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We perform the first systematic study of the nonlinear electromagnetic currents induced by the external
electromagnetic field in quark-gluon plasma, in cases where the inhomogeneity of the electromagnetic field
is small (large) so that the collision effect is important (negligible). In the former case, we list and classify
possible components of the currents in a systematic way and make an order estimate of each component by
using the Boltzmann equation in the relaxation time approximation. In the latter case, we explicitly
calculate the quadratic current by using the Vlasov equation, and we find that the current generated by
the chiral magnetic effect and the quadratic current can have the same order of magnitude by using the
Kadanoff-Baym equation. We also demonstrate this property by using a possible configuration of the
electromagnetic field realized in a heavy ion collision.

DOI: 10.1103/PhysRevD.90.034018 PACS numbers: 12.38.Mh, 25.75.-q, 52.25.Dg

I. INTRODUCTION

When a noncentral collision occurs in a heavy ion
collision (HIC) experiment, it is expected that strong
electric (E) and magnetic fields (B) are generated [1–3].
Such fields would induce the electromagnetic and axial
current, and these currents contain information on the
properties of the medium, which is quark-gluon plasma
at temperature T. The simplest components of these
currents are the Ohmic current and the current generated
by the chiral magnetic effect (CME) [4–6], which are linear
in terms of the electric/magnetic field and local. The effect
of these currents has been broadly discussed theoretically
[1–4,7–12] and experimentally [13]. However, when the
electromagnetic field becomes strong enough, it is likely
that higher order components of the current in terms of the
field [10,14] are not negligible compared with the linear
component. Also, the assumption of locality1 becomes
invalid when the inhomogeneity of the electromagnetic
field is so large that the collision effect becomes negligible
[15,16]. In fact, as we will see in Sec. IV, it can be possible
that both possibilities are realized in HIC. Nevertheless, the
nonlocal and the higher order components of the current
have not been well investigated systematically. For this
reason, it is an interesting task to analyze what kind of
current exists and which component becomes dominant in
HIC, in which the inhomogeneous and strong electromag-
netic field is expected to be generated, in a systematic way.

In this paper, we analyze the linear and mainly quadratic
components of the current in terms of the external electro-
magnetic field in the quark-gluon plasma, systematically
and with HIC in mind. There are two reasons why we focus
on the quadratic component and do not consider other
components that are higher order than the quadratic one:
One is that, as we will see later, the quadratic component is
the term most sensitive to the chemical potential μ when
μ=T is not so large, which is realized in HIC. The other is
that, as will be seen in Sec. III B, the components that
are higher than the quadratic one, e.g., cubic or quartic, do
not appear if we truncate a systematic expansion, which
is called gradient expansion, at the next-to-leading
order (NLO).
We work in the following two regimes: One is that the

inhomogeneity of the electromagnetic field is so small that
the collision effect cannot be neglected, which is treated in
Sec. II. In this case, the current is local, so we can list all of
the possible forms of the current, some of which are found
to be forbidden by discussing the charge conjugation and
the parity property. We also calculate the linear and the
quadratic currents explicitly by using the Boltzmann
equation in the relaxation time approximation to make
an order estimate of each component of the current. The
other regime, in which the inhomogeneity of the electro-
magnetic field is so large that the collision effect is
negligible and the current is nonlocal, is analyzed in
Sec. III. In that section, we calculate the quadratic current
explicitly with the Vlasov equation. We also systematically
calculate the current by applying the gradient expansion to
the Kadanoff-Baym equation. As a result, we show that the
quadratic current at the NLO in the gradient expansion
agrees with the one calculated with the Vlasov equation,
while it has been known that the calculation at the leading
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1Here locality of current means that the current at point X does

not depend on the electromagnetic field at another point [for an
example, see Eq. (2.7)]. By contrast, a nonlocal current depends
on the electromagnetic field at another point, such as the current
in Eq. (3.6).
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order (LO) reproduces [15,16] the result of the hard
thermal/dense loop (HTL/HDL) approximation [17,18]
and the linear current at the NLO is equal to the CME
current [19–21]. We also show that at the NLO order, the
currents that are higher than the quadratic current do not
appear. We demonstrate that the quadratic current can have
the same order of magnitude as that of the CME current, by
using a possible field configuration realized in HIC in
Sec. IV. We summarize this paper and give concluding
remarks in Sec. V. Appendix A is devoted to a derivation of
the CME current from the Kadanoff-Baym equation. We
derive the expression of the CME current in coordinate
space in Appendix B.

II. ELECTROMAGNETIC FIELD WITH
SMALL INHOMOGENEITY

In this section, we consider a case in which the
inhomogeneity of the electromagnetic field in spacetime
is so small that we cannot neglect the collision effect,
and the current becomes local. In such a case, we can list
possible forms of the current and pick up the terms
allowed by the charge conjugation (C) and parity (P)
symmetry. We note that, in general, the inhomogeneities
in space and time are independent quantities, so their
orders of magnitude can be different. In this paper, we
assume that they have the same order of magnitude, for
simplicity. We also obtain the linear and quadratic current
in terms of the electromagnetic field, and at the zeroth and
the first order in terms of inhomogeneity, by using the
Boltzmann equation in the relaxation time approximation.
By using its result, we make an order estimate of each term
of the currents.
Throughout this section, we consider the case that the

chiral chemical potential (μ5) is zero, for the following
reason: The time scale of the chiral instability is of the order
ðg4T lnð1=gÞÞ−1 [22], where g is the coupling constant in
quantum chromodynamics. This time scale is much shorter
than the time scale we are focusing on, as will be shown
later. Thus, there appears the instability leading to the rapid
growth of the electromagnetic field in our analysis if μ5 is
finite, so to avoid treating this problem, we consider the
μ5 ¼ 0 case. Also, with HIC in mind, we assume that μ is
not much larger than T: μ≲ T.

