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The saturation of the two Weinberg sum rules is studied at finite temperature, using recent independent
QCD sum rule results for the thermal behavior of hadronic parameters in the vector and axial-vector
channels. Both sum rules are very well satisfied from T ¼ 0 up to T=Tc ≃ 0.7–0.8. At higher temperatures
close to Tc a hadronic, pion-loop contribution in the spacelike region proportional to T2, present at leading
order in the vector but not in the axial-vector channel, induces an asymmetry leading to a small deviation. In
this region, though, QCD sum rules for the hadronic parameters begin to have no solutions, as the hadronic
widths of the ρ and the a1 mesons diverge signaling deconfinement. Close to and at T ¼ Tc there are no
pions left in the medium and chiral symmetry is restored, so that the sum rules are trivially satisfied.
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I. INTRODUCTION

The two Weinberg sum rules (WSR) (at T ¼ 0) [1] were
first derived in the framework of chiral SUð2Þ × SUð2Þ
symmetry and current algebra and read

W1 ≡
Z

∞

0

ds
1

π
½ImΠVðsÞ − ImΠAðsÞ� ¼ 2f2π; ð1Þ

W2 ≡
Z

∞

0

dss
1

π
½ImΠVðsÞ − ImΠAðsÞ� ¼ 0; ð2Þ

where fπ ¼ 92.21� 0.14 MeV [2], and

ΠVV
μν ðq2Þ ¼ i

Z
d4xeiqxh0jTðVμðxÞV†

νð0ÞÞj0i

¼ ð−gμνq2 þ qμqνÞΠVðq2Þ; ð3Þ

ΠAA
μν ðq2Þ ¼ i

Z
d4xeiqxh0jTðAμðxÞA†

νð0ÞÞj0i

¼ −gμνΠ1ðq2Þ − qμqνΠAðq2Þ; ð4Þ

with VμðxÞ ¼ ∶d̄ðxÞγμuðxÞ∶ the conserved vector current
in the chiral limit, AμðxÞ ¼ ∶d̄ðxÞγμγ5uðxÞ∶ the axial-
vector current, and qμ ¼ ðω; ~qÞ the four-momentum carried
by the currents. The functions ΠV;Aðq2Þ are free of
kinematical singularities, thus satisfying dispersion
relations, and in perturbative QCD (PQCD) they are
normalized as

ImΠVðq2Þ ¼ ImΠAðq2Þ ¼
1

4π
½1þOðαsðq2ÞÞ�: ð5Þ

In the framework of QCD Eqs. (1) and (2) become
effectively finite energy sum rules (in the chiral limit:
mu ¼ md ¼ 0)

Wnþ1ðs0Þ≡
Z

s0

0

dssn
1

π
½ImΠVðsÞ − ImΠAðsÞ� ¼ 2f2πδn0;

ð6Þ

where s0 ≃ 1–3 GeV2 is the squared energy beyond which
QCD is valid, and both sum rules have been combined.
This result also follows from Cauchy’s theorem in the
complex squared energy plane, together with the
assumption of quark-hadron duality, to wit. Given a
Green function ΠðsÞ, e.g. ΠV;AðsÞ, and an analytic function
fðsÞ, Cauchy’s theorem leads to

Z
s0

0

dsfðsÞ 1
π
ImΠðsÞ ¼ −

1

2πi

I
jsj¼s0

fðsÞΠðsÞds; ð7Þ

where the discontinuity across the real axis involves the
hadronic sector, and the contour integral requires asymp-
totic information if the integration radius s0 is large enough.
According to quark-hadron (global) duality ΠðsÞ is
assumed to be given by the QCD operator product
expansion. A warning about this assumption was first
raised long ago in [3] and is now referred to as potential
duality violations associated with the QCD behavior on or
close to the positive real axis. Tests of the WSR were
performed [4,5] using experimental data on τ decays from
the ARGUS Collaboration at DESY [6], and later [7] from
the ALEPH Collaboration [8]. Both determinations led to a
better saturation of the WSR if an integral kernel, e.g. a
nontrivial fðsÞ in Eq. (7), was introduced, e.g. such that
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fðs0Þ ¼ 0. This was interpreted in [7] as a possible signal
of duality violations, on account of a considerably
improved saturation of the WSR obtained with a pinched
kernel [7,9] fðsÞ ¼ ð1 − s=s0Þ, i.e.

