
Angular momentum coefficients for meson strong decay
and unquenched quark models

T. J. Burns*

Department of Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom
(Received 6 April 2014; published 11 August 2014)

In most meson strong decay and unquenched (coupled-channel) quark models, the pair-creation operator
is a scalar product of vectors in the spin and spatial degrees of freedom. While differing in the spatial part,
most models have the same spin part, which creates a qq̄ pair coupled to spin triplet, with the spins of the
initial quarks as spectators. This is a basic assumption of the 3P0 model, and is well known to arise also in
the flux tube model, starting from the strong coupling expansion of lattice QCD. In this article the same
structure is shown to emerge in the Cornell model, in the dominant contributions of a more general
microscopic decay model, and in the pseudoscalar-meson emission model. A solution is obtained for
arbitrary matrix elements in these “nonflip, triplet”models, expressed as a weighted sum over spatial matrix
elements. The coefficients in the expansion, which involve the spin degrees of freedom and the associated
angular momentum algebra, are model independent. Tables of the angular momentum coefficients are
presented which can be used in future calculations, avoiding tedious Clebsch-Gordan sums. The symmetry
and orthogonality properties of the coefficients are discussed, as well as their application to transitions
involving hybrid mesons and states of mixed spin. New selection rules are derived, and existing ones
generalized. The coefficients lead to model-independent relations among decay amplitudes and widths
which can be tested in experiment and lattice QCD. They can also be used to explain how mass shifts in the
unquenched quark model do not spoil successful predictions of the ordinary (quenched) quark model.
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I. INTRODUCTION

Meson strong decay widths are dominated by channels
allowed by the OZI (Okubo-Zweig-Iizuka) rule, in which
the initial QQ̄ and a created qq̄ pair recombine into final
states Qq̄ and qQ̄. Quark models have been applied
extensively to such transitions, including the phenomeno-
logical 3P0 model, developed in the 1970s and still widely
used today, and flux tube models more closely connected
to QCD.
The same transition also plays a role below threshold,

leading to a virtual meson-meson component in the
physical wave function, and a mass shift with respect to
the bare QQ̄ mass. “Unquenched” quark models, of which
the Cornell model is the prototypical example, take account
of this effect. Recently such models have been applied to
the X, Y, and Z mesons in the charmonium and bottomo-
nium mass regions, in an attempt to explain their unusual
masses and decay properties.
The matrix element for the transition is typically calcu-

lated as the overlap of the nonrelativistic wave functions of
the mesons, assuming some operator describing the created
qq̄ pair. The overall structure of most operators is the same:
a scalar product of vectors acting separately on the spin and
spatial degrees of freedom. While the models differ in the
spatial degrees of freedom, usually the spin part involves a
q and q̄ coupled to a triplet, with the projections of the spins

of Q and Q̄ unchanged. Matrix elements in such models
have a common angular-momentum dependence, obtained
by recoupling the intrinsic spins of the initial and created
quark-antiquark pairs to match those of the final states, and
from recoupling the orbital and total angular momenta.
The purpose of this paper is to study this angular-

momentum dependence. A general expression is obtained
for arbitrary matrix elements in terms of a sum over
coefficients ξ, which are common to all models and contain
the angular-momentum dependence described above,
multiplying model-dependent spatial matrix elements.
The general properties of the coefficients are studied,
and tables of values are presented.
The coefficients can be used in future strong decay and

unquenched quark model calculations. Typically such cal-
culations beginwith sums over Clebsch-Gordan coefficients
which, as well as being tedious, obscure the underlying
patterns associated with the angular momentum algebra.
The summations over ξ coefficients are straightforward by
comparison, resulting in simpler expressions for decay
amplitudes, widths, mass shifts and mixing amplitudes.
The coefficients have other applications, which will be

introduced in this paper and discussed in future work. There
are new selection rules, as well as model-independent
relations among decay amplitudes and widths, which can
be tested in experiment and lattice QCD. They can be used
for model-independent predictions for mass shifts in the
unquenched quark model.*timothy.burns@durham.ac.uk
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The paper begins (Sec. II) by demonstrating the common
operator structure of 3P0, flux tube, microscopic and
pseudoscalar-meson emission models.
The bulk of the paper (Sec. III) is concerned with a

formalism which can be applied to these “nonflip, triplet”
models. An expression is obtained for arbitrary matrix
elements in terms of the coefficients ξ. A general formula
for the coefficients is derived, and their orthogonality and
symmetry properties are discussed. Zeros in the coeffi-
cients, which are selection rules, are classified.
Transitions involving heavy-light mesons with mixed

quark spin require special treatment (Sec. IV). An expres-
sion is obtained for the ξ coefficient corresponding to
arbitrary singlet-triplet mixing.
The coefficients involving transitions to a pair of S-wave

mesons (Sec. V) are the most widely useful. A compact
expression for these coefficients is written down, along
with a table of values for arbitrary initial states.
For transitions involving hybrid mesons (Sec. VI) the

same ξ coefficients can be used in the flux tube model and,
for the lightest hybrids, in the constituent gluon model.
An introduction to some applications of the ξs is then

given (Sec. VII), including selection rules, relations among
decay amplitudes and widths, and some general results in
the unquenched quark model.
The conclusion (Sec. VIII) is followed by an Appendix

which contains a general expression for the spatial matrix
element. Tables of ξ coefficients, which can be used as a
starting point for future calculations, are provided as
Supplemental Material [1].
This paper discusses in more detail the results introduced

in the workshop proceedings [2].

II. MODELS

In this section various approaches to modeling the
coupling of a meson to a meson-meson pair are introduced:
3P0 models, flux tube models, microscopic models, and
pseudoscalar-meson emission models. Their pair-creation
operators have the same overall structure, and while they
differ in the spatial part, most are identical in the quark spin
degrees of freedom. Everything else in this paper follows
from this common structure.

A. Nonflip, triplet models

The aim is to show that most models involve an operator
of the form

χ ·O ¼
X
m

ð−ÞmχmO−m; ð1Þ

where χ describes the creation of a spin triplet qq̄ pair, O
contains the spatial dependence, andm refers to the spherical
components. The spin part creates a q and q̄with projections
s and s̄,

χm ¼
X
ss̄

jss̄iχmss̄; ð2Þ

with an amplitude given by a Clebsch-Gordan coefficient

χmss̄ ¼
�
1

2
s;
1

2
s̄j1m

�
: ð3Þ

Collecting the spherical components into a vector, Eq. (2)
can be expressed

χ ¼
X
ss̄

jss̄iχ ss̄: ð4Þ

An equivalent approach involves the Pauli matrix σ in place
of χ , and this is understood to be sandwiched between
spinors, leading to the analogous expression

σ ¼
X
ss̄

jss̄iχ†sσχ−s̄; ð5Þ

where the χs are two-component Pauli spinors, not to be
confused with the χs appearing above. If the spinors are
chosen

χ↑ ¼
�
1

0

�
; χ↓ ¼

�
0

1

�
; ð6Þ

χ↑̄ ¼
�−1

0

�
; χ↓̄ ¼

�
0

1

�
; ð7Þ

then χ ss̄ is related to the above matrix element by

χ ss̄ ¼
1ffiffiffi
2

p χ†sσχ−s̄; ð8Þ

so that

χ ¼ 1ffiffiffi
2

p σ: ð9Þ

There are several different choices in the literature for the
normalization of the pair-creation operator. Some authors
use a scalar product defined as above, while others form a
scalar product by means of a Clebsch-Gordan coefficient,
which introduces a factor of 1=

ffiffiffi
3

p
. In some cases the

operator involves an explicit color singlet wave function,
which gives a common factor of 1=3 for all transitions due
to the overlap of color wave functions; some authors
compensate this with a factor of 3 in the operator itself.
These differences have no relevance to this paper, which

only requires that the operator is proportional to χ ·O.
Models of this type will be called nonflip, triplet models,
because the created qq̄ pair is spin triplet, and the initial
QQ̄ spins (but not necessarily their spatial degrees of
freedom) are spectators.
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In Sec. III a general expression for the matrix element of
χ ·O is obtained as a sum over the matrix elements of the
spatial partO (which varies frommodel to model) weighted
by angular momentum coefficients (common to all nonflip,
triplet models). For practical calculations the different
normalizations discussed above can be absorbed into the
definition of O.

B. 3P0 models

The assumption of early pair-creation models is that
the qq̄ pair, since it has the 0þþ quantum numbers of the
vacuum, is in a 3P0 state. The operator is therefore
proportional to the scalar product (1) above. Micu [3]
applied this model to the decays of scalar, axial and tensor
mesons, treating the spatial part of the decay matrix
element as a free parameter.
Models which treat the spatial degrees of freedom

explicitly involve the creation of a q and q̄ with momenta
k and k̄, with a certain spatial amplitude Oðk; k̄Þ,

O ¼
Z

d3k
Z

d3k̄jk; k̄iOðk; k̄Þ: ð10Þ

In practiceOðk; k̄Þ contains a momentum-conserving delta
function, leading to

O ¼
Z

d3kjk;−kiOðkÞ: ð11Þ

Different versions of the model have different spatial
amplitudes OðkÞ, but each involves the same integral.
The approach of Le Yaouanc et al. [4] assumes that the

qq̄ pair is created with equal amplitude everywhere in
space, and the 3P0 wave function for the pair leads to an
operator of the form

H ¼ γ
X
m

h1m; 1 −mj00i
Z

d3k
Z

d3k̄
X
ss̄

δ3ðk̄þ kÞ

× Y−m
1 ðk − k̄Þχmss̄jss̄ijkk̄i; ð12Þ

where the pair creation strength γ is fit to data, and the solid
harmonic is the −mth component of the vector

Y−m
1 ðk − k̄Þ ¼

ffiffiffiffiffiffi
3

4π

r
ðk − k̄Þ−m: ð13Þ

Carrying out the trivial integral and expressing the sum
over m as a dot product, the operator reduces to

H ¼ −
γffiffiffi
π

p
Z

d3k
X
ss̄

jss̄ijk;−kiχ ss̄ · k: ð14Þ

Recognizing the vector χ of Eq. (4), the amplitude can be
written

H ¼ χ ·O; ð15Þ
where O is defined by (11) above, with amplitude

OðkÞ ¼ −
γffiffiffi
π

p k: ð16Þ

The matrix elements of χ ·O can be computed using
explicit meson radial wave functions, which are commonly
taken to be harmonic oscillators.
Ackleh et al. [5] formulated the 3P0 model in terms of

quark fields, with operator

H ¼ g
Z

d3xψ̄ðxÞψðxÞ: ð17Þ

Expanding in terms of creation and annihilation operators
gives

H ¼ g
X
ss̄

Z
d3k

m
Ek

a†skb
†
s̄−kūskvs̄−k; ð18Þ

where m is the mass of the created quark and antiquark. In
the nonrelativistic limit, the spinors reduce to

ūskvs̄−k ¼ −
1

m
χ†sσχ−s̄ · k; ð19Þ

which can be written in terms of the operator χ ss̄ using
Eq. (8). Making the identification

a†skb
†
s̄−k ¼ jss̄ijk;−ki ð20Þ

gives

H ¼ −
g

ffiffiffi
2

p

m

X
ss̄

Z
d3kjss̄ijk;−kiχ ss̄ · k: ð21Þ

Again the operator has the form χ ·O, where χ and O are
given by Eqs. (4) and (11) respectively, and the spatial pair-
creation amplitude is (apart from a numerical factor) the
same as (16),

OðkÞ ¼ −
g

ffiffiffi
2

p

m
k: ð22Þ

The authors compared their results to a 3P0 model whose
spatial operator is normalized, in the notation of this paper,

OðkÞ ¼ −2
ffiffiffi
2

p
γk: ð23Þ

Comparison with the above gives γ ¼ g=2m, as in Ref. [5].
Using harmonic oscillator wave functions the 3P0 model

has been applied widely to the decays of light mesons
[6–15], charmonia [16–22], charmed mesons [23–36] and
bottom mesons [37,38]. Formulas for transitions between
arbitrary mesons described by harmonic oscillator wave
functions are derived in references [39,40].
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Chaichian and Kögerler [41] and Ono [42] used the 3P0
model with more realistic meson wave functions for a
Coulomb plus linear potential. Segovia et al. [43] consid-
ered the dependence of OðkÞ on the reduced mass of the
initial QQ̄ pair. Ribeiro [44] and van Beveren [45–47]
derived algebraic expressions for the matrix elements in
which the pair-creation amplitudeOðkÞ is itself a harmonic
oscillator function.
The 3P0 model has also been applied to baryon decays,

for example in Refs. [48–51]. Roberts and Silvestre-Brac
[52] generalized the 3P0 model for decays of hadrons with
arbitrary numbers of quarks: mesons, baryons and multi-
quark states. These results were applied to the decays of
light mesons with a modified spatial operatorOðkÞ [53,54].
The 3P0 operator has been used in the unquenched quark

model for charmonia and bottomonia [55–71], as well as
charmed mesons [72,73], bottom mesons [74], and baryons
[75–78].
All of themodels described above are characterized by the

operator χ ·O; the models differ only in the spatial part O.
On the other hand there are some variants of the 3P0 model
which do not have this structure. The “corrected” 3P0 model
[79,80] differs by including corrections associated with the
bound state nature of the mesons. The operator creates a 3P0
qq̄ pair, but since the bound state corrections are sensitive to
the spin degrees of freedom of the initial and final states, the
angular-momentum dependence of the matrix elements
differs from that of other 3P0 models. The ordinary 3P0
model is recovered in the appropriate limit, and for most
channels the corrections turn out to be small.
More recently, Fuda [81] has shown that there is nothing

inherently nonrelativistic about the 3P0 operator.
Nevertheless the matrix elements in the relativistic quark
model of that paper, such as ρ → ππ, have a more
complicated angular momentum algebra than the non-
relativistic models discussed here.

C. Flux tube models

In flux tube models the qq̄ pair is created not out of the
vacuum, but from the breaking of the gluonic flux tube.
Again it turns out that the pair-creation operator has the
form χ ·O.

The spatial part O is usually formulated in position
space, and creates the q and q̄ at a point

O ¼
Z

d3xjxxiOðxÞ: ð24Þ

Alcock et al. [82] assume that the flux tube is straight, so
that qq̄ pair creation is constrained to the QQ̄ axis, as
shown in Fig. 1. The amplitude is proportional to the
chromoelectric flux vector, which is aligned along the
direction r̂, where r ¼ X − X̄ is the vector connecting
the initial Q and Q̄ at X and X̄, respectively. As the flux
tube is straight, the spatial amplitude is zero everywhere
except along the QQ̄ axis where, up to an overall constant,

OðxÞ ¼ r̂: ð25Þ
To form a scalar, the field vector is contracted with another
vector describing a qq̄ pair with spin triplet, and so the
operator can be written in the form χ ·O. The created qq̄
pair has 3S1 quantum numbers.
The flux tube model of Isgur and Paton [83,84] is derived

from the strong coupling expansion of lattice QCD. Pair
creation is due to a term which destroys a piece of flux
connecting neighboring lattice sites at x and xþ an̂ (where
a is the lattice spacing), replacing it with a q̄ and q at the
ends of the broken flux links [85]. The matrix element
involves the overlaps of the degrees of freedom not only of
the quarks, but also the flux tubes.
The flux tubes have transverse oscillations so that, unlike

in the previous model, pair creation can occur away from
the QQ̄ axis, as shown in Fig. 1. Within the adiabatic
approximation the flux tube degrees of freedom are
integrated out first, leaving a term γðxÞ, which is the
overlap of the flux tubes as a function of the position x at
which the qq̄ pair is created [86]. (It is a function of the
coordinate x only, because eventually one goes to the
continuum limit so that pair creation occurs at a point.) This
leaves an operator of the formZ

d3xγðxÞψ†ðxþ an̂Þα · n̂ψðxÞ: ð26Þ

In terms of creation operators, the fields expand as

FIG. 1. The geometry of quark-pair creation in the 3S1 and Isgur-Paton flux tube models. The initial Q and Q̄ are at X and X̄
respectively, and the created qq̄ pair is at x.
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ψ†ðxþ an̂Þα · n̂ψðxÞ ¼ 1

ð2πÞ3
X
ss̄

Z
d3k

Z
d3k̄

mffiffiffiffiffiffiffiffiffiffiffi
EkEk̄

p a†skb
†
s̄ k̄
e−ik·ðxþan̂Þūskγ · n̂e−ik̄·xvs̄ k̄: ð27Þ

In the nonrelativistic limit, the matrix element of the Dirac
gamma matrix between quark and antiquark spinors ū and
v is

ūskγvs̄ k̄ ¼ χ†sσχ−s̄; ð28Þ
and one recognizes the vector χ ss̄ of Eq. (8). Writing the
creation operators in terms of the state vectors used before,

a†skb
†
s̄ k̄

¼ jss̄ijkk̄i; ð29Þ

and incorporating the definition (4), givesX
ss̄

a†skb
†
s̄ k̄
ūskγvs̄ k̄ ¼ jkk̄i

ffiffiffi
2

p
χ : ð30Þ

The operator (27) can therefore be written in the form χ ·O,
with the spatial part (in the nonrelativistic limit) given by

O ¼
ffiffiffi
2

p

ð2πÞ3 n̂
Z

d3xγðxÞ

×
Z

d3k
Z

d3k̄jkk̄ie−iðkþk̄Þ·x−iak·n̂: ð31Þ

Comparison with Eq. (10) leads to the definition of the
amplitude in momentum space

Oðk; k̄Þ ¼
ffiffiffi
2

p

ð2πÞ3 n̂e
−iak·n̂

Z
d3xγðxÞe−iðkþk̄Þ·x: ð32Þ

Going to the continuum limit, comparison with Eq. (24)
likewise gives the position-space amplitude,

OðxÞ ¼
ffiffiffi
2

p
n̂γðxÞ: ð33Þ

For a straight flux tube n̂ ¼ r̂ and γðxÞ is nonzero only
along theQQ̄ axis, which recovers the 3S1 model described
above.
Kokoski and Isgur [85] argue that the flux tube is not

straight, due to zero point oscillations of its Fourier modes.
Pair creation occurs with equal amplitude on each of any of
the six neighboring lattice sites characterized by the vector
n̂. In the expansion

Oðk; k̄Þ≈
ffiffiffi
2

p

ð2πÞ3 n̂ð1− ian̂ ·kÞ
Z

d3xγðxÞe−iðkþk̄Þ·x ð34Þ

the first term vanishes after summing over nearest neigh-
bors, while the second term survives,X

n̂

n̂ðn̂ · kÞ ¼ 2k: ð35Þ

The pair created by this operator has 3P0 quantum numbers.
Indeed if γðxÞ is taken as a constant the resulting spatial
operator is identical (up to a numerical factor) to that of the
old 3P0 model, Eq. (16). In practice γðxÞ is not constant, but
localizes pair creation to a “cigar-shaped” region surround-
ing the initial QQ̄ axis, approximately Gaussian in the
distance ρ⊥ away from the axis (shown in Fig. 1),