A. Classification by using C and P symmetries

We list and classify the possible components of the
currents. Since we consider the case that the inhomogeneity
of the electromagnetic field is small and we are interested in
the ratio of the orders of magnitude for the components
that have a different dependence on the strength of the
electromagnetic field, we classify the components in

terms of the time/space derivative and the strength of the
electromagnetic field. The vector quantities which can be
used to construct the current2 are

E;B; _E; _B;∇: ð2:1Þ

We are considering the case in which the electromagnetic
field varies slowly in space and time, so here we neglected
the terms that contain more than two space and time
derivatives.
First, we list the possible form of the currents that are

linear in terms of the electromagnetic field. The possible
terms are proportional to E;B; _E; _B;∇ ×E;∇ ×B. The
first one is the Ohmic current and the second one is the
CME current [4,5]. Some properties of the currents above
can be determined by looking at how these quantities
transform under discrete transformations, which are sum-
marized in Table I. Since the P property of the current
operator is different from those of B, _B, and ∇ ×E, these
components cannot exist and only

E; _E;∇ ×B ð2:2Þ

remain as long as μ5, which violates the P symmetry, is
zero. Also, the C property of the remaining terms is the
same as that of the current operator, so these terms can exist

TABLE I. CP properties of relevant quantities. þ1 (−1) means
even (odd) under a discrete transformation.

E B _E _B ∇ j

C −1 −1 −1 −1 þ1 −1
P −1 þ1 −1 þ1 −1 −1

2We treat E and B as external fields, so they are regarded as
independent quantities here, although they are not if we treat
them as dynamical quantities following the Maxwell equations
in the medium. How the electromagnetic field evolves with time
has been analyzed by taking into account the effect of the
induced current at the level of the Ohmic and the CME currents
[1–3]. Here we remark that, in such analysis, the classification
with the inhomogeneity of the electromagnetic field is different
from that in this paper: In Refs. [2,3], the inhomogeneity in time
above which the effect of the induced current is negligible is
introduced, and it becomes of the order ðR2σeÞ−1 (σe), where σe
is the electrical conductivity and R is the characteristic size of the
magnetic field at initial time, according to Ref. [2] ([3]). By
using this time scale, the classification of the inhomogeneity of
the electromagnetic field is done in Refs. [2,3]. On the other
hand, as will be seen later, our classification is based on the
inhomogeneity above which the collision effect is negligible, and
it is of the order τ−1, where τ is the relaxation time for the
fermion.
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in the μ ¼ 0 case, in which the C symmetry is not broken.
This property implies that, in the T ≫ μ case, which is
realized in HIC, these terms approximately do not depend
on μ.
Next, we discuss the currents that are quadratic in terms

of the electromagnetic field. After neglecting the terms
whose P property is even, there are the following possible
terms:

E ×B; _E ×B; _B ×E;∇ðE2Þ;∇ðB2Þ;Eð∇ ·EÞ;
ðE ·∇ÞE;Bð∇ · BÞ; ðB ·∇ÞB: ð2:3Þ

The C property of these quantities is different from that
of the current operator, so these terms should vanish in
the μ ¼ 0 case, in which the C symmetry exists.
Therefore, in the T ≫ μ case, these components are
expected to be proportional to μ. This property suggests
that the quadratic currents have stronger sensitivity to μ
than other currents when T ≫ μ.

B. The Boltzmann equation in the relaxation
time approximation

A conventional way to calculate the induced current is to
use the Boltzmann equation. Wework in the relaxation time
approximation, in which the collision term has a very
simple form. In this approximation, we cannot expect that
the quantitative behavior of the result obtained from the
Boltzmann equation is correctly produced, but its order
estimate is expected to be correct. The Boltzmann equation
in that approximation reads [16]

Dn�ðk; XÞ − τ−1nðeqÞ� ðjkjÞ
¼∓ eðEþ v × BÞðXÞ · ∇kn�ðk; XÞ; ð2:4Þ

where D≡ v · ∂X þ τ−1, n�ðk; XÞ is the distribution

function for the quark (antiquark), nðeqÞ� ðjkjÞ≡
½expfβðjkj ∓ μÞg þ 1�−1 is the distribution function at
equilibrium, Xμ≡ðX0;XÞ, and vμ≡ð1;vÞ with v≡k=jkj.
τ is called relaxation time, and its order of magnitude is
determined by the collision effect. The order estimate3

using the perturbation theory gives τ−1 ∼ g4T ln 1=g [24].
Since we focus on the case in which the inhomogeneity of
the electromagnetic field in spacetime is small, so that the

collision effect is negligible (namely, ∂X ≪ τ−1), we see
that ∂X ≪ g4T ln 1=g, which was assumed at the beginning
of this section, is justified when g ≪ 1. For simplicity, in
this paper we consider an ultrarelativistic fermion whose
electromagnetic charge is e and that does not have color/
flavor structure, and we call that particle a quark. It will be
straightforward to modify the charge to the real one and to
introduce the color/flavor structure. The induced current is
written in terms of the distribution function as

jðXÞ ¼ 2e
Z

d3k
ð2πÞ3 vðnþðk; XÞ − n−ðk; XÞÞ; ð2:5Þ

where the factor 2 comes from the spin degeneracy.
To obtain the induced current, we expand Eq. (2.4)

in terms of E and B: First, we expand the distribution
function as n ¼ nðeqÞ þ δn1 þ δn2 þOðF3

μνÞ, where δn1

(δn2) is linear (quadratic) in terms of Fμν. By using this
form, the first order terms in the Boltzmann equation read

Dδn1�ðk; XÞ ¼∓ eEðXÞ · vn0ðeqÞ� ðjkjÞ: ð2:6Þ
We see that the magnetic field vanishes from the equation
due to isotropy of the distribution function at equilibrium.
The current at the first order is

j1ðXÞ ¼ 2e
Z

d3k
ð2πÞ3 vðδn

1þðk; XÞ − δn1−ðk; XÞÞ

≃ −
e2τ
π2

Z
d
4π

vð1 − τ∂TÞEðXÞ · v

×
Z

∞

0

djkjjkj2ðn0ðeqÞþ ðjkjÞ þ n0ðeqÞ− ðjkjÞÞ

¼ τ

3
m2

DðEðXÞ − τ _EðXÞÞ; ð2:7Þ

where mD ≡ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2=3þ μ2=π2

p
is the Debye mass. We

emphasize that we expanded in terms of τ∂X,
D−1 ≃ τð1 − τv · ∂XÞ, by using ∂X ≪ τ−1. The term that
is proportional to E is the Ohmic current, in which the
conductivity σe is given by

