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We present a perturbative QCD factorization formalism for inclusive production of heavy
quarkonia of large transverse momentum, pT at collider energies, including both leading power
(LP) and next-to-leading power (NLP) behavior in pT . We demonstrate that both LP and NLP
contributions can be factorized in terms of perturbatively calculable short-distance partonic coefficient
functions and universal nonperturbative fragmentation functions, and derive the evolution equations
that are implied by the factorization. We identify projection operators for all channels of the
factorized LP and NLP infrared safe short-distance partonic hard parts, and corresponding operator
definitions of fragmentation functions. For the NLP, we focus on the contributions involving the
production of a heavy quark pair, a necessary condition for producing a heavy quarkonium. We
evaluate the first nontrivial order of evolution kernels for all relevant fragmentation functions, and
discuss the role of NLP contributions.
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I. INTRODUCTION

Almost 40 years since the discovery of the J=ψ [1,2], the
production of heavy quarkonia remains one of the most
active and fascinating subjects in strong interaction physics
[3,4]. The inclusive production of a pair of charm or bottom
quarks is an essentially perturbative process because the
heavy quark mass mQ is much larger than ΛQCD, while the
subsequent evolution of the pair into a quarkonium is
nonperturbative. Different treatments of the nonperturba-
tive transformation from a heavy quark pair to a bound
quarkonium have led to various theoretical models for
quarkonium production, most notably, the color singlet
model (CSM), the color evaporation model, and the non-
relativistic QCD (NRQCD) model [3,5]. Among these
models, the NRQCD treatment of heavy quarkonium
production, proposed in Ref. [6], is both the most theo-
retically sound and phenomenologically successful [3,7–9].
With full next-to-leading order (NLO) contributions in

powers of αs and properly fitted NRQCD long-distance
matrix elements, theory predictions for inclusive J=ψ andϒ
production are generally consistent with experimental data
from the Tevatron and the LHC [10–13]. However, global
fits of data on J=ψ production from various high energy
collisions, including eþe−, lepton-hadron, and hadron-
hadron collisions [11,14] show slight discrepancies of

shape compared to data [4]. In addition, existing theoretical
calculations [3,13,15–17] have not been able to explain fully
the polarization of high-pT heavy quarkonia at the Tevatron
[18–21] and LHC [22]. Motivated in part by these challenges
to existing theory, new approaches based on perturbative
QCD factorization [23–26] and soft-collinear effective
theory [27,28] have been proposed for the systematic study
of heavy quarkonium production at collider energies.
In this paper, we follow up our earlier work [25,26] and

develop an extended QCD factorization formalism beyond
the leading power for heavy quarkonium production at
large transverse momentum pT ≫ mH ≫ ΛQCD in hadronic
collisions (or at a large energy E ≫ mH in eþe− collisions).
In this approach, we first expand the cross section in a
power series of 1=p2

T , and argue that the first two terms of
the expansion can be factorized systematically into infrared
safe short-distance partonic functions in convolution with
universal long-distance matrix elements. The relevant
matrix elements for quarkonium production then take the
form of generalized fragmentation functions, for which we
derive a set of evolution equations that mix single-parton
and heavy quark-pair states. The importance of the evo-
lution of quark pair states was suggested originally by
calculations in the color singlet model.
Although it was proposed shortly after the discovery of

J=ψ , the CSM is still a valuable tool for heavy quarkonium
production, since it has practically no free parameters once
the heavy quarkonium wave function at the origin is fixed
by data on heavy quarkonium decay [29–35]. In addition,
the CSM is actually a special case of NRQCD [3].
Nevertheless, at leading order (LO) in powers of strong
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coupling constant, αs, the CSM cross section falls off as
1=p8

T and is more than 2 orders of magnitude smaller than
the Tevatron data on J=ψ production. A complete CSM
calculation at NLO and an estimated contribution at next-
to-next-to-leading order (NNLO) to hadronic heavy quar-
konium production became available in [36–38]. It was
found, surprisingly, that at large pT , the NLO contribution
is more than a factor of 10 larger than the CSM LO result,
for pT values characteristic of Tevatron data. Although still
far below collider data, it behaves as 1=p6