WPðs0Þ≡
Z

s0

0

ds

�
1 −

s
s0

�
1

π
½ImΠVðsÞ − ImΠAðsÞ�

¼ 2f2π: ð8Þ

In this paper we discuss the extension of the WSR to finite
temperature, which requires reliable information on the
thermal behavior of the hadronic spectral functions. This
information is available from results obtained from finite
energy QCD sum rules (FESR) at finite T in the vector [10]
and independently in the axial-vector channel [11].

II. HADRONIC SPECTRAL FUNCTIONS AT
FINITE TEMPERATURE

Starting with the hadronic vector spectral function, in the
analysis of [10] it was parametrized by a Breit-Wigner form

1

π
ImΠðþÞ

V ðs; TÞ ¼ 1

π

1

f2ρ

M3
ρΓρ

ðs −M2
ρÞ2 þM2

ρΓ2
ρ
; ð9Þ

where the upper index (þ) specifies the timelike region
(q2 > 0), and all parameters depend on the temperature,
and are normalized at T ¼ 0 as follows [2]: fρð0Þ ¼ 5,
Mρð0Þ ¼ 0.776 GeV, and Γρð0Þ ¼ 0.145 GeV. This para-
metrization was then used in the first three FESR

ð−ÞðN−1ÞC2NhÔ2Ni ¼ 4π2
Z

s0

0

dssN−1 1

π
ImΠðsÞjHAD

−
sN0
N

½1þOðαsÞ� ðN ¼ 1; 2;…Þ;
ð10Þ

where the leading order vacuum condensates in the chiral
limit are the dimension d ¼ 4 gluon condensate and the
dimension d ¼ 6 four-quark condensate. The FESR were
then used to determine s0 ¼ 1.44 GeV2, i.e. the onset of
PQCD, and to check that the resulting dimension d ¼ 4 and
d ¼ 6 vacuum condensates were in agreement with inde-
pendent determinations from data analyses. Alternative
parametrizations were also considered but found to lead
to similar results.
Extending this analysis to finite temperature gave the

following results:

s0ðTÞ
s0ð0Þ

¼ 1.0 − 0.5667

�
T
Tc

�
a
− 4.347

�
T
Tc

�
b
; ð11Þ

with a ¼ 11.38, b ¼ 68.41, Tc ¼ 197 MeV and

ΓρðTÞ
Γρð0Þ

¼ 1

½1 − ð TTc
Þ3� ; ð12Þ

MρðTÞ
Mρð0Þ

¼ 1 −
�

T
T�
M

�
10

; ð13Þ

where T�
M ¼ 222 MeV, allowed to vary in the range

T�
M ¼ 210–240 MeV, and finally

fρðTÞ
fρð0Þ

¼ 1.0 − 0.3901

�
T
Tc

�
c
þ 0.04155

�
T
Tc

�
d
; ð14Þ

with c ¼ 10.75 and d ¼ 1.269.
Turning to the axial-vector hadronic resonance para-

metrization, a fit was made to the ALEPH data on τ decay
in order to use as the T ¼ 0 normalization. As in the vector
channel, the first three FESR were employed to determine
s0 and to check consistency of the results for the dimension
d ¼ 4, 6 condensates. The parametrization leading to the
best χ2 is given by [10]

1

π
ImΠAðsÞja1 ¼ Cfa1 exp

�
−
�
s −M2

a1

Γ2
a1

�
2
�

× ð0 ≤ s ≤ 1.2 GeV2Þ; ð15Þ

1

π
ImΠAðsÞja1 ¼ Cfa1 exp

�
−
�
1.2 GeV2 −M2

a1

Γ2
a1

�
2
�

× ð1.2 GeV2 ≤ s ≤ 1.45 GeV2Þ; ð16Þ

1

π
ImΠAðsÞja1 ¼ Cfa1 exp

�
−
�
s −M2

a1

Γ2
a1

�
2
�

× ð1.45 GeV2 ≤ s ≤ M2
τÞ; ð17Þ

whereMa1 ¼ 1.0891 GeV, Γa1 ¼ 568.78 GeV, C ¼ 0.662
and fa1 ¼ 0.073 (the latter two parameters were split to
facilitate comparison between fa1 and fρ, for readers used
to zero-width resonance saturation of the WSR). Regarding
Eqs. (15)–(17), it is well known that this spectral function
cannot be fitted with a normal Breit-Wigner expression,
mostly due to the large width of the a1, and some back-
ground contamination. For instance, the early ARGUS data
[6] were fitted with a Breit-Wigner modulated by a high
degree polynomial [12]. Solving the FESR the onset of
PQCD turns out to be identical to that in the vector channel,
i.e. s0 ¼ 1.44 GeV2, so that Eq. (17) is never needed. The
finite temperature results for s0ðTÞ, fπðTÞ, fa1ðTÞ, and
Γa1ðTÞ can be written generically as