σe ¼
τm2

D

3
: ð2:8Þ

This term is of order e2τT2Fμν while the second term in the
right-hand side is of order e2τ2T2∂XFμν. We see that all the
linear terms allowed by the symmetry in Eq. (2.2) have
been obtained, except for the ∇ ×B term. The reason for
the absence of such a term can be traced back to the
isotropy of the distribution function at equilibrium, as can
be seen from Eq. (2.6).
At the second order in terms of the electromagnetic field,

the Boltzmann equation reads

3In some literature [23], it is assumed that the electrons in
addition to the quarks exist as charge carriers. In such a
case, the quarks thermalize more rapidly than the electrons
because of their strong interaction, so the dominant contribu-
tion to the conductivity comes from the electrons, which
leads to τ−1 ∼ e4T lnð1=eÞ. We do not consider such a case
in this paper, but our analysis can be extended to this case
by replacing the estimate of the relaxation time as τ−1∼
g4T lnð1=gÞ → e4T lnð1=eÞ.
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Dδn2�ðk; XÞ ¼ e2ðEþ v ×BÞðXÞ ·∇kD−1EðXÞ · vn0ðeqÞ� ðjkjÞ
δn2�ðk; XÞ≃ e2τ2½ðEþ v ×BÞ ·∇k − τv · ∂XðEþ v ×BÞ · ∇k − τðEþ v × BÞ ·∇kv · ∂X�E · vn0ðeqÞ� ðjkjÞ: ð2:9Þ

Here we have expanded in terms of τ∂X. From Eq. (2.5), the current at zeroth order in terms of τ∂X is

j2 ¼ 2e3τ2
Z

d3k
ð2πÞ3 v½ðEþ v ×BÞ ·∇k�E · v × ðn0ðeqÞþ ðjkjÞ − n0ðeqÞ− ðjkjÞÞ ¼ e3τ2μ

3π2
E ×B: ð2:10Þ

This component has the same form as the Hall current and is of the order e3τ2μðFμνÞ2. The current at the first order in terms
of τ∂X is given by

j2ðXÞ ¼ −2e3τ3
Z

d3k
ð2πÞ3 v½v · ∂XðEþ v ×BÞ ·∇k þ ðEþ v × BÞ ·∇kv · ∂X�E · v × ðn0ðeqÞþ ðjkjÞ − n0ðeqÞ− ðjkjÞÞ

¼ e3τ3μ
3π2

�
_B ×Eþ 2B × _Eþ 1

2
∇E2 − 2Eð∇ ·EÞ − ðE · ∇ÞE

�
; ð2:11Þ

which is of the order e3τ3μ∂XðFμνÞ2. All of these order
estimates are summarized in Table II. We note that, again,
all of the terms allowed by the symmetries are obtained,
except for the terms that contain two B in Eq. (2.3). The
reason why such terms do not exist is the isotropy of the
thermal distribution function. We see that, from Table II,
the ratio of the quadratic current to the linear one is of the
order eτμFμν=T2. Thus, the quadratic current will have
the same order of magnitude as that of the linear one, when

the external electromagnetic field is as strong as
Fμν ∼ T2=ðeμτÞ.
We also see that all of the second order current,

Eqs. (2.10) and (2.11), is proportional to μ, while the first
order current, Eq. (2.7), contains μ-independent terms. This
is consistent with the discussion in the previous subsection.
The physical picture of this property can be explained as
follows: For simplicity, we focus on the Ohmic and Hall
currents. When we consider the linear response of the quark
and the antiquark to the electric field, they move in the
opposite direction because they have electric charges with
the opposite sign. Since the current is given by the
difference of the quark contribution and the antiquark
one, even in the case in which the distribution functions
of the two particles at equilibrium are the same, the current
exists. Thus, the Ohmic current is nonzero in the μ ¼ 0

case. By contrast, if the magnetic field acts on these two
particles, they feel the Lorenz force with the same signs.
Therefore, if the distribution functions of the two particles
at equilibrium are the same, the quark and the antiquark
contributions to the current cancel, so the Hall current does
not exist when μ ¼ 0. This explanation is illustrated
in Fig. 1.

III. ELECTROMAGNETIC FIELD WITH
LARGE INHOMOGENEITY

In this section, we consider the case in which the
inhomogeneity of the electromagnetic field is large so that

TABLE II. Summary of order estimate of the linear and quadratic currents in ∂X ≪ τ−1 case.

E _E B ×E _B × E;B × _E;∇E2;Eð∇ ·EÞ; ðE ·∇ÞE
e2τT2Fμν e2τ2T2∂XFμν e3τ2μðFμνÞ2 e3τ3μ∂XðFμνÞ2

FIG. 1 (color online). Schematic picture of the Ohmic and
the Hall currents at μ ¼ 0. The arrows near the quark and the
antiquark show the directions of the forces caused by the
electromagnetic field.
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we can neglect the collision effect (∂X ≫ τ−1).4 First, we
explicitly calculate the current that is quadratic in terms of
the electromagnetic field explicitly by using the Vlasov
equation, which is the kinetic equation without a collision
term. Next, we calculate the current induced by the external
electromagnetic field with the Kadanoff-Baym equation, at
NLO of the gradient expansion. It has been known that the
LO result reproduces [15] the HTL/HDL current [17,18],
while the linear current at the NLO agrees with the CME
current [19,20]. The quadratic current at NLO is calculated
in this paper for the first time, and we show that this current
agrees with the one calculated with the Vlasov equation.
Since both the CME and the quadratic currents are NLO
of the gradient expansion, they have the same order of
magnitude under conditions that will be described later.
We also find that the components that are higher than the
quadratic one in terms of electromagnetic field, such as
cubic and quartic ones, do not exist at the NLO.
In this section, we consider the case ∂X ≫ τ−1 ∼

g4T lnð1=gÞ, so the time scale we consider is much shorter
than that of the chiral instability. For this reason, we assume
that μ5 is finite in this section. Also, we calculate the axial
current in addition to the vector one for completeness.

