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We derive precise standard model predictions for the dilepton invariant mass and the τ energy
distributions in inclusive B → Xcτν̄ decay. We include Λ2

QCD=m
2
b and αs corrections using the 1S short-

distance mass scheme, and estimate shape function effects near maximal τ energy. These results can
improve the sensitivity of b → cτν̄ related observables to beyond standard model physics.
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I. INTRODUCTION

Recently, B decays mediated by b → cτν̄ transitions
have received renewed attention due to improved measure-
ments of the B̄ → Dτν̄ and B̄ → D�τν̄ decay rates [1],
consistent with earlier published [2,3] and preliminary [4]
results. Considering the ratios (l ¼ e; μ)

RðXÞ ¼ BðB → Xτν̄Þ
BðB → Xlν̄Þ ; ð1Þ

the combination of the BABAR results

RðD�Þ ¼ 0.332� 0.030; RðDÞ ¼ 0.440� 0.072;

ð2Þ

gives a more than 3σ deviation [1] from the standard model
(SM), which could indicate new physics that couples
nonuniversally to leptons, due to mτ ≫ me;μ. The isospin-
constrained fit for the branching ratios yields [1]

BðB̄ → D�τν̄Þ þ BðB̄ → Dτν̄Þ ¼ ð2.78� 0.25Þ%: ð3Þ

(This average applies for B− decay [1]; recall the lifetime
difference of B� and B0.)
A recent update of the SM prediction for RðXcÞ, the ratio

for inclusive decay rates, yields [5]

RðXcÞ ¼ 0.223� 0.005; ð4Þ

which, combined with the world average, BðB− → Xceν̄Þ ¼
ð10.92� 0.16Þ% [6,7], yields [5]

BðB− → Xcτν̄Þ ¼ ð2.42� 0.06Þ%: ð5Þ

This prediction is rather precise; thus the inclusive
measurement can provide information complementary
to those from the exclusive modes.
The results in Eq. (3) are in some tension with the LEP

average of the rate of an admixture of b-flavored hadrons to
decay to τ leptons [8]

Bðb → XτþνÞ ¼ ð2.41� 0.23Þ%: ð6Þ

This rate has not been measured since the LEP experiments.
Neither are theoretical predictions available for B → Xτν̄
decay distributions using a well-defined short-distance
quark mass scheme. Such predictions are necessary to
provide the best theoretical inputs for future experimental
measurements. Measuring the inclusive rate should be
possible using the existing B factory data, and especially
using the future Belle II data set [9].
In the future, the uncertainties of the individual B̄ →

Dð�Þτν̄ branching ratios are expected to be reduced to about
2% by Belle II [10], while the uncertainties of the ratios in
Eq. (2) may become even smaller. Clearly, both inclusive
and exclusive measurements should be pursued.

II. THE OPE RESULTS

Inclusive semileptonic B decay rates can be computed
model independently in an operator product expansion
(OPE) in terms of local heavy-quark operators (for a
review, see Ref. [11]). The leading order reproduces the
free-quark decay result, and perturbative and nonperturba-
tive corrections can be systematically incorporated.
The triple differential distribution has been derived,

including the leading nonperturbative corrections of order
Λ2
QCD=m

2
b, in Refs. [12–14]. We use the dimensionless

kinematic variables

q̂2 ¼ q2

m2
b

; v · q̂ ¼ v · q
mb

; y ¼ 2Eτ

mb
; ð7Þ

where q ¼ pτ þ pν is the dilepton momentum, v is the
four-momentum of the Bmeson [ð1; ~0Þ in the B rest frame],
and Eτ ¼ v · pτ is the τ energy measured in the B-meson
rest frame. The mass parameters are defined as

ρτ ¼
m2

τ

m2
b

; xτ ¼
m2

τ

q2
¼ ρτ

q̂2
; ρ ¼ m2

c

m2
b

: ð8Þ
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It is convenient to define

y� ¼ 1

2

�
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4ρτ

q �
: ð9Þ

Then yþy− ¼ ρτ, and fyþ; y−g → fy; 0g as mτ → 0.
The triple differential decay rate in the B rest frame is