γðxÞ ∼ e−fbρ
2⊥ ; ð36Þ

where b is the string tension and f is approximately
constant [86]. The model gives similar predictions to the
3P0 model, which mimics the above localization in the
overlap of meson wave functions [85].
Kumano and Pandharipande [87] found that both 3S1 and

3P0 models fit light meson decay data, although the latter
requires stronger final state interactions. With a detailed
treatment of final state interactions, Geiger and Swanson
[88] found a strong preference the 3P0 flux tube model.
From the point of view of this paper, both are nonflip,
triplet models, differing only in the spatial part O.
The flux tube model has also been applied to light meson

decays by other authors [6,7,13], as well as to baryon
decays [89,90], and to meson properties in the unquenched
quark model [91–95].
The model has been applied to the decays of hybrid

mesons, whose matrix elements are normalized against
those of conventional mesons. The dynamics of the gluonic
excitation enter in the form of a modified flux tube
overlap [86],

γðxÞ ∼ êr̂Λ · ρ⊥e−fbρ
2⊥ ; ð37Þ

where êr̂Λ is a spherical unit vector orthogonal to r̂ and
Λ ¼ �1 is the projection of the flux tube angular momen-
tum along r̂. The overlap for transitions with hybrids in the
final state has a similar form [39,40].
This additional term in the flux tube overlap leads to

different dynamics for hybrid meson decays, in particular to
a selection rule forbidding their decay to an identical pair of
S-wave mesons [96,97]. The modification is associated
only with the spatial part O, however, and the overall
structure is still χ ·O. References [39,98,99] showed that
the ratio of two hybrid meson decay amplitudes computed
on the lattice [100] is consistent with the flux tube model,
and that this ratio is intrinsically connected to the assumed
χ ·O structure; this observation will be discussed in
Sec. VII I.
This implementation of the flux tube model has been

applied by several authors to the decays of hybrids with
light quarks [14,96,97].
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In the above model, the pair-creation amplitude has a
node along the QQ̄ axis. Page, Swanson and Szczepaniak
[101,102] proposed an alternative model for hybrid decay
in which pair creation is constrained to lie along the QQ̄
axis, with amplitude

OðxÞ ∼
X
μΛ

êr̂Λ cosðξπÞðαμΛ − α†μΛÞ: ð38Þ

Here α† and α are creation and annihilation operators for
phonons (gluonic excitations) with mode number μ and
polarization Λ, and ξ ¼ jx − X̄j=jX − X̄j measures how
far along the QQ̄ axis pair creation takes place. The
operator has the same χ ·O structure as the others
described above, and so can be treated on the same
footing from the point of view of this paper.
(In the constituent gluon model for hybrids, decay is

triggered by the creation of a qq̄ pair from the vector gluon.
The angular-momentum dependence in such models does
not, in general, correspond to the other models described in
this paper, with a notable exception; this is discussed
in Sec. VI.)
The approach of Dosch and Gromes [103] is similar in

spirit to the above flux tube models, in that it starts from the
strong coupling expansion of QCD and works within the
adiabatic approximation. They obtain a general expression
for meson decay widths, which involves an operator with the
familiar χ ·O structure. The difference compared to other
models is that the pair-creation amplitude is a function of the
mass of the qq̄ pair, but within the factorization approach of
this paper, this would be absorbed into the definition of O.

D. Microscopic models

In microscopic models pair creation arises from the
same interaction which controls the hadron spectrum, so
that masses and decays are determined by the same
parameters, unlike in the approaches outlined above, for
which the pair-creation strength is fit to data. These
models have been formulated in several ways, differing in
the assumed Lorentz structure of the potential. As will be
shown below, some of these lead uniquely to an operator
of the familiar form χ ·O. Others include additional
operators with a different structure.

The term responsible for both hadron masses and pair
creation has the form

H¼
Z

d3x
Z

d3yψ̄ðxÞΓψðxÞVðjx−yjÞψ̄ðyÞΓψðyÞ; ð39Þ

where V is the potential and the Γ matrices are chosen
according to the assumed Lorentz structure. The currents
are color octet, although this will have no role in what
follows and so the corresponding labels are suppressed.
Figure 2 illustrates how this term is responsible for both

the QQ̄ potential and qq̄ pair-creation. In the first case the
currents at both x and y are scattering matrix elements, one
of which is associated with the quark and the other with the
antiquark. In the second case one of the currents is associated
with scattering (off either a quark or an antiquark) and the
other with the creation of a quark-antiquark pair.
This approach was formulated in the Cornell model

[104–106], using a linear confining potential V which is the
timelike component of a Lorentz vector (Γ ¼ γ0). Using
this operator in the context of the coupled-channel equa-
tions, the model was applied to the spectra and decays of
charmonia states. More recently this model has been
applied to charmonia near threshold [107–109], and to
the Dsð2317Þ [110].
Ackleh et al. [5] developed a similar model, but in their

approach the linear confining potential is a Lorentz scalar
(Γ ¼ I), and they also include the timelike (Γ ¼ γ0) and
transverse (Γ ¼ γ) contributions from the one-gluon
exchange potential. Li et al. [111] use the same model
but incorporate the effect of a running gluon mass in the
Fourier transforms of the one-gluon exchange potential.
Segovia et al. [112] use a screened confinement potential
which is a mixture of Lorentz scalar and vector.
For present purposes, the question is whether or not the

operator (39) can be written in the familiar χ ·O form, and
the answer depends on the Lorentz structure. For illus-
tration, consider the contribution due to scattering off the
initial quark (as opposed to antiquark). Using the earlier
notation for the position coordinates (Fig. 1), the scattering
and pair-creation currents are taken atX and x respectively.
Following Refs. [5,112], expanding the quark fields in
terms of creation and annihilation operators gives (sup-
pressing the overall normalization)

H ¼ 1

ð2πÞ6
Z

d3X
Z

d3xVðjX − xjÞ
Z

d3K
Z

d3K0
Z

d3k
Z

d3k̄

×
Mmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EKEK0EkEk̄
p

X
SS0ss̄

a†S0K0aSKa
†
skb

†
s̄ k̄
eiðK−K0Þ·X−iðkþk̄Þ·xūS0K0ΓuSKūskΓvs̄ k̄; ð40Þ

where M is the mass of the initial quark, and m is the mass
of both the created quark and antiquark. As before, s and s̄
are the projections of the spins of the created quark and
antiquark, and k and k̄ are their momenta. Likewise S and

K are for the initial quark, while S0 and K0 are the
corresponding quantities after scattering. Identifying the
creation and annihilation operators with the state vectors
used earlier, in the nonrelativistic limit the operator is
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H ¼
X
SS0ss̄

Z
d3K

Z
d3K0

Z
d3k

Z
d3k̄jS0ss̄ijK0kk̄i

× δ3ðK −K0 − k − k̄Þ ~Vðkþ k̄Þ
× ūS0K0ΓuSKūskΓvs̄ k̄hKjhSj; ð41Þ

where ~V is the Fourier transform of the potential

~VðQÞ ¼ 1

ð2πÞ3
Z

d3YeiQ·YVðYÞ: ð42Þ

The spin structure of this amplitude is determined by the
matrix elements of the Γ matrices, and the three possibil-
ities will now be discussed in turn. First consider the case
Γ ¼ I, denoted sKs (for scalar-kernel-scalar) in Ref. [5].
The nonrelativistic limit of the Dirac bilinears is

ūS0K0uSKūskvs̄ k̄ ¼ 1

2m
δSS0χ

†
sσχ−s̄ · ðk̄ − kÞ: ð43Þ

The initial quark spins are unchanged by the interaction,
and the σ matrix corresponds to the spin-triplet wave
function χ ss̄ for the created qq̄ pair as encountered earlier,
Eq. (8). The summation of spin projectionsX

SS0ss̄

jS0ss̄iδSS0χ ss̄hSj ¼
X
ss̄

jss̄iχ ss̄ ð44Þ

is nothing but the operator χ defined in Eq. (4). The full
operator can be written in the form χ ·O, where the spatial
part is now an integral over momenta

O ¼
Z

d3K
Z

d3K0
Z

d3k
Z

d3k̄

× jK0kk̄iOðK;K0;k; k̄ÞhKj; ð45Þ

of the amplitude

OðK;K0;k; k̄Þ¼
ffiffiffi
2

p

2m
ðk̄−kÞδ3ðK−K0−k− k̄Þ ~Vðkþ k̄Þ:

ð46Þ

In the special case VðYÞ ¼ 1, corresponding to pair
creation with equal amplitude everywhere in space, the
potential is

~Vðkþ k̄Þ ¼ δ3ðkþ k̄Þ; ð47Þ

and after doing two delta function integrals and removing a
complete set of states, Eq. (45) reduces to Eq. (11), and the
corresponding spatial amplitude is identical (up to a
numerical factor) with that of the 3P0 model discussed
earlier [5].
The second case Γ ¼ γ0 is known as the j0Kj0 term. In

the model of Ackleh et al. this is one of several contribu-
tions, and is due to the timelike component of the

one-gluon exchange potential. In the Cornell model it is
the sole contribution, and is due to the confining potential,
which is assumed to be the timelike component of a
Lorentz vector. The nonrelativistic reduction is the same
as for the sKs term apart from a relative sign between the
quark and antiquark momenta,

ūS0K0γ0uSKūskγ0vs̄ k̄ ¼ 1

2m
δSS0χ

†
sσχ−s̄ · ðk̄þ kÞ; ð48Þ

so that again the amplitude can be written in the familiar
form, with the spatial part the same as Eq. (46) but with the
appropriate change of sign.
The third case Γ ¼ γ, known as jTKjT , is the transverse

contribution from the one-gluon exchange potential in the
model of Ackleh et al. The i and j components of the
scattering and pair-creation bilinears are combined as

ðδij − Q̂iQ̂jÞūS0K0γiuSKūskγjvs̄ k̄; ð49Þ

where Q ¼ K0 −K ¼ kþ k̄ is the momentum transfer,
and their nonrelativistic reductions are

ūS0K0γiuSKūskγjvs̄ k̄

¼ 1

2M
½δSS0 ðKþK0Þi þ ðiχ†S0σχS × ðK −K0ÞÞi�χ†sσjχ−s̄:

ð50Þ

The qq̄ pair is again created in spin triplet, however there is
an additional term which has the effect of flipping the spin
of the initial quark. This leads to different spin overlaps,
and ultimately a different angular-momentum dependence
compared to nonflip, triplet models.
The model of Ackleh et al. involves all three types of

operators, and the contribution from the jTKjT term
implies that, in general, its matrix elements differ from
nonflip, triplet models. However it is interesting to note that
the jTKjT term goes to zero in the limitM → ∞, unlike the
sKs and j0Kj0 terms. So for heavy quarkonia it should be a
good approximation to treat the operator as nonflip, triplet.
Moreover, even for light meson decays the sKs contribu-
tions are often dominant [5,111], in which case the operator
is approximately nonflip, triplet.
The approach of Jaronski and Robson [113] is closely

related to the Cornell model. However their potential V
includes not only the linear confinement term, but also the
short-range spin-dependent terms. The latter generate terms
in the operator which do not have the χ ·O structure.

E. Pseudoscalar-meson emission models

In contrast to the models described previously, the
pseudoscalar-meson emission model does not explicitly
assume the creation of a qq̄ pair. Instead one treats the
emitted meson as a pseudoscalar field with the appropriate
flavor quantum numbers, interacting with either the initial
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quark or antiquark. Suppressing the overall normalization
as well as flavor degrees of freedom, the operator in such
models has the general form

H ¼ σ ·OðqÞ; ð51Þ

where spatial partOðqÞ is a function of the momentum q of
the emitted pseudoscalar meson. It involves a momentum
transfer for the scattered (anti)quark,

OðqÞ ¼
Z

d3KjKþ qiOðK;qÞhKj: ð52Þ

Keeping only the leading order term, the simplest form for
the spatial amplitude is [114–117]

OðK;qÞ ¼ q: ð53Þ

Inclusion of the recoil term leads to the following form
[118–120]:

OðK;qÞ ¼ q −
E0

MQ
K; ð54Þ

where E0 is the energy of the emitted meson, valid in the
limit that the initial and final (anti)quark are degenerate,
with massMQ. Keeping an additional term in the expansion
[121], and allowing for SUð3Þ breaking in quark masses
[122–124], gives

OðK;qÞ ¼ q

�
1þ E0

E0 þM0

�
−
E0

2μ
K; ð55Þ

where M0 and E0 are the mass and outgoing energy of the
final state meson and μ ¼ MQM0

Q=ðMQ þM0
QÞ is the

reduced mass of the initial and final (anti) quark masses
MQ and M0

Q. This is the operator which arises in the chiral
quark model for the special case of pseudoscalar-meson
emission [122–124]. The model has recently been applied
to charmed-meson decays [125]. A discussion of the
different parametrizations can be found in Ref. [126].
The overall structure of the operator (51), as a scalar

product of two vectors corresponding separately to spin and
spatial degrees of freedom, is suggestive of the familiar
form discussed previously. However the σ operator
appearing here is not the same as that described previously.

In Eq. (5), σ is taken between the spinors of the created
quark and antiquark. Here, instead, σ acts on the initial
quark or antiquark.
Although pair creation is not assumed explicitly, if one

takes the quark-antiquark structure of the outgoing mesons
seriously then the physical interpretation certainly requires
it. The emission of a charged pion from a neutral
D-flavored meson,

ðuc̄Þ → πþðdc̄Þ; ð56Þ
takes place in the pion-emission model by the interaction
with a πþ-flavored field which changes a u quark into a d
quark, but physically one visualizes the creation of a dd̄
pair,

ðuc̄Þ → ðud̄Þðdc̄Þ: ð57Þ
The operator σ suggests that if one interprets the pseudo-
scalar-meson emission model in terms of pair-creation, the
created pair is in spin triplet. This will now be shown
explicitly.
The correspondence between the spin degrees of free-

dom in the two approaches is shown in Fig. 3, for the case
in which the pseudoscalar field interacts with a quark, as
opposed to an antiquark. In both approaches the initial
antiquark is treated as a spectator and so is not shown. The
amplitude of interest involves incoming and outgoing
quarks with spin projections S and s respectively. In the
pseudoscalar-meson emission model the meson field acts
on the spin of the initial quark, leading to a transition from
S and s. In nonflip, triplet models, the initial quark ends up
in the pseudoscalar meson, and the projection S of its spin
is conserved; the outgoing quark with projection s is that
which emerges from the vacuum, flux tube, or microscopic
interaction.
In the pseudoscalar-meson emission model the matrix

element of the mth component between quark spin pro-
jections S and s can be written

hsjσmjSi ¼
ffiffiffi
3

p �
1

2
S; 1mj 1

2
s

�
: ð58Þ

Reordering the angular momenta in the Clebsch-Gordan
coefficient, this can be expressed in terms of the spin
amplitude χms;−S given by Eq. (3), so that

FIG. 2. The operator (39) is responsible for both the quark-antiquark potential and pair creation.

T. J. BURNS PHYSICAL REVIEW D 90, 034009 (2014)

034009-8



hsjσjSi ¼
ffiffiffi
2

p
ð−Þ12−Sχ s;−S: ð59Þ

The spin operator can then be written

σ ¼
X
Ss

jsi
ffiffiffi
2

p
ð−Þ12−Sχ s;−ShSj: ð60Þ

To show the connection between this and the corre-
sponding operator in nonflip, triplet models, insert a
complete set in Eq. (4),

χ ¼
X
Sss̄

jSss̄iχ ss̄hSj: ð61Þ

For the special case of pseudoscalar-meson emission,
multiplying on the left by a state vector h00j, describing
a spin singlet formed of the initial quark and the created
antiquark, yields a Clebsch-Gordan coefficient

h00jSss̄i ¼
�
00j 1

2
S;
1

2
s̄

�
jsi ð62Þ

which contains a delta function

�
00j 1

2
S;
1

2
s̄

�
¼

ffiffiffi
1

2

r
ð−Þ12−SδS;−s̄; ð63Þ

so that the operator is

h00jχ ¼
X
Ss

jsi
ffiffiffi
1

2

r
ð−Þ12−Sχ s;−ShSj: ð64Þ

This is the same, apart from a factor of 2, as the operator
(60). Therefore if one interprets the pseudoscalar-meson
emission model in terms of quark-pair creation, the created
pair is in spin triplet. This shows how the phenomenologi-
cal pseudoscalar-emission model is related to more

fundamental approaches based on quarks, flux tubes,
and microscopic interactions. It also implies, since the
overall operator structure can be written in the familiar
χ ·O form, that the angular-momentum dependence of the
pseudoscalar-meson emission model is identical to that of
the models described previously.
Le Yaouanc et al. [4] identified a similarity between the

matrix elements of the 3P0 and pion-emission models, for a
particular baryon decay transition; the discussion above
establishes the origin of this equivalence, and generalizes it.
At this point it is worth making a short digression from

the strong decay problem at hand. The pseudoscalar-meson
emission operator features in models for the nucleon-
nucleon potential arising due to the exchange of pions,
or more generally, pseudoscalar mesons. The deuteron is
the prototypical example: see Ref. [127] and references
therein. Several authors have considered the possibility of
mesonic analogues of the deuteron, namely molecules
(deusons) formed of mesons and (anti) mesons bound by
pion exchange [128–134]. Within the last decade the idea
has received renewed interest due to the Xð3872Þ and
other states in the charmonia and bottomonia mass regions
apparently correlated with meson-meson thresholds
[135–152]. It is interesting to consider the implications
for these models of the correspondence between the
pseudoscalar-meson emission and nonflip, triplet operators.
The binding or otherwise of meson-meson molecules is

determined by a poorly constrained cutoff parameter, and
so it is difficult (or impossible) to predict a priori whether
or not such states should exist. Nevertheless, one can make
arguments as to the relative likelihood of binding in
different isospin and JPC channels, based on their relative
binding number (RBN), a numerical factor determining the
strength and sign of the interaction potential [130].
Arguments based on RBNs are not definitive, partly

because they involve only the central part of the potential
and ignore the tensor part. For example, in the np system

FIG. 3. The projections of quark spin in the pseudoscalar-meson emission model, and the corresponding process in nonflip, triplet
models.
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the isoscalar 3S1 and isovector 1S0 states have the same
RBN, but only the former (the deuteron) is bound: the extra
attraction is due to the tensor potential [130]. Nevertheless
for meson-meson molecules a larger number of isospin and
JPC combinations is possible, so the RBNs can at least
discriminate the relative attraction or repulsion in a first
order approximation.
The value of the RBN can be traced to the σ ·O structure

of the meson emission and absorption vertices. As has been
shown, this operator can be interpreted as the creation of a
qq̄ pair in spin triplet, and is equivalent (apart from the
spatial dependence) to all other nonflip, triplet models.
Thus one can anticipate that the RBNs are not unique to
pseudoscalar-meson exchange models, but are common to
all nonflip, triplet models.

III. ANGULAR MOMENTUM COEFFICIENTS

The 3P0, flux tube, sKs, j0Kj0, and pseudoscalar-meson
emission models all have the same χ ·O operator. In this
section a general expression is obtained for matrix elements
in these models, generically termed nonflip, triplet models.
The relationships among matrix elements in different

bases is discussed first, followed by some considerations
concerning the two possible topologies for the transitions.
The partial wave matrix element is then expressed in terms
of a sum over coefficients ξ, containing the common
angular-momentum dependence, multiplying spatial matrix
elements which vary from model to model. The sym-
metries, orthogonality and zeros of the coefficients are
discussed, and tables of values [1] are introduced.