A. Vlasov equation

When the inhomogeneity of the electromagnetic field is
large enough to neglect the collision effect, the Boltzmann
equation is reduced to the Vlasov equation: If ∂X ≫ τ−1,
Eq. (2.4) becomes

v · ∂Xn�L=Rðk; XÞ ¼∓ eðEþ v ×BÞðXÞ ·∇kn�L=Rðk; XÞ;
ð3:1Þ

where nþL=R (n−L=R) is the distribution function for the
left-/right-handed quark (antiquark). We separately wrote
the equations for the left-handed and the right-handed
quark since we have finite μ5. The vector and axial currents
are given by

jðXÞ ¼ e
Z

d3k
ð2πÞ3 vðnþLðk; XÞ − n−Lðk; XÞ

þ nþRðk; XÞ − n−Rðk; XÞÞ; ð3:2Þ

jAðXÞ ¼ e
Z

d3k
ð2πÞ3 vð−nþLðk; XÞ þ n−Lðk; XÞ

þ nþRðk; XÞ − n−Rðk; XÞÞ: ð3:3Þ

To obtain the current, we expand the equation in terms of
the electromagnetic field as n¼nðeqÞþδn1þδn2þOðF3

μνÞ,
where nðeqÞ�L=RðjkjÞ≡ ½expfβðjkj ∓ μL=RÞg þ 1�−1. μL=R ¼
μ ∓ μ5 is the chemical potential for the left-/right-handed
quark. δn1 is determined by the Vlasov equation at the first
order, which reads

v · ∂Xδn1�L=Rðk; XÞ ¼ ∓ eEðXÞ · ∇kn�L=RðjkjÞ; ð3:4Þ
whose solution is

δn1�L=Rðk; XÞ ¼ ∓ e
Z

∞

0

dte−ηtv ·EðX − vtÞ

× n0ðeqÞ�L=RðjkjÞ: ð3:5Þ

Here η is an infinitesimal quantity. It is known [15,16]
that by substituting this expression into Eq. (3.2), we
reproduce the result of the HTL/HDL approximation
[17,18], which read

j1ðXÞ ¼ m2
D

Z
dΩ
4π

v
Z

∞

0

dte−ηtv ·EðX − vtÞ: ð3:6Þ

Herem2
D ≡ e2ðT2=3þ ðμ2 þ μ25Þ=π2Þ is modified from that

in the μ5 ¼ 0 case. Since the dominant contribution comes
from the region t ∼ ∂−1

X , this current is of the order
e2T2∂−1

X Fμν. We also see that it is nonlocal. In the same
way, the axial current is shown to be

jA1 ðXÞ¼
2e2

π2
μμ5

Z
dΩ
4π

v
Z

∞

0

dte−ηtv ·EðX−vtÞ: ð3:7Þ

We note that this current is proportional to μμ5, which is the
same parameter dependence as that of the current generated
by the chiral electric separation effect [25].
Also, it is known that the Vlasov equation with the

Berry phase term produces [19–21,28] the following CME
current,

jiCMEðXÞ ¼
Z

d4YΠiν
R ðX − YÞAνðYÞ; ð3:8Þ

where Aμ is the gauge field, and the retarded polarization
tensor for the CME reads [19]

Πij
RðpÞ ¼

ie2

2π2
μ5ϵ

ijk

�
1 −

p2
0

jpj2
�
pk

×

�
1þ p0

2jpj ln
p0 − jpj þ iη
p0 þ jpj þ iη

�
; ð3:9Þ

4We note that this argument holds only when the system is near
the equilibrium state: If one fully solves the Boltzmann equation
without expanding the solution around the equilibrium state [2]
like we did in Sec. II, the collision term is proportional to
nðk; XÞ3 while the drift and the force term contain nðk; XÞ. Since
nðk; XÞ is not of order unity in general, we cannot argue that the
collision term is negligible even when ∂X ≫ τ−1 is satisfied,
unlike in the case in which the system is near equilibrium.
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in momentum space. We note that this result also can be
reproduced by using the Kadanoff-Baym equation. Since
the derivation of Eq. (3.9) with the Kadanoff-Baym
equation cannot be found in the literature, we write it in
Appendix A. Equation (3.8) can be rewritten in terms of
the electromagnetic field:

jCMEðXÞ ¼
e2

2π2
μ5

�
BðXÞ

þ
Z

dΩ
4π

Z
∞

0

dte−ηtfv × _E − _BgðX − vtÞ
�
;

ð3:10Þ

which is of the order e2μ5Fμν. For details of the derivation
of this expression, see Appendix B. The axial current can
be obtained by replacing μ5 with μ in this expression, which
is the current due to the chiral separation effect [26].
Now we focus on the second order response, in which

the Vlasov equation becomes

v · ∂Xδn2�L=Rðk; XÞ ¼ ∓ eðEþ v ×BÞðXÞ ·∇k

× δn1�L=Rðk; XÞ: ð3:11Þ

By solving this equation, we get

δn2�L=Rðk;XÞ¼ e2
Z

∞

0

dt1

Z
∞

0

dt2e−ηðt1þt2Þ

× ðEþv×BÞðαÞ ·∇kv ·EðβÞn0ðeqÞ�L=RðjkjÞ;
ð3:12Þ

where α≡ X − vt1 and β≡ X − vðt1 þ t2Þ. The quadratic
current is obtained from this expression and Eq. (3.2):

j2ðXÞ ¼
e3μ
π2

Z
dΩ
4π

v
Z

∞

0

dt1

Z
∞

0

dt2e−ηðt1þt2Þ

× ½EiðαÞf−EiðβÞ þ 3vivjEjðβÞ
þ ðt1 þ t2ÞvjPik

T ∇k
XE

jjX¼βg
þ ðv × BðαÞÞif−EiðβÞ þ vjðt1 þ t2Þ∇i

XE
jjX¼βg�;
ð3:13Þ

where Pij
T ≡ δij − vivj. This quantity is of the order

e3μ∂−2
X ðFμνÞ2. We note that this expression does not

depend on T or μ5. The axial current is obtained by
replacing μ with μ5 in Eq. (3.13).

B. Kadanoff-Baym equation

The Kadanoff-Baym equation [15,16,19,27] that is
relevant to our study describes the time evolution of
the quark propagator, S<ðx; yÞ≡ hψ̄ðyÞψðxÞi, where ψ
(ψ̄ ) is the (anti)quark field and h…i is the expectation
value at nonequilibrium state, which is specified by a
disturbance characterized by the external photon field
(Aμ). This formalism is a first-principle calculation based
on quantum field theory, so even when we use some
approximations, what conditions are assumed is clear.
The quark propagator calculated with this formalism is
related to the vector and axial current in the following
way:

jðxÞ ¼ eTr½γS<ðx; xÞ�; ð3:14Þ

jAðxÞ ¼ eTr½γγ5S<ðx; xÞ�: ð3:15Þ

In the presence of an external electromagnetic field,
the Kadanoff-Baym equation for the quark propagator
reads [15,16]