1

Γ0

dΓ
dq̂2dydv · q̂

¼ 24θ½ð2v · q̂ − yþÞyþ − q̂2�θ½q̂2 − ð2v · q̂ − y−Þy−�
× f2ðq̂2 − ρτÞŴ1 þ ½yð2v · q̂ − yÞ − q̂2 þ ρτ�Ŵ2

þ 2½q̂2ðy − v · q̂Þ − ρτv · q̂�Ŵ3

þ ρτðq̂2 − ρτÞŴ4 þ 2ρτð2v · q̂ − yÞŴ5g; ð10Þ

where

Γ0 ¼
jVcbj2G2

Fm
5
b

192π3
ð11Þ

is the tree-level free-quark decay rate. The Ŵi are the
structure functions of the hadronic tensor [12,15], which in
the local OPE to Λ2

QCD=m
2
b contain δ, δ0, and δ″ functions

of ð1þ q̂2 − 2v · q̂ − ρÞ.
In the literature, only the Eτ spectrum and the total decay

rate have been computed including Λ2
QCD=m

2
b corrections

[12–14] (as well as the τ polarization [12]). These correc-
tions reduce the B → Xcτν̄ rate by about 7%–8%, where
about 90% of this reduction is due to the terms proportional
to λ2.
In this paper, we also derive the order Λ2

QCD=m
2
b

corrections for the q2 spectrum, as it is expected to be
useful for the experimental analysis [9]. While the pertur-
bative corrections were known in the literature in the pole
mass scheme, only the total rate was calculated in a short-
distance mass scheme in the past. We present results for the
first time for the q2 and Eτ spectra in a well-defined short-
distance mass scheme. In addition, we pay special attention
to the uncertainties in the end point regions of these spectra,
where the local OPE breaks down.

A. Phase space limits

A complication in the massive lepton case is the
appearance of the second θ function in Eq. (10), which
sets a nontrivial lower limit on q̂2 (which in the mτ → 0
limit reduces to q̂2 > 0). Solving the θ functions for the
limits on y for fixed q̂2 and v · q̂, we have

q̂− þ xτq̂þ ≤ y ≤ q̂þ þ xτq̂−; ð12Þ

where

q̂� ¼ v · q̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv · q̂Þ2 − q̂2

q
: ð13Þ

Substituting the parton level result for v · q̂ ¼ ð1þ q̂2 −
ρÞ=2 then gives partonic phase space in the q̂2 − y plane at
tree level. The limits on q̂2 for fixed y are

y−

�
1 −

ρ

1 − y−

�
≤ q̂2 ≤ yþ

�
1 −

ρ

1 − yþ

�
: ð14Þ

This is shown in Fig. 1, where we used ρ ¼ ð1.3=4.7Þ2 and
ρτ ¼ ð1.777=4.7Þ2 for illustration. The solid (orange)
boundary comes from the first θ function in Eq. (10),
and the dashed (blue) boundary comes from the sec-
ond one.
Note that the limits for y are determined by the different

θ functions for values of q2 above and below

q̂20 ¼
ffiffiffiffiffi
ρτ

p �
1 −

ρ

1 − ffiffiffiffiffi
ρτ

p
�
: ð15Þ

A similar situation occurs in the calculation of the OðαsÞ
correction to dΓ=dydq̂2 [16], but was not encountered in
calculating OðΛ2

QCD=m
2
bÞ corrections before.

Beyond tree level, the lower limit of the dq̂2 integration
and the lower limit of dy integration for q̂2 < q̂20 (blue
dashed curve in Fig. 1) gets replaced by q̂2 > ρτ and
y > 2

ffiffiffiffiffi
ρτ

p
, which is shown by the dotted (green) lines.

Integrating over q̂2, the limits of the y spectrum are

2
ffiffiffiffiffi
ρτ

p
< y < 1þ ρτ − ρ: ð16Þ

Integrating over y, the overall limits of the q̂2 spectrum are

ρτ < q̂2 < ð1 − ffiffiffi
ρ

p Þ2: ð17Þ

The above are the partonic phase space limits relevant to
the OPE result. For the hadronic phase space limits, mb is
replaced by mB and ρ is replaced by m2

D=m
2
B.

