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Within the framework of chiral effective field theory, we study various electromagnetic processes
with light vector resonances: K�ð892Þ → Kγ, eþe− → K�ð892ÞK, and the ωπγ� form factors. With two
multiplets of vector resonances being introduced, we fit the decay widths of K�0 → K0γ, K�þ → Kþγ, and
the pertinent measurements from the eþe− → K��ð892ÞK∓ cross sections, such as moduli and relative
phases between the isoscalar and isovector components from the BABAR Collaboration, together with the
ωπ form factors from the NA60, SND, and CLEO collaborations. The values of resonance couplings,
masses and widths of the excited vector states ρ0 and ϕ0 are then determined. The ω0-ϕ0 mixing angle is
discussed and turns out to be quite different from the ideal mixing case. Three sources of SUð3Þ symmetry
breaking effects in the ΓðK� → KγÞ decays are identified and analyzed in detail.
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I. INTRODUCTION

The electromagnetic transition form factor of light
mesons is one of the key ingredients to study hadron
properties, and it has recently gained intensive interest.
There are fruitful updated measurements from different
experimental collaborations, such as NA60 [1,2], SND
[3,4], and BABAR [5]. On the theoretical side, the transition
form factor provides us with an important tool to study the
intrinsic properties of light hadrons, including light pseu-
doscalar mesons and vector resonances. More importantly,
it may also help us to reduce the hadronic uncertainties in
the light-by-light scattering, which is an important source
of theoretical uncertainties of the muon anomalous mag-
netic moment [6–8].
The transition form factor of π0γ�γ� is one of the most

important form factors in the light-by-light scattering.
Physics involved in this kind of form factor is quite
complicated since one needs to handle different dynamics
within a broad energy region. In the very high and low
energy regions, we have reliable and model-independent
theoretical tools, namely, pQCD and chiral perturbation
theory (χPT). However, this is not the case in the inter-
mediate energy region, where various resonances enter. In
the present work, we follow the chiral effective field theory,
explicitly including resonance states developed in Ref. [9]
to study the radiative transition form factors involved with
vector resonances.

χPT is a model-independent method to describe the
QCD dynamics in the very low energy region (E ≪ Mρ),
which is based on chiral symmetry and expansions in terms
of external momentum and light quark masses [10].
However, the dynamical degrees of freedom in χPT are
restricted to the light pseudo-Goldstone bosons π; K; η [11].
In the intermediate energy region (E ∼Mρ), clearly the
resonance fields need to be explicitly included.
References [9,12] proposed an approach to incorporate
resonances in a chiral covariant way. In this theory, not only
the chiral symmetry but also the QCD inspired high-energy
behaviors at large NC are implemented; thus, the resonance
chiral theory (RχT) has more properties of QCD. Moreover,
implementing the high energy constraints in the chiral
effective theory also makes it possible to apply the results
from this theory directly to some form factors with virtual
particles, such as those in light-by-light scattering, where
the QCD high energy behavior can be important [7]. At the
practical level, imposing the high energy constraints is an
efficient way to reduce the number of free resonance
couplings, which makes RχT more predictive in the
phenomenological discussions [13–22].
In our previous work [21], we have performed an

extensive study on the electromagnetic transition form
factors and decays of light pseudoscalar mesons π; η; η0
in the framework of RχT. In the present work, we focus on
similar form factors and decays but involving light vector
resonances. The relevant resonance operators in these
kinds of processes are of the odd-intrinsic-parity type.
For the odd-intrinsic-parity sector, Ref. [14] introduced a
general effective chiral Lagrangian containing symmetry
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allowed interactions between two vector objects (currents
or lowest multiplet of resonances) and one pseudoscalar
meson, by employing the antisymmetric tensor formalism
as used in Ref. [9] to describe the vector resonances. While
in Ref. [23], a similar study was carried out, but the vector
resonances were described in terms of the Proca vector field
representation. Later, the vector-vector-pseudoscalar (VVP)
type Lagrangian with vector resonances in the antisym-
metric tensor representation has been put forward in
different aspects: Reference [17] introduced a second
nonet of vector resonances, Ref. [24] worked out the
complete basis of resonance operators that are relevant to
the Oðp6Þ χPT Lagrangian in the anomaly sector, and in
Ref. [21] we have given a comprehensive discussion on
the inclusion of the singlet η1. Though we have seen
impressive progress in this research field, one still needs
to bear in mind that in the strict large NC QCD, there is
an infinite tower of zero-width resonances. In practice,
typically one has to truncate the tower to the lowest
multiplet of resonances, which is called the minimal
hadronical ansatz in Ref. [25]. Under this approximation,
RχT has been successfully applied to the phenomeno-
logical study on many processes where the intermediate
resonances play an important role [15,16,19–21,26–29].
However, we notice that in the previous study of RχT,

most efforts have been made on the lowest lying reso-
nances. For example, in the vector sector, the lowest nonet
of ρð770Þ, ωð782Þ, K�ð892Þ and ϕð1020Þ has been
extensively studied, while investigation on the higher mass
resonances is relatively rare. One of the important improve-
ments of our present work is to study the excited vector
resonances in chiral effective theory, comparing with our
previous work [21]. On the experimental side, recently the
BABAR Collaboration measured the eþe− → K�ð892ÞK
cross sections from the threshold to the energy region
around 2–3 GeV [5], which enables us to study properties
of more massive vector resonances, i.e., ρ0, ω0, and ϕ0.
In this measurement, the moduli and relative phases of
isoscalar and isovector components of the eþe− →
K�ð892ÞK cross sections are provided. The updated data
make a strong constraint on the free parameters in our theory
and hence allow us to accurately extract the resonance
properties, such as the masses and widths of the ρ0 and ϕ0
(and also ω0), their mixings, and their couplings to light
mesons. The ω0 − ϕ0 mixing angle is estimated, and we find
that it is far from the ideal mixing case.
Another important issue we will address in this article is

the SUð3Þ symmetry breaking effect in radiative decays.
An ideal process to study this effect is K�0 → K0γ and

K�� → K�γ. It is well known that the ratio ΓðK�0→K0γÞ
ΓðK��→K�γÞ ¼ 4

in the SUð3Þ limit [30], while the world average value from
experimental measurements is around 2.3 [31]. The large
SUð3Þ symmetry breaking effect has been discussed in
many previous works [32–36]. In the framework of RχT,
it is interesting to point out that there exists a special

resonance operator O4
VJP ¼ ic4

MV
ϵμνρσhVμν½fρσ− ; χþ�i [14],

which contributes exclusively to the charged processes
K�� → K�γ. Hence, it provides an important source of
SUð3Þ symmetry breaking. In fact, Ref. [16] has deter-
mined several values for the c4 parameter in the discussion
of hadronic τ decays. Our present work provides another
way to determine its value and allows us to check which
kinds of values from Ref. [16] are reasonable. A careful
analysis of the strengths of different SUð3Þ breaking terms
ΓðK�0 → K0γÞ and ΓðK�� → K�γÞ will be delivered in
our work.
Contrary to the K� → Kγ process, the ω → π0γ� form

factor is free of large SUð3Þ corrections. Nevertheless,
another difficulty arises in this form factor, since it is found
that the well-established vector-meson-dominant (VMD)
model fails to describe ω → π0γ� [37–39]. In the present
work, we discuss this transition form factor in RχT by
including excited vector resonances in addition to the
ρð770Þ. We will also confront our theoretical results with
the new measurements from the SND Collaboration [3,4].
This paper is organized as follows. In Sec. II, we

introduce the theoretical framework and elaborate on the
calculations for K�ð892Þ → Kγ and eþe− → K�ð892ÞK,
the ω → π0γ� transition form factor, and the spectral
function for τ− → ωπ−ντ. In Sec. III, we present the fit
results and discuss the SUð3Þ symmetry breaking mecha-
nism and the ωπ form factors in detail. A summary and
conclusions are given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Resonance chiral theory and the odd-intrinsic-parity
effective Lagrangian