ðD2
x−D†2

y ÞS<ðx;yÞ
¼−

e
2
ðFμνðxÞσμνS<ðx;yÞ−FμνðyÞS<ðx;yÞσμνÞ; ð3:16Þ

where Dx≡∂xþieAðxÞ is the covariant derivative, Fμν ≡
∂μAν − ∂νAμ is the field strength, and σμν ≡ i½γμ; γν�=2.
We neglected the collision effect, which is justified
because of ∂X ≫ τ−1 [15,16]. By introducing s≡ x − y
and X ≡ ðxþ yÞ=2, the equation becomes

�
2∂s · ∂X þ ie

���
∂s þ

∂X

2

�
· es·∂X=2AðXÞ þ

�
−∂s þ

∂X

2

�
· e−s·∂X=2AðXÞ

�

þ 2es·∂X=2AðXÞ ·
�
∂s þ

∂X

2

�
þ 2e−s·∂X=2AðXÞ ·

�
−∂s þ

∂X

2

��
− e2fðes·∂X=2AðXÞÞ2 − ðe−s·∂X=2AðXÞÞ2g

�
S<ðx; yÞ

¼ −
e
2
½ðes·∂X=2FμνðXÞ − e−s·∂X=2FμνðXÞÞσμνS<ðx; yÞ − ðe−s·∂X=2FμνðXÞÞ½S<ðx; yÞ; σμν��: ð3:17Þ

DAISUKE SATOW PHYSICAL REVIEW D 90, 034018 (2014)

034018-6



Here we perform the gradient expansion, which is an
expansion in terms of ∂X=∂s. Since ∂s ∼ T, as will be
seen later, we assume ∂X ≪ T. Also, we see that, in the
Kadanoff-Baym equation, there is another dimensionless
parameter, eAμ=T. Since we are not focusing on the region
in which the electromagnetic field is so strong that the
expansion in terms of the electromagnetic field becomes
completely useless, we also assume that this quantity is
small enough. Concretely, we assume the following
condition:

�
eAμ

T

�
4

≪
�∂X

T

�
2

≪
eAμ

T
≪ 1: ð3:18Þ

In the derivation of the linearized Vlasov equation [15], it
was assumed that eAμ ∼ ∂X ∼ eT, so the condition above
was satisfied. By neglecting the terms that are much smaller
than e2A2∂XS<=T and eA∂2

XS
<=T, Eq. (3.17) becomes

2½∂s · ∂X þ iefA · ∂X þ ð∂X · AÞ þ ðs · ∂XAμÞ∂μ
sg

− e2Aμðs · ∂XAμÞ�S<ðs; XÞ

¼ −
e
2

�
ðs · ∂XFμνÞσμνS<ðs; XÞ

−
��

1 −
s · ∂X

2

�
Fμν

�
½S<ðs; XÞ; σμν�

�
: ð3:19Þ

Now we perform the Wigner transformation, which is
defined as fðk; XÞ≡ R

d4seik·sfðs; XÞ, where f is an
arbitrary function. After doing this transformation,
Eq. (3.19) reads

ðk − eAÞμ½∂Xμ þ e∂ν
kð∂XνAμÞ�S<ðk; XÞ

¼ e
4

�
−∂kαð∂α

XF
μνÞσμνS<ðk; XÞ

þ i

��
1 − i

∂k · ∂X

2

�
Fμν

�
½S<ðk; XÞ; σμν�

�
: ð3:20Þ

This equation can be rewritten in explicitly gauge invariant
form by introducing the gauge covariant Wigner function
[15,16,27],

Ś<ðs; XÞ≡U

�
X;X þ s

2

�
S<

�
X þ s

2
; X −

s
2

�

×U

�
X −

s
2
; X

�
; ð3:21Þ

where Uðx; yÞ≡ P expð−ie Rγ dzμAμðzÞÞ is the Wilson
line, with P being the path ordering operator and γ an
arbitrary path from y to x. By performing the gradient
expansion, the Wilson lines become

U

�
X;X þ s

2

�
U

�
X −

s
2
; X

�

¼ eies·AðXÞ þO
�
eA∂X

T3
;
e2A2∂X

T3
;
e3A3

T3

�
; ð3:22Þ

so we have

S<ðk; XÞ ¼ Ś<ðl; XÞ ð3:23Þ
up to this order. Here l≡ k − eA. By using this rela-
tion, Eq. (3.20) is written in the following gauge invariant
form:

½l · ∂X − elμ∂ν
l Fμν�Ś<ðl; XÞ

¼ e
4

�
−∂lαð∂α

XF
μνÞσμνŚ<ðl; XÞ

þ i

��
1þ i

∂l · ∂X

2

�
Fμν

�
½Ś<ðl; XÞ; σμν�

�
: ð3:24Þ

Let us obtain Ś< order by order. To this end, we expand
this quantity as Ś<ðl; XÞ ¼ S<ðeqÞðlÞ þ δŚ<LOðl; XÞ þ
δŚ<NLOðl; XÞ, where δŚ<LO is of the order S<ðeqÞeA=T and
δŚ<NLO is of the order S<ðeqÞ×maxðe2A2∂X=T3;eA∂2

X=T
3Þ.

The quark propagator at equilibrium is given by

S<ðeqÞðlÞ ¼ ρ0ðlÞ½PLnLðl0Þ þ PRnRðl0Þ�l; ð3:25Þ

where ρ0ðlÞ≡ 2πsgnðl0Þδðl2Þ is the spectral function of
massless particle, nL=Rðl0Þ≡ ½expfβðl0 − μL=RÞg þ 1�−1,
and PR=L ≡ ð1� γ5Þ=2.

1. Leading order

The calculation of LO was already performed [15,16],
but for later convenience, we recapitulate its calculation
briefly. At the LO, Eq. (3.24) becomes

l · ∂XδŚ
<LOðl; XÞ

¼ eFμν

�
lμ∂ν

l S
<ðeqÞðlÞ þ i

4
½S<ðeqÞðlÞ; σμν�

�
: ð3:26Þ

From this equation, we see that δŚ<LO has only a linear
component in terms of Fμν. By introducing δn1L=R� as

δŚ<LO ¼ 2πδðl2Þ½θðl0ÞfPLδn1Lþ þ PRδn1Rþgðl; XÞ
þ θð−l0ÞfPLδn1L− þ PRδn1R−gð−l; XÞ�l;

ð3:27Þ
we see that Eq. (3.26) is reduced to the linearized Vlasov
equation, Eq. (3.4).
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To show the equivalence between the linearized Vlasov
equation and the Kadanoff-Baym equation at the LO, we
also have to show that the expression of the current in
terms of the distribution function is the same in both
formalisms. By using the Wigner-transformed Green’s
function, Eqs. (3.14) and (3.15) can be written as

jðxÞ ¼ e
Z

d4k
ð2πÞ4 Tr½γS

<ðk; xÞ�

¼ e
Z

d4l
ð2πÞ4 Tr½γŚ

<ðl; xÞ�; ð3:28Þ

jAðxÞ ¼ e
Z

d4k
ð2πÞ4 Tr½γγ5S

<ðk; xÞ�

¼ e
Z

d4l
ð2πÞ4 Tr½γγ5Ś

<ðl; xÞ�; ð3:29Þ

where we have used the fact that Ś is obtained from S by
shifting the momentum k by eA. By substituting Eq. (3.27)
into Eqs. (3.28) and (3.29), we see that these equations are
reduced to Eqs. (3.2) and (3.3).