FIG. 1 (color online). The b → cτν̄ Dalitz plot for free quark
decay. The solid (orange) boundary comes from the first θ
function in Eq. (10), the dashed (blue) boundary from the
second one.
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B. The q2 spectrum

Since the hadronic structure functions Ŵi are functions
of q̂2 and v̂ · q only, it is easiest to first integrate the triple
differential spectrum in Eq. (10) over the lepton energy
with the limits given in Eq. (12). Doing so, we obtain for
the double differential spectrum

1

Γ0

dΓ
dq̂2dv · q̂

¼ 96ð1 − xτÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv · q̂Þ2 − q̂2

q

×

�
q̂2Ŵ1 þ

1

3
½ðv · q̂Þ2 − q̂2�ð1þ 2xτÞŴ2

þ ρτ
2
ðŴ2 þ q̂2Ŵ4 þ 2v · q̂Ŵ5Þ

�
: ð18Þ

Substituting the OPE results for the Ŵi, we obtain for the q2

spectrum

1

Γ0

dΓ
dq̂2

¼ 2ð1− xτÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 − 4ρ

q ��
1þ λ1 þ 15λ2

2m2
b

�

× ½3q̂2Pð1þ xτÞ þ ðP2 − 4ρÞð1þ 2xτÞ�

þ 6λ2
m2

b

�
ðP− 2Þð1þ 2xτÞ þ q̂2ð4þ 5xτÞ

þ q̂2
2ð2q̂2 þ P− 2Þð2þ xτÞ þ 3q̂2Pð1þ xτÞ

P2 − 4ρ

��
;

ð19Þ

where we defined P ¼ 1 − q̂2 þ ρ, and we have suppressed
the θ functions expressing the q̂2 limits given in Eq. (17).
Integrating over q̂2 we reproduce the total rate given
in Ref. [12].
As we will see in Sec. III below, the order Λ2

QCD=m
2
b

corrections reduce the B → Xcτν̄ rate mainly at higher
values of q̂2, dominated by the terms proportional to λ2.
Near maximal q̂2, the λ2 terms behave as ðq̂2max − q̂2Þ−1=2,
and the differential rate becomes negative. This indicates a
breakdown of the OPE; in this region of phase space, the
hadronic final state is constrained to be in the resonance
region, and the OPE cannot describe the spectrum point
by point. Thus, integration over some region of Δq̂2 is
necessary near maximal q̂2 to obtain a reliable result. The
form of Eq. (19) makes it clear that this effect is not related
to the b quark distribution function in the B meson, the
so-called shape function (which is neither relevant for
the high q2 region in B → Xulν̄ [17]). Note also that the
difference of the upper limit of q2 at lowest order in the
OPE and at the hadronic level is suppressed by Λ2

QCD.

C. The τ energy spectrum

To obtain the Eτ spectrum, we substitute the OPE
results for the Ŵi in the triple differential rate in
Eq. (10). The integration over v · q̂ is performed using

the δðnÞð1þ q̂2 − 2v · q̂ − ρÞ contained in the Ŵi. Next,
we integrate over q̂2 with the integration limits in Eq. (14).
At leading order we obtain

1

Γ0

dΓ
dy

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4ρτ

q
θðy − 2ρτÞθð1 − RÞð1 − RÞ2

×

�
yρ

1 − R
R

þ ð1þ 2RÞðy − 2ρτÞð2 − yÞ
�
; ð20Þ

where

R ¼ ρ

ð1 − yþÞð1 − y−Þ
¼ ρ

1 − yþ ρτ
; ð21Þ

and for the Λ2
QCD=m

2
b corrections we reproduce the results

in Refs. [12–14]. The two θ functions in Eq. (20) corre-
spond to the limits on y in Eq. (16).
As for large values of q̂2, the OPE also breaks down for

large values of y. Contrary to the end point of the q2

spectrum, the Eτ end point does differ by an amount of
order ΛQCD between the partonic and hadronic phase space
limits. If one treats mc ∼Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mbΛQCD

p Þ, or equivalently
ρ ∼ ΛQCD=mb, then the problematic terms in the OPE that
are enhanced near the end point can be resummed,
replacing the usual OPE by an expansion in terms of
nonlocal light-cone operators, whose matrix elements yield
nonperturbative B-meson distribution functions (shape
functions). [Such effects would formally be subleading if
one treats m2

c=m2
b ∼Oð1Þ.] At the lowest order description

of the end point region, O½ðΛQCD=mbÞ0�, a single shape
function appears. This is well known for B → Xlν decays
[18–21]. When carried out appropriately, the shape func-
tion OPE can be rendered valid away from the end point
region as well, such that it smoothly recovers the local OPE
result [22,23]. For b → c transitions, this is possible if the
OPE is directly performed for the lepton energy spectrum
[22]. Following Ref. [22] and including the τ mass, we
obtain at leading order