The low-energy (Λ < mρ ≈ 700 MeV) dynamics of
QCD is ruled by the interaction of the octet of pseudoscalar
mesons, which are characterized by the spontaneous break-
ing of chiral symmetry. The remarkably successful χPT
[10] describes the strong interactions among pseudoscalar
mesons in a model-independent way. The effective
Lagrangian to lowest order, Oðp2Þ, is given by

Lð2Þ
χ ¼ F2

4
huμuμ þ χþi; ð1Þ

where

uμ ¼ i½uþð∂μ − irμÞu − uð∂μ − ilμÞuþ�;
χ� ¼ uþχuþ � uχþu; χ ¼ 2B0ðsþ ipÞ: ð2Þ

The unitary matrix in flavor space,

u ¼ exp

�
i

Φffiffiffi
2

p
F

�
; ð3Þ

incorporates the pseudo-Goldstone octet:
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Φ ¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η8 K0

K− K̄0 − 2ffiffi
6

p η8

1
CCA: ð4Þ

The external sources rμ; lμ; s, and p promote the global
symmetry in the flavor space to a local one. The parameter
F corresponds to the pion decay constant Fπ ¼ 92.2 MeV
in the chiral limit, and B0 is related to the quark condensate
via h0∣ψψ̄ ∣0i ¼ −F2B0½1þOðmqÞ�, with mq the light
quark mass. The explicit chiral symmetry breaking is
implemented in χPT by taking the vacuum expectation
values of the scalar sources as s ¼ Diagfmu;md;msg.

We work in the isospin limit throughout, i.e., taking
mu ¼ md.
In a chiral covariant way, the lowest multiplet of vector

meson resonances was explicitly included in Ref. [9] in
terms of antisymmetric tensor fields. In this formalism,
the kinetic term of the vector resonance Lagrangian takes
the form

LkinðVÞ ¼ −
1

2

�
∇λVλμ∇νVνμ −

M2
V

2
VμνVμν

�
; ð5Þ

with the ground vector nonet

Vμν ¼

0
BB@

1ffiffi
2

p ρ0 þ 1ffiffi
6

p ω8 þ 1ffiffi
3

p ω1 ρþ K�þ

ρ− − 1ffiffi
2

p ρ0 þ 1ffiffi
6

p ω8 þ 1ffiffi
3

p ω1 K�0

K�− K̄�0 − 2ffiffi
6

p ω8 þ 1ffiffi
3

p ω1

1
CCA

μν

; ð6Þ

and the covariant derivative and the chiral connection
defined as

∇μV ¼ ∂μV þ ½Γμ; V�;

Γμ ¼
1

2
fuþð∂μ − irμÞuþ uð∂μ − ilμÞuþg: ð7Þ

At leading order of 1=NC, the mass splitting of the ground
vector multiplet is governed by a single resonance
operator [40]

−
1

2
eVmhVμνVμνχþi: ð8Þ

In Ref. [41], it was demonstrated that this single operator
can explain the mass splittings of ρð770Þ, K�ð895Þ, and
ϕð1020Þ well. In addition to the mass splittings of these
vector resonances, this operator is also shown to be able to
perfectly reproduce the quark mass dependence of the
ρð770Þ mass from the lattice simulation [42]. We will then
employ the single operator in Eq. (8) to account for the
mass splittings of the lowest vector multiplet in this work.
Additional 1=NC suppressed operators, such as hVμνihVμνi,
will not be considered for the well-established ground
vectors, due to the fact that ωð782Þ and ϕð1020Þ in the
ground multiplet are well described by the ideal mixing
between the octet and singlet vector states. However,
because of the unclear situation for the excited vectors,
the 1=NC suppressed operators will be introduced later.
Combining Eqs. (5) and (8), it can be easily verified that the

physical states of ωð782Þ and ϕð1020Þ result from the ideal
mixing of ω1 and ω8,

ω1 ¼
ffiffiffi
2

3

r
ω −

ffiffiffi
1

3

r
ϕ; ω8 ¼

ffiffiffi
2

3

r
ϕþ

ffiffiffi
1

3

r
ω: ð9Þ

Then the mass splitting pattern of the ground vector
multiplet takes the form

M2
ρ ¼ M2

ω ¼ M2
V − 4eVmm2

π;

M2
K� ¼ M2

V − 4eVmm2
K;

M2
ϕ ¼ M2

V − 4eVmð2m2
K −m2

πÞ; ð10Þ

where we have used the leading order relations 2muB0 ¼
m2

π and ðmu þmsÞB0 ¼ m2
K .

For the general interaction Lagrangian linear in Vμν up to
Oðp2Þ, it reads [9]

L2ðVÞ ¼
FV

2
ffiffiffi
2

p hVμνf
μν
þ i þ iGVffiffiffi

2
p hVμνuμuνi; ð11Þ

fμν� ¼ uFμν
L uþ � uþFμν

R u; ð12Þ

with Fμν
L;R the field strength tensors of the left and right

external sources lμ and rμ, respectively. FV and GV are real
resonance coupling constants, and only FV is relevant in
our current study.
The interaction operators containing two-vector and one-

pseudoscalar objects have been worked out in Ref. [14],
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LVJP ¼ c1
MV

ϵμνρσhfVμν; fραþ g∇αuσi þ
c2
MV

ϵμνρσhfVμα; fρσþ g∇αuνi þ
ic3
MV

ϵμνρσhfVμν; fρσþ gχ−i

þ ic4
MV

ϵμνρσhVμν½fρσ− ; χþ�i þ
c5
MV

ϵμνρσhf∇αVμν; fραþ guσi þ c6
MV

ϵμνρσhf∇αVμα; fρσþ guνi

þ c7
MV

ϵμνρσhf∇σVμν; fραþ guαi; ð13Þ

LVVP ¼ d1ϵμνρσhfVμν; Vραg∇αuσi þ id2ϵμνρσhfVμν; Vρσgχ−i
þ d3ϵμνρσhf∇αVμν; Vραguσi þ d4ϵμνρσhf∇σVμν; Vραguαi; ð14Þ

with ϵμνρσ the Levi-Civita antisymmetric tensor. Similar operators with an excited vector multiplet V1 can be
straightforwardly constructed [17],

L2ðV1Þ ¼
FV1

2
ffiffiffi
2

p hV1μνf
μν
þ i; ð15Þ

LVV1P ¼ daϵμνρσhfVμν; Vρα
1 g∇αuσi þ dbϵμνρσhfVμα; Vρσ

1 g∇αuνi þ dcϵμνρσhf∇αVμν; Vρα
1 guσi

þ ddϵμνρσhf∇αVμα; Vρσ
1 guνi þ deϵμνρσhf∇σVμν; Vρα

1 guαi þ idfϵμνρσhfVμν; Vρσ
1 gχ−i: ð16Þ

The kinetic Lagrangian for the excited vector takes the
same form as that in Eq. (5). The operators equivalent to
Eq. (13) involving the excited vector multiplet V1 happen
to be irrelevant to the discussions in the present article.
For later convenience, we follow the convention intro-

duced in Ref. [19] to define certain combinations of di in
Eq. (16),

dm ¼ da þ db − dc þ 8df;

dM ¼ db − da þ dc − 2dd;

ds ¼ dc þ da − db: ð17Þ
In the present article, since we focus on the processes

involving the pion and kaon, the additional operators
that we introduced in Ref. [21] to discuss η and η0 will
be irrelevant. So we do not elaborate more on this issue.
The flavor structure for the excited vector multiplet V1 is
the same as the ground multiplet in Eq. (6). However,
unlike the well-established entries in the ground vector
multiplet, the contents of the excited vector multiplet are
still not clear. Therefore, we include a general set of mass
splitting operators to describe the excited vectors, instead of
only using a single operator in the ground multiplet case.
Up to the linear quark mass corrections, the pertinent
operators read [40]