A. The partial wave matrix element

The aim is to obtain the matrix element for an arbitrary
transition

nSLJ → n1S1L1J1 þ n2S2L2J2; ð65Þ
where the mesons are characterized by their radial quantum
number n, and the spin, orbital and total angular momenta
S, L and J. Note that S is used here to denote the spin
(0 or 1) formed by coupling the intrinsic spins of the quark
and antiquark in each meson; in the previous section S and
S0 referred to the projections of the spin of the initial Q
before and after scattering within microscopic models, but
these labels are no longer needed since the rest of this paper
applies only to models in which there is no spin flip. The
color degrees of freedom are ignored because they lead to a
common factor for all matrix elements. In practical calcu-
lations one has also to include a flavor factor, which will
not be discussed here, and a statistical factor to avoid
double counting identical final states.
The matrix element of χ ·O can be expressed as a sum

over products of separate matrix elements of χ and O,
corresponding to the spin and spatial degrees of freedom
respectively. The spatial part of the matrix element,

discussed in the Appendix, produces a momentum-
conserving delta function. The quantity relevant to decay
widths, mass shifts, and so on, is the overall matrix element
modulo this delta function. It is convenient to work in the
rest frame of the initial state, so that the outgoing mesons 1
and 2 have equal and opposite momenta, taken as p and −p
respectively.
Various matrix elements appear in the literature, differing

according to the basis used for the two-particle state.
Suppressing on the right-hand side the spin, orbital and
radial quantum numbers, the matrix element in the plane-
wave canonical basis

Mp̂
JzJ1zJ2z

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75 ¼ hJ1J2; J1zJ2zp̂jχ ·OjJJzi

ð66Þ
has final states with a definite decay axis p̂, and the
components Jz, J1z and J2z of angular momenta are
measured with respect to a fixed z axis. The dependence
on the magnitude p of the outgoing momenta is suppressed.
In the helicity basis the components λ1 and λ2 of angular

momenta are measured with respect to the decay axis.
Instead of the plane wave specified by p̂, one forms a
spherical wave with total angular momentum J0 and
z-component J0z. The scalar nature of the decay operator
implies that the matrix element contains delta functions
δJ0JδJ0zJz , and is independent of Jz; it is therefore convenient
to compute the reduced matrix element,

Mλ1λ2

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75 ¼ 1

jJj hJ1J2; λ1λ2J∥χ ·O∥Ji;

ð67Þ
where jJj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J þ 1
p

.
A third possibility is the partial wave basis, in which the

outgoing mesons have relative orbital angular momentum
l. A state of good total angular momentum is formed by
coupling J1 and J2 to j, and then coupling j and l to J. The
matrix element is again independent of Jz, so it is
convenient to deal with the reduced matrix element,

Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75 ¼ 1

jJj hJ1J2; jlJ∥χ ·O∥Ji: ð68Þ

The partial wave basis is generally the most useful for
making comparison with experiment, and it also the most
convenient for the present purposes, because it lends itself
to an expression in which the spatial degrees of freedom are
isolated from everything else. Matrix elements in the
various bases are related,
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Mp̂
JzJ1zJ2z

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75 ¼

X
jjz

hJ1J1z; J2J2zjjjzi
X
llz

hp̂jllzihjjz; llzjJJziMjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75; ð69Þ

Mλ1λ2

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75 ¼

X
j

hJ1λ1; J2 − λ2jjλi
X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2J þ 1

r
hjλ; l0jJλiMjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75: ð70Þ

Strong decay widths, as well as mass shifts in the
unquenched quark model, involve sums and integrals over
squared matrix elements. The relations among the relevant
terms follow from the above:

Z
d2p̂

X
J1zJ2z

jMp̂
JzJ1zJ2z

j2 ¼
X
λ1λ2

jMλ1λ2 j2 ¼
X
jl

jMjlj2: ð71Þ

B. Topologies

The transitions of interest are those which satisfy the
OZI rule,

ðQQ̄Þ → ðQq̄ÞðqQ̄Þ: ð72Þ

Namely, one of the final states is formed of the initialQ and
created q̄, while the other is formed of the initial Q̄ and
created q. Note that the upper- and lower-case labels do not
necessarily correspond to heavy and light quarks in this
paper; they are used simply to distinguish the initial (anti)
quarks from the created (anti)quarks. Certainly one is
normally interested in the case that q and q̄ are light (u,
d or s quarks), but Q and Q̄ can correspond to any flavor.
Likewise, while q̄ is certainly the antiparticle of q, the same
need not be true of Q̄ and Q.
For amplitudes with a heavy-heavy or heavy-light

meson in the initial state, the final state can be defined
in such a way that the coupling has a unique topology: It is

always clear which of the two mesons contains the created
q, and which the created q̄. On the other hand, for
amplitudes with solely light (u, d or s) quarks in the
initial state, in general it is not possible to define a final
state which isolates a unique topology. In that case the
total matrix element is given by the sum of two matrix
elements, weighted by flavor factors.
The two topologies, denoted (þ) and (−), are shown in

Fig. 4. In the (þ) topology the meson with quantum
numbers n1S1L1J1 is formed of the initial quark and
created antiquark (Qq̄), while that with quantum numbers
n2S2L2J2 is formed of the created quark and initial
antiquark (qQ̄). The (−) topology describes the opposite
situation.
To keep track of the different topologies, the spin and

spatial parts of the decay operator will be written χ� and
O� as appropriate, although the labels will occasionally be
omitted if they have no bearing on the results.
Note that the suppression of OZI-forbidden transitions

ðQQ̄Þ → ðQQ̄Þðqq̄Þ ð73Þ

has a different explanation in the different models. In the
3P0 model it is assumed a priori. In the flux tube model it is
because the created q and q̄ are at the ends of the broken
sections of flux tube, each of which constitutes one of the
outgoing mesons. In microscopic models, it is because the
created qq̄ pair is in a color octet state.

FIG. 4. Quark line topologies. The two topologies differ in the arrangement of the quarks from the initial meson (Q and Q̄) and the
created pair (q and q̄) in the final states. In the ðþÞ topology the mesons with quantum numbers n1S1L1J1 and n2S2L2J2 are respectively
Qq̄ and qQ̄ states. The ð−Þ topology describes the opposite situation.
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C. General expression

The decay operator factorizes into operators χ� and O�
acting separately on the spin and spatial degrees of free-
dom, which allows for a useful factorization of the matrix
element itself. The aim of this section is to arrive at an
expression of the form

Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
�

¼
X
L0l0

ξL
0l0

jl

2
64
S L J

S1 L1 J1
S2 L2 J2

3
75
�

AL0l0
l

2
64
n L

n1 L1

n2 L2

3
75
�

; ð74Þ

where the term A is essentially the matrix element of the
spatial operator O�, and the coefficient ξ contains the
matrix element of the spin operator χ�, as well as some
recoupling coefficients which depend on the angular
momenta of the mesons involved. (The origin of the
summation quantum numbers L0 and l0 will become
apparent shortly.) This is a useful factorization because
the spatial part A contains all of the model dependence,
whereas the coefficients ξ are common to all nonflip, triplet
models. This is reflected in the arguments of the respective
quantities; A is a function of all of the quantum numbers
(radial and orbital) associated with the spatial degrees of
freedom, whereas ξ is a function only of the angular
momenta.
The spatial part A is model-dependent in two senses.

First, it depends on the operator O�, which distinguishes
the various nonflip, triplet models. Second, because A is
essentially the overlap of the spatial wave functions of the
initial and final states, there is model dependence in the
choice of meson radial wave functions, and possible
interactions between the final state pair.
By contrast, the angular momentum coefficients ξ are

common to all models, and only depend on the angular
momenta of the mesons involved.
The coefficients can be derived most simply by working

within a coupled formalism, to take advantage of vector
recoupling coefficients and the Wigner-Eckart theorem.
The spin and orbital degrees of freedom will be coupled in
SL order,

jðS × LÞJi: ð75Þ

The first step towards the factorized form is to recouple the
angular momenta of the outgoing meson pair so that the
spin and spatial parts are collected together; this involves a
sum over an additional spin quantum number S0, and two
orbital quantum numbers L0 and l0. Writing out the ordering
of the couplings explicitly, and suppressing the radial
quantum numbers, the recoupling is

hðððS1 ×L1ÞJ1 × ðS2 ×L2ÞJ2Þj × lÞJj

¼
X
S0L0l0

ð−ÞS0þL0þlþJjJ1J2S0L0jl0j
8<
:

S1 L1 J1
S2 L2 J2
S0 L0 j

9=
;

×

�
S0 L0 j

l J l0

�
hððS1 × S2ÞS0 × ððL1 ×L2ÞL0 × lÞl0 ÞJj;

ð76Þ

where jJ1J2…l0j ¼ jJ1jjJ2j…jl0j, and jJ1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J1 þ 1

p
as

before. This leaves a reduced matrix element which factors
into its spin and spatial parts. Suppressing all quantum
numbers irrelevant to this factorization, the expression is

hðS0 × l0ÞJ∥χ� ·O�∥ðS × LÞJi

¼ ð−ÞJþSþl0 jJj
�
S L J

l0 S0 1

�
hS0∥χ�∥Sihl0∥O�∥Li:

ð77Þ

The spatial part A of the matrix element is to be identified
with the final term in the above; restoring the previously
suppressed quantum numbers, it is defined

AL0l0
l

2
64
n L

n1 L1

n2 L2

3
75
�

¼ 1

jLj hððn1L1 × n2L2ÞL0 × lÞl0∥O�∥nLi;

ð78Þ

where the factor jLj is for later convenience. General
formulas for A in terms of integrals over meson spatial
wave functions are given in the Appendix.
All of the angular momentum algebra, including the spin

matrix element, is then collected into the ξ coefficient,

ξL
0l0

jl

2
64
S L J

S1 L1 J1
S2 L2 J2

3
75
�

¼
X
S0
ð−ÞSþS0þlþl0þL0 jJ1J2S0L0jl0Lj

8><
>:
S1 L1 J1
S2 L2 J2
S0 L0 j

9>=
>;
�
S0 L0 j

l J l0

��
S L J

l0 S0 1

�
hðS1×S2ÞS0∥χ�∥Si;

ð79Þ

and note that the factor of jJj is absent because of Eq. (68).
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The spin matrix element can be written in terms of a 9-j
coefficient expressing the spin coupling in the appropriate
order. For the (þ) topology it is given by

hðS1 × S2ÞS0∥χþ∥Si

¼ ð−ÞS2þ1jS1S2S0S1j
8<
:

1=2 1=2 S1
1=2 1=2 S2
S 1 S0

9=
;: ð80Þ

That of the (−) topology is related to this by a phase,

hðS1 × S2ÞS0∥χ−∥Si ¼ ð−ÞSþS1þS2þ1hðS1 × S2ÞS0∥χþ∥Si:
ð81Þ

An equivalent approach (using vector recoupling coef-
ficients) is used by Bonnaz and Silvestre-Brac [54], in the
specific context of the 3P0 model. One difference involves
the sum over the quantum number S0. In their paper, the
sum is contained in the equivalent of Eq. (74), so that their
equivalent of ξ carries the additional index S0. In this paper
the sum over S0 is absorbed into the definition of ξ, so that
ultimately there are fewer coefficients and a somewhat
simpler formalism.
Using symmetry properties of the 6-j and 9-j coeffi-

cients, one can show that the expressions above are
identical to those of Bonnaz and Silvestre-Brac apart from
a factor of

ffiffiffi
3

p
due to the normalization of the pair-creation

operator, and a phase factor

ð−ÞSþLþJþS1þL1þJ1þS2þL2þJ2þ1 ð82Þ

which, apart from an overall factor of −1, is explained by
their choice of LS rather than SL coupling for the meson
wave functions.
The expression in Burns et al. [99] is the same as the

above, taking the spin matrix element for the (−) topology.
An earlier incarnation of the same expression [40] inad-
vertently omitted a factor of ð−ÞSþS1 from the spin matrix
element, although this has no bearing on any of the results
presented there.

D. Symmetries

This section concerns the symmetries relating the ξ
coefficients for the topologies (þ) and (−), and under
the interchange of the quantum numbers S1L1J1 and
S2L2J2. Combining these with analogous relations for
the spatial part of the matrix element leads to symmetries
in the overall matrix element, and to the conservation of
C- and G-parity.
Under the interchange of topologies, the only part of ξ

which changes is the spin part, so

ξL
0l0

jl

2
64 S L J
S1 L1 J1
S2 L2 J2

3
75
�

¼ ð−ÞSþS1þS2þ1ξL
0l0

jl

2
64 S L J
S1 L1 J1
S2 L2 J2

3
75
∓

:

ð83Þ
Interchanging the quantum numbers of mesons 1 and 2

brings phase factors due to the ordering of the spin
couplings, and the exchange of rows in the 9-j coefficients,
leading to

ξL
0l0

jl

2
64

S L J

S1 L1 J1
S2 L2 J2

3
75
�

¼ ð−ÞS1þL1þJ1þS2þL2þJ2þSþL0þjþ1

× ξL
0l0

jl

2
64

S L J

S2 L2 J2
S1 L1 J1

3
75
�

ð84Þ

This implies a selection rule for final states with the same
spin, orbital and total angular momenta,

ξL
0l0

jl

2
64
S L J

S1 L1 J1
S1 L1 J1

3
75
�

¼ 0 if ð−ÞSþL0þj ¼ 1: ð85Þ

This is discussed, along with other zeros, in Sec. III H.
The symmetry relations for the spatial part of the matrix

element A are discussed in the Appendix, and these depend
on whether the masses M and M̄ of the initial quark and
antiquark are degenerate. The discussion that follows does
not, in general, apply to matrix elements with hybrid
mesons; these are discussed in Sec. VI.
In the general case (M ≠ M̄) there are no symmetry

relations in A under separately interchanging either the
topology or the quantum numbers of mesons 1 and 2, but
there is a relation, Eq. (A48), under both interchanges
combined. Together with the above symmetries in ξ, this
gives the following symmetry for the full matrix element:

Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
�

¼ ð−ÞJ1þJ2þjþlMjl

2
64
n S L J

n2 S2 L2 J2
n1 S1 L1 J1

3
75
∓

: ð86Þ

Thus, for example, the amplitude for D�0 → D0π is not
directly related that ofD�0 → a0D (interchanging topology)
or D�0 → Da0 (interchanging final state quantum num-
bers), but it is related to D�0 → πD0 (interchanging both).
For an initial meson with degenerate quarks (M ¼ M̄)

there are separate symmetry relations (A53) and (A54)
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under the interchange of the topology, or of the quantum
numbers of mesons 1 and 2. This leads to the following
symmetries in the full matrix element: for the topology,

Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
�

¼ ð−ÞSþS1þS2þlþ1Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
∓

; ð87Þ

and the meson quantum numbers,

Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
�

¼ ð−ÞS1þJ1þS2þJ2þSþjþ1Mjl

2
64
n S L J

n2 S2 L2 J2
n1 S1 L1 J1

3
75
�

:

ð88Þ

So, for example, the amplitude for ψ 0 → D0D̄ is related to
both ψ 0 → D̄0D (interchanging topology) and ψ 0 → DD̄0

(interchanging final state quantum numbers).
The second of these symmetries implies a selection rule

which is closely related to (85),

Mjl

2
64
n S L J

n1 S1 L1 J1
n1 S1 L1 J1

3
75
�

¼ 0 if ð−ÞSþj ¼ 1; ð89Þ

except that it only applies to the caseM ¼ M̄, and requires
not only the same angular momenta quantum numbers in
the final states, but also the same radial wave functions.
This also follows from (85) and a selection rule (A55) in the
spatial matrix element.
The Appendix describes how the spatial matrix element

enforces the conservation of parity,

ð−ÞLþL1þL2 ¼ ð−1Þlþ1: ð90Þ

Implementing this constraint, the symmetry relation
between the two topologies can be written in terms of
the products of the eigenvalues C ¼ ð−ÞLþS of the charge
conjugation operator for neutral mesons,

Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
�

¼CC1C2Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
∓

:

ð91Þ

As noted earlier, for transitions with heavy-heavy or
heavy-light initial states, the final state can always be
defined in such a way that only one of the topologies (þ) or
(−) contributes; it is always clear which of the final states
contains the created q, and which the created q̄. The same is
not true, in general, for transitions with an initial state
composed of solely light (u, d and s) quarks. In such cases,
the matrix elements Mjl for the (þ) and (−) topologies are
summed, weighted by flavor factors.
Tables of flavor factors are given elsewhere, for example

in Refs. [5,11]. If the initial meson and both of the final
mesons are C-parity eigenstates (namely, neutral and
nonstrange), the flavor factors are the same for both
topologies. The amplitude for such transitions is therefore
proportional to

Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
þ

þMjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
−

;

ð92Þ
so that Eq. (91) enforces the conservation of C parity.
More generally, for decays involving only nonstrange

states, the flavor factors for the two topologies are related
by a phase ð−ÞIþI1þI2 , where I, I1 and I2 are the isospins of
the mesons. The total amplitude is proportional to

Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
þ

þ ð−ÞIþI1þI2Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
−

: ð93Þ

Each of the mesons in the transition is an eigenstate of
G-parity, with eigenvalue G ¼ Cð−ÞI . Equation (91) then
implies the conservation of G-parity.
Note that the application of Eq. (88) assumes that the

initial meson has equal masses of quark and antiquark. For
an isovector initial state, conservation of G-parity is only
satisfied to the extent that the u and d quarks are
degenerate, namely in the limit that I, and consequently
G, are exactly conserved quantum numbers.

E. Orthogonality

Using the expression for the matrix element contained in
Ref. [99], which is equivalent to the above formulation in
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terms of the ξ coefficient, Barnes and Swanson [61] derived
theorems for mass shifts and mixing amplitudes in the
unquenched quark model, and for meson total decay
widths. Close and Thomas [153] applied similar ideas to
mixing of hybrid and conventional mesons via coupling to
meson-meson pairs.
These results arise from orthogonality properties of the

6-j and 9-j coefficients under summation of the spin and
total angular momenta of the final states. In terms of the ξ
coefficients, the relevant orthogonality relation can easily
be derived,

X
S1S2
J1J2j

ξL̂
0 l̂0

jl

2
64

Ŝ L̂ J

S1 L1 J1
S2 L2 J2

3
75
�

ξL
0l0

jl

2
64

S L J

S1 L1 J1
S2 L2 J2

3
75
�

¼ δŜSδL̂LδL̂0L0δl̂0l0 : ð94Þ

In Sec. VII this will be used to formulate the above results
in the context of ξ coefficient. The orthogonality relation is
also used to check the tabulated values [1] of the ξ
coefficients, discussed later.