1

Γ0

dΓ
dy

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4ρτ

q Z
dω̂mbFðmbω̂þmB −mbÞ

× θðy − 2ρτÞθð1 − RωÞð1 − RωÞ2
�
yρ

1 − Rω

Rω

þ ð1þ 2RωÞ½y − ω̂y− − 2ρτ�ð2 − y − ω̂Þ
�
: ð22Þ

where

Rω ¼ ρ

ð1 − yþ − ω̂Þð1 − y−Þ
; ð23Þ

and the leading shape function, FðkÞ, in Eq. (22) is defined
with the same conventions as in Refs. [23,24].
For B → Xcτν, the end point region of the lepton energy

spectrum is given by 1 − yþ ∼ ΛQCD=mb. The result in
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Eq. (22) arises from replacing 1 − yþ → 1 − yþ − k̂þ in
the local OPE. (Some overall factors that arise from the
leptonic phase space are unaffected.) For small yþ,
corresponding to small Eτ, one can expand

mbFðmbω̂þmB −mbÞ ¼ δðω̂Þ þ � � � ; ð24Þ
which recovers the leading-order result in Eq. (20). In
principle, all Λ2

QCD=m
2
b corrections in the local OPE

at small yþ can be recovered from the shape function
expansion, which would require one to carry it out to the
same higher order [23].

D. The 1S mass scheme and perturbative corrections

It is well known that the pole mass of a heavy quark is
not well defined beyond perturbation theory. This manifests
itself, for example, in poorly behaved perturbation series. In
this paper, we use the 1S mass scheme [25–27]. Including
both the c quark and τ lepton mass effects, the corrections
to free-quark decay for the total rate were computed to
OðαsÞ [28], Oðα2sβ0Þ [29], and Oðα2sÞ [30]. The OðαsÞ
result [28] was already used in the numerical prediction
for the rate 20 years ago [12], and the Oðα2sβ0Þ result [29]
could be used to show that the perturbation series in the
1S scheme, 1 − 0.070ϵ − 0.016ϵ2BLM [26], is much better
behaved than that in the pole scheme, 1 − 0.097ϵ−
0.064ϵ2BLM. (Here powers of ϵ ¼ 1 indicate the order in
the 1S expansion, and ϵ2BLM corresponds to the lowest order
term proportional to β0 ¼ 11 − 2nf=3, the first coefficient
in the QCD β function.) This improvement in the pertur-
bation series is essential to obtain the precise predictions in
Eqs. (4) and (5).
The OðαsÞ correction to dΓ=dq̂2 was calculated analyti-

cally in Ref. [31], while the corrections to the lepton energy
spectrum can be obtained by integrating d2Γ=dydq̂2 calcu-
lated in Ref. [16]. In particular, the fractional corrections
at order αs to both dΓ=dq̂2 and dΓ=dy are remarkably
independent of q̂2 and y, and so have very little effect on the
shape of the spectra except very close to their end points.

III. NUMERICAL RESULTS

Hereafter we revert to dimensionful kinematic variables,
Eτ and q2 (i.e., no longer rescale them by powers of mb).
The phase space limits for the q̂2 and y distributions are
given in Eqs. (17) and (16). Restoring the dimensions of the
variables,

mτ < Eτ <
m2

b −m2
c þm2

τ

2mb
;

m2
τ < q2 < ðmb −mcÞ2: ð25Þ

One can immediately see, writing

mb;c ¼ mB;D − Λ̄þOðΛ2
QCD=m

2
b;cÞ; ð26Þ

that the difference of the upper limit of q2 at lowest order
in the OPE, ðmb −mcÞ2, and at the hadronic level,

ðmB −mDÞ2, is suppressed by Λ2
QCD. However, the lepton

energy end point does receive an OðΛQCDÞ correction,
although only about 100 MeV (it is ∼300 MeV for
B → Xueν̄). As explained above, treating m2

c=ðmbΛQCDÞ ∼
Oð1Þ or m2

c=m2
b ∼Oð1Þ affects whether the shape function

is formally relevant to describe the Eτ end point region. We
use Eq. (22) to determine beyond which value of Eτ the
shape function becomes important and the local OPE result
cannot be trusted anymore. A more detailed analysis for
B → Xuτν will be given elsewhere [32].
The numerical inputs we use are summarized in Table I.