Lmass-split
V1

¼−
1

2

�
eV1
m hV1μνV1

μνχþi−
γV1

M2
V1

2
hV1μνihV1

μνi
�
;

ð18Þ
where the second operator is 1=NC suppressed compared to
the first one and MV1

is the mass of the excited vector
multiplet in the chiral limit. Another type of operator,
e.g., −1=ð2 ffiffiffi

3
p ÞkV1

m hV1μνihV̂1
μνχþi, was also introduced in

Ref. [40], but we consider this operator to be less relevant
compared to the two terms in Eq. (18). The reason for this is
that compared to the eV1

m term, though the γV1
term is 1=NC

suppressed, its chiral order is enhanced, while for the kV1
m

term, its chiral and 1=NC orders are both suppressed.
Owing to the 1=NC suppressed operator in Eq. (18), the

excited states ω0 and ϕ0 cannot be simply described as
the ideal mixing of ω0

1 and ω0
8 as in the ground-state case.

The physical states of ω0 and ϕ0 are related to the octet-
singlet basis through

ω0 ¼ sin θVω0
8 þ cos θVω0

1;

ϕ0 ¼ cos θVω0
8 − sin θVω0

1: ð19Þ
The mixing angle θV and the masses of ω0 and ϕ0 can be
expressed in terms of the couplings in Lagrangian (18),

M2
ω0 ¼ M2

11 þM2
22 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM11 −M22Þ2 þ 4M2

12

p
2

; ð20Þ

M2
ϕ0 ¼ M2

11 þM2
22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM11 −M22Þ2 þ 4M2

12

p
2

; ð21Þ

sin θV ¼ −
M2

12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

ϕ0 −M2
ω0 ÞðM2

11 −M2
ω0 Þ

q ; ð22Þ

with

M2
11 ¼ M2

V1
−
4

3
eV1
m ð4m2

K −m2
πÞ; ð23Þ

M2
22 ¼ M2

V1
ð1þ γV1

Þ − 4

3
eV1
m ð2m2

K þm2
πÞ; ð24Þ

M2
12 ¼

8
ffiffiffi
2

p

3
eV1
m ðm2

K −m2
πÞ: ð25Þ
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However, for the masses of ρ0 and K�0 , only the eV1
m term in

Eq. (18) contributes, and they take the same form as the
ground states in Eq. (10),

M2
ρ0 ¼ M2

V1
− 4eV1

m m2
π; ð26Þ

M2

K�0 ¼ M2
V1

− 4eV1
m m2

K: ð27Þ
Including the quark mass corrections to the resonance

masses in the Lagrangian approach allows us to incorporate
the SUð3Þ symmetry breaking effects in a systematic way.
This is important to understand the SUð3Þ symmetry
breaking mechanism in the K�K transitions. The quark
mass corrections to the resonance masses, as well as to
interacting vertices, are important to fully study the SUð3Þ
symmetry breaking effects. The VVP-type Lagrangians
introduced in Eqs. (13), (14), and (16), which are
constructed by using the chiral building blocks of the
pseudo-Goldstone mesons, provide us with an appropriate
framework to systematically take into account the relevant
interacting vertices. Though it consists of a large number of
free couplings, we will see later that in a given process
not all of them are independent. In fact, in our present
discussion, only six, at most, of the combinations of the
VVP-type couplings will appear after taking into account
the high energy constraints dictated by QCD.
Imposing the high energy constraints will not only give

the RχT more properties from QCD, but it will also be
helpful in reducing the number of free parameters. To
proceed, we match the leading operator product expansion
(OPE) of the VVP Green function with the result evaluated
within RχT, and we require that the vector form factor
vanish in the high energy limit. This leads to the following
constraints on resonance couplings:

4c3 þ c1 ¼ 0;

c1 − c2 þ c5 ¼ 0;

c6 − c5 ¼
2d3FV þ dsFV1

2
ffiffiffi
2

p
MV

; ð28Þ

which were already given by one of us in Ref. [19].
We point out that the previous constraints are obtained in
the chiral and large NC limits, as done in most of the RχT
studies [13–22] in the literature.

B. The transition amplitudes of K�⟶Kγ decays
and eþe−⟶K�K processes

At leading order of 1=NC in RχT, the V⟶Pγðγ�Þ
transitions receive two types of contributions, as displayed
in Fig. 1, namely, the direct type depicted by diagram (a)
and the indirect one depicted by diagram (b).
The structure of the amplitude for theK�ðqÞ → K þ γðkÞ

process can be written as

iMK�Kγ ≡ iϵμνρσϵ
μ
K�ϵνγqρkσegtotalK�Kγ;

gtotalK�Kγ ¼ gdirectK�Kγ þ gindirectK�Kγ ; ð29Þ

where q and k denote the four-momenta of K� and γ,
respectively, ϵK� and ϵγ correspond to the polarization
vectors in that order, and e stands for the electric charge of a
positron. In the previous equation, we collect the contri-
butions from the direct and indirect diagrams of Fig. 1 in
the quantities gdirectK�Kγ and gindirectK�Kγ , respectively.
By using the previously introduced resonance

Lagrangian in Sec. II A, it is straightforward to calculate
gdirectK�Kγ and gindirectK�Kγ :

gdirectK�0K0γ
¼ −

4
ffiffiffi
2

p

3FKMVMK�
½ðc1 þ c2 þ 8c3 − c5Þm2

K þ ðc2 þ c5 − c1 − 2c6ÞM2
K� �;

gindirectK�0K0γ
¼ −

2FV

3FKMK�

�
1

M2
ω
−

3

M2
ρ
−

2

M2
ϕ

�
½ðd1 þ 8d2 − d3Þm2

K þ d3M2
K� �;

−
FV1

3FKMK�

�ð2 ffiffiffi
2

p
cos θV − sin θVÞ sin θV

M2
ω0

−
3

M2
ρ0
−
ðcos θV þ 2

ffiffiffi
2

p
sin θVÞ cos θV

M2
ϕ0

	

× ðdmm2
K þ dMM2

K� Þ; ð30Þ

gdirectK�þKþγ ¼
2

ffiffiffi
2

p

3FKMVMK�
½ðc1 þ c2 þ 8c3 − c5Þm2

K þ ðc2 þ c5 − c1 − 2c6ÞM2
K�

þ 24c4ðm2
K −m2

πÞ�;

gindirectK�þKþγ ¼ −
2FV

3FKMK�

�
1

M2
ω
þ 3

M2
ρ
−

2

M2
ϕ

�
½ðd1 þ 8d2 − d3Þm2

K þ d3M2
K� �

−
FV1

3FKMK�

�ð2 ffiffiffi
2

p
cos θV − sin θVÞ sin θV

M2
ω0

þ 3

M2
ρ0
−
ðcos θV þ 2

ffiffiffi
2

p
sin θVÞ cos θV

M2
ϕ0

	

× ðdmm2
K þ dMM2

K�Þ: ð31Þ
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Physical meson masses are used in the kinematics. The
kaon decay constant FK has been employed in the
amplitude, instead of the pseudo-Goldstone decay constant
F in the chiral limit that appears in the resonance
chiral Lagrangian. We take FK ¼ 0.113 GeV from particle
data group (PDG) [31].