YðTÞ
Yð0Þ ¼ 1þ a1

�
T
Tc

�
b1 þ a2

�
T
Tc

�
b1
; ð18Þ

where the various coefficients are given in Table I. The a1
mass hardly changes with temperature, so that it was kept
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constant. This behavior can be ascribed to the very large
width of the a1 resonance. It should be noticed the
(different) way the leptonic decay constants enter their
respective spectral functions. However, the full T depend-
ence of these functions is the result of the aggregate
behavior of all their parameters. This T dependence is
consistent with a quark deconfinement scenario in both
channels.
It should be mentioned that the FESR analyses leading to

the above results [10,11] find that the hadronic integrals
match the QCD integrals in the range T ≃ 0–0.9Tc.
Beyond this temperature upper limit the integrals cease
to have support. Since this upper limit is so close to Tc a
smooth extrapolation should be acceptable.
The parametrization of the spectral function in the vector

channel was later used to predict the dimuon production
spectrum in heavy ion collisions at high energies [13].
Excellent agreement was obtained after comparing with
data on In-In collision around the ρ-meson peak from the
NA60 Collaboration [14]. Figure 1 shows the experimental
data and the prediction using the vector spectral function
from [10], as reproduced here in Eqs. (9) and (11)–(14).
It should be clear from Figs. 2 and 3 that the vector

spectral function evolves with increasing T independently

of the axial-vector one. The latter involves, in addition to
the a1 resonance, the pion pole given by f2πðTÞ ∝ jhq̄qij.
This contribution vanishes at T ¼ Tc, signaling chiral-
symmetry restoration, i.e. a transition from a Nambu-
Goldstone to a Wigner-Weyl realization of chiral
SUð2Þ × SUð2Þ symmetry. It should be recalled that the
thermal quark condensate from lattice QCD has been used
as input to the FESR in the axial-vector channel in [11]. As
shown in [11] the T dependence of the ratio fπðTÞ2=fπð0Þ2
follows closely that of s0ðTÞ=s0ð0Þ, vanishing at the
same temperature within the accuracy of the method.

FIG. 1. Experimental data on the dimuon production spectrum
in In-In ion collisions around the ρ peak from the NA60
Collaboration [14], compared with the prediction using the
vector spectral function from [10] (solid line), reproduced here
in Eqs. (9) and (11)–(14).

TABLE I. The values of the coefficients entering Eq. (18).

Coefficients in Eq. (18)

Parameter a1 a2 b1 b2

s0ðTÞ −28.5 −0.6689 35.60 3.93
fπðTÞ −0.2924 −0.7557 73.43 11.08
fa1ðTÞ −19.34 14.27 7.716 6.153
Γa1ðTÞ 2.323 1.207 20.24 7.869

FIG. 2. The vector spectral function at T ¼ 0, Eq. (9) (solid
curve), and at T ¼ 175 MeV (dotted curve) with thermal param-
eters given in Eqs. (11)–(14). The FESR make use of only that
part of the spectral function whose integral matches the QCD
integral, according to quark-hadron duality.

FIG. 3. Solid curve is the axial-vector (a1-resonance) spectral
function at T ¼ 0 fitted to the ALEPH data [8], shown with error
bars the size of the data points. Dotted curve is the spectral
function at T ¼ 175 MeV with thermal parameters given in
Eqs. (16)–(18). The FESR make use of only that part of the
spectral function whose integral matches the QCD integral,
according to quark-hadron duality.
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This independent and clearly very different approach to
T ¼ Tc exhibited by the thermal spectral functions does not
suggest any potential chiral mixing.
In the QCD sector the PQCD spectral functions for both

q2 > 0 (annihilation) and q2 < 0 (scattering), as well as
the dimension d ¼ 4 gluon condensate, are chiral sym-
metric, thus not contributing to Eq. (6). In the hadronic
sector for q2 < 0 (scattering) there is an asymmetric
contribution from pion loops, which in the vector channel
at leading order is [15]

1

π
ImΠð−Þ

V jHADðs; TÞ ¼
2

3π2
δðsÞ

Z
∞

0

ynB

�
y
T

�
dy

¼ T2

9
δðsÞ; ð19Þ

where nBðzÞ ¼ 1=ðez − 1Þ is the Bose thermal function.
The corresponding contribution in the axial-vector channel
is a higher order two-loop effect, which is traditionally
neglected.