F. Angular momenta constraints

There are several constraints on the ξs due to conserva-
tion of angular momenta, which is enforced by triangle
relations in the 6-j and 9-j coefficients. The total angular
momenta must satisfy

jþ l ¼ J: ð95Þ

Further constraints arise in coupling the spatial degrees
of freedom. Returning to the defining equation (74), the
matrix element is expressed as a sum over quantum
numbers L0 and l0. Their allowed values are restricted,
for a given set of orbital angular momenta L, L1 and L2 and
a partial wave l, by the triangular conditions,

L1 þL2 ¼ L0; ð96Þ

L0 þ l ¼ l0; ð97Þ

l0 þ 1 ¼ L: ð98Þ

The first two are obvious from the angular momentum
couplings in the state vector in Eq. (76), and the third is
because O is a vector quantity connecting l0 and L
in Eq. (78).
In many cases these conditions imply that there is a

single spatial matrix element for a given l [99]. In
particular,

(i) if both of the final state mesons are S wave
(L1 ¼ L2 ¼ 0) then L0 ¼ 0 and l0 ¼ l only,

(ii) if the initial state and one of the final states are both
S wave (L2 ¼ L ¼ 0) then L0 ¼ L1 and l0 ¼ 1, and

(iii) if one of the final state mesons is S wave and the
mesons are coupled in a relative S wave
(L2 ¼ l ¼ 0) then L0 ¼ L1 and l0 ¼ L1.

In such cases the defining equation (74) simplifies so that
there is no sum over l0 or L0. This leads to direct relations
among matrix elements for transitions involving mesons
with the same spatial quantum numbers but different spin
and total angular momenta; these are discussed in Sec. VII.
A simplified expression for the ξ coefficient in the special
case (i) is discussed in Sec. V.
Additional triangle relations constrain the spin variables.

In Eq. (79) the ξ coefficient is expressed as a sum over S0,
whose allowed values are restricted,

S1 þ S2 ¼ S0; ð99Þ

S0 þL0 ¼ j; ð100Þ

S0 þ l0 ¼ J; ð101Þ

S0 þ 1 ¼ S: ð102Þ

The first three of these follow from the recoupling (76), and
the last is due to the vector nature of the spin operator χ in
Eq. (80). Some of these constraints lead to selection rules,
discussed in Sec. III H.

G. Guide to the tables

Tables of the ξ coefficients are presented in
Supplemental Material [1]. These cover transitions involv-
ing all initial states in S, P, D and F wave. Tables I–IVof [1]
are for a final state consisting of a pair of S-wave mesons
(L1 ¼ L2 ¼ 0). Tables V–VIII of [1] involve a P-wave
final state (L1 ¼ 1, L2 ¼ 0). Tables IX–XII of [1] are for
D-wave final states (L1 ¼ 2, L2 ¼ 0), restricted to the case
that meson 2 is a pseudoscalar meson (S2 ¼ 0). The tables
show the coefficients for the (þ) topology; those of the (−)
topology follow from Eq. (83).
The tables are constructed to reflect the orbital angular

momenta constraints (96) and (97). In so doing, transitions
which violate (98) but which are otherwise allowed by
angular momentum and parity emerge as selection rules,
discussed in the next section.
For Tables I–IV of [1] (which have L1 ¼ L2 ¼ 0) the

quantum numbers L0 and l0 are superfluous; these are an
example of the special case (i) discussed in the previous
section, for which there is a single spatial matrix element
for a given partial wave l. In this case the defining
equation (74) no longer contains any summation variables;
suppressing the quantum numbers J1 ¼ S1, J2 ¼ S2 and
L1 ¼ L2 ¼ 0, it reduces to
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Mjl

2
64
n S LJ

n1 S1
n2 S2

3
75
�

¼ ξjl

2
64
S L J

S1
S2

3
75
�

Al

2
64
n L

n1
n2

3
75
�

:

ð103Þ
Transitions to pairs of S-wave mesons are the most
important phenomenologically, and so the properties of
these ξ coefficients deserve special attention. In Sec. V a
simpler expression for these coefficients is given, along
with a table of values for arbitrary L.
For the transitions in Tables V–VIII (L1 ¼ 1, L2 ¼ 0)

and Tables IX–XII (L1 ¼ 2, L2 ¼ 0) of [1], the coefficient
L0 is superfluous, but in general l0 can take on a range of
values, so that the matrix element involves a summation,

Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2

3
75
�

¼
X
l0
ξl

0
jl

2
64

S L J

S1 L1 J1
S2

3
75
�

Al0
l

2
64

n L

n1 L1

n2

3
75
�

: ð104Þ

In such cases the different values of l0 can be read across
the table. Note, however, that some transitions with non-
zero L1 also fall into the categories of special cases (ii) and
(iii), for which there is only one value of l0. Thus, for
example, the transition 3D1 → 3P11S0 involves a single
S-wave coefficient

ξS ¼ 1

2

ffiffiffi
5

6

r
; ð105Þ

but three D-wave coefficients

ξ1D ¼ −
1

4

ffiffiffi
5

6

r
; ð106Þ

ξ2D ¼ 3

4

ffiffiffi
1

2

r
; ð107Þ

ξ3D ¼ 0: ð108Þ

As discussed earlier, the conservation of parity is
enforced by the spatial part of the matrix element, not
the ξs. Consequently there are ξs which are nonzero but
which correspond to transitions forbidden by parity. For
obvious reasons it is convenient to tabulate only those ξs
which correspond to parity-allowed transitions. In the
tables, the partial waves l are chosen so that they satisfy
the conservation of parity relation (90). Partial waves up to
l ¼ 6 are shown.
[Hybrid mesons occur in parity doublets, and include

states with “abnormal” parity, namely with P ¼ ð−ÞL rather

than P ¼ ð−ÞLþ1. For transitions involving a single, or
more generally an odd number, of “abnormal” parity
hybrids, the allowed partial waves are opposite to those
determined by Eq. (90). The coefficients for these abnormal
parity transitions are tabulated separately, as discussed
in Sec. VI.]
The tables are constructed in such a way that the only

entries are those which satisfy the conservation of angular
momentum, Eq. (95). Explicit zeros in the tables therefore
indicate selection rules which are a consequence of the
χ ·O structure; these are discussed in the next section.
Two checks have been carried out on the numerical

values in the tables. First, the orthogonality relation (94)
has been verified for all tabulated values.
Second, matrix elements Mjl were obtained from the

tabulated ξs along with computed spatial matrix elements
A, and then compared to the results of Barnes et al. [9].
Examples of the calculation of A, in the approximation
of harmonic oscillator wave functions of equal width,
are given in Sec. VII A. The computed matrix elements
Mjl were checked for a representative sample of decays
from each of the following groups: 1S→1S1S, 1P → 1S1S,
1D → 1S1S, 1F → 1S1S, 2S → 1P1S, 1D → 1P1S,
1F → 1P1S, 1F → 1D1S.
Each of the matrix elements is consistent in magnitude

with Barnes et al. (Their tabulated results are larger by a
factor of 2 because they sum the contributions of the two
topologies.) The phases differ by a factor ð−ÞJ1þJ2þj which,
after accounting for their calculations corresponding to
topology (−) of this paper, and for the difference in LS and
SL coupling, reduces to an irrelevant phase of ð−Þl.

H. Zeros

Entries in the tables [1] are transitions which are allowed
by the conservation of angular momentum and parity. Any
zeros which appear are therefore selection rules: modes
which are allowed by JP but forbidden by the decay model.
The search for such decays in experiment is a test of decay
model fundamentals. Assuming their validity, the selection
rules also allow one to discriminate among possible
interpretations of a state whose quark model classification
is not fixed by JPC alone.
Most of the zeros can be understood as arising from

simple angular momentum constraints. If all of mesons are
spin singlets (S ¼ S1 ¼ S2 ¼ 0), the spin matrix element
vanishes. This is the well-known spin-singlet selection rule,
and is the obvious consequence of the action of a vector
operator between scalar states, as in Eqs. (99) and (102).
There are no examples of this rule for conventional meson
decays to 1S0 pairs, since their unnatural parity (0−, 1þ, 2−,
etc.) already forbids such transitions by JP conservation.
The simplest examples therefore involve 1P11S0 and
1D2

1S0 final states, and are marked ( ⋆) in the tables.
If both final states are spin triplets (S1 ¼ S2 ¼ 1) then the

sum over S0 runs over 0, 1 and 2. However due to zeros in
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the spin matrix element (80), if S ¼ 0 only S0 ¼ 1 con-
tributes, whereas if S ¼ 1 only S0 ¼ 0 and S0 ¼ 2 contrib-
ute. In certain cases the values of S0 which survive these
constraints do not satisfy the triangular condition (100),
leading to a new spin-triplet selection rule. Zeros of this
nature, which are indicated ( †) in the tables, are specific to a
particular value of j, and therefore do not lead to absolute
zeros in decay widths if other values of j are possible.
For the particular cases of final states 1S01S0 or 3S13S1,

both the spin-singlet and spin-triplet selection rules follow
from a selection rule discussed earlier, Eq. (85).
Other zeros ( ⋄) arise because there is no combination of

summation quantum numbers S0 and l0 which satisfy both
triangular relations (100) and (101). Such cases are again
specific to a particular value of j.
There are further zeros ( •) which arise due to cancella-

tion between terms in the sum over S0. All such zeros
involve channels with S ¼ S1 ¼ S2 ¼ 1 because in no
other case is there more than one term in the sum.
Additional zeros (△) arise because a transition does not

satisfy the triangular condition (98) in the spatial degrees of
freedom. This will be referred to as the spatial-vector
selection rule, because it is a consequence of the spatial part
of the decay operator being a vector quantity.
All remaining zeros ( ‡) in the tables are due to an

accidental zero in the 6-j coefficient,�
1 2 2

3 2 2

�
¼ 0: ð109Þ

IV. SPIN-MIXED STATES

Mesons with J ¼ L can have their intrinsic quark spins
coupled to singlet (1LL) or triplet (3LL). Those which are
eigenstates of G-parity are diagonal in this basis, since the
two components have opposite behavior under G. Heavy-
light mesons (qs̄, qc̄, sc̄, etc.) are not G-parity eigenstates,
so the two components mix. The aim of this section is to
define the ξ coefficient applicable to such states, and the
discussion begins with some general properties of the spin-
mixed wave functions.

A. Spin-mixed wave functions

The physical states will be denoted by ALL and BLL,
defined in terms of a mixing matrix,

jALLi ¼ j3LLih3LLjALLi þ j1LLih1LLjALLi; ð110Þ

jBLLi ¼j3LLih3LLjBLLi þ j1LLih1LLjBLLi: ð111Þ

The mixing matrices for qQ̄ mesons (K, D̄, B) differ from
those of the correspondingQq̄mesons (K̄,D, B̄). Denoting
the former by ALL and BLL, and the latter by AL̄L and BL̄L,
notice that because the spin triplet and singlet components
have opposite behavior under C, the requirement

CjXLLi → jXL̄Li; ð112Þ

where X stands for either of the labels A or B, implies that
the mixing matrices for meson and antimeson have a
relative sign in either the spin-triplet or spin-singlet parts,

h3LLjXLLi
h3LLjXL̄Li

¼ − h1LLjXLLi
h1LLjXL̄Li

¼ �1: ð113Þ

In what follows the positive sign will be adopted,

h3LLjXLLi
h3LLjXL̄Li

¼ − h1LLjXLLi
h1LLjXL̄Li

¼ þ1; ð114Þ

which is the same convention as Ref. [11].
In the heavy-quark limit the mixing matrices are fixed.

Considering first the qQ̄ states, in the limit that mQ̄ → ∞,
the light quark angular momentum

Jq ¼ Sq þL ð115Þ

is a good quantum number, with eigenvalues
Jq ¼ L� 1=2. The corresponding states are related to
the usual states of total quark spin S by recoupling

jððSq × LÞJq × SQ̄ÞJMi

¼
X
S

ð−Þ1=2þLþSþJq jS; Jqj
�
1=2 1=2 S

L J Jq

�

× jððSq × SQ̄ÞS × LÞJMi: ð116Þ

The corresponding expression for Qq̄ states differs by a
phase ð−ÞSþ1, so that sign of the 1LL components is
reversed; this is consistent with the choice (114).
Taking ALL as the state with Jq ¼ L − 1=2 and BLL as

the state with Jq ¼ Lþ 1=2, the above gives the qQ̄ wave
functions

jALLi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

2Lþ 1

r
j3LLi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

2Lþ 1

r
j1LLi; ð117Þ

jBLLi ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L
2Lþ 1

r
j3LLi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

2Lþ 1

r
j1LLi: ð118Þ

B. The angular momentum coefficient

The aim now is to define a new angular momentum
coefficient so that the matrix elements for spin-mixed initial
states can be written in the same form as before, namely
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Mjl

2
64
n X L L

n1 S1 L1 J1
n2 S2 L2 J2

3
75
�

¼
X
L0l0

ξL
0l0

jl

2
64
X L L

S1 L1 J1
S2 L2 J2

3
75
�

AL0l0
l

2
64

n L

n1 L1

n2 L2

3
75
�

; ð119Þ

where X stands for either of the labels A or B. These matrix
elements are the sums of those of the spin-singlet and spin-
triplet parts, weighted by the mixing angles,

Mjl

2
64

n X L L

n1 S1 L1 J1
n2 S2 L2 J2

3
75
�

¼ h3LLjXLLiMjl

2
64

n 3 L L

n1 S1 L1 J1
n2 S2 L2 J2

3
75
�

þ h1LLjXLLiMjl

2
64

n 1 L L

n1 S1 L1 J1
n2 S2 L2 J2

3
75
�

; ð120Þ

which fixes the definition of the ξ coefficient for the mixed
states,

ξL
0l0

jl

2
64
X L L

S1 L1 J1
S2 L2 J2

3
75
�

¼ h3LLjXLLiξL0l0
jl

2
64
3 L L

S1 L1 J1
S2 L2 J2

3
75
�

þh1LLjXLLiξL0l0
jl

2
64
1 L L

S1 L1 J1
S2 L2 J2

3
75
�

:

ð121Þ

Making use of this expression the coefficients for tran-
sitions of interest can be obtained from the tables [1].
Due to Eqs. (83) and (84), the spin-triplet and -singlet

coefficients have opposite behavior under the interchange
of either the topology or the quantum numbers of the final
states. Consequently the ξ coefficient for the mixed state
has no simple symmetry under either such transformation,
although there is a symmetry under both transformations
combined,

ξL
0l0

jl

2
64
X L L

S1 L1 J1
S2 L2 J2

3
75
�

¼ ð−ÞL1þJ1þL2þJ2þL0þjξL
0l0

jl

2
64
X L L

S1 L1 J1
S2 L2 J2

3
75
∓

: ð122Þ

The symmetries of the spatial matrix element are discussed
in the Appendix, and for the case of heavy-light mesons
(M ≠ M̄) there is also no symmetry under either of the
transformations separately, but there is a symmetry,
Eq. (A48), under the action of both transformations
combined. This leads to the symmetry in the full matrix
element, which is the same as Eq. (86),

Mjl

2
64

n X L L

n1 S1 L1 J1
n2 S2 L2 J2

3
75
�

¼ ð−ÞJ1þJ2þjþlMjl

2
64

n X L L

n2 S2 L2 J2
n1 S1 L1 J1

3
75
∓

: ð123Þ

Compared to those of XLL mesons, the ξ coefficients for
XL̄L mesons have a relative sign between the singlet and
triplet parts. With the choice (114) these are given by

ξL
0l0

jl

2
64
X L̄ L

S1 L1 J1
S2 L2 J2

3
75
�

¼ h3LLjXLLiξL0l0
jl

2
64

3 L L

S1 L1 J1
S2 L2 J2

3
75
�

− h1LLjXLLiξL0l0
jl

2
64

1 L L

S1 L1 J1
S2 L2 J2

3
75
�

:

ð124Þ
Clearly there is no direct symmetry relation between the

ξs for mesons and antimesons, but this could be anticipated
because the amplitude for D0

1 → D0π, for example, need
not be related to the amplitude D̄0

1 → a0D̄, obtained by
swapping the initial meson for its antiparticle, but keeping
the topology and final state quantum numbers the same.
However the opposite behavior of the triplet and singlet

parts leads to relations under the combined action of
swapping the initial meson for its antiparticle, and inter-
changing either the topology,

ξL
0l0

jl

2
64
X L L

S1 L1 J1
S2 L2 J2

3
75
�

¼ ð−ÞS1þS2ξL
0l0

jl

2
64
X L̄ L

S1 L1 J1
S2 L2 J2

3
75
∓

; ð125Þ

or the quantum numbers of mesons 1 and 2,

ξL
0l0

jl

2
64
X L L

S1 L1 J1
S2 L2 J2

3
75
�

¼ ð−ÞS1þL1þJ1þS2þL2þJ2þL0þj

× ξL
0l0

jl

2
64
X L̄ L

S2 L2 J2
S1 L1 J1

3
75
�

: ð126Þ

T. J. BURNS PHYSICAL REVIEW D 90, 034009 (2014)

034009-18



So, for example, the matrix element for D0
1 → D0π is

related to that of D̄0
1 → D̄0π (interchanging topologies) and

D̄0
1 → πD̄0 (final state quantum numbers). The matrix

element obtains an additional phase factor from the spatial
matrix element due to the interchange of initial quark and
antiquark masses.
The orthogonality relation for the spin-mixed ξs,

X
S1S2
J1J2j

ξL̂
0 l̂0

jl

2
64
X̂ L L

S1 L1 J1
S2 L2 J2

3
75
�

ξL
0l0

jl

2
64
X L L

S1 L1 J1
S2 L2 J2

3
75
�

¼ δX̂XδL̂0L0δl̂0l0 ;

ð127Þ

follows from that of the ordinary ξs and the orthogonality of
ALL and BLL.
Coefficients can also be defined for transitions with

final states of mixed spin, analogously to the above.
Reference [99] considered the angular-momentum depend-
ence of decays of charmonia involving spin-mixed final
states, such as D1D̄, in the heavy-quark limit. Some
selection rules arise which can be used to discriminate
among 3S1, 3D1 and hybrid interpretations of vector
charmonia, and these will be discussed in the language
of the ξs in Sec. VII.
It is worth mentioning here an alternative approach to

strong decays of heavy-light states, which assumes only
the conservation of quark angular momentum and is valid
in the heavy-quark limit. Consider the transition from one
heavy-light qQ̄ state to another, where the initial state has
total and light quark angular momenta J and Jq, and the
final state J0 and J0q. Their wave functions involve the
vector couplings

J ¼ Jq þ SQ̄; ð128Þ

J0 ¼ J0q þ SQ̄: ð129Þ

A transition between the two via the emission of a light
meson with total angular momentum Jh requires the
conservation of both the total and light quark angular
momenta,

J ¼ Jh þ J0; ð130Þ

Jq ¼ Jh þ J0q: ð131Þ

The corresponding matrix element is therefore proportional
to a vector recoupling coefficient [154,155],

hðJh × ðJ0q × SQ̄ÞJ0 ÞJjððJh × J0qÞJq × SQ̄ÞJi

¼ ð−ÞJhþJ0qþ1=2þJjJqJ0j
�
1=2 J0q J0

Jh J Jq

�
: ð132Þ

The approach yields relations among decay amplitudes.
Since these are due to angular momentum conservation, the
same relations must also be satisfied by the matrix elements
of nonflip, triplet models. In the next section this is verified
for the particular case of coupling to a pair of S-wave
mesons. Nevertheless the two approaches are not equiv-
alent: the above approach involves no assumptions for the
nature of the created qq̄ pair which drives the transition,
unlike in nonflip, triplet models. Whereas all relations valid
in the above approach must also hold in nonflip, triplet
models, the converse is not true in general.
Several authors have supplemented the above formula

with additional assumptions, in order to make absolute
predictions. Chen et al. [156,157] assume the 3P0 model, so
that their angular momentum algebra is equivalent to that
described in this paper. Goity and Roberts [158] work
within the chiral quark model.