2. Next-to-leading order

Now we calculate the current at the NLO. At this order,
Eq. (3.24) reads

l · ∂XδŚ
<NLOðl; XÞ − elμ∂ν

l FμνδŚ
<LOðl; XÞ

¼ −
e
4

�
∂lαð∂α

XF
μνÞσμνS<ðeqÞðlÞ

− iFμν½δŚ<LOðl; XÞ; σμν�

þ
�∂l · ∂X

2
Fμν

�
½S<ðeqÞðlÞ; σμν�

�
: ð3:30Þ

Since δŚ<LO is linear in terms of Fμν, we see that δŚ
<NLO

has a quadratic component. To obtain the linear and
quadratic components of δŚ<NLO separately, we expand
it as δŚ<NLO ¼ δŚ<NLO1 þ δŚ<NLO2 , where δŚ<NLO1 (δŚ<NLO2 )
is the linear (quadratic) component.
δŚ<NLO1 follows

l · ∂XδŚ
<NLO
1 ðl; XÞ

¼ −
e
4
ð∂α

XF
μνÞ∂lα

�
σμνS<ðeqÞðlÞ þ

1

2
½S<ðeqÞðlÞ; σμν�

�
:

ð3:31Þ

It is known that this equation can be rewritten in the form
of the Vlasov equation with the term corresponding to the

Berry phase [19–21,28]. We can obtain the CME current
from this equation, as is done in Appendix A. Here
let us discuss the order of magnitude of l that is relevant
to our analysis. As can be seen from Eq. (A5), the
current contains an integral that has the form ofR∞
0 djlj½expfβðjlj∓μL=RÞgþ1�−1, and the dominant con-
tribution to the integral comes from the region jlj ∼ T.
Since ∂s corresponds to k − eA via the Wigner trans-
formation, we confirm that ∂s ∼ T, which was assumed
before, by using eA ≪ T.
From Eq. (3.30), the quadratic component of δŚ<NLO

follows

l · ∂XδŚ
<NLO
2 ðl; XÞ − elμ∂ν

l FμνδŚ
<LOðl; XÞ

¼ i
e
4
Fμν½δŚ<LOðl; XÞ; σμν�: ð3:32Þ

If we write δŚ<NLO2 as

δŚ<NLO2 ¼ 2πδðl2Þ½θðl0ÞfPLδn2Lþ þ PRδn2Rþgðl; XÞ
þ θð−l0ÞfPLδn2L− þ PRδn2R−gð−l; XÞ�l;

ð3:33Þ

we see that this equation coincides with the Vlasov
equation at the quadratic order [Eq. (3.11)], by using
Eq. (3.27).
From Eq. (3.30), we also see that Ś does not contain

more than two Fμν at NLO, which implies that there are no
induced currents that are higher than the quadratic one.
Also, we see that the CME current and the quadratic current
have the same order of magnitude when eFμν ∼ ∂2

X is
satisfied. We note that the condition above is satisfied when
we assume the conditions ∂X ∼ eT and Fμν ∼ eT2, which is
assumed in the derivation of the results of the HTL
approximation from the Kadanoff-Baym equation [15,16].
We briefly summarize the results in this subsection
in Fig. 2.

FIG. 2 (color online). Summary of the result of the analysis
with the Kadanoff-Baym equation.
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IV. QUADRATIC CURRENT IN HIC

In this section, we evaluate explicitly the quadratic
current induced by a possible configuration of an electro-
magnetic field realized in HIC. It gives a demonstration of
an explicit calculation using Eq. (3.13). Wewill see how the
quadratic current behaves differently in the local and
nonlocal forms, and that the quadratic current can be
comparable with the CME current. We note that the latter
property was also valid in the analysis done in Sec. III B,
although the parameters used in the present section do not
satisfy the assumptions in Sec. III B, as will be shown later.
As a configuration of the electromagnetic field realized

in HIC, we adopt the following one, which is similar to that
used in Ref. [12]:

EðXÞ ¼ ŷE0

Y
a
e−X

2=ð2σ2ÞθðX0Þ; ð4:1Þ

BðXÞ ¼ ŷB0e−X
2=ð2σ2ÞθðX0Þ; ð4:2Þ

where X ¼ ðX0; X; Y; ZÞ. Here the transverse plane con-
tains x and y axes, the magnetic field is parallel to the
y axis, and the collision axis agrees with the z axis (see
Fig. 3). We note that the damping factor e−X0=b in the
electromagnetic field, which was present in Ref. [12], was
approximated as 1 here for simplicity. This approximation
is justified when the time we focus on is early enough. For
the parameters, we use the following values, which are used
in Ref. [12]:

eE0 ¼ 2.0 × 10−2 ðGeVÞ2;
eB0 ¼ 8.0 × 10−2 ðGeVÞ2;

σ ¼ 4.0 fm;

a ¼ 1.0 fm;

μ ¼ μ5 ¼ 10 MeV;

e ¼ 0.3: ð4:3Þ

Before doing the explicit evaluation, let us compare the
order of magnitude of ∂X with that of τ−1. The spatial
dependence of the electromagnetic field is determined by

the parameter σ, so ∂X ∼ σ−1 ¼ 50 MeV. To evaluate τ, we
use the result of a lattice calculation of electrical conduc-
tivity [29,30]: The electrical conductivity in the calculation
where the up, down, and strange quarks are taken into
account reads C−1σe=T ≃ 0.3 around T ¼ 300 MeV with
C≡P

fq
2
f, where qf is the electromagnetic charge of the

quark with flavor index f [30]. In our computation, C ¼ e2,
thus σe ≃ 0.3e2T. By using Eq. (2.8), we get