III. RESULTS AND CONCLUSIONS

Starting at T ¼ 0 and using the results from the three
FESR obtained in [10,11], i.e. s0ð0ÞjV ¼ s0ð0ÞjA ¼
1.44 GeV2 and the parametrizations Eq. (9) and
Eqs. (15)–(17), the WSR, Eq. (6), and the pinched
WSR, Eq. (8), are satisfied to better than 1%. The
corresponding results at finite T are shown in Fig. 4 for
the first WSR,W1ðTÞ, Eq. (6), and in Fig. 5 for the pinched
WSR,WPðTÞ, Eq. (8). The solid (dashed) lines correspond
to the left- (right-) hand sides of the sum rules. Clearly, the
upper limit of integration in the WSR, i.e. s0ðTÞ, is not
strictly chiral symmetric, as seen from Eqs. (11) and (18).
The divergence between the left- and the right-hand sides of

the WSR at high T is due to the asymmetric hadronic
scattering term present in the vector spectral function, but
loop suppressed in the axial-vector channel. The impor-
tance of this term is short lived, as it must disappear at
T ¼ Tc, since there would be no longer pions in the
medium. In any case, since the source of this contribution
is fully understood, it should not be interpreted as an
invalidation of the thermal WSR.
As indicated in Figs. 4 and 5 the WSR are very well

satisfied up to T=Tc ≃ 0.75. The source of the departure
between the left-hand side of the WSR and its right-hand
side, i.e. f2πðTÞ, or alternatively the thermal quark con-
densate jhq̄qiðTÞj, is well understood. It is due to the
two-pion loop contribution to the vector spectral function,
growing like T2, but disappearing at T ¼ Tc. If this
contribution would have been chiral symmetric, then it
would have canceled out and the WSR would have been
fully satisfied up to T ¼ Tc.
The results for the behavior of the WSR in the full

temperature range can be interpreted as follows. First of all,
at T ¼ 0 the WSRmake the highly nontrivial statement that
the integrated difference between the vector and the axial-
vector (including the pion) spectral functions vanishes.
These functions could not be more different; i.e. the vector
correlator has no pole, and the ground state resonance is
narrow, while the axial-vector involves a pole and a very
broad resonance almost twice as heavy. Next, there is no
a priori reason for the WSR to be satisfied at finite
temperature. Their original derivation was done in the
context of current algebra and chiral SUð2Þ × SUð2Þ
symmetry. Today we reinterpret them in the framework
of QCD, which does exhibit this chiral symmetry in the
limit of vanishing light quark masses. In principle, an
extension to finite T could lead to more than one scenario,

FIG. 4. The first WSR, Eq. (6), at finite T. Solid (dash) line is
the left (right) hand side of Eq. (6). The divergence at high T is
caused by the asymmetric hadronic scattering contribution in the
space-like region (q2 < 0), which disappears at deconfinement
(T ¼ Tc).

FIG. 5. The pinched WSR, Eq. (8), at finite T. Solid (dashed)
line is the left- (right-) hand side of Eq. (6). The divergence at
high T is caused by the asymmetric hadronic scattering con-
tribution in the spacelike region (q2 < 0), which disappears at
deconfinement (T ¼ Tc).
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including one in which the sum rules are not satisfied at all,
except at T ¼ Tc where they must be trivially satisfied. The
results obtained from thermal QCD FESR [10,11] clearly
indicate that the vector spectral function evolves with T
independently of the axial-vector spectral function. While
both disappear at T ¼ Tc, they do so following their own
distinctive thermal evolution. In other words, there is no
a priori relation between these two channels, unless one
were to demand it. Given the successful saturation of the
WSR there seems to be no reason to justify such a demand.
The behavior of the spectral function parameters points to
deconfinement, as the onset of PQCD, s0ðTÞ, and the
resonance couplings decrease, while the widths increase
substantially with increasing T. This results in the ρ and a1
resonances becoming progressively broader, with decreas-
ing couplings to their respective currents. At the same time,
the pion decay constant or quark condensate decreases with
increasing T, vanishing at Tc. The thermal behavior of the
hadron mass is irrelevant in the context of the approach to
deconfinement. In fact, the mass only specifies the position

of the real part of the resonance Green function in the
complex squared energy s plane. Its moving upwards or
downwards with temperature is no indication of a decon-
finement phase transition. It is the imaginary part of the
Green function, i.e. the hadronic width, the relevant
parameter in this context. Its considerable increase with
increasing temperature thus serves as a phenomenological
signal for deconfinement.
Alternative analyses of the thermal WSR have been

performed recently [16], with somewhat different empha-
sis, e.g. in connection with potential chiral mixing.
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