V. S-WAVE MESON PAIRS

Final states consisting of a pair of S-wave mesons (L1 ¼
L2 ¼ 0) are particularly important phenomenologically.
For strong decays, these channels constitute the vast
majority of experimental data. In the unquenched quark
model the strongest influence on meson masses and mixing
is from channels whose threshold is nearby in mass, which,
for most charmonia and bottomonia, are S-wavemeson pairs.
These transitions are the first of three special cases

(discussed in Sec. III F) for which there is a single spatial
matrix element for a given partial wave l. Consequently
there is no sum over L0 or l0 in the expression for Mjl,
Eq. (103). Zeros in the 6-j and 9-j coefficients lead to a
simpler form for the coefficient,

ξjl

2
4 S L J
S1
S2

3
5
�
¼ ð−ÞSþlþJjLj

�
S L J
l j 1

�

× hðS1 × S2Þj∥χ�∥Si: ð133Þ

In Table I these coefficients are tabulated as a function of L
for various initial states 3LL−1, 1LL, 3LL and 3LLþ1. The
allowed partial waves, assuming the transition involves
only conventional mesons, are l ¼ L − 1 and l ¼ Lþ 1.
Table I also shows the corresponding coefficients for

spin-mixed states ALL and BLL with wave functions (117)
and (118) from the heavy-quark limit. Notice the zeros in
the 1S03S1 channel. The state with Jq ¼ L − 1=2 does not
couple to the Lþ 1 partial wave, while that with Jq ¼
Lþ 1=2 does not couple to the L − 1 partial wave. These
zeros express the conservation of the light quark angular
momentum, and are therefore not unique to nonflip, triplet
models. The appearance of these zeros has been discussed
elsewhere in the specific contexts of the spin-mixed P-wave
[7,11,23,154,159–161] and D-wave [24] mesons. The table
shows that the selection rule generalizes to arbitrary L.
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In the previous section an alternative approach to heavy-
light meson transitions was mentioned, which starts from
the heavy-quark limit and assumes only the conservation
of angular momentum, leading to matrix elements propor-
tional to a recoupling coefficient, Eq. (132). To make the
connection between that approach and the nonflip, triplet
coefficients of Table I, consider a qQ̄ meson decaying in
topology ðþÞ, in which case the outgoing light meson has
intrinsic angular momentum J1. The coefficients in Table I
have final states of definite l, whereas those of Eq. (132)
have definite Jh, which is formed of the vector addition
of J1 and l. In the special case of pseudoscalar-meson
emission (J1 ¼ 0) the two bases coincide, and the corre-
sponding coefficients can be directly compared. In
Eq. (132) one has either Jq ¼ L − 1=2 (for the decay of
3LL−1 and ALL) or Jq ¼ Lþ 1=2 (3LLþ1 and BLL), and for
the S-wave final states of Table I, J0q ¼ 1=2. The relative
strengths of the amplitudes predicted by Eq. (132) are
consistent with those of Table I, up to phase factors.

VI. HYBRID MESONS

This section concerns the angular-momentum depend-
ence of matrix elements involving hybrid mesons. Within
the flux tube model, transitions are described by the same ξ
coefficients as those discussed earlier, although for some
transitions additional tables of values are required (and are

presented in Ref. [1]). The angular-momentum dependence
in constituent gluon models is in general different, although
it turns out that for negative parity hybrids in most channels
of interest the ordinary ξs are valid.

A. Flux tube models

States in the flux tubemodel are classified by excitations of
both quark and flux tube degrees of freedom, and within the
adiabatic approximation the radial energy dependence of
the flux tube defines the potential energy of the quarks
[83,84,96,162,163]. Conventional mesons are thosewith the
flux tube in its ground state, so that the orbital angular
momentum L of the quark-antiquark pair is a good quantum
number. Hybrid mesons are those in which the flux tube
carries angular momentum, and are no longer eigenstates of
quark orbital angular momentum; they are classified by the
projection Λ of the flux tube angular momentum along the
quark-antiquark axis, and of the total orbital angular momen-
tum L, formed of the quark and flux tube angular momenta.
Hybrids occur in parity doublets, which arise from linear

combinations of degenerate Λ ¼ jΛj and Λ ¼ −jΛj states.
It is therefore convenient to label the states by jΛj and a
parity quantum number P. Those with parity P ¼ ð−ÞLþ1

will be described as having normal parity, namely, the same
as the corresponding conventional meson with the same L.
Their partners with P ¼ ð−ÞL will be described as having

TABLE I. The ξ coefficients for coupling to a pair of S-wave mesons (L1 ¼ L2 ¼ 0), for the ðþÞ topology. The final two columns are
for the decay of spin-mixed states with mixing angle given by wave functions (117) and (118) corresponding to the heavy-quark limit;
the state ALL has Jq ¼ L − 1=2, while BLL has Jq ¼ Lþ 1=2.

3LL−1
1LL

3LL
3LLþ1

ALL
BLL

1S01S0
1L − 1 1

2

ffiffiffiffiffiffiffiffiffi
2Lþ1
2L−1

q
1S01S0 1Lþ 1 1

2

ffiffiffiffiffiffiffiffiffi
2Lþ1
2Lþ3

q
3S11S0 3L − 1 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ1ÞðL−1Þ

Lð2L−1Þ
q

− 1
2

1
2

ffiffiffiffiffiffiffi
Lþ1
L

q
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Lð2Lþ1Þ
q

−
ffiffiffiffiffiffiffiffiffi
Lþ1
2Lþ1

q
3S11S0 3Lþ 1 − 1

2
− 1

2

ffiffiffiffiffiffiffi
L

Lþ1

q
− 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ1ÞðLþ2Þ
ðLþ1Þð2Lþ3Þ

q
−

ffiffiffiffiffiffiffiffiffi
L

2Lþ1

q
− 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðLþ1Þð2Lþ1Þ
q

1S03S1 3L − 1 − 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ1ÞðL−1Þ

Lð2L−1Þ
q

− 1
2

− 1
2

ffiffiffiffiffiffiffi
Lþ1
L

q
− 1

2

ffiffiffiffiffiffiffiffiffi
2Lþ1
L

q
0

1S03S1 3Lþ 1 − 1
2

1
2

ffiffiffiffiffiffiffi
L

Lþ1

q
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ1ÞðLþ2Þ
ðLþ1Þð2Lþ3Þ

q
0 − 1

2

ffiffiffiffiffiffiffiffiffi
2Lþ1
Lþ1

q

3S13S1 1L − 1 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ1

3ð2L−1Þ
q

3S13S1 3L − 1 0† −
ffiffi
1
2

q
0† −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L

2ð2Lþ1Þ
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ1

2ð2Lþ1Þ
q

3S13S1 5L − 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L−3ÞðL−1Þ
6Lð2L−1Þ

q
0† −

ffiffiffiffiffiffiffi
L−1
2L

q
−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ1ÞðL−1Þ
2Lð2Lþ1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL−1Þ

2ð2Lþ1Þ
q

3S13S1 1Lþ 1 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ1

3ð2Lþ3Þ
q

3S13S1 3Lþ 1 −
ffiffi
1
2

q
0† 0† −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L

2ð2Lþ1Þ
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ1

2ð2Lþ1Þ
q

3S13S1
5Lþ 1 −1 0† −

ffiffiffiffiffiffiffiffiffiffiffi
Lþ2

2ðLþ1Þ
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ2Þð2Lþ5Þ
6ðLþ1Þð2Lþ3Þ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ2

2ð2Lþ1Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðLþ2Þ
2ðLþ1Þð2Lþ1Þ

q
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abnormal parity. The quantum numbers jΛj ¼ 0; 1; 2… are
labelled Σ;Π;Δ… in analogy to S, P, D…, as in molecular
physics.
The spectrum of hybrids is constrained by jΛj ≤ L, so

the lightest hybrid states are those with jΛj ¼ 1 and L ¼ 1
(ΠP states). These are the hybrids which are of the most
phenomenological interest, although in principle there exist
higher-lying states such as those with jΛj ¼ 1 and L ¼ 2
(ΠD) or jΛj ¼ 2 and L ¼ 2 (ΔD).
In the lightest (ΠP) hybrid family, labeling the states with

an adapted atomic notation 2Sþ1jΛjLP
J , the JPC quantum

numbers of the normal parity states are

1ΠPþ1
1þþ

3ΠPþ0
0þ−

3ΠPþ1
1þ−

3ΠPþ2
2þ− ð134Þ

and those of the abnormal parity states are

1ΠP−1
1−−

3ΠP−0
0−þ

3ΠP−1
1−þ

3ΠP−2
2−þ ð135Þ

Three states (0þ−, 1−þ, 2þ−) have exotic JPC not possible
for conventional mesons.
While the spatial wave functions for hybrids differ from

those of conventional mesons, involving Wigner D func-
tions in place of ordinary spherical harmonics, the critical
point for this paper is that they are still tensors of rank L.
Their overall wave functions can be written as a tensor
product of S and L exactly as in the case of conventional
mesons, Eq. (75), and the derivation of the ξ coefficient
assumes only this tensor structure.
Consequently hybrid mesons with orbital angular

momentum L can be treated on the same footing as
conventional mesons with the same L. In particular, one
can write an expression analogous to Eq. (74)

Mjl

2
4 n jΛj P S L J
n1 jΛ1j P1 S1 L1 J1
n2 jΛ2j P2 S2 L2 J2

3
5
�

¼
X
L0l0

ξL
0l0

jl

2
4 S L J
S1 L1 J1
S2 L2 J2

3
5
�
AL0l0
l

2
4 n jΛj P L
n1 jΛ1j P1 L1

n2 jΛ2j P2 L2

3
5
�
;

ð136Þ

in which the ξ coefficient is given by the usual expression
(79), and the quantum numbers jΛj and P describing the
flux tubes enter only into the spatial part A.
For present purposes the only important feature of the

spatial part A is that it must enforce the conservation of
parity—namely, it is zero unless

PP1P2 ¼ ð−Þl: ð137Þ
If all of the states in the transition (conventional or hybrid)
have normal parity, or indeed if there is an even number
of abnormal parity mesons, then the constraint reduces
to Eq. (90),

ð−ÞLþL1þL2 ¼ ð−Þlþ1: ð138Þ
In the Appendix this parity relation is shown to arise from the
spatial matrix element for the case of transitions involving
only conventional mesons. On the other hand if there is an
odd number of abnormal parity mesons in a transition, the
spatial matrix element leads to the opposite constraint,

ð−ÞLþL1þL2 ¼ ð−Þl: ð139Þ

Because all transitions involving conventional mesons
are normal parity transitions, the tables in the Supplemental
Material [1], as well as Table I of this paper, are constructed
in such a way that the partial waves l are those which
satisfy Eq. (138). From the above discussion, it follows that
these coefficients can also be applied to some transitions
involving hybrid mesons, namely those in which there is an
even number of abnormal parity states. Thus for example
the ξ coefficients for transitions

ΠPþ → Sþ S; ð140Þ

ΠPþ → Pþ S; ð141Þ

ΠPþ → Dþ S; ð142Þ

can be read off Tables II, VI and X of [1], and likewise
those for hybrid production

S → ΠPþ þ S; ð143Þ

P → ΠPþ þ S; ð144Þ

D → ΠPþ þ S; ð145Þ

F → ΠPþ þ S; ð146Þ

from Tables V, VI, VII and VIII of [1]. Similarly, for the
“cascade” transitions

ΠPþ → ΠPþ þ S; ð147Þ

ΠP− → ΠP− þ S; ð148Þ

the coefficients are those of Table VI of [1].
On the other hand, for abnormal parity transitions

satisfying Eq. (139), additional tables are required. Those
for transitions

ΠP− → Sþ S; ð149Þ

ΠP− → Pþ S; ð150Þ

ΠP− → Dþ S; ð151Þ

are in Tables XIII, XIV and XV of [1], and note that
Table XIV can also be used for the hybrid cascades
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ΠPþ → ΠP− þ S; ð152Þ

ΠP− → ΠPþ þ S: ð153Þ

The coefficients for negative parity hybrid production

S → ΠP− þ S; ð154Þ

P → ΠP− þ S; ð155Þ

D → ΠP− þ S; ð156Þ

are not tabulated.
It is worth emphasizing that the ξ coefficients apply not

only to the ordinary flux tube model for hybrid transitions
[86,96,97], but also to modified models with a different
spatial operator [101,102], and indeed to any nonflip, triplet
models which treat hybrids as states with orbital angular
momentum L. Close and Dudek [121] computed the decays
of hybrids to 3S11S0 in the pion emission model, and noted
that the angular-momentum dependence of their amplitudes
correlated with those of the ordinary flux tube model. The
correspondence between the two is a consequence of their
both being nonflip, triplet models.
The discussion of the spatial matrix element A in the

Appendix applies to transitions involving conventional
mesons only. Generalizing this to hybrid mesons is beyond
the scope of this paper, however some remarks are in order.
The symmetry relations (A48), (A53) and (A54) for the

spatial matrix elements were used, in Sec. III D, to derive
symmetry relations in the full matrix element (86)–(88),
and these are responsible for the conservation of C- and
G-parity. The corresponding symmetry relations can be
derived for transitions involving hybrid mesons, and lead to
the same conservation laws.
The selection rule (A55) for conventional meson tran-

sitions can easily be generalized to the case of hybrids in
the initial state [39], and is responsible for the well-known
result that ΠP hybrids are forbidden to decay to identical
S-wave meson pairs.

B. Constituent gluon models

In the constituent gluon model, the gluonic degrees of
freedom of a hybrid meson are manifest as a massive vector
particle. This leads to a simple model for decays in which
the gluon annihilates into a qq̄ pair [164–168]. In general
the angular-momentum dependence of the matrix elements
differs from that of nonflip, triplet models, but it turns out
that for the cases of most phenomenological interest, the
dependence is the same. This is particularly interesting
because the spectrum of light hybrids in a dynamical
lattice calculation appears to be more consistent with the
constituent gluon model than with the flux tube model
[169]. The connection between the two is discussed in
Refs. [170,171].

Symbolically the state vector for a general hybrid state
has the form

jðS × ðLQQ̄ × ðLg × 1ÞJgÞLÞJi; ð157Þ

where LQQ̄ is the orbital angular momentum of the QQ̄
pair, and Jq is the angular momentum of the gluon, formed
by coupling its orbital angular momentum Lg and its
intrinsic angular momentum (represented by “1” in the
above). The gluon annihilates into a qq̄ pair which, due to
the vector quantum numbers of the gluon, is in a 3S1 state.
Consequently in computing the transition amplitude, the 1
in the above state vector can be replaced by χ�, the spin
triplet wave function of the qq̄ pair.
In practice one is usually interested in the case in which

the quark-antiquark pair is in S wave (LQQ̄ ¼ 0), so that the
state vector has the form

jðS × ðLg × χ�ÞJgÞJi: ð158Þ

One might expect the lightest hybrids in this picture
to have the gluon in S wave (Lg ¼ 0), namely with

J
PgCg
g ¼ 1−−. This leads to a spectrum of states with the

sameJPC quantumnumbers as conventional P-wavemesons.
In practice, in most approaches the lightest hybrid has

the gluon in P wave (Lg ¼ 1), namely with J
PgCg
g ¼ 1þ−.

This is a feature of the bag model [172,173], Coulomb-
gauge QCD [174], and calculations based on lattice
adiabatic potentials [175], and is generally assumed in
constituent gluon models [165,166]. The spectrum of JPC

quantum numbers of such states is identical to that of the
abnormal parity ΠP multiplet, Eq. (135). It turns out that
the angular-momentum dependence of their decay ampli-
tudes is also the same.
To see how this comes about, consider the reduced

matrix element of the general state vector (158) with an
arbitrary final state. The first step is to recouple the
outgoing meson wave functions into states of good total
spin and orbital angular momenta S0 and L0, as in Eq. (76).
The resulting reduced matrix element factorizes into spin
and spatial parts,

hðS0 × l0ÞJ∥ðS × ðLg × χ�ÞJgÞJi

¼ ð−ÞSþJ j1; Jj
jl0j

�
S 1 J
Lg S0 1

�
hS0∥χ�∥Sihl0∥Lgi;

ð159Þ

and the expression is very similar to Eq. (77). Apart from
the 6-j coefficient, the expressions are identical up to
numerical factors which can be absorbed into a definition
of the spatial matrix element, in analogy to Eq. (78). Due to
the conservation of orbital angular momentum, the spatial
matrix element will contain δl0Lg

, so that after summation
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over l0 the only remaining difference between Eq. (77) and
the above expression is a single entry in the 6-j coefficients,
which reads L in Eq. (77) and 1 in the above. The ΠP
multiplet in the flux tube model has L ¼ 1, so the
expressions are equivalent.
Thus if the spatial matrix element is defined appropri-

ately, the matrix element for transitions from the J
PgCg
g ¼

1þ− hybrids in the constituent gluon model can be
expressed in terms of the same ξ coefficient as that of
the corresponding ΠP multiplet in the flux tube model. The
validity of the result is confirmed by comparing the ξ
coefficients in Tables XIII and XIV of [1] with the spin-
recoupling coefficients tabulated in Refs. [165,166,168].
Some implications of the correspondence between the
different approaches are discussed in the next section.
Hybrid decays have also been discussed in a relativistic

model [176] and with QCD sum rules [177,178]. The
angular-momentum dependence of these approaches is
more complicated than that of nonflip, triplet models.

VII. SOME APPLICATIONS

The ξ coefficients have many possible applications,
and this final section gives an introduction to the terrain.
The discussion focuses on several results which have
already appeared in the literature in other contexts. The
purpose of doing this is to introduce the range of possible
physics questions which can be addressed with the ξs, and

to demonstrate that the existing results are more general
than the particular models within which they have been
derived: they are common to all nonflip, triplet models.
Further applications of the ξs will be discussed in
future work.