τ−1 ¼ m2
D

3σe
≃ 111 MeV; ð4:4Þ

at T ¼ 300 MeV, by using Eq. (4.3) and assuming T ≫ μ.
This result suggests that ∂X and τ−1 are comparable, and
thus both cases in which the collision effect is important or
negligible should be considered. Thus, we use the expres-
sions of the quadratic current in both cases, namely,
Eqs. (2.10), (2.11), and (3.13).
Let us compare the quadratic currents in both cases to see

how the nonlocal effect modifies the local current. First, we
evaluate the local current, Eqs. (2.10) and (2.11). Since E
andB are parallel, the hall current, Eq. (2.10), is zero. From
Eqs. (2.11) and (4.1), the y component of the local current
at X0 > 0 reads

jy2ðYÞ ¼
2e3μ
3π2

�
E0

a

�
2

τ3Ye−Y
2=σ2

�
Y2

σ2
− 1

�
; ð4:5Þ

where we have focused on the region X ¼ Z ¼ 0, in which
the electromagnetic field is stronger than at other points.
Next, we evaluate the nonlocal current. The y component of
the quadratic current at X ¼ ð0; Y; 0Þ is

jy2ðYÞ ¼
e3μ
π2

Z
dΩ
4π

vy

Z
X0

0

dt1

Z
X0−t1

0

dt2EyðαÞ

× ½EyðβÞð3v2y − 1Þ
þ ðt1 þ t2Þvyð∇y

XE
yðβÞ − vyvk∇k

XE
yðβÞÞ�;

ð4:6Þ
from Eqs. (3.13), (4.1), and (4.2). To proceed with the
calculation analytically, from now on we focus on the case
that X0 is so small that ðX0Þ2 ≪ YX0 ≪ σ2 is satisfied.
From this condition, we have

jy2ðYÞ≃ e3μ
π2

2

15

�
E0

a

�
2

ðX0Þ3Ye−Y2=σ2
�
Y2

σ2
− 1

�
: ð4:7Þ

In Fig. 4, we plot Eqs. (4.5) and (4.7). In the plots we used
Eqs. (4.3) and (4.4) and set X0 ¼ eσ. We see that they have
the same forms as functions of Y, but their orders of
magnitude are very different: The local current is larger
than the nonlocal current by approximately a factor of 20.
Let us evaluate the CME current, to compare it with the

quadratic current. For the same reason as for the quadratic

FIG. 3 (color online). Schematic picture of the possible
electromagnetic field generated in HIC. The dotted (blue) curve
represents the electric field, the solid (red) one the magnetic field.
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current, we evaluate the CME current by using the local and
nonlocal expressions. From Eq. (3.10), the nonlocal CME
current reads

jyCMEðXÞ ¼ −
e2

2π2
μ5B0

�Z
dΩ
4π

e−ðX2−2v·XX0þðX0Þ2Þ=ð2σ2Þ

− e−X
2=ð2σ2Þ

�
: ð4:8Þ

If we focus on the region X ¼ Z ¼ 0, we have

jyCMEðYÞ ¼ −
e2

2π2
μ5B0e−Y

2=ð2σ2Þ

×

�
e−ðX0Þ2=ð2σ2Þ σ2

YX0

sinh

�
YX0

σ2

�
− 1

�

≃ −
e2

2π2
μ5B0e−Y

2=ð2σ2Þ 1
6

�
YX0

σ2

�
2

; ð4:9Þ

where we have used ðX0Þ2 ≪ YX0 ≪ σ2 in the last line. We
also evaluate the local CME current. This current reads
jCMEðXÞ ¼ e2μ5BðXÞ=ð2π2Þ [5,6], which yields

jyCMEðYÞ ¼
e2

2π2
μ5B0e−Y

2=ð2σ2Þ: ð4:10Þ

Here we plot Eqs. (4.9) and (4.10) in Fig. 4. We see that
they are comparable with the quadratic currents in both the
local and the nonlocal expressions. This result suggests
that, to analyze CME in HIC, it can be necessary to
consider the quadratic current to subtract it from the total
current; i.e., the quadratic current can be a background for

the CME current. We also see that, after averaging over Y,
the quadratic current vanishes while the CME current
remains finite. Thus, it is suggested that, to see the
experimental effect of the quadratic current, we should
see an observable quantity that is sensitive to fluctuation of
the current jyðYÞ, not the one that is sensitive to the
averaged current over Y.
Finally, we remark that the configuration of the electro-

magnetic field used in the present analysis does not satisfy
the conditions assumed in Sec. III B. For example, one of the
conditions in Eq. (3.18) is that eFμν=ðT∂XÞ is much smaller
than 1, but this quantity is estimated as ≃1.3, which is
comparable with 1, by using Eq. (4.3) around T¼300MeV.
Therefore, the result obtained in Sec. III B—i.e., the
nonlocal CME and quadratic currents have the same orders
of magnitude, and the higher order currents in terms of Fμν,
such as the cubic one, are much smaller than the quadratic
current—cannot be expected to be valid. Nevertheless, our
numerical result in this section shows that the former result is
valid, so we could also expect the validity of the latter result.

V. SUMMARY AND CONCLUDING REMARKS

With HIC in mind, we analyzed the linear and quadratic
electromagnetic currents in terms of the external electro-
magnetic field in the two regimes: In one regime, the scale
of the inhomogeneity of the electromagnetic field is so
small that the collision effect is essentially important, and in
the other regime, the inhomogeneity is so large that the
collision effect is negligible. In the former case, we listed
all possible components of the linear and quadratic currents
in terms of the external electromagnetic field, and we
made an order estimate of each component by using the
Boltzmann equation in the relaxation time approximation.
As a result, we found the magnitude of the strength of the
electromagnetic field with which the linear and quadratic
currents have the same order of magnitude. In the latter
case, we explicitly calculated the quadratic current by using
the Vlasov equation and found that the CME current and
the quadratic current can have the same order of magnitude
when Eq. (3.18) is satisfied, by showing that the Kadanoff-
Baym equation at the NLO in the gradient expansion
reproduces both the CME and the quadratic currents.
Furthermore, we showed that there are no currents that
are higher than the quadratic, e.g., cubic or quartic, in the
analysis at the NLO. We emphasize that, as far as we know,
these analyses are the first systematic studies on nonlinear
electromagnetic response in the quark-gluon plasma. We
also demonstrated that the quadratic current can have the
same order of magnitude as that of the CME current, by
using a possible field configuration realized in HIC.
The results in this paper suggest that the quadratic

current is the term most sensitive to μ, so it could be
useful to analyze the experimental effect of this current in
HIC, in order to measure indirectly the μ realized in HIC. In
particular, the low-energy scan done in the Relativistic