Within our formalism, the ΓðK� → KγÞ decay width is
given by

ΓðK� → KγÞ ¼ 1

3
α

�
M2

K� −m2
K

2MK�

�
3∣gtotalK�Kγ∣2; ð32Þ

with α ¼ e2=ð4πÞ the fine-structure constant.
In the leading order of large NC, the eþe− → K�ð892ÞK

transition also receives two types of contributions, i.e.,
direct and indirect types, as displayed in Fig. 2.
The main difference between eþe− → K�ð892ÞK and

K� → Kγ is that now we have an off-shell photon. The final
results for the amplitudes of γ�⟶K�K can be obtained in
the same way as in the K� → Kγ case. In order to confront
our theoretical results with the experimental data, we need
to work in the isospin bases for the amplitudes,

iMI¼0 ¼ i

ffiffiffi
2

p

2
ðMγ�⟶K�þK− þMγ�⟶K̄�0K0Þ

¼ iϵαβρσϵαK�ϵβγqρkσe

ffiffiffi
2

p

2

1

FKMK�

�
−
2

ffiffiffi
2

p

3MV
½ðc1 þ c2 þ 8c3 − c5ÞM2

K þ ðc2 þ c5 − c1 − 2c6ÞM2
K�

þ ðc1 − c2 þ c5Þs − 24c4ðm2
K −m2

πÞ� − 4FV

�
1

3ðM2
ω − s − iMωΓωÞ

−
2

3ðM2
ϕ − s − iMϕΓϕÞ

	

× ½ðd1 þ 8d2Þm2
K þ d3ðM2

K� þ s −m2
KÞ� − 2FV1

�ð2 ffiffiffi
2

p
cos θV − sin θVÞ sin θV

3ðM2
ω0 − s − iMω0Γω0 ðsÞÞ

−
ðcos θV þ 2

ffiffiffi
2

p
sin θVÞ cos θV

3ðM2
ϕ0 − s − iMϕ0Γϕ0 ðsÞÞ

	
ðdmm2

K þ dMM2
K� þ dssÞ

�

≜ iϵαβρσϵαK�ϵβγqρkσeA0; ð33Þ

iMI¼1 ¼ i

ffiffiffi
2

p

2
ðMγ�⟶K̄�0K0 −Mγ�⟶K�þK−Þ

¼ iϵαβρσϵαK�ϵβγqρkσe

ffiffiffi
2

p

2

1

FKMK�

�
−
2

ffiffiffi
2

p

MV
½ðc1 þ c2 þ 8c3 − c5ÞM2

K þ ðc2 þ c5 − c1 − 2c6ÞM2
K�

þ ðc1 − c2 þ c5Þsþ 8c4ðm2
K −m2

πÞ� þ 4FV
1

M2
ρ − s − iMρΓρðsÞ

½ðd1 þ 8d2Þm2
K

þ d3ðM2
K� þ s −m2

KÞ� þ 2FV1

1

M2
ρ0 − s − iMρ0Γρ0 ðsÞ

ðdmm2
K þ dMM2

K� þ dssÞ
�

≜ iϵαβρσϵαK�ϵβγqρkσeA1; ð34Þ

where q and k stand for the momenta of K� and
γ�, respectively, and s ¼ k2 is the energy square of the
eþe− system in the center-of-mass frame. The energy-
dependent decay widths for intermediate resonances,
such as ΓρðsÞ;Γρ0 ðsÞ;Γϕ0 ðsÞ, and Γω0 ðsÞ, can be important
since the widths of the relevant resonances are typically
not so narrow and the final results can be sensitive to the
off-shell width effects. To rigorously include the off-shell

(a) (b)

FIG. 1. Diagrams relevant to the V → Pγðγ�Þ processes: (a) di-
rect type and (b) indirect type.

FIG. 2. Relevant diagrams for the process eþe−⟶K�ð892ÞK.
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width effects, one needs to carry out the next-to-leading
order of 1=NC computation in RχT, which is beyond the
scope of this work since we focus on the calculations of
the various amplitudes at leading order of 1=NC.
Nevertheless, in order to quantitatively estimate to what
extent the off-shell width effects will affect the final
outputs, we study two different forms of the energy-
dependent widths, which will be discussed in detail in the
next section.
We see that only the ω-like and ϕ-like intermediate

mesons contribute to the MI¼0, and only the ρ-like
intermediate mesons contribute to the MI¼1. However,
the local terms or the so-called background terms in many
other works [5] are obtained here from a Lagrangian-based
theory, not simply introduced by hand. The cross sections
are related to the isospin amplitudes through

σeþe−⟶K�KðI¼0;1Þ ¼
πα2jAI¼0;1j2

6s3
ðs2 þM4

K� þm4
K

− 2sM2
K� − 2sm2

K − 2M2
K�m2

KÞ32;
ð35Þ

where the masses of the electron and positron have been
neglected.

C. The ω⟶π0γ� transition form factor and the
spectral function for τ− → ωπ−ντ

The amplitude for the radiative decay ωðqÞ →
π0ðpÞγ�ðkÞ can be written as

iMω→π0γ� ¼ ieεμνρσϵ
μ
ωϵνγ�q

ρkσfωπ0ðsÞ; ð36Þ

where s ¼ k2, and ϵω and ϵγ� denote the polarization vectors of the ω resonance and the off-shell photon, respectively.
The explicit expression of the electromagnetic transition form factor fωπ0ðsÞ is

fωπ0ðsÞ ¼ −
2

ffiffiffi
2

p

FπMVMω
½ðc1 þ c2 þ 8c3 − c5Þm2

π þ ðc2 þ c5 − c1 − 2c6ÞM2
ω þ ðc1 − c2 þ c5Þs�

þ 4FV

FπMω

1

M2
ρ − s − iMρΓρðsÞ

½ðd1 þ 8d2 − d3Þm2
π þ d3ðM2

ω þ sÞ�

þ 2FV1

FπMω

1

M2
ρ0 − s − iMρ0Γρ0 ðsÞ

½dMM2
ω þ dssþ dmm2

π�: ð37Þ

In the phenomenological discussion, it is common to normalize the form factor fωπ0ðsÞ by its value at s ¼ 0. So the
interesting quantity that we will study later is

Fωπ0ðsÞ ¼
fωπ0ðsÞ
fωπ0ð0Þ

: ð38Þ

The charged ωπ form factor or the ωπ spectral function can be measured in the semileptonic decays of the τ lepton.
In Eq. (35) of Ref. [19], one of us calculated the τ− → ωπ−ντ spectral function. We give the explicit expression here for
completeness:

VðsÞ ¼ 1

6F2M2
ωπs2SEW

× ½m4
π þ ðM2

ω − sÞ2 − 2m2
πðM2

ω − sÞ�3=2

×





ð2d3FV þ dsFV1
ÞM

2
ω

M2
V
þ FV1

ðdmm2
π þ dMM2

ω þ dssÞ
1

M2
ρ0 − s − iMρ0Γρ0 ðsÞ

þ 2FV ½ðd1 þ 8d2Þm2
π þ d3ðsþM2

ω −m2
πÞ�

1

M2
ρ − s − iMρΓρðsÞ






2

; ð39Þ

where the electroweak correction factor SEW has been analyzed in [43], and its value will be taken as SEW ¼ 1.0194.