A. Transition matrix elements

The coefficients can be used as a practical tool for
calculating transition matrix elements, the basic ingredients
of strong decay widths and, in the unquenched quark
model, mass shifts, meson-meson wave functions, and
loop-induced spectroscopic mixing. By means of the ξs
the computation of a partial wave matrix element Mjl
reduces to that of calculating the spatial part A. The various
nonflip, triplet models involve different As, but the ξs are
common to all models.
In the Appendix a general expression for A is given, as an

integral (in both position and momentum space) over
spatial wave functions. This can be used as a starting point
for future calculations. It applies to 3P0 and flux tube
models, regardless of the functional form of the spatial
pair-creation amplitude. The corresponding expressions for
microscopic and pseudoscalar-meson emission models are
similar.
As an example of the approach, consider a transition

in the 3P0 model, using the spatial operator (23). From
Eq. (A42), the spatial matrix element is given by

AL0l0
l

" n L
n1 L1

n2 L2

#
þ
¼ −

23=2γ

jLj
Z

d3q
Z

d3k

�
ððn1L1 × n2L2ÞL0 × plÞl0∥

1

2
ðqþ kÞ; 1

2
ðqþ kÞ;q − k

�
khq∥nLi ð160Þ

if all quark masses are taken to be the same. Using
harmonic oscillator wave functions as given in, for exam-
ple, Ref. [9], the integrals can be evaluated analytically.
Specializing to the case of equal wave function size, all
matrix elements are proportional to a common factor

γ

π1=4β1=2
e−x

2=12; ð161Þ

where β is the parameter controlling the size of the
harmonic oscillator wave function, and x ¼ p=β.
For illustration consider transitions of the type

1D → 1P 1S. Parity allows transitions in S, D, G and I
wave, but the last of these is forbidden by the spatial-vector
selection rule. The nonzero spatial matrix elements are,
modulo the common factor above,

AS ¼
26

37=2

�
1 −

5x2

18
þ x4

135

�
; ð162Þ

A1
D ¼ 215=2

311=2 · 5
x2
�
1 −

x2

6

�
; ð163Þ

A2
D ¼ 211=2

34 · 51=2
x2; ð164Þ

A3
D ¼ 211=2 · 71=2

34 · 5
x2
�
1 −

x2

21

�
; ð165Þ

AG ¼ 213=2

311=2 · 5 · 71=2
x4; ð166Þ

where the numerical labels on the AD refer to the different
values of l0.
Combining these with the ξs from Table VII of [1] gives

the fullmatrix elementsMjl for any transition from the family
1D → 1P 1S. Thus, for example, for 13D3 → 13P213S1,

M7S ¼ −
26

37=2

�
1 −

5x2

18
þ x4

135

�
; ð167Þ

M3D ¼ 29=2

311=2
x2
�
1 −

p2

105

�
; ð168Þ
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M5D ¼ 25

311=2 · 51=2
x2
�
1þ x2

21

�
; ð169Þ

M7D ¼ −
26

35
x2
�
1 −

4x2

105

�
; ð170Þ

M3G ¼ 29=2

35 · 5 · 7
x4; ð171Þ

M5G ¼ −
29=2

313=2 · 7
x4; ð172Þ

M7G ¼ −
213=2 · 111=2

313=2 · 5 · 7
x4: ð173Þ

Up to a phase factor, whichwas addressed in Sec. III G, these
matrix elements are consistent with Barnes et al. (Their
results are larger by a factor of 2 because they tabulatematrix
elements for the sum of two topologies.) As discussed
previously, a large number of matrix elements has been
calculated in this way, and compared to the results of Barnes
et al., as a numerical check on the tabulated ξs.
For the particular case of harmonic oscillator wave

functions and the 3P0 model, many matrix elements of
interest are already available in the literature. The ξs will
be useful in computing matrix elements which cannot be
found elsewhere, either because they have not be written
down, or because they require numerical computation.
Spatial matrix elements using more realistic wave func-
tions, for example, or for certain spatial operators, cannot
be obtained analytically. In such cases the ξ coefficients can
be used for efficient numerical computation of the full
matrix elements, either starting from the general expres-
sion, or by drawing on values from the tables [1].
References [39,40] presented formulas for the spatial

matrix elements involving arbitrary radial and orbital
excitations, in the 3P0 model with harmonic oscillator
wave functions. In future work these will be generalized
to go beyond the approximation of equal meson widths and
degenerate quark masses, and the resulting closed-form
expressions tabulated. These can be used in conjunction
with the ξ coefficients to calculate any matrix element of
interest.

B. Spin-singlet selection rule

Reference [179] showed that the spin-singlet selection
rule is valid not only for the 3P0 and flux tube models, but
also the pseudoscalar-meson emission model. This can now
be generalized to any nonflip, triplet model. As discussed in
Sec. III H, the rule is a simple property of the ξs arising
from angular momentum constraints.
The simplest nontrivial example in conventional meson

decays is the transition π2ð1670Þ → b1π [179], for which
there is a strong upper limit on the experimental branching
fraction [180],

Bðπ2ð1670Þ → b1ð1235ÞπÞ < 1.9 × 10−3ð97.7% C:L:Þ:
ð174Þ

The limit is particularly impressive given how strongly
π2ð1670Þ decays to another P-wave meson with similar
mass but different spin,

Bðπ2ð1670Þ → f2ð1270ÞπÞ ¼ ð56.3� 3.2Þ%: ð175Þ

For hybrid meson decays the rule has been noted
in both the flux tube and constituent gluon models
[9,10,40,97,99,101,168,181,182]. The rule could help to
discriminate between hybrid and conventional meson
interpretations of states with nonexotic JPC. For example,
the hybrid states with quantum numbers 0−þ, 1−−, 2−þ,
1þþ and 1þ− in the flux tube model each have opposite
quark spin to the corresponding conventional meson with
the same JPC.

C. Spin-triplet selection rule

The spin-triplet selection rule of Sec. III D appears
not to have been discussed in the literature before, although
some of the corresponding zeros in decay amplitudes
can be seen in expressions given elsewhere, for example
in Refs. [9,11,18]. These zeros can be tested experimentally
and are predictions common to nonflip, triplet models.
The transition 3P1 → 3S13S1 is a good example. As shown
in Table II of [1], angular momentum allows this transition
in both S and D wave, but in nonflip, triplet models the
S-wave amplitude vanishes,

ξS

2
4 3P1

3S1
3S1

3
5 ¼ 0: ð176Þ

Applications of this, and other spin-triplet zeros, will be
discussed in future work.

D. Spatial-vector selection rule

Some of the zeros in decay amplitudes noted by other
authors can be explained in terms of the spatial-vector selec-
tion rule discussed in Sec. III H. In most cases these zeros
have been discussed in the context of the 3P0 model, but they
can now be generalized to any nonflip, triplet model. For
example, Barnes et al. [11] noted that the 3F2 kaon couples
weakly to ρK�, ωK� and ϕK�; this is due to the vanishing
S-wave amplitude, which can be read off Table IV,

ξS

2
4 3F2

3S1
3S1

3
5 ¼ 0: ð177Þ

Similarly the coupling of 3S1 charmonia to D�D̄� in F
wave vanishes [18]; this is likewise due to the spatial-vector
selection rule, as shown Table I of [1],
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ξF

2
4 3S1

3S1
3S1

3
5 ¼ 0: ð178Þ

Other zeros of this nature, and their implications, will be
discussed in future work.

E. Selection rules for spin-mixed states

References [18,99,105,106] identified selection rules
for the decays of 3S1 charmonia to D1D̄ and D0

1D̄, where
D1 and D0

1 are admixtures of 3P1 and 1P1 determined by
the heavy-quark limit. By analogy with the discussion in
Sec. IV, the ξ coefficients for decays involving the states
AP1 (with Jq ¼ 1=2) and BP1 (with Jq ¼ 3=2) are

ξl

2
64

3S1
AP1
1S0

3
75
þ

¼
ffiffiffi
2

3

r
ξl

2
64

3S1
3P1
1S0

3
75
þ

−
ffiffiffi
1

3

r
ξl

2
64

3S1
1P1
1S0

3
75
þ

; ð179Þ

ξl

2
64

3S1
BP1
1S0

3
75
þ

¼ −
ffiffiffi
1

3

r
ξl

2
64

3S1
3P1
1S0

3
75
þ

−
ffiffiffi
2

3

r
ξl

2
64

3S1
1P1
1S0

3
75
þ

: ð180Þ

The origin of the signs in the above is because for the ðþÞ
topology the initial mesons are Qq̄, rather than qQ̄ states;
the distinction is discussed in Sec. IVA. The selection rules
follow using the ξs in Table V of [1],

ξD

2
64

3S1
AP1
1S0

3
75
þ

¼ 0; ð181Þ

ξS

2
64

3S1
BP1
1S0

3
75
þ

¼ 0: ð182Þ

Although both S- and D-wave decays are allowed in
general, each of the states is forbidden in one wave and
allowed in the other. This can also be understood in terms
of conservation of the quark angular momenta. A similar
selection rule [99] for the decays of 3D1 charmonia also
follows from the ξs,

ξS

2
4 3D1

AP1
1S0

3
5
þ
¼ 0: ð183Þ

F. Ratios of amplitudes

Absolute width predictions are complicated by several
factors such as overall normalization uncertainties,
flavor wave functions, SUð3Þ-breaking in pair creation,
and ambiguity in the treatment of phase space. These

complications cancel out in ratios of amplitudes, which
allows models to be tested directly.
In Sec. III F, three special cases were identified in which

there is a single spatial matrix element for a given l. For
such cases the defining equation (74) simplifies as there
is no sum over quantum numbers l0 and L0. If two decay
modes are expressed in terms of the same spatial matrix
element, then in their ratio the spatial matrix element
cancels and the result depends only upon the ξs.
The simplest example is the ratio of two matrix elements

involving the same mesons, but with different values of j.
Barnes et al. [11,18] identified several such ratios in the 3P0
model and applied these to the decays of charmonia
and light mesons; these predictions can now be seen to
be more general, valid for any nonflip, triplet model. One
of their examples is the ratio of j ¼ 2 to j ¼ 0 amplitudes
in the D�D̄� decays of vector charmonia, which can be
used to distinguish 3S1 and 3D1 interpretations. Reading
off Tables I and III of [1], the relevant ratios are, for
3S1 → 3S13S1,

M5P

M1P
¼ −2

ffiffiffi
5

p
; ð184Þ

and for 3D1 → 3S13S1,

M5P

M1P
¼ −

1ffiffiffi
5

p : ð185Þ

Other ratios of this type will be discussed in future work.

G. Ratios of ratios of amplitudes

The ratio of amplitudes in two different partial waves
is another in which most of the complications cancel out.
An initial state with nonzero L decaying into pairs of
S-wave mesons is an example of case (i); in general there
are two partial waves l ¼ L� 1 available, and the ratio
of these can be measured in experiment. With the aid
of the ξs, the ratio of matrix elements Mjl for a given
channel

Mj;Lþ1

Mj;L−1
¼ ξj;Lþ1

ξj;L−1

ALþ1ðpÞ
AL−1ðpÞ

ð186Þ

probes directly the ratio of spatial matrix elements for the
Lþ 1 and L − 1 partial waves at the given decay
momentum p. Since the spatial matrix elements contain
all of the model dependence, this ratio allows the
different models to be compared directly. Historically,
such ratios have been useful in discriminating among
different decay models [5,80,88,111].
For example, for the transitions a1 → ρπ and b1 → ωπ,

with matrix elements M and M0 respectively, the ratios can
obtained from Table II of [1],
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MD

MS
¼ −

1

2

AD

AS
; ð187Þ

M0
D

M0
S
¼ AD

AS
: ð188Þ

Amore direct test of the angular-momentum dependence
of decay models is the ratio of two such ratios for different
decay channels, chosen so that the spatial matrix elements
cancel out. This was first discussed [5] in the context of
a1 → ρπ and b1 → ωπ. To the extent that the mesons under
comparison (a1 cf. b1, ρ cf. ω) have the same radial wave
function, and that the two decays have the same momenta
(a good approximation in this case), the spatial matrix
elements are common to both processes and cancel. This
leaves a ratio of D-to-S ratios which depends only on the ξs,

MD

MS

M0
S

M0
D
¼ −

1

2
: ð189Þ

This result was derived in Ref. [5] in the 3P0 model, and
was subsequently generalized to the flux tube model [99].
Reference [5] noted that the ratio is associated with the
absence of a spin-flip component in the amplitude, and the
formalism of this paper confirms this observation: it can
now be seen to be a generic feature common to all nonflip,
triplet models. Thus one can see deviations from the above
ratio in the expressions of references [79,80,111], which
are not nonflip, triplet models.
The current Particle Data Group (PDG) averages [180]

for the ratios,

MD

MS
¼ −0.062� 0.020; ð190Þ

M0
D

M0
S
¼ þ0.277� 0.027; ð191Þ

imply considerable disagreement with the above prediction,

MD

MS

M0
S

M0
D
¼ −0.22� 0.09: ð192Þ

However the PDG average for the a1 → ρπ mode is very
strongly influenced by an incorrect measurement from
FOCUS [183]. Their Table III quotes the amplitudes

MS ¼ 1ðfixedÞ; ð193Þ

MD ¼ 0.241� 0.033� 0.024; ð194Þ

which implies

MD

MS
¼ 0.241� 0.033� 0.024: ð195Þ

Their quoted value for the D-to-S ratio, which is used in the
calculation of the PDG average, is

MD

MS
¼ −0.043� 0.009� 0.005: ð196Þ

This value is obtained by incorrectly scaling the data by a
factor of −1=

ffiffiffiffiffi
32

p
, due to a misinterpretation of a theo-

retical result.
Both interpretations of the FOCUS data differ markedly

from the average of the remaining three experimental
measurements in the PDG,

MD

MS
¼ −0.108� 0.016: ð197Þ

If one uses this average instead, the experimental ratio of
ratios is much closer to the model prediction,

MD

MS

M0
S

M0
D
¼ −0.39� 0.10: ð198Þ

Other ratios of ratios will be discussed in future work.

H. Relations among widths

The ratio of ratios in the previous section relies on the
assumption that the decays a1 → ρπ and b1 → ωπ are
controlled by the same spatial matrix elements. This can be
justified by the approximately equal decay momenta
(in turn due to the approximate degeneracy of a1 and
b1, and of ρ and ω) and the reasonable assumption that the
corresponding mesons in each decay (a1 cf. b1, and ρ cf. ω)
have the same radial wave functions.
It is useful to generalize these arguments with the

concept of a spatial multiplet, meaning a family of mesons
which share the same spatial quantum numbers n and L, but
differ in either or both of S and J. Thus a1 and b1 belong to
the 1P multiplet, while ρ and ω belong to the 1S multiplet.
It can often be useful, as above, to make the approximation
that mesons within the same multiplet are degenerate (so
that decay momenta are the same in different channels) and
have the same spatial (radial and orbital) wave functions.
Both approximations are consistent with the usual treat-
ment of spin-splittings as perturbations.
To the extent that these approximations are valid, differ-

ent transitions are described in terms of the same spatial
matrix elements, which can be eliminated to obtain
relations among decay amplitudes, as in the previous
section, or widths, discussed now.
The width is a sum over j and l of the square of the

matrix element, multiplied by a phase space factor,

Γ

2
4n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
5

¼ 2π
pE1E2

m

X
jl

������Mjl

2
4 n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
5
������
2

; ð199Þ
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where m is the mass of the initial meson and E1 and E2 are
the energies of the outgoing mesons with momentum p.
Different parametrizations of phase space are discussed in
the literature, but these have no bearing on the discussion
that follows. Note also that in practice the matrix element
should be weighted by a flavor factor, which is suppressed
in this paper, and for light meson decays there is
(in general) a weighted sum over two topologies; the
arguments below can easily be generalized to include these
additional features.
In general, the expansion ofMjl in terms of ξ coefficients

and spatial matrix elements A involves a sum over two
quantum numbers L0 and l0 which, on substituting in the
above, yields a fairly complicated expression: see Eq. (216)
later. The situation is much simpler for the special cases
discussed in Sec. III F, for which there is no sum over L0 or
l0. In these cases the width is linear in the squares of the
spatial matrix elements A. For illustration, consider the
decay to pairs of S-wave mesons,

Γ

2
4n S L J

n1 S1
n2 S2

3
5

¼ 2π
pE1E2

m

X
l

0
B@X

j

ξjl

2
64

S L J

S1
S2

3
75
2
1
CA
������Al

2
64

n L

n1
n2

3
75
������
2

:

ð200Þ

In the approximations described above, different decay
channels are described in terms of common spatial matrix
elements, which can be eliminated in favor of linear
relations among decay widths. As an example, consider
the decays of F-wave mesons to 3S11S0, which are allowed
in D and G wave. From Table IV of [1] the widths are,
modulo the phase space factor,

Γ½3F2� ¼
7

30
jADj2; ð201Þ

Γ½1F3� ¼
1

4
jADj2 þ

1

4
jAGj2; ð202Þ

Γ½3F3� ¼
1

3
jADj2 þ

3

16
jAGj2; ð203Þ

Γ½3F4� ¼
35

144
jAGj2: ð204Þ

If the mesons in the F-wave multiplet are degenerate and
have the same radial wave functions, the spatial matrix
elements are common to all channels and can be eliminated.
As a system of four linear equations with two unknowns,
this leads to two independent linear relations among the
widths. Thus, for example,

35Γ½3F3� ¼ 50Γ½3F2� þ 27Γ½3F4�; ð205Þ

70Γ½1F3� ¼ 75Γ½3F2� þ 72Γ½3F4�: ð206Þ

One can readily check that these relations (and others like
them) are satisfied by calculations already in the literature.
For example, the widths of Ref. [107] in the Cornell model
with degenerate 1F charmonia are consistent with the above.
The 1F and 2F charmonia in Ref. [18] have different masses
with spin-splittings determined by potential models, and so
they are not operating within the limit of degeneracy across
the spatial multiplet; nevertheless their 3P0 model decay
widths are in good agreement with the above.
Further examples of such relations for charmonia and

light meson decays will be discussed in subsequent work.
In general such relations are most useful for highly excited
initial states for which the spin-splittings are small.
The same principle can be applied to decays involving the

same final states but different initial states. Reference [182]
used relations of this type in the flux tubemodel to propose a
model for the decay of charmonia to light meson pairs, and
the approach can now immediately be generalized to the
context of any nonflip, triplet model. References [99,184]
derived relations among the eþe− cross sections for the
production of χcJJ=ψ and hcηc, modeled as the decay of a
virtual 3S1 state.
Another example of the same approach is the relation

among the widths of a 3S1 state to combinations of
pseudoscalar and vector mesons. In this case only one
partial wave is allowed, so instead of a linear relation
among the channels, there is a direct relation between each
of the channels. This follows immediately from the ξs,

Γ½1S01S0�∶ ðΓ½1S03S1�þΓ½3S11S0�Þ∶Γ½3S13S1�¼1∶4∶7:
ð207Þ

These ratios have been quoted by many authors using
different models [16,41,42,82,106,113,185], and their
common origin can now be understood as a consequence
of their nonflip, triplet operators. It is not a good application
of the approach since the symmetry in the final state
multiplets is badly broken, so that the decays under
comparison have quite different momenta. For this reason
Ref. [106] refers to this as the “infamous 1:4:7 ratio.”

