm have been absorbed in the readjustment of the vertex
strength from setup B2þ1 to B2þ1þ1, the overall effect of the
charm quark is almost negligible. We expect to see a similar
behavior in corresponding lattice calculations. In future
studies it may therefore be sufficient to include only the
dynamics of light and strange quarks.

IV. SUMMARY AND CONCLUSIONS

We solved the coupled system of Dyson-Schwinger
equations for the quark and gluon propagators for Nf ¼
2þ 1 and Nf ¼ 2þ 1þ 1 quark flavors using a truncation
scheme that takes quark fluctuations in the gluon propa-
gator into account. For the Yang-Mills part of the gluon
self-energy we employed temperature dependent lattice
data as input. For the quark-gluon interaction we used a
form that incorporates temperature and chemical potential
effects according to (the leading part of) a Ward identity.
Furthermore we adapted the infrared strength of this
interaction such that the chiral transition temperature of
lattice gauge theory is reproduced. As a highly nontrivial
result of our approximation scheme we obtained excellent
agreement for both the detailed shape of the chiral
transition as well as the momentum and temperature
dependence of the resulting unquenched gluon propagator
at zero chemical potential.

From the quark and gluon propagators we determined
the chiral susceptibility as well as the Polyakov loop
potential as order parameters for the chiral and deconfine-
ment transition. In the resulting QCD phase diagram we
identified a chiral critical end point at large chemical
potential ðTc; μcqÞ ¼ ð115; 168Þ MeV, where μB=T > 3.
Whether our approximation scheme is still trustable at this
point remains to be investigated in future work, where we
plan to take meson and baryon effects in the quark-gluon
interaction explicitly into account.
We also evaluated, for the first time, the effects of a

fourth flavor on the chiral critical end point. This affects the
light-quark condensate indirectly, via the back coupling of
the charm quark onto the unquenched gluon propagator.
We established that this effect is sizeable for the momen-
tum dependence of the gluon at intermediate and large
momenta. However, for low momenta and for the temper-
atures relevant for the chiral transition, the gluon propa-
gator remains essentially unchanged such that the chiral
transition temperature remains the same within our numeri-
cal uncertainty of 1–2 MeV. Finite chemical potential does
not change this situation such that the location of the critical
end point is hardly affected by the charm. Therefore we
established, for the first time in a nonperturbative approach,
that charm quarks do not affect the QCD phase diagram.
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APPENDIX: THE QUARK-GLUON VERTEX

Here we explain in more detail our construction for
the quark-gluon vertex we use in our approach. In general,
this vertex satisfies a Slavnov-Taylor identity (STI) [38]
given by

ikμΓμðq; kÞ ¼ Gðk2Þ
× ½S−1ðpÞHðp; qÞ − H̄ðq; pÞS−1ðqÞ�; ðA1Þ

where Gðk2Þ denotes the dressing function of the ghost
propagator and Hðq; pÞ a ghost-quark scattering kernel
with ”conjugate” H̄. The momenta of the two quarks are
given by p; q and k ¼ p − q is the corresponding gluon
momentum. Since the nonperturbative behavior of Hðp; qÞ
and its conjugate is currently unknown, there is no exact
solution of this identity available (see, however, [39,40] for
recent progress in this direction). A valid strategy to work
along this identity at least approximately is to start with the
corresponding Abelian identity, where G ¼ H ¼ H̄ ¼ 1.
Using the requirement of regularity at zero gluon
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cases, the interaction strength and quark masses are fixed to
reproduce vacuum physics.
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momentum this identity has been solved by the Ball-Chiu
vertex [41]. At zero temperature and chemical potential it is
given by

ΓBC
ν ðp; q; kÞ ¼ Aðp2Þ þ Aðq2Þ

2
γν

þ i
Bðp2Þ − Bðq2Þ

p2 − q2
ðpþ qÞν

þ Aðp2Þ − Aðq2Þ
2ðp2 − q2Þ ðp · γ þ qÞðpþ qÞν:

ðA2Þ

For the present calculation we retain the leading γμ-part of
this construction, generalized to finite temperature. This is
the content of Eq. (10) in the main text.
Comparing the structure of the WTI with the STI one is

able to infer additional information on the vertex [26]. First,
there is the factor Gðk2Þ on the right-hand side of the STI.
The ghost dressing function at finite temperature is known
from lattice calculations [10] and exhibits an (almost)
temperature independent enhancement at infraredmomenta.
Approximate treatments of the ghost-quark scattering kernel
at zero temperature show a similar enhancement in the
infrared [39,40]. In the absence of more information we
approximate the combined effects of the ghost dressing
function and the scattering kernel by a function Γðk2Þ,
Eq. (11), which is temperature (and chemical potential)
independent and a function of the gluon momentum only.

The final construction of Eqs. (10)–(11) then consists of a
factorized non-Abelian part Γ and the leading tensor
structure of the Abelian Ball-Chiu construction.
The infrared effects of the remaining parts of the Ball-

Chiu vertex as well as the eight transverse parts of the vertex
not constrained by theWTI can be thought of as absorbed in
the parameter d1, representing the infrared strength of all
components of the vertex. The resulting dressing function Γ
represents the generic momentum running of the leading
dressing functions of the vertex as extracted from explicit
results for the vertex DSE at zero temperature (see [27] and
references therein for recent results): these functions run
logarithmically at largemomenta, become comparably large
at typical infrared QCD scales and then stay constant in the
deep infrared. This is the content of Eq. (11).
Clearly, from a systematic point of view our approximation

of thevertex isstill crude. It contains,however, someimportant
elementswhichprovidesomejustification for itsuse.First, it is
correct in the perturbative momentum domain, where the
leading Ball-Chiu part dominates and the dressing function Γ
contains the correct runningofone-loop resumedperturbation
theory. Second, it maintains charge conjugation symmetry
requiredof the full vertex.Third, it contains at least someof the
presumed temperature and chemical potential dependence of
thefullvertexvia the leadingBall-Chiu term.Finally,andmost
important, it provides for results that reproduce and success-
fully predict lattice results for the chiral condensate and the
unquenched gluon propagator. This is detailed in the main
body of this work.
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