III. PHENOMENOLOGICAL DISCUSSIONS

A. The fit results

The experimental data that we consider here consist of

eight different types: ΓðK�0 → K0γÞ [31], ΓðK�þ → KþγÞ

[31], the eþe− → K��ð892ÞK∓ cross sections [5], the
moduli and relative phases of isoscalar and isovector
components of the eþe− → K�ð892ÞK cross sections [5],
the ω → π0γ� transition form factor [1–4,44], and the τ− →
ωπ−ντ spectral function [45].
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For the eþe− → K�ð892ÞK data in Ref. [5], since in the
energy region above 1.8 GeV the contributions coming
from other excited vector resonances with higher mass
and spin certainly affect the KK�ð892Þ channel, we only
fit the data below 1.8 GeV. For the ω0 [ωð1420Þ], we fix its
mass and width at their world average values, Mω0 ¼
1.42 GeV and Γω0 ¼ 0.215 GeV [31], because its mass is
quite close to the K�K threshold and its contribution only
marginally shows up in the left tail of the eþe− →
K�ð892ÞK cross sections.
Due to the fact that the masses of the ground vector

resonances, ρ;ω;ϕ; K�, can be perfectly described by
Eq. (10) (see Refs. [41,42]), we simply employ the
physical masses of ρ;ω;ϕ; K� in the numerical discus-
sions, instead of fitting the eVm coupling. We point out that
if the value of eVm is fitted, it turns out to be very close to
the values given in Refs. [41,42]. For the mass of the
ground vector in the chiral limit, we take the value MV ¼
764.3 MeV from Ref. [41]. As to the value of FV , it has
been accurately determined by taking into account a large
amount of experimental data in our previous work [21].
Hence, we will take the value from that reference in this
work, which is FV ¼ 0.137 GeV. For FV1

in Eq. (15),
since what appears in our discussion is always the
combination of FV1

ðdmm2
K þ dMM2

K� Þ or FV1
ðdmm2

Kþ

dMM2
K� þ dssÞ, which was already noticed in Ref. [19],

we can fix the sign of FV1
and leave dm; dM, and ds free. In

Ref. [19], FV1
¼ −0.1 GeV has been determined, and we

will take this value in our current study.
As mentioned previously, we introduce the finite-width

effects to the intermediate resonances. To systematically
include the finite-width contributions in RχT, one has to
step into the next-to-leading order of 1=NC computation,
e.g., the one-loop calculations, which is far beyond the
scope of our study. Nevertheless, we will employ two
different parametrizations for the energy-dependent widths
for the broad resonances in order to see how important the
off-shell width effects will affect the fit results. For the
narrow-width resonances, such as ω and ϕ, we simply use
the constant widths in their propagators.
For the first case, which will be referred to as Fit I in later

discussions, we construct the energy-dependent widths
for broad resonances following the approach given in
Ref. [46], where the authors have taken the chiral sym-
metry, analyticity, and unitarity into account when discus-
sing the form of the off-shell width for the ρð770Þ
resonance. The result of the previous reference has been
generalized to other resonances in many phenomenological
discussions [15,19,21,47]. In this formalism, we construct
the energy-dependent widths in the following way:

ΓρðsÞ ¼
sMρ

96πF2
π

�
σ3ππðsÞ þ

1

2
σ3KKðsÞ

	
;

Γρ0 ðsÞ ¼ Γρ0
s

M2
ρ0

�
σ3ππðsÞ þ 1

2
σ3KKðsÞ

σ3ππðM2
ρ0 Þ þ 1

2
σ3KKðMρ0

2Þ
	
;

Γω0 ðsÞ ¼ Γω0
s

M2
ω0

2
4 σ3ρπðsÞ þ ð2 ffiffi

2
p

cos θV−sin θVÞ2
3ð ffiffi

2
p

cos θVþsin θVÞ2 σ
3
K�KðsÞ

σ3ρπðM2
ω0 Þ þ ð2 ffiffi

2
p

cos θV−sin θVÞ2
3ð ffiffi

2
p

cos θVþsin θVÞ2 σ
3
K�KðM2

ω0 Þ

3
5;

Γϕ0 ðsÞ ¼ Γϕ0
s

M2
ϕ0

2
4 σ3K�KðsÞ þ 4ð ffiffi

2
p

cos θVþsin θV Þ2
3ðcos θVþ2

ffiffi
2

p
sin θVÞ2 σ

3
ϕηðsÞ

σ3K�KðM2
ϕ0 Þ þ 4ð ffiffi

2
p

cos θVþsin θV Þ2
3ðcos θVþ2

ffiffi
2

p
sin θVÞ2 σ

3
ϕηðM2

ϕ0 Þ

3
5; ð40Þ

where

σQRðsÞ ¼
1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðmQ þmRÞ2Þðs − ðmQ −mRÞ2Þ

q

× θðs − ðmQ þmRÞ2Þ; ð41Þ
with θðsÞ the standard step function.
In Fit II, we take a different asymptotic behavior for the

energy-dependent widths compared to that used in Fit I,

ΓRðsÞ ¼ ΓI
RðsÞ

MRffiffiffi
s

p ; R ¼ ρ; ρ0;ω0;ϕ0; ð42Þ

with ΓI
RðsÞ defined in Eq. (40). In the asymptotic region

where s → ∞, the power of the energy-dependent width

should be less than 1, in such a way that the phase of the
amplitudes in Eqs. (33) and (34) would approach π. In Fit I,
we adopt the results from Ref. [46], where only ππ and
K̄K channels are considered when deriving the finite width
for ρð770Þ. In principle, an infinite number of channels will
be open when s → ∞, which could finally alternate the
asymptotic behaviors obtained by considering a finite
number of channels. A definite answer to this problem
clearly deserves an independent work. As a phenomeno-
logical study, we will exploit both forms to perform the fits
and examine to what extent different forms can affect the
final outputs.
The values for the fit parameters are summarized in

Table I. The results of ΓðK�0 → K0γÞ, ΓðK�þ → KþγÞ, and
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ΓðK�0→K0γÞ
ΓðK�þ→KþγÞ from the fits are given in Table II. The final

results corresponding to the eþe− → K�ð892ÞK processes
and the ωπ spectral function from τ− → ωπ−ντ are shown
in Figs. 3 and 4, respectively. In these two figures, we
distinguish different results from Fit I and Fit II by solid
and dashed lines, respectively. The resulting curves for the
ω → π0γ� form factors are plotted in Fig. 5, together with
the results from Refs. [48,49].
Some comments about the fitting results are given below.
First, we observe that Fit I is slightly preferred over Fit II,

according to the values of χ2=degrees of freedom (d.o.f.).
Nevertheless, due to the fact that the values of χ2=d:o:f. are
already bigger than 2, the preference is not really signifi-
cant. Regarding the somewhat large values of χ2=d:o:f., we
find that they are mainly contributed by the ω → πγ� form
factors from the NA60 and Lepton-G measurements,
especially from the data points in the energy region around
0.5–0.63 GeV. Therefore, we have tried another kind of fit
to exclude the data from these two measurements. It turns
out that the resulting values of χ2=d:o:f. decrease to around
1.2 in Fit I and to 1.9 in Fit II, and we do not observe
significant changes of the fit parameters compared with the

results in Table I. Later we will analyze the ω → πγ� form
factor in detail.
Second, regarding the ci and di parameters given in