-1000
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 1000

-15 -10 -5  0  5  10  15

jy [M
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]3

Y [fm]

FIG. 4 (color online). The local and nonlocal quadratic cur-
rents, Eqs. (4.5) and (4.7), and the local and nonlocal CME
currents, Eqs. (4.10) and (4.9), as a function of Y. The local
currents are plotted after multiplying by 0.05. We set X0 ¼ eσ
and used the parameters Eq. (4.3). 0.05× Eq. (4.5) is plotted with
the solid (magenta) line, Eq. (4.7) with the dotted (blue) line,
0.05× Eq. (4.10) with the thick solid (black) line, and Eq. (4.9)
with the thick dotted (red) line, respectively.
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Heavy Ion Collider can be relevant since μ is expected to be
relatively large. Also, the results suggest that, when the
configuration of the electromagnetic field satisfies ∂X ∼ eT
and Fμν ∼ eT2, we can neglect the currents that are higher
order than the quadratic one.
Also, the results suggest that the quadratic current may

be non-negligible compared with the CME current in HIC,
and thus can be a background for the CME current. For an
experimental search for the CME, it was suggested that
the projected azimuthal asymmetry correlations reflect the
effect of the CME [9,12]. Therefore, it is an interesting
task to estimate the effect of the quadratic current on this
quantity. We leave it to future work.
In this work, we computed the current around the

thermal equilibrium state. However, in HIC, the system
expands, so taking into account this effect is one way to
proceed further with the analysis. If we consider this effect,
the distribution function becomes anisotropic, and thus the
terms in Eqs. (2.2) and (2.3) that did not appear in Eqs. (2.7)
and (2.11) are expected to appear. Also, the flow vector
appears as a vector quantity with which we can construct the
current, so we expect that there will appear more terms [10]
in the current than appear in our paper.
Another way of improving the analysis in this paper is to

calculate the next-to-next-to-leading-order terms with the
Kadanoff-Baym equation. In such an analysis, we expect
that the gradient expansion is more difficult to apply, and
the HTL resummation [31] becomes necessary for the
following reason: As was discussed before, the dominant
contribution to the current at the NLO comes from the
region jlj ∼ T. By contrast, in the next-to-next-to-leading-
order calculation, we expect that an integral likeR
∞
0 djljjlj−1½expfβðjlj ∓ μL=RÞg þ 1�−1 appears instead ofR
∞
0 djlj½expfβðjlj ∓ μL=RÞg þ 1�−1, and this integral con-
tains infrared singularity. After removing the singularity
with the HTL resummation, which generates the infrared
cutoff that is of order Debye mass, the dominant contri-
bution comes from the region jlj ∼ eT. In this case, the
assumption ∂X ≪ T, which justifies the gradient expan-
sion, is replaced by ∂X ≪ eT, so the gradient expansion is
more difficult to apply.
Finally, we remark that the calculation of the quadratic

current in this paper is also relevant to an analysis of the
photon splitting process [32] induced by finite density since
the quadratic current contains the information of the three-
point function of the photon [15,16]. We leave the inves-
tigation of the photon splitting process for future work [33].
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APPENDIX A: CME CURRENT CALCULATED
WITH THE KADANOFF-BAYM EQUATION

In this appendix, we derive Eq. (3.9) from Eq. (3.31).
By using Eq. (3.25), Eq. (3.31) becomes

l · ∂XδŚ
<NLO
1 ðl;XÞ ¼−i

e
8
ð∂l · ∂XFμνÞγνlγμρ0ðlÞ

× ðnLþnRþ γ5ðnL−nRÞÞðl0Þ: ðA1Þ

We note that this expression does not vanish if we multiply
by l from the right, in contrast to δŚ<LO and δŚ<NLO2 . It
reflects the fact that Eq. (A1) cannot be written in the form
of the Vlasov equation without the Berry phase term. From
this equation, we have

l · ∂XTr½γαδŚ<NLO1 ðl; XÞ�
¼ −

e
2
ð∂l · ∂XFμνÞϵανβμlβρ0ðlÞðnL − nRÞðl0Þ: ðA2Þ

The vector current is given by Eq. (3.28), so

jiCMEðpÞ ¼
e2

2

Z
d4l
ð2πÞ4

ϵiνβμp2

ðl · pÞ2 F
μνðpÞlβρ0ðlÞðnL − nRÞðl0Þ

ðA3Þ

in momentum space. Here we did partial integration.
By using

jiCMEðpÞ ¼ Πiν
R ðpÞAνðpÞ; ðA4Þ

which is the Fourier-transformed Eq. (3.8), we get

ΠijðpÞ ¼
ie2

2π2
ϵijk

Z
∞

0

djlj
Z

dΩ
4π

X
s¼�1

sjlj
2

p2

ðl · pÞ2

× ðp0lk − pkl0ÞðnL − nRÞðl0Þ; ðA5Þ

where l0 ¼ sjlj. This expression agrees with Eq. (3.9) after
we perform the integrations.

APPENDIX B: CME CURRENT IN
COORDINATE SPACE

In this appendix, we derive Eq. (3.10). By using
Eq. (3.9), the current in the momentum space is given by

jCMEðpÞ ¼
e2

2π2
μ5

�
1 −

p2
0

jpj2
�

×

�
1þ p0

2jpj ln
p0 − jpj
p0 þ jpj

�
BðpÞ: ðB1Þ

NONLINEAR ELECTROMAGNETIC RESPONSE IN QUARK- … PHYSICAL REVIEW D 90, 034018 (2014)

034018-11



By using the Bianchi identity, p0BðpÞ ¼ p ×EðpÞ, we
arrive at

jCMEðpÞ¼
e2μ5
2π2

�
BðpÞþ

Z
dΩ
4π

p0

p ·v
ðv×EðpÞ−BðpÞÞ

�
:

ðB2Þ

We can switch to the coordinate space by doing the Fourier
transformation in Eq. (B2). Equation (B2) can be rewritten
as Eq. (3.10) by using

1

p · v
¼ −i

Z
∞

0

dteip·vt: ðB3Þ
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