For the leading order shape function, we use the fit result
from Ref. [33], and for consistency we also take the central
value for m1S

b from there, which is consistent with the fit
results in the 1S scheme in Refs. [7,34], with a conservative
error of �50 MeV.
In the 1SEXP scheme in Ref. [34], one relates mb −mc

using heavy quark effective theory (HQET) to a linear
combination of the spin averaged hadron mass difference,
m̄B − m̄D, λ1, and dimension-6 HQET matrix elements.
This removes the leading renormalon from mpole

c as well.
Then writing mc ¼ m1S

b − δmbc, and treating δmbc ¼ mb −
mc as an independent parameter is practical, as it is well
constrained by measured B → Xclν̄ spectra, and is the
dominant source of formally Oðλ1=m2

cÞ corrections [34].
(Note that the B → Xclν̄ data imply that the correlation of
these terms with other contributions is very significant.)
Numerically, we use the average of the fit results in
Refs. [7,34] and use their difference of 20 MeV as a
conservative error. For λ1 we use −0.3 GeV2 as the central
value and vary it by 25%, which covers the values obtained
in Refs. [7,34] and also the somewhat lower value implied
by the result we use for the leading shape function. The
value of λ2 ¼ 0.12 GeV2 is known very well from
the mB� −mB mass splitting. We also vary it by 25%.
The variations for λ1 and λ2 can be viewed as an uncertainty
estimate to account for the higher-order perturbative
corrections to their OPE coefficients (as well as the omitted
Λ3
QCD=m

3
b corrections).

Figure 2 shows the predictions for dΓ=dq2 (left) and
dΓ=dEτ (right) in the 1S mass scheme for the b quark.
The dotted (green) curves show the free-quark decay result,
the dashed (blue) curves includeOðαsÞ corrections, and the
solid (orange) curves include both αs and Λ2

QCD=m
2
b

TABLE I. Central values of input parameters, their variations,
and the resulting uncertainties in the total rate prediction.

Parameter Central value Variation ΔΓtotal

m1S
b 4.71 GeV �50 MeV �5.3%

δmbc 3.40 GeV �20 MeV �4.4%
λ1 −0.30 GeV2 �25% �0.2%
λ2 0.12 GeV2 �25% �2.0%

αs 0.218 þ0.065
−0.040 �1.1%
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corrections. The Λ2
QCD=m

2
b corrections are negligible at low

values of q̂2 and y, while their effects become important for
larger values. For dΓ=dq2, they drive the spectrum negative
near the end point, where the OPE breaks down, as already
discussed above. The peculiar shape of dΓ=dEτ including
the OðΛ2

QCD=m
2
bÞ terms is due to the fact that near the end

point both the λ1 and λ2 terms are large, and the λ1 term
changes sign. For dΓ=dEτ the dot-dashed (dark red) curve
combines the Oðαs;Λ2

QCD=m
2
bÞ corrections with the tree-

level leading shape function result in Eq. (22) (appropri-
ately avoiding any double counting of Λ2

QCD=m
2
b correc-

tions). The theoretical uncertainty of dΓ=dEτ becomes
clearly large for Eτ ≳ 2.3 GeV, where the result including
shape function effects starts to differ noticeably from
the local OPE result. On the other hand, for Eτ ≲
2.2 GeV the local OPE provides a reliable prediction for
the spectrum.