Table I, we see that the resulting values from the two fits are
more or less compatible. The situation for the masses and
widths of broad resonances is different. Roughly speaking,
we observe that the determinations of the masses and
widths for ϕ0 from the two fits are consistent, or at least not
so different from each other. This conclusion also holds
roughly for the masses of K�0 . Nevertheless, we find that
the masses and widths of ρ0 from the two fits are clearly not
compatible, indicating that the mass and width of the ρ0 are
more sensitive to the forms of energy-dependent widths,
compared to the ϕ0 case.
Focusing on the mass and width of ϕ0, our determina-

tions in Table I are in good agreement with the correspond-
ing parameters of ϕð1680Þ reported in PDG [31]. Though
the mass of ϕ0 in Ref. [5] is compatible with PDG, its width
is somewhat larger. In addition, the uncertainties in our
determination of the mass and width for ϕ0 are much
smaller than those obtained in Ref. [5]. Furthermore, we do
not need to add the so-called background terms by hand in
our amplitude, while this is not the case in the experimental
analyses [5]. All of the terms appearing in our amplitudes
are obtained from the symmetry allowed operators illus-
trated in Sec. II A, where the contact terms and contribu-
tions from ρð770Þ;ωð782Þ;ϕð1020Þ, and ω0ð1420Þ are
incorporated in a consistent way.
Regarding the ρ0 resonance, we should mention that the

spectra of the excited ρ resonances are still not clear in PDG
[31]. The value of the ρ0 mass from the recent determination
of the SND Collaboration [4] is around 1490 MeV, which
is clearly lower than our determinations in Table I. As
mentioned previously, we find that the resulting ρ0 masses
from our fits vary accordingly by using different forms of
energy-dependent widths. In Ref. [4], a constant width is
used for the ρ0 resonance, which is obviously different from
ours. We have explicitly checked that if a constant width
for the ρ0 is used, our determination for its mass decreases
to around 1500 MeV in both fits, which becomes close to
the value in Ref. [4]. The masses and widths of ρ0 from our
fits lie between ρð1450Þ and ρð1700Þ. Notice that there are
roughly two peaks in the experimental isovector compo-
nent of the σK�K cross sections [see Fig. 3(c)], which may
be due to the contributions of ρð1450Þ and ρð1700Þ.
However, since the statistics are still very poor, we only
include one set of the ρ0 resonances in the current fit. This
indicates that the ρ0 here may be regarded as a combined
effect of ρð1450Þ and ρð1700Þ.
Finally, we find that the mixing angles of ω0 − ϕ0 from

the two fits are roughly consistent. The resulting angle is
around 20°, and it is clearly different from the ideal mixing
case. This indicates that the 1=NC suppressed operator in
Eq. (18) is quite important in the determination of the
masses of excited vector resonances since the ideal mixing

TABLE I. The parameter results from Fit I and Fit II.

Fit I Fit II

MV1
1587� 7 1523� 5

eV1
m −0.262� 0.014 −0.329� 0.010
γV1

−0.246� 0.006 −0.180� 0.006
Γρ0 (MeV) 545� 22 433� 13
Γϕ0 (MeV) 266� 17 210� 11
c4 −0.0023� 0.0006 −0.0024� 0.0005
d3 −0.198� 0.004 −0.191� 0.004
dM −0.38� 0.10 −0.21� 0.08
ds −0.13� 0.02 −0.12� 0.02
dm −1.79� 0.15 −1.22� 0.12
d1 þ 8d2 −0.38� 0.04 −0.36� 0.04
χ2

d:o:f
467.7
210−11 ¼ 2.35 589.1

210−11 ¼ 2.96

Results for V1

Mρ0 (MeV) 1593� 8 1531� 8
Mϕ0 (MeV) 1709� 7 1690� 6
MK�0 (MeV) 1667� 6 1626� 7
θV 15.1°� 2.0° 21.3°� 2.2°

TABLE II. Experimental and fit values of ΓðK�0 → K0γÞ,
ΓðK�þ → KþγÞ and ΓK�0→K0γ

ΓK�þ→Kþγ
.

Experimental Fit I Fit II

ΓK�0→K0γð×10−5 GeVÞ 11.6� 1.2 13.1� 1.3 14.1� 1.2

ΓK�þ→Kþγð×10−5 GeVÞ 5.0� 0.6 5.0� 1.0 5.3� 1.0
ΓK�0→K0γ

ΓK�þ→Kþγ
2.6� 0.3 2.6� 0.4 2.7� 0.5

RADIATIVE TRANSITION PROCESSES OF LIGHT … PHYSICAL REVIEW D 90, 034013 (2014)

034013-9



will result if only the leading-order operators at large NC
are included for the resonance masses.

B. Anatomy of the SUð3Þ breaking mechanism
in K�⟶Kγ decays

For the ratio ΓðK�0→K0γÞ
ΓðK��→K�γÞ, the SUð3Þ symmetry tells us that

ΓðK�0→K0γÞ
ΓðK�þ→KþγÞ ∣SUð3Þ ¼ 4 [30], while the experimental value is
ΓðK�0→K0γÞ
ΓðK�þ→KþγÞ ∣Ex ≃ 2.3 [31]. The SUð3Þ symmetry breaking

effect in the K�⟶Kγ decay has been discussed in many
previous works [32–35]. In the context of the VMD model
[36], Ref. [32] points out that there is a significant
contribution from an intermediate ss̄ pair (ϕ meson) in
these decays, and if all partial ss̄ production is suppressed
by only (20–30)% relative to those involving nonstrange
pairs, the ratio of the neutral to charged K� decay widths
would be brought into line with the data. Including the
SUð3Þ symmetry breaking in the hidden local symmetry
model [34,35], it is found that the rate of ΓðK�0 → K0γÞ is
reduced compared to the SUð3Þ symmetry prediction; in
particular, it is pointed out that the vector mesons should
be “renormalized” [35].
In the framework of RχT, there is a special operator in

Eq. (13), namely, the O4
VJPð¼ ic4

MV
ϵμνρσhVμν½fρσ− ; χþ�iÞ term,

which breaks the SUð3Þ symmetry by the factor (ms −mu)
and exclusively contributes to the charged processes
K�� → K�γ. Hence, the value of the coupling c4 is
important to decode the SUð3Þ symmetry mechanism in
the present work.
In fact, the c4 value has been determined in Ref. [16].

In that reference, the authors only included the lightest
multiplet of vector resonances, so the heavier degrees of
freedom, such as the excited ρ0 state, are implicitly included
in their c4. By fitting the first six data points of the isovector
component of eþe−⟶K�ð892ÞK → KSK�π∓, they get
c4 ¼ −0.047� 0.002, and by fitting the branching ratios
of τ⟶KK̄πντ, they obtain c4 ¼ −0.07� 0.01. Clearly,

FIG. 3 (color online). The results of Fit I (red solid line) and Fit II (blue dashed line). Panel (a) displays the cross sections of
σK��K∓ð892Þ. Panel (b) displays the isoscalar components of the σK�K . Panel (c) displays isovector components of the σK�K . Panel (d)
displays the phase differences between isovector and isoscalar K�ð892ÞK amplitudes.