T rather than
1=p8

T . As we shall see in the next section, this correction
is due to heavy quark pairs produced at short distances,
which convert radiatively to color singlet configurations.
Estimates of the NNLO contributions suggest further
significant enhancements in the CSM cross section over
the NLO result.
In contrast to the NLO enhancement found in its CSM

sector, in full NRQCD factorization, supplemented by
leading-power evolution, quarkonium production at high
pT is dominated by single gluon production at short
distances, ∼Oð1=pTÞ, beginning at LO. The gluon then
fragments into a heavy quark pair only at a much later time
∼Oð1=ð2mQÞÞ in the pair rest frame. The bound state
quarkonium forms over even larger time scales, of order
1=ðmQvÞ, with v a typical relative velocity in the pair rest
frame. This subprocess has the leading power partonic
production rate of 1=p4

T . It is largely responsible for the
NRQCD prediction that heavy quarkonia produced at large
pT are dominated by transverse polarization [3], which has
not, however, been supported by all existing data [4].
Part of the motivation for this study is to explore the

possibility that with the large phase space available for
producing a heavy quark pair with high pT at collider
energies, the production of the heavy quark pair at the “last
minute,” that is, at Oð1=ð2mQÞÞ, may not be the whole
story. Heavy quark pairs could be produced directly at the
hard collision of the distance scale of Oð1=pTÞ, indeed, at
any time between Oð1=pTÞ and Oð1=ð2mQÞÞ. As illus-
trated by the CSM at NLO, prompt heavy quark pairs
contribute to the cross section at next-to-leading power
(NLP), 1=p6

T , but generally, pairs produced from gluon
evolution at intermediate scales 2mQ < μ < pT contribute
(through evolution) at an intermediate level, typically
m2

Q=ðp4
Tμ

2Þ. The phenomenology of this evolution requires
an analysis beyond leading power in pT .
Heavy quark pair production at short distances gives the

relevant NLP term in the 1=p2
T expansion for the produc-

tion of heavy quarkonia. Like power corrections to other
observables [39,40], the factorized form of this term can be
proportional to either twist-4 fragmentation functions to a
heavy quarkonium or twist-4 parton correlation functions
of the colliding hadrons. We assume that the fragmentation
of a heavy quark pair of the correct quark flavor should be
much more likely to produce a heavy quarkonium than the
fragmentation of other multiparton states, and in this paper

we focus only on those power corrections involving the
production of a heavy quark pair, and their fragmentation
into a physical quarkonium. A consistent treatment of NLP
factorization within this framework requires us to derive
evolution equations for the factorization scale dependence
of these new fragmentation functions.
With the new factorization formalism, including evolu-

tion, we effectively organize the production process into
three stages based on the dynamics at three different energy
scales: pT , mQ and ΛQCD. Specifically, the three stages are:
(1) production of a single parton (the first term in the 1=p2

T
expansion) or a heavy quark pair (the second term in the
1=p2

T expansion) at the distance scale 1=pT (or 1=E), (2)
evolution between 1=pT and 1=2mQ, which includes the
transformation of single partons to heavy quark pairs as
well as the resummation of powers of lnðp2

T=m
2
QÞ for both

single partons and quark pairs, and (3) formation of the
quarkonium between times 1=ð2mQÞ and 1=ðmQvÞ.
Prompt pair production in stage (1) can be calculated

systematically in perturbative QCD (pQCD) order by order
in αs and included in the short-distance functions of the
factorization formalism described in Sec. II below. The
evolution and resummation of logarithms in stage (2) is
carried out by solving a closed set of evolution equations
for the fragmentation functions of single partons and of
heavy quark pairs to produce a heavy quarkonium. The
operator definitions of these fragmentation functions are
derived in Sec. III. Their evolution equations and corre-
sponding evolution kernels at the first nontrivial order
in αs are derived in Sec. IV. The stage of hadronization, (3),
which is essentially nonperturbative, may be treated via
NRQCD. In this sense, the formalism that we develop is
fully consistent with NRQCD, although it does not directly
address the question of NRQCD factorization [3].
The predictive power of this new factorization formalism

relies on the perturbative calculations of the short-distance
functions and the evolution kernels, and our knowledge of
the universal fragmentation functions at an input scale μ0.
With the operator definitions of all fragmentation functions,
given in Sec. III, the factorization formalism provides a
unique prescription to calculate all short-distance functions
and evolution kernels order by order in powers of αs up
to a freedom to choose the factorization scheme. In a
companion paper [41], we present calculations of short-
distance functions for all partonic production channels at
LO in powers of αs. With the evolution kernels calculated
in this paper, we still need the fragmentation functions at
the input scale μ0 in order to make numerical predictions
and comparison with data.
The input fragmentation functions are nonperturbative,

and in principle, can be extracted from fitting experimental
data. As explained in our companion paper [41], however,
we should be able to provide a good estimate of the input
fragmentation functions by using NRQCD factorization,
since input fragmentation functions to