I. Lattice decays

Decays of the spin-triplet 1−þ hybrid meson π1 to b1π
and f1π have been computed in lattice QCD [100], with
specially chosen masses so that the outgoing mesons have
zero momenta. Reference [98] compared these calculations
to the predictions of the flux tube model, and found
consistency in both the ratio of decay widths, and their
magnitudes.
In general, the decays under comparison are allowed in

both S and D wave, but in the limit that the decay
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momentum goes to zero, only the S-wave amplitude
survives. This is an example of the special case (iii)
discussed in Sec. III F, for which there is a single spatial
matrix element. Because the b1 and f1 belong to the same
spatial multiplet but differ in their intrinsic quark spins
(singlet and triplet respectively), if the radial wave func-
tions of b1 and f1 are the same, the spatial matrix element is
common to both transitions, and so cancels in their ratio.
Consequently the relative strength of the decays is deter-
mined by the ξ coefficients (see Table XIV of [1]),

ξS

2
64

3P1
1P1
1S0

3
75 ¼ −

1

2
; ð208Þ

ξS

2
64

3P1
3P1
1S0

3
75 ¼ 1

2
ffiffiffi
2

p ; ð209Þ

along with a flavor factor which, assuming f1 is
ðuūþ dd̄Þ= ffiffiffi

2
p

, enhances the b1π channel by a factor offfiffiffi
2

p
in amplitude. The end result is the ratio

MS½b1�
MS½f1�

¼ 2; ð210Þ

which is consistent with the lattice calculation. (The lattice
amplitudes are extracted from decay widths, and so the sign
of the ratio has no significance.)
This result was discussed in the context of the flux tube

model [98], and was subsequently noted to be a feature of
spin-triplet pair creation models more generally [99]. The
discussion in Sec. VI B implies that the result is even more
general than that, applying also to the constituent gluon
model. Indeed the factor of 2 is evident in the constituent
gluon model calculations of Ref. [166].
That the lattice calculation is restricted to zero momen-

tum turns out to be an advantage in this type of comparison.
In this limit any decays (provided one of the outgoing
mesons is S wave) are expressed in terms of a single spatial
matrix element, which cancels in the limit that the mesons
under comparison have the same radial wave function. The
ratio of two such decays is uniquely determined by the ξ
coefficients, along with flavor factors.
Recently Lang et al. [186] computed the S-wave decay

a1 → ρπ in lattice QCD, and extracted the coupling
constant

ga1ρπ ¼ 1.71� 0.39 GeV: ð211Þ

The authors note that future lattice calculations with
improved statistical accuracy will be used to compute
the corresponding coupling constant for b1 → ωπ. From
experiment they determine

gb1ωπ ¼ 0.787� 0.25 GeV: ð212Þ
The two decays are directly related in the model

approach, assuming that b1 and a1, and separately ρ and
ω, have the same radial wave functions. From the ξ
coefficients, the b1 decay matrix element is smaller by a
factor of

ffiffiffi
2

p
,

ξS

2
64

3P1
3S1
1S0

3
75 ¼ 1ffiffiffi

2
p ; ð213Þ

ξS

2
64

1P1
3S1
1S0

3
75 ¼ −

1

2
: ð214Þ

The b1 decay is further suppressed by a factor of
ffiffiffi
2

p
due to

flavor. (The coupling constant above is extracted from the
decay to both ρ−π0 and ρ0π−.) Thus from the results of
Lang et al., the prediction of nonflip, triplet models for the
b1 coupling constant is,

gb1ωπ ¼ 0.86� 0.20 GeV; ð215Þ

consistent with the experimental value.

J. Width sum rule

Barnes and Swanson [61] obtained three theorems which
form the basis of the discussion in this section and the two
that follow. The theorems are easily derived in the formal-
ism of the ξ coefficients, and are due to the orthogonality
relation (94). The derivations in Ref. [61] involve charmo-
nia, for which flavor considerations play no role. The
discussion here will also ignore flavor, but the results can
easily be generalized and shown to be valid in the
appropriate limits of SUð2Þ or SUð3Þ symmetry.
Starting from Eq. (199), the decay width can be

expressed in terms of ξ coefficients and spatial matrix
elements (ignoring, as usual, flavor and color factors),

Γ

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75 ¼ 2π

pE1E2

m

X
lL0l0L̂0 l̂0

0
B@X

j

ξL
0l0

jl

2
64

S L J

S1 L1 J1
S2 L2 J2

3
75ξL̂0 l̂0

jl

2
64

S L J

S1 L1 J1
S2 L2 J2

3
75
1
CAAL0l0

l

2
64

n L

n1 L1

n2 L2

3
75
�

AL̂0 l̂0
l

2
64

n L

n1 L1

n2 L2

3
75:

ð216Þ
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We are interested in the total width of the meson nSLJ
to all of themesons in the spatial multiplets specified by n1L1

and n2L2, which is obtained by summing the above over S1,
J1, S2 and J2. In general the decaymomentump, the energies
E1 andE2, and the spatial matrix elementsA depend upon S1,
J1,S2 andJ2, due to spin-splittings in themasses and different
radial wave functions in the final state multiplets. If, however,
one assumes that the final state multiplets are completely
symmetric (meaning theirmesons aredegenerate andhave the
same radial wave functions), then only the ξ coefficients
depend on the summation quantum numbers, and the sum-
mation can be done with the help of Eq. (94),

X
S1J1S2J2

Γ

"n S L J
n1 S1 L1 J1
n2 S2 L2 J2

#
¼2π

pE1E2

m

X
lL0l0

�����AL0l0
l

" n L
n1 L1

n2 L2

#�����
2

:

ð217Þ
If the initial state multiplet is also symmetric in the sense
described above, then this expression is independent of S and
J. Thus all of the mesons within a given nL multiplet have
equal widths [61].
JaronskiandRobson[113]noted,within theflux tubemodel,

the completeness relations which lead to the above result.

K. Mass renormalization in the unquenched
quark model

Within the unquenched quark model, the coupling
to meson-meson channels modifies physical hadron

properties, and notably induces a mass shift with respect
to the mass of the bare hadron state. Such effects are
expected to be particularly pronounced near threshold, and
may be responsible for the unusual properties of some X, Y
and Z mesons in the charmonium and bottomonium mass
regions. However, it is important to establish that these
modified hadron properties remain consistent with the
successful predictions of the naive (quenched) quark
model. For this reason the second loop theorem of
Barnes and Swanson [61] is interesting.
For a bare QQ̄ state nSLJ below threshold, coupling to

the meson pair n1S1L1J1 and n2S2L2J2 induces a down-
ward mass shift whose magnitude is given in second-order
perturbation theory by

ΔE

2
4 n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
5

¼
Z

∞

0

dpp2

E1ðpÞ þ E2ðpÞ −m

X
jl

������Mjl

2
4 n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
5
������
2

;

ð218Þ
wherem is the rest mass of the bare state and E1 and E2 are
the energies of the mesons in the loop. This can be obtained
from the more familiar expression in terms of the plane
wave matrix element using Eq. (71). Expanding in terms of
ξ and A gives

ΔE

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75 ¼

X
lL0l0L̂0 l̂0

0
B@X

j

ξL
0l0

jl

2
64
S L J

S1 L1 J1
S2 L2 J2

3
75ξL̂0 l̂0

jl

2
64
S L J

S1 L1 J1
S2 L2 J2

3
75
1
CA

×
Z

∞

0

dpp2

E1ðpÞ þ E2ðpÞ −m
AL0l0
l

2
64
n L

n1 L1

n2 L2

3
75
�

AL̂0 l̂0
l

2
64
n L

n1 L1

n2 L2

3
75: ð219Þ

The total contribution to the mass shift from coupling to all members of the multiplets n1L1 and n2L2 is obtained by
summing over S1, J1, S2 and J2. Analogously to the previous section, if one assumes that the spatial multiplets n1L1 and n2L2

are symmetric, namely that within each multiplet the mesons are degenerate and have the same radial wave functions, then the
integrand is independent of the summation variables, and the sum can be done using the orthogonality relation, leaving

X
S1J1S2J2

ΔE

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75 ¼

Z
∞

0

dpp2

E1ðpÞ þ E2ðpÞ −m

X
lL0l0

������AL0l0
l

2
64
n L

n1 L1

n2 L2

3
75
������
2

: ð220Þ

Assuming that the mesons within the nL multiplet are
also symmetric in the above sense, the expression is
independent of S and J. In this case all mesons within
the nL multiplet are subject to the same downward mass
shift due to their coupling to the multiplets n1L1 and n2L2:

initially degenerate mesons remain degenerate after includ-
ing loop effects, and there are no induced spin-dependent
splittings across an nL multiplet. Since the overall mass
scale in potential models is controlled by the quark masses
and an arbitrary additive term, the result implies that the
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effect of coupling to meson-meson channels can, to a large
extent, be absorbed into a redefinition of model parameters.
The theorem applies to all nonflip, triplet models. For the

particular case of coupling to pairs of S-wave mesons, the
above result was observed in the 3P0 model by Törnqvist
[58] and Kalashnikova [60]. It has also been discussed in a
more general context [59]. Within the constituent gluon
model, Kalashnikova and Nefediev [168] have observed the
same mechanism for the S-wave couplings of hybrid
mesons to channels with one P- and one S-wave meson.
Using the results of Sec. IV the theorem can be

generalized to the case of spin-mixed states.

L. Mixing via loops

The third theorem of Barnes and Swanson [61]
involves the mixing of different quarkonia states via
the coupling to meson-meson channels, which is a
second-order effect,

nSLJ → ðn1S1L1J1Þðn2S2L2J2Þ → n̂ Ŝ L̂ J: ð221Þ

The amplitude to find the basis state n̂ Ŝ L̂ J in what was,
prior to mixing, a pure nSLJ state, is given by second-order
perturbation theory,

aðnSLJ; n̂ Ŝ L̂ JÞ ¼ 1

m̂ −m

X
n1S1L1J1
n2S2L2J2

Z
∞

0

dpp2

E1ðpÞ þ E2ðpÞ −m

X
jl

Mjl

2
64
n S L J

n1 S1 L1 J1
n2 S2 L2 J2

3
75
�

Mjl

2
64

n̂ Ŝ L̂ J

n1 S1 L1 J1
n2 S2 L2 J2

3
75;

ð222Þ

wherem and m̂ are the masses of the bare quarkonia states. (The mixing conserves J, as can easily be seen by starting from
the expression in terms of the plane wave matrix element and expressing this in terms of the partial wave matrix element.) In
terms of ξ coefficients and spatial matrix elements A,

aðnSLJ; n̂ Ŝ L̂ JÞ ¼ 1

m̂ −m

X
n1S1L1J1
n2S2L2J2

X
lL0l0L̂0 l̂0

0
B@X

j

ξL
0l0

jl

2
64

S L J

S1 L1 J1
S2 L2 J2

3
75ξL̂0 l̂0

jl

2
64

Ŝ L̂ J

S1 L1 J1
S2 L2 J2

3
75
1
CA

×
Z

∞

0

dpp2

E1ðpÞ þ E2ðpÞ −m
AL0l0
l

2
64
n L

n1 L1

n2 L2

3
75
�

AL̂0 l̂0
l

2
64
n̂ L̂

n1 L1

n2 L2

3
75: ð223Þ

Incorporating the now-familiar assumptions that the mesons within each of the multiplets n1L1 and n2L2 are degenerate
and have the same radial wave functions, the integrand is independent of S1, J1, S2 and J2, so that one can again use the
orthogonality relation (94), to find

aðnSLJ; n̂ Ŝ L̂ JÞ ¼ δSŜδLL̂
1

m̂ −m

X
n1L1

n2L2

Z
∞

0

dpp2

E1ðpÞ þ E2ðpÞ −m

X
lL0l0

AL0l0
l

2
64
n L

n1 L1

n2 L2

3
75
�

AL0l0
l

2
64
n̂ L̂

n1 L1

n2 L2

3
75: ð224Þ

So under these assumptions, spectroscopic mixing is
forbidden between states which differ in spin or orbital
angular momentum. The discussion in Ref. [61] concen-
trated on the latter: there is no loop-induced mixing
between 3S1 and 3D1 states, for example, or between
3P2 and 3F2. In the Cornell model Eichten et al. [105]
observed the result for the particular case of mixing via
loops of S-wave meson pairs.
Close and Thomas [153] highlighted the implications for

mixing between hybrid and conventional mesons. States

with quantum numbers 1þþ, 1þ−, 1−−, 0−þ and 2−þ exist
within the spectra of both conventional and hybrid mesons,
but in each case the corresponding states have opposite
quark spin. (This is true at least for the lightestΠP multiplet
within the flux tube model.) According to the above
theorem, there is no loop mixing between such states.
If the external mesons (as opposed to those in the loops)

are charge conjugation eigenstates, then C-parity forbids
mixing between 1LL and 3LL. The above theorem is
consistent with this, but is only valid in the approximation
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that the loop mesons are degenerate across their spatial
multiplets. A more general theorem is required which
ensures that C-parity is conserved by loop mixing even
beyond this approximation, and this will be discussed in
future work.

M. Hyperfine splitting of P-wave mesons

A challenge for the unquenched quark model is that it
must retain the empirically successful features of the
ordinary (quenched) quark model. For example the pre-
diction for zero hyperfine splitting of P-wave mesons,

1

9
ðM3P0 þ 3M3P1 þ 5M3P2Þ −M1P1 ¼ 0; ð225Þ

which follows from assumption of a pointlike spin-spin
interaction, is strikingly confirmed in experiment for 1P
charmonia, and 1P and 2P bottomonia. In charmonia, for
example [187],

M̄χcð1PÞ −Mhcð1PÞ ¼ þ0.02� 0.19� 0.13 MeV: ð226Þ

The second loop theorem (discussed in Sec. VII K) states
that if the external and loop mesons belong to symmetric
spatial multiplets, the coupling to meson-meson pairs
does not induce any spin-dependent splittings; thus an
initially degenerate family of 1P1, 3P0, 3P1 and 3P2 remains
degenerate in the unquenched quark model, and Eq. (225)
holds trivially.
In practice this symmetry limit is not realized, due to

spin-splittings among both the external mesons and those in
the loop. Consequently mesons from the same spatial
multiplet experience different mass shifts, leading to
induced spin-dependent splittings which threaten to spoil
the nice, model-independent prediction above. Typically
such induced splittings are of the order of tens of MeV, so
that a priori one would expect Eq. (225) to be violated at
approximately the same order. This raises the unpleasant
specter of relying on fine-tuning to reproduce the exper-
imental results.
Remarkably, it turns out that across a large range of

models, despite large and different mass shifts for each of
the 1P1, 3P0, 3P1 and 3P2 states, their net contribution to the
hyperfine splitting conspires to be very small. The shifts for
1P charmonia from Li et al. [62] are a typical example of
the effect; their contribution (in MeV) to the hyperfine
splitting is

1

9
ð131þ 3 × 152þ 5 × 175Þ − 162 ¼ 0.4: ð227Þ

More recently, Ferretti and Santopinto [68] have com-
puted mass shifts for bottomonia, and their results also
show the mechanism in action; their splittings for 1P and 2P
bottomonia lead to the net contributions

1

9
ð108þ 3 × 114þ 5 × 117Þ − 115 ¼ 0; ð228Þ

1

9
ð137þ 3 × 144þ 5 × 149Þ − 146 ¼ 0: ð229Þ

The same effect appears in many other papers in the 3P0
model [55,60,61,64], and also the Cornell model [109].
This mechanism was observed and explained in

Refs. [188,189], exploiting the angular-momentum
dependence common to nonflip, triplet models. The proof
considers mass shifts due to coupling to combinations of
3S1 and 1S0 mesons. The derivation involves a power-series
expansion in a parameter which is small provided that the
mass differences among the bare states, and among the
mesons in the loops, are small compared to the binding
energy. The result is a hierarchy of scales in the mass shifts:
while the overall shifts can be large, the induced spin-
splitting between any pair of states is suppressed to first
order in the expansion parameter, while the induced
hyperfine splitting of the entire multiplet is suppressed
by a further power of the parameter.
The proof was derived using the same general expres-

sion which defined the ξs in this paper, and as such it
applies to any nonflip, triplet model. To translate the
derivations into the formalism used in this paper, the
coefficients in Table II of Ref. [188] are sums over squares
of ξ coefficients,

Cl ¼
X
j

ðξjlÞ2: ð230Þ

The relation equivalent to (225) for D-wave mesons is
also protected by the same mechanism. Using that relation
one can predict the mass of the missing 1D2 bottomonium,
which turns out to be consistent with the prediction of a
string model [190].
Note that models [191,192] which do not incorporate

coupling to each of the members of the spatial multiplet in
the loop are not protected by this mechanism.

N. Hyperfine splitting of S-wave mesons

In the ordinary (quenched) quark model the eþe− widths
of 3S1 states and the 3S1 − 1S0 hyperfine splitting are both
proportional to the square of the wave function at the origin.
This leads to the model-independent prediction

ΔM2S

ΔM1S
¼ Γeþe−→23S1

Γeþe−→13S1

ð231Þ

connecting the widths and hyperfine splittings ΔM of
different radial levels. The relation is satisfied for charmo-
nia, and it has recently been shown to be satisfied for
bottomonia [193], following the discovery of the ηbð2SÞ at
Belle [194].
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It is therefore interesting to establish whether the relation
survives the effect of coupling to meson-meson channels,
which alters the quantities on both sides of the equation.
The eþe− widths of the n3S1 levels are suppressed by the
probability PðnÞ that the physical states are ðQQ̄Þ, rather
than ðQq̄ÞðqQ̄Þ. To establish the effect on the hyperfine
splitting, one can perform a power series expansion making
use of the ξ coefficients, analogous to that described in the
previous section and reported in Refs. [188,189]. The
derivation, which is somewhat more straightforward than
in the P-wave case, will be discussed in future work. The
end result is that the different mass shifts of the 1S0 and 3S1
states lead to a suppression of the hyperfine splittings
ΔMnS by the same factor PðnÞ. Consequently the relation
(231) remains valid (to first order in the expansion
parameter) within the unquenched quark model, with
any nonflip, triplet coupling.

O. The Xð3872Þ as a coupled-channel effect

Several authors [60,62,63,65,67,69–71,142,195–199]
have investigated the possibility that the 1þþ state
Xð3872Þ arises from the S-wave coupling between the
23P1 charmonium and the D�D̄ channel. In this scenario,
one might also expect a corresponding 1þ− state, since
the 21P1 charmonium also couples D�D̄ in S wave.
Kalashnikova [60] has proposed an explanation for the
uniqueness of the 1þþ channel, using heavy-quark spin
conservation: the coupling strength in the 1þþ is enhanced
by a factor of

ffiffiffi
2

p
compared to 1þ−. The result follows from

the ξs of Eqs. (213) and (214).