FIG. 4 (color online). Spectral function for τ− → ωπ−ντ.
The experimental data are taken from [45].
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neither value determined in Ref. [16] is compatible with our
results in Table I, and the magnitudes of c4 in our fits are
around 1 order smaller than those in Ref. [16].
We would like to mention that in Ref. [20], an unex-

pected phenomenon is observed by using c4 ¼ −0.07 in the
radiative decay of τ → Kγντ. Typically, one would expect
that for a low energy cutoff of the photon in τ → Kγντ, the
decay rate should be dominated by the internal brems-
strahlung (IB) contribution. For example, to take the cutoff
for the photon energy at 50 MeV, the IB part contributes
more than 90% of the decay rate for the τ → πγντ process
(see Table I in Ref. [20]). However, if one looks at Table II
in the same reference, the contribution from the IB part in
τ → Kγντ dramatically decreases to 6% by taking
c4 ¼ −0.07, and in this case, the c4 term dominates the
whole process. In the case with c4 ¼ 0, one can see some
reasonable results. This clearly gives us a hint that the large
magnitude of c4 (compared to 0.07) does not lead to
reasonable results in the radiative tau decays. Therefore,
our current determination for c4, around 1 order smaller in
magnitude than the values given in Ref. [16], seems more
meaningful. However, due to the lack of experimental
measurements on the radiative tau decays, we still cannot
make a concrete conclusion as to whether the c4 values
in Table I will reasonably describe the τ → Kγντ process.

A future measurement on this channel is definitively
helpful to answer this question.
In order to have a better understanding of the origin of

the differences for the c4 values between ours and Ref. [16],
we next employ the same VVP Lagrangian as used in
Ref. [16], indicating in the discussions below that we
exclude the excited vector resonances in our theory. In this
case, it is interesting to point out that after taking into
account the high energy constraints given in the previous
work [14,21],

4c3 þ c1 ¼ 0;

c1 − c2 þ c5 ¼ 0;

c5 − c6 ¼
NC

64π2
MVffiffiffi
2

p
FV

;

d1 þ 8d2 − d3 ¼
F2

8F2
V
;

d3 ¼ −
NC

64π2
M2

V

F2
V
; ð43Þ

we can totally predict the K�0 → K0γ decay width, which
turns out to be 109.1 KeV and agrees well with the
experimental value ð116.2� 11.6Þ KeV [31]. For the
charged process K�þ → Kþγ, we only have one free
parameter, c4, to determine its decay width. Therefore,
one could use the experimental information ΓK�þ→Kþγ ¼
ð50.3� 5.5Þ KeV to determine the value of c4. We then
obtain two solutions,

c4 ¼ 0.0003� 0.0007 or − 0.0251� 0.0007: ð44Þ

By setting c4 ¼ −0.0251� 0.0007 in the decay ampli-
tudes, we find that the c4 term then dominates the K�þ →
Kþγ process, which indicates that the SUð3Þ symmetry
breaking effect overwhelmingly controls this process and
clearly contradicts a general rule that this effect should be
at most around 30%. This tells us that only the solution
of c4 ¼ 0.0003� 0.0007 in Eq. (44) corresponds to the
physical one. Indeed, this observation also confirms the
conclusion about the role of c4 in radiative tau decays [20],
where a small magnitude of c4 is preferred. In the
determination of Eq. (44), we do not explicitly include
the vector resonance excitations, and the corresponding
results after the incorporation of the excited states can be
found in Table I, where the magnitude of c4 is still 1 order
smaller than that in Ref. [16]. In the present work, we
provide another important and easy way to determine the c4
value, comparing with Ref. [16], which can be useful for
the future study of various tau decays.
In order to have a clear idea about how different parts

contribute to the SUð3Þ breaking, we decompose the
amplitudes gK�0K0γ and gK�þKþγ in Eqs. (30) and (31) into
two parts: the SUð3Þ symmetric term and the SUð3Þ
breaking term. The decomposition takes the form

FIG. 5 (color online). The form factors of ωπ0γ�: the data in the
left side of 0.8 GeV correspond to the ω-decay processes, and
those in the right side correspond to the ω-production processes.
The red solid line denotes the result from Fit I, and the blue
dashed line denotes the result from Fit II. The green dash-dotted
line denotes the prediction of Fit I by simply excluding the
contributions from the excited ρ0 resonance. The orange dotted
line corresponds to the results of Fit III in which the ωπ form-
factor data from the SND Collaboration and the ωπ spectral
function data from tau decays are not included in the analysis.
The magenta dash-dot-dotted and cyan short-dashed lines
correspond to the predictions of the parameter set 1 (P1) and
parameter set 2 (P2) in Ref. [48]. Sources of the different
experimental data are as follows: open circles [1], solid triangles
[2], open squares [44], open triangles [3], and solid circles [4].
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gSUð3Þbreaking
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gSUð3Þsymmetry
K�þKþγ ¼ 2

ffiffiffi
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gSUð3Þbreaking
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−
ðcos θV þ 2
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2
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−
�

1
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þ 3
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−
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ðdmm2
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K� Þ þ 16
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p

3FKMVMK�
c4ðm2
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πÞ: ð46Þ

The criteria to make the above decomposition is that in
the SUð3Þ symmetric terms, we do not distinguish the mass
differences of intermediate vectors and we also assume
the ideal mixing for ω0 − ϕ0. So it is easy to check that

jgSUð3Þsymmetry
K�0K0γ

=gSUð3Þsymmetry
K�þKþγ j ¼ 2, consistent with the SUð3Þ

symmetry requirement. However, for the SUð3Þ breaking
parts, there are three sources: different masses of the
intermediate vector resonances, the nonideal mixing angle
of the ω0 − ϕ0, and the c4 term in the charged process.

The mass differences and the mixing angle of ω0 − ϕ0

are directly related to the resonance operators in Eqs. (8)
and (18). Therefore, it is crucial to include these mass
splitting parameters in the Lagrangian approach in order
to systematically study the SUð3Þ symmetry mechanism.
Next, let us take the results from Fit I in Table I to make a

concrete analysis on the strengths of different parts con-
tributing to the SUð3Þ symmetry breaking. The following
numbers can be straightforwardly obtained according to the
parameters from Fit I in Table I:
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gK�0K0γ

gK�þKþγ
¼

gSUð3Þsymmetry
K�0K0γ

þ gSUð3Þbreaking
K�0K0γ

gSUð3Þsymmetry
K�þKþγ þ ðgSUð3Þbreaking

K�þKþγ − gc4K�þKþγÞ þ gc4K�þKþγ

¼ −16.1þ 2.5
8.0þ 2.0 − 1.6

: ð47Þ

It is obvious that these SUð3Þ breaking effects suppress
the neutral K� decay width but enhance the charged K�
mode; as a result, the ratio between them becomes
compatible with the data. Notice that among the SUð3Þ
breaking effects in K�þ → Kþγ, the c4 term contributes at
the same order as the other SUð3Þ breaking effects in RχT,
although the values of the c4 parameter, with the order
of 10−3 in Table I, seem unnaturally small. The small
magnitude of c4 can be attributed to the normalization of
the VJP operators in Eq. (13). This conclusion can be
easily verified by comparing the values of other VJP
couplings with c4. We notice that one VJP operator is
considered in Ref. [48], namely, the eA term in Eq. (15) of
that reference. It is easy to obtain that the eA term is related
to our c6 term in Eq. (13) through c6 ¼ eA=ð8

ffiffiffi
2

p
eÞ, with

eA estimated to be around 1.5 × 10−2 in Ref. [48], which
leads to c6 ≃ 4.4 × 10−3. Therefore, we show that the
magnitude of the c4 parameter given in Table I is at the
same order as other ci couplings in the VJP Lagrangian
(13) estimated from other works.