Figure 3 shows the various sources of uncertainties in the
results in Fig. 2 from varying the parameters as mentioned
above and summarized in Table I. The variations from mb
keeping δmbc fixed (solid blue curves) and δmbc (dashed
light blue curves) dominate at low and high values,
respectively. Varying the renormalization scale, μ, between
mb=2 and 2mb is shown by the solid green curves, and
varying the coefficients of λ2 and λ1 are shown by the solid
red and dotted light orange curves, respectively. The
resulting uncertainties in the total rate from each of these
parameter variations are given in Table I. For dΓ=dEτ we
also show the relative corrections due to shape function
effects (dark red dot-dashed curve).
Since the largest parts of the uncertainties cancel in the

ratio in Eq. (4), yielding a precise SM prediction of the total
B → Xcτν̄ rate in Eq. (5), and the spectra cannot be
calculated reliably point by point near the end points of

FIG. 2 (color online). The OPE predictions for the dΓ=dq2 (left) and dΓ=dEτ (right) in B → Xcτν̄. The dotted (green) curves show the
free-quark decay result, the dashed (blue) curves includeOðαsÞ corrections, and the solid (orange) curves include both αs and Λ2

QCD=m
2
b

corrections. For dΓ=dEτ the dot-dashed (dark red) curve combines Oðαs;Λ2
QCD=m

2
bÞ with the leading-order shape function result.

FIG. 3 (color online). The fractional uncertainties in the OPE predictions for dΓ=dq2 (left) and dΓ=dEτ (right). The solid blue curves
show the effect of the variation of m1S

b by �50 MeV (keeping δmbc fixed), the dashed light blue curves show the variation of δmbc by
�20 MeV, the solid green curves show the μ variation between mb=2 and 2mb, and the solid red (dotted light orange) curves show the
variation of the coefficient of λ2 (λ1) by�25%. The dot-dashed (dark red) curve shows the relative correction from including the leading
shape function.
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either dΓ=dq2 or dΓ=dEτ, in Fig. 4 we show the integrated
rates above a cut normalized to the total rate,

Γ̂ðq2cutÞ ¼
1

Γ

Z
q2cut

dΓ
dq2

; ~ΓðEcutÞ ¼
1

Γ

Z
Ecut

dΓ
dEτ

; ð27Þ

at different orders in the OPE. TheOðαsÞ corrections have a
negligible effect on these distributions since they do not
affect the shape of the spectra. The yellow band shows the
total uncertainty obtained by adding all uncertainties in
quadrature. To obtain the individual uncertainties we apply
the same variations in both numerator and denominator and
take the larger of the up/down variations as the uncertainty.
In these normalized event fractions, themb and μ variations
mostly cancel. The total uncertainty essentially comes from
δmbc and λ2 for Γ̂ðq2Þ, and from δmbc and λ1;2 for ~ΓðEτÞ.
For Γ̂ðq2cutÞ the relative uncertainties in the OPE result
become very large beyond q2cut ≳ 10 GeV2, which is as
expected. For ~ΓðEcutÞ the dot-dashed (dark red) curve
shows the effect of including the leading shape function.
One can also see here that the local OPE result starts to
become unreliable beyond Ecut ≳ 2.3 GeV.

IV. SUMMARY AND CONCLUSIONS

We calculated the inclusive B → Xcτν decay distribu-
tions in τ energy and dilepton invariant mass. Our results
for the Λ2

QCD=m
2
b corrections to dΓ=dq2 are new. We

derived predictions for the spectra using the 1S short-
distance mass scheme, incorporating the OðΛ2

QCD=m
2
bÞ and

OðαsÞ corrections. We also studied the effects of the shape
function on the τ energy end point region. The rates can be
predicted precisely if one makes no cuts in the regions
q2 ≳ 9 GeV2 and Eτ ≳ 2.2 GeV.
Recent measurements of the B̄ → Dτν̄ and B̄ → D�τν̄

decay rates indicate possible deviations from the standard
model. The BABAR and Belle measurements of these
exclusive modes are consistent with one another, but are
in some tension with LEP measurements of the inclusive
B → Xcτν̄ rate. This makes a new measurement of the
inclusive B → Xcτν̄ decay rate particularly timely, espe-
cially since no results are available from the eþe− B
factories, and measurements may be possible using the
existing data sets. Given the current tensions, measuring
B → Xcτν̄ will also be important with Belle II data.
Since it might only be possible to measure the inclusive

rate in limited regions of phase space, precise theory
predictions for differential distributions are required, and
the calculations presented here should help to improve the
experimental sensitivities.
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FIG. 4 (color online). The OPE predictions for the fraction of events above a certain cut in dΓ=dq2 (left) and dΓ=dEτ (right) in
B → Xcτν̄. The meaning of the curves is the same as in Fig. 2. The shaded band shows the total uncertainties in the full result.
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