VIII. CONCLUSIONS

This article has brought together several apparently
disparate approaches to strong decay and the unquenched
quark model, parametrizing their common angular-momen-
tum dependence in terms of coefficients. Everything
follows from the observation that transitions in such models
involve the creation of a qq̄ pair in spin triplet, with the
spins of the initial quarks acting as spectators. This is well
known to be true of the 3P0 and flux tube models, and as we
have seen it also applies to the Cornell model, to a subset of
more general microscopic models, and to the pseudoscalar-
meson emission model.
A solution has been obtained for arbitrary matrix

elements in these nonflip, triplet models. The idea is to
separate the (model-dependent) spatial matrix element from
the (model-independent) angular momentum algebra, para-
metrizing the latter in terms of coefficients. The properties
of these ξ coefficients have been studied, their values
tabulated, and an introduction to some applications given.
Symmetries under the interchange of topologies or

meson quantum numbers are immediate, and enforce the
conservation of C- and G-parity. An orthogonality relation,
which underlies theorems presented elsewhere in the

literature, emerges simply. Angular momentum constraints
allow one very simply to classify the independent spatial
matrix elements. Several new selection rules are derived.
The coefficients are easily generalized to mesons with

mixed spin, and their symmetry properties are particularly
useful in dealing with subtleties of phase conventions. The
connection with an approach based on heavy-quark spin
conservation is immediate, and well-known selection rules
are confirmed and generalized. This article has concen-
trated on initial states of mixed spin, but a similar approach
can be applied to final states.
Within the flux tube model, hybrid meson wave func-

tions have the same overall spin and orbital structure as
their conventional counterparts, so their transitions are
determined by the same ξ coefficients. For normal parity
transitions these can be read off the tables used for
conventional mesons; for abnormal parity transitions the
coefficients are tabulated separately. In the constituent
gluon model, hybrid transitions have a different angular-
momentum dependence in general, but for the important
special case of the lightest hybrids with negative parity the
dependence is the same, and the ordinary ξs apply.
The coefficients can be used as a practical tool for future

calculations. Typically, matrix elements are computed by
summing over Clebsch-Gordan coefficients which couple
the various angular momenta, and taking spin and spatial
matrix elements for every combination of magnetic quan-
tum numbers. The expression in terms of ξs and spatial
matrix elements A is straightforward by comparison,
involving fewer summation variables. This simplicity is
due to the Wigner-Eckart theorem and vector recoupling
coefficients which, given their obvious advantages, are
used surprisingly rarely.
The tables provided as Supplemental Material [1] cover

all transitions of obvious physical interest, for initial S-, P-,
D- and F-wave mesons coupling to combinations of S-wave
meson pairs, and to a P- or a D-wave meson along with an
S-wave meson. Additional tables are supplied for hybrid
meson transitions not already covered by the above. In the
event that other ξs are required, these can be computed
straightforwardly using Eq. (79). More generally, for
numerical calculations of a large number of transitions,
it would be more practical to use the general expression
than to extract coefficients individually from the tables.
The remaining ingredient is the spatial matrix element A,

for which a general expression, applicable to the 3P0 and
flux tube models, is presented in the appendix, in terms of
integrals over spatial wave functions. These integrals can be
computed analytically in the case of harmonic oscillator
wave functions with the 3P0 model operator. In future work,
a compendium of these spatial matrix elements will be
presented which can be combined with the ξs of this paper
to give full matrix elements Mjl. In the limit of equal wave
function size and degenerate quark masses, closed-form
expressions for many Mjl are already available in the
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literature [9]. (Comparison to these expressions is a
useful check on the tabulated ξs, as discussed earlier.)
Applications to heavy quarkonia and heavy-flavored
mesons require the aforementioned approximations to be
relaxed. While general formulas for spatial integrals appear
elsewhere in the literature [40,52,54], it would be useful to
have tables of As presented in closed form, which can
readily be combined with the ξs in practical calculations.
Selection rules are manifest as zeros in the ξ coefficient

for transitions which are allowed by angular momentum
and parity. The spin-singlet selection rule is an example
which has been much discussed in the literature. In this
article a further five classes of zeros have been identified,
including the spin-triplet and spatial-vector selection rules,
which explain zeros observed elsewhere in the literature.
Indeed, many zeros appearing within specific models can
ultimately be traced to the ξs, which implies that they have
more general origin, common to all nonflip, triplet models.
Experimental violations of these selection rules would
indicate that decays involve operators beyond the χ ·O
structure.
Experimental tests of amplitude ratios (for a single

channel with different values of j) and ratios-of-ratios
(for different channels and in two partial waves l) are useful
tests of model fundamentals, because phase space, flavor,
and other complications cancel out. Predictions for such
ratios can be read off the tables of ξ coefficients. Such ratios
have been discussed elsewhere in the literature within the
context of specific models, but these can now be seen to be
common to all nonflip, triplet models.
In the approximation that mesons from the same spatial

multiplet are degenerate and have the same radial wave
functions, different transitions are expressed in terms of the
same spatial matrix element, which can be treated as a free
parameter and eliminated in favor of linear relations among
the different channels. The relations follow immediately
from the ξs. The approach is reminiscent of the original
quark model paper on strong decay [3].
The first lattice QCD calculations of strong decay are

restricted to zero momentum, and in the model approach
such transitions are expressed in terms of a single S-wave
spatial matrix element. This leads immediately to relations
among different channels, which are consistent with all
available lattice data. Model predictions can be tested against
future lattice calculations using the tables of coefficients.
As well as decays, the ξs can be applied to the calculation

of other meson properties in the unquenched quark model.
The importance of the coupling to meson-meson channels
has been brought into focus in recent years by the
proliferation of X, Y and Z mesons, whose masses (and
decays) disagree with model predictions, and which are
often correlated to thresholds. The meson-meson coupling
causes mass shifts which can potentially reconcile models
with experiment, but it is important to establish that the
same shifts do not spoil other results.

According to the loop theorems of Barnes and Swanson
[61], mass shifts due to the meson-meson coupling can be
absorbed (to within a first-order approximation) into a
redefinition of potential model parameters. In the formal-
ism of this paper, the theorem (and other related results) are
due to the orthogonality of the ξ coefficients.
The theorem requires full symmetry across spatial

multiplets: relaxing that approximation leads to induced
spin-splittings which are large in comparison to the
observed hyperfine splittings of P-wave quarkonia, which
are consistent with zero. This potentially threatens the
quark model prediction of zero splitting, but there is a
mechanism, which arises from the ξ coefficients, which
protects the result [188,189]. The relation between
the eþe− widths of 3S1 mesons and the corresponding
3S1 − 1S0 hyperfine splitting, recently confirmed in botto-
monia, is protected by a similar mechanism [193].

ACKNOWLEDGMENTS

Discussions with Eric Swanson, Alberto Correa dos
Reis, Yulia Kalashnikova and Bing Chen are gratefully
acknowledged.

APPENDIX: THE SPATIAL MATRIX ELEMENT

In this section expressions are derived for the spatial
part A of the matrix element in momentum and position
space. No assumptions are made for the functional forms
of the pair-creation amplitudes Oðk; k̄Þ and OðxÞ, so that
the derivations apply to essentially any implementation of
the 3P0 model and, for conventional mesons, the flux
tube model. For hybrid mesons in the flux tube model,
the matrix elements involve integrations over Wigner D
functions and so differ from those discussed here.
Likewise the matrix elements in microscopic models
involve additional integrations due to momentum transfer
in the scattering matrix element. In pseudoscalar-meson
emission models the matrix element differs because the
quark-antiquark degrees of freedom of the emitted meson
are ignored.
The state vector characterizing a quark at position X

satisfies orthogonality and completeness relations,

hXjX0i ¼ δ3ðX0 −XÞ; ðA1Þ

1 ¼
Z

d3XjXihXj; ðA2Þ

and likewise for a quark of momentum K,

hKjK0i ¼ δ3ðK0 −KÞ; ðA3Þ

1 ¼
Z

d3KjKihKj: ðA4Þ
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The position and momentum space state vectors are related

hXjKi ¼ 1

ð2πÞ3=2 e
iK·X: ðA5Þ

The wave function for a quark-antiquark system in a
central potential factorizes into a center-of-mass part
(depending on the meson momentum P) and a relative part
(depending on the spatial quantum numbers n, L, and Lz),

hX; X̄jPnLLzi ¼ hRjPihrjnLLzi; ðA6Þ

hK; K̄jPnLLzi ¼ hQjPihqjnLLzi ðA7Þ

where the center-of-mass and relative coordinates are, for
quark and antiquark masses M and M̄,�

R

r

�
¼

� M
MþM̄

M̄
MþM̄

1 −1

��
X

X̄

�
; ðA8Þ

�
Q

q

�
¼

0
@ 1 1

M̄
MþM̄

−M
MþM̄

1
A�

K

K̄

�
: ðA9Þ

Equation (A7) can be obtained from Eq. (A6) by integrating
a pair of factors of the form (A2) using (A5).
The final state is a direct product of wave functions of the

above form, namely

hX1; X̄1;X2; X̄2jP1n1L1L1z;P2n2L2L2zi ¼ hR1jP1ihR2jP2ihr1jn1L1L1zihr2jn2L2L2zi; ðA10Þ

hK1; K̄1;K2; K̄2jP1n1L1L1z;P2n2L2L2zi ¼ hQ1jP1ihQ2jP2ihq1jn1L1L1zihq2jn2L2L2zi; ðA11Þ

where Ri and Qi are defined in terms of Xi, X̄i,Ki and K̄i
by equations analogous to (A8) and (A9). It is more
convenient to work with states of total and relative momenta
P0 and p, rather than individual meson momenta P1 and P2,�

P0

p

�
¼

�
1 1
M2

M1þM2

−M1

M1þM2

��
P1

P2

�
; ðA12Þ

where M1 and M2 are the masses of mesons 1 and 2.
Defining�

R0

r0

�
¼

�
M1

M1þM2

M2

M1þM2

1 −1
��

R1

R2

�
; ðA13Þ

�
Q0

q0

�
¼

�
1 1
M2

M1þM2

−M1

M1þM2

��
Q1

Q2

�
; ðA14Þ

the product of the two center-of-mass factors can be replaced
by an overall center-of-mass factor and a relative wave
function,

hR1jP1ihR2jP2i ¼ hR0jP0ihr0jpi; ðA15Þ

hQ1jP1ihQ2jP2i ¼ hQ0jP0ihq0jpi: ðA16Þ

States of good orbital angular momentum l can be formed,

jpi ¼
X
llz

jpllzihllzjp̂i; ðA17Þ

in which case the following overlaps arise,

hr0jpllzi ¼ 4πiljlðr0pÞhr̂0jllzi; ðA18Þ

hq0jpllzi ¼
δðp − q0Þ

q02
hq̂0jllzi; ðA19Þ

where jl is the spherical Bessel function. The corresponding
final state is

hX1; X̄1;X2; X̄2jP0; n1L1L1z; n2L2L2z; pllzi ¼ hR0jP0ihr1jn1L1L1zihr2jn2L2L2zihr0jpllzi; ðA20Þ
hK1; K̄1;K2; K̄2jP0; n1L1L1z; n2L2L2z; pllzi ¼ hQ0jP0ihq1jn1L1L1zihq2jn2L2L2zihq0jpllzi: ðA21Þ

Finally, as we are interested in the reduced matrix element, the final state should be coupled to total angular momentum l0 as
in Eq. (78),

hX1; X̄1;X2; X̄2jP0ððn1L1 × n2L2ÞL0 × plÞl0lz 0 i ¼ hR0jP0ihr1; r2; r0jððn1L1 × n2L2ÞL0 × plÞl0lz 0 i; ðA22Þ
hK1; K̄1;K2; K̄2jP0ððn1L1 × n2L2ÞL0 × plÞl0lz 0 i ¼ hQ0jP0ihq1;q2;q0jððn1L1 × n2L2ÞL0 × plÞl0lz 0 i: ðA23Þ

In position space the transition operator creates a quark-antiquark pair at a point x, and it is convenient to characterize the
amplitude in terms of the vector ρ ¼ x −R measured with respect to the center of mass of the initial meson. The two
topologies have operators of the form
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Oþ ¼
Z

d3X
Z

d3X̄
Z

d3xjX;x;x; X̄iOðρ; rÞhX; X̄j;

ðA24Þ

O− ¼
Z

d3X
Z

d3X̄
Z

d3xjx; X̄;X;xiOðρ; rÞhX; X̄j:

ðA25Þ

These are generalizations of Eq. (24), obtained by inserting
complete sets of states describing the initial Q and Q̄ at X
and X̄. The two operators have the same amplitude Oðρ; rÞ
for pair creation, but differ in the arrangement of the quarks
and antiquarks in the final state. For Oþ the quark and
antiquark of meson 1 are atX and x respectively, and those
of meson 2 are at x and X̄. The operatorO− corresponds to
the opposite situation.
Inmomentum space the transition operator creates a quark-

antiquark pair with equal and opposite momenta k and −k
respectively, leading to the generalizations of Eq. (11),

Oþ ¼
Z

d3K
Z

d3K̄
Z

d3kjK;−k;k; K̄iOðk;qÞhK; K̄j;

ðA26Þ

O− ¼
Z

d3K
Z

d3K̄
Z

d3kjk; K̄;K;−kiOðk;qÞhK; K̄j:

ðA27Þ
The operators satisfy the symmetry relations

Oðρ; rÞ ¼ Oð−ρ; rÞ; ðA28Þ

Oðρ; rÞ ¼ −Oðρ;−rÞ; ðA29Þ

and
Oðk;qÞ ¼ −Oð−k;qÞ; ðA30Þ

Oðk;qÞ ¼ Oðk;−qÞ: ðA31Þ

In taking the matrix element of the spatial operators, it is
convenient to replace the integration variablesZ

d3X
Z

d3X̄
Z

d3x →
Z

d3R
Z

d3r
Z

d3ρ; ðA32Þ
Z

d3K
Z

d3K̄
Z

d3k →
Z

d3Q
Z

d3q
Z

d3k; ðA33Þ

and the next step is to express the final state wave functions
(A22) and (A23) in terms of these new variables. In position
space, X1, X̄1, X2, X̄2 are replaced by X, X̄ and x as
appropriate to the particular topology, and these are
expressed in terms of the integration variables by inverting
Eq. (A8), andusingx ¼ ρþR. Finally the argumentsR0, r0,
r1 and r2 of the final state wave function are obtained using

Eq. (A13), and the analoguesofEq. (A8) forR1 andR2,with
quark and antiquark massesM, M̄ and m appropriate to the
given topology. The analogous procedure is applied to the
momentum-space matrix element.
The resulting coordinate transformations are, for the

operator Oþ,0
BBB@

R0

r0

r1
r2

1
CCCA ¼

0
BBB@

1 � � � � � �
0 γ Δ
0 λ̄ −1
0 λ 1

1
CCCA
0
B@

R

r

ρ

1
CA; ðA34Þ

0
BBB@

Q0

q0

q1

q2

1
CCCA ¼

0
BBB@

1 0 0

� � � 1 −1
� � � λl λh

� � � λ̄l λ̄h

1
CCCA
0
B@

Q

q

k

1
CA; ðA35Þ

where the ellipsis (� � �) indicate terms which will, for
reasons that will be outlined shortly, play no role, the λs
are dimensionless mass ratios,

λ ¼ M
M þ M̄

λ̄ ¼ M̄
M þ M̄

; ðA36Þ

λh ¼
M

M þm
λ̄h ¼

M̄
M̄ þm

; ðA37Þ

λl ¼
m

M þm
λ̄l ¼

m
M̄ þm

; ðA38Þ

and
γ ¼ λhλ̄þ λ̄hλ; ðA39Þ

Δ ¼ λl − λ̄l ¼ λ̄h − λh: ðA40Þ

In the above the labels h and l indicate heavy and light, as
shorthands for the initial, and created, quarks and anti-
quarks. (The initial quarks need not be heavy, but the
created quarks are certainly light.)
Integration over R0 in position space, or Q0 in momen-

tum space, produces a momentum-conserving delta func-
tion hP0jPi. There remains, however, a dependence on the
total momenta through the � � � terms, which spoils Galilean
invariance [52]. The usual prescription is to choose P ¼ 0,
and then from Eq. (A12) the outgoing mesons have equal
and opposite momenta p ¼ jP1j ¼ jP2j. The quantity of
interest is the full matrix element modulo the delta function

hP0ððn1L1 × n2L2ÞL0 × plÞl0∥O�∥P ¼ 0; nLi

¼ δ3ðP0Þhððn1L1 × n2L2ÞL0 × plÞl0∥O�∥nLi; ðA41Þ

and in both position and momentum space it involves
integration over two variables. For the operator Oþ,
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hððn1L1 × n2L2ÞL0 × plÞl0∥O�∥nLi

¼
Z

d3r
Z

d3ρhððn1L1 × n2L2ÞL0 × plÞl0∥λ̄r − ρ; λrþ ρ; γrþ ΔρiOðρ; rÞhr∥nLi

¼
Z

d3q
Z

d3khððn1L1 × n2L2ÞL0 × plÞl0∥λlqþ λhk; λ̄lqþ λ̄hk;q − kiOðk;qÞhq∥nLi: ðA42Þ

The spatial matrix element A is defined in terms of the
above by Eq. (78). It enforces the conservation of parity,

ð−ÞLþL1þL2þlþ1 ¼ 1; ðA43Þ
as can be seen by reversing the orientations of the
integration variables, and rewriting the integrand using
the symmetries of the spherical harmonics and of the pair
creation amplitude,

Oð−ρ;−rÞ ¼ −Oðρ; rÞ; ðA44Þ
Oð−k;−qÞ ¼ −Oðk;qÞ: ðA45Þ

Comparing the coordinate transformations for O−,0
BBB@

R0

r0

r1
r2

1
CCCA ¼

0
BBB@

1 � � � � � �
0 −γ −Δ
0 λ 1

0 λ̄ −1

1
CCCA
0
B@

R

r

ρ

1
CA; ðA46Þ

0
BBB@

Q0

q0

q1

q2

1
CCCA ¼

0
BBB@

1 0 0

� � � −1 1

� � � λ̄l λ̄h

� � � λl λh

1
CCCA
0
B@

Q

q

k

1
CA; ðA47Þ

with those ofOþ above, leads to a symmetry relation under
the interchange of both the topology, and of the quantum
numbers of mesons 1 and 2,

AL0l0
l

2
64

n L

n1 L1

n2 L2

3
75
�

¼ ð−ÞL1þL2þL0þlAL0l0
l

2
64

n L

n2 L2

n1 L1

3
75
∓

:

ðA48Þ

For the special case of the initial quark and antiquark
having the same mass (M ¼ M̄), the integrals simplify
with

λ ¼ λ̄ ¼ 1=2; ðA49Þ

λh ¼ λ̄h ¼ γ; ðA50Þ

λl ¼ λ̄l; ðA51Þ

Δ ¼ 0; ðA52Þ

leading to separate symmetry relations under the inter-
change either of the topology,

AL0l0
l

2
64

n L

n1 L1

n2 L2

3
75
�

¼ ð−ÞlAL0l0
l

2
64

n L

n1 L1

n2 L2

3
75
∓

; ðA53Þ

or the quantum numbers of mesons 1 and 2,

AL0l0
l

2
64

n L

n1 L1

n2 L2

3
75
�

¼ ð−ÞL1þL2þL0
AL0l0
l

2
64

n L

n2 L2

n1 L1

3
75
�

: ðA54Þ

In position space these symmetries use Eq. (A28).
The second of these implies a selection rule for final

states with the same spatial wave functions,

AL0l0
l

2
64

n L

n1 L1

n1 L1

3
75
�

¼ 0 if ð−ÞL0þ1 ¼ 1: ðA55Þ
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