C. Discussion on the ω⟶π0γ� transition
form factor

Recently, the new measurements on the ω → π0γ� form
factors from the NA60 Collaboration [1,2] have activated
several updated theoretical works [48–50]. The main
problem is that the conventional VMD approach cannot
incorporate these data well, so new ideas are proposed to
have a deeper understanding as to why the successful
VMD is not working here.
In Refs. [48,49], a new counting scheme, different from

RχT, is used: the masses of both vector mesons and
pseudoscalar mesons are treated as small expansion
parameters. So in their counting scheme, the
Lagrangian that accounts for the decay mechanism
through exchanging an intermediate vector meson
belongs to the leading order, while the Lagrangian
responsible for the contact terms in the decay amplitude
belongs to the next-to-leading order. In Ref. [48], all of
the leading-order contributions in their scheme and some
incomplete parts of next-to-leading-order contributions
are considered in their ω → π0γ� form factor. After a
careful check, we realize that the VVP-type of
Lagrangian in Eq. (14) involving the lowest vector
multiplet coincides with the so-called leading-order
Lagrangian proposed in Ref. [48] up to some normali-
zation factors. For example, from Eqs. (10) and (15) of
Ref. [48], it is easy to see that their bA corresponds to our

d2, and their hA relates to our d1 þ d3.
1The eA term in

Ref. [48], which belongs to the next-to-leading order in
their counting, is equivalent to our c6 term, one of the six
VJP-type operators in Eq. (13). One should notice that the
authors in Ref. [48] mostly focus on the leading-order
computation, and in order to make a rough quantitative
estimate on the next-to-leading-order effects, they select a
particular operator to perform the numerical discussion.
In our case, the contact terms, i.e., the VJP operators in
Eq. (13), are not suppressed by any counting rule and are
fully included in the analyses. Also, the excited vector
resonances are not considered in Refs. [48,49].
Though we have some similar operators from the

beginning, the QCD high energy behavior is not appre-
ciated in the discussion of Refs. [48,49]. As we have
mentioned in the Introduction, the transition form factor
with a proper high energy constraint can be directly applied
to other physical quantities, such as the light-by-light
scattering. Thus, we consider it an improvement to impose
the QCD short-distance constraints in the form factor.
Next we make a close comparison with Refs. [48,49].

They employ a theoretical framework similar to ours, but
different experimental data are analyzed. The focus of
Refs. [48,49] is the ω → π0γ� form factors from the ω
decay process, not from the ω production. It turns out that
the form factors in Refs. [48,49] can describe the ω → π0γ�
data from the NA60 Collaboration fairly well. Then, it is
interesting for us to perform another fit to only consider the
same type of data as in Refs. [48,49], which will be referred
to as Fit III. To be more specific, we only include the form-
factor data from the ω decay [1,2,44] in Fit III and exclude
these from the ω production [3,4] and the τ− → ωπ−ντ
spectral function [45]. As shown in Fig. 5, the final output
of our Fit III (the orange dotted line) tends to be quite
similar to those from Ref. [48] in the focused energy region,
which is below the ω mass. However, we observe that the
ωπ form factors in the production region are clearly
incompatible with the data from the SND Collaboration,
taking the resulting parameters from Fit III (see the orange

1Using the Shouten identity gσρϵαβμν þ gσαϵβμνρ þ gσβϵμνρα þ
gσμϵνραβ þ gσνϵραβμ ¼ 0 and the equation of motion
∇μuμ ¼ i

2
ðχ− − 1

NF
hχ−iÞ [13], we have d1ϵμνρσhfVμν;

Vραg∇αuσi ¼ 1
4
d1ϵμνρσhfVμν; Vρσg∇αuαi ¼ i

8
d1ϵμνρσhfVμν;

Vρσgχ−i − i
12

d1ϵμνρσhVμνVρσihχ−i. The last term with two
traces can be neglected, as it is 1=NC suppressed. Since the
parameters of d1 and d2 always appear in the combination as
d1 þ 8d2 in our case, the number of independent terms with two
vector resonances in this work agrees with that used in Ref. [48].
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dotted lines in the region above 0.9 GeV in Fig. 5).
Similarly, we find that the form factors in Refs. [48,49],
when extrapolated to the production region,2 are in contra-
diction with the SND data as well (see the magenta dot-
dot-dashed and the cyan dashed lines in Fig. 5). This tells
us that a good reproduction of the form factors in ω decay
does not necessarily guarantee a consistent description of
the form factors in ω production. Therefore, it is important
to consider both types of data simultaneously, as done in
our Fit I and Fit II. After including the SND and CLEO data
in the analysis, i.e., the fits presented in Table I, we find that
our description of the NA60 data becomes obviously worse
(see the difference between the red solid line and the orange
dotted line in Fig. 5). It turns out that our theoretical
framework starts to be incompatible with the NA60 data
above 0.5 GeV.
In this work, the excited vectors are explicitly included,

which are obviously important in the ω production proc-
esses from the SND [3,4] and CLEO [45] measurements on
the ωπ form factors. However, it is also interesting to see to
what extent the excited vector resonances can affect the ωπ
form factor in the ω decay, i.e., the energy region below
Mω −mπ. In Fig. 5, we designate the green dot-dashed line
to the situation in which we simply exclude the ρ0

contribution. It is obvious that the ρ0 plays an important
role in describing the SND Collaboration data, while its
effect in the low energy region is quite small.
To briefly summarize the fit to the ωπ form factor, we

could describe the NA60 data in our case to the same extent
as in Refs. [48,49], if we had not considered the SND and
CLEO data. After the inclusion of the latter two measure-
ments, we conclude that our description is still inadequate
for the ω → πγ� form factors from the NA60 measurements
in the energy region near the kinematical boundary, i.e.,
Mω −mπ. Hence, this is still an open problem in our
framework.

IV. CONCLUSIONS

In this work, the resonance chiral theory is used to study
K�ð892Þ → Kγ, eþe− → K�ð892ÞK processes, the ωπ0γ�

transition form factor, and the spectral function for
τ− → ωπ−ντ. By fitting the corresponding experimental
data, the values of resonance couplings, which cannot be
fixed through the QCD high energy constraints, are then
provided. The masses and widths of our ϕ0 resonance are
quite compatible with the ϕð1680Þ in PDG [31], while our
ρ0 looks more like a combined effect of the proposed
ρð1450Þ and ρð1700Þ from PDG. The mass and width of
the ρ0 resonance are found to be sensitive to the forms of the
energy-dependent widths used in the propagator, while the
parameters for the ϕ0 are more or less stable. The resulting
values of the ω0 − ϕ0 mixing angle are found to be around
20°, clearly different from the ideal mixing case as in the
ω − ϕ case. The resonance coupling c4 obtained here is
around 1 order smaller in magnitude than those in the
literature, and our results seem more meaningful when
considering the radiative tau decays. With the c4 value
obtained here, we analyze the different SUð3Þ breaking

effects contributing to the ratio of ΓðK�0→K0γÞ
ΓðK��→K�γÞ in detail. And

we find that the three sources of SUð3Þ symmetry breaking
effects, e.g., the different masses of intermediate resonan-
ces, the nonideal mixing angle of ω0 − ϕ0, and the non-
vanishing value of c4, are more or less equally important at
the numerical level.
The excited vector resonances are found to be essential

to reproduce the γ� → ωπ0 form-factor data from SND and
the CLEO ωπ spectral function from tau decays. Although
the low energy ωπ form-factor data from NA60 can be well
reproduced in our approach, the steep-rise behavior close to
the upper kinematical boundary region,

ffiffiffi
s

p
≤ Mω −mπ , is

still not fully understood in the current work, even after
taking into account the excited vector resonances.
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explicitly given in Refs. [48,49]. We have exploited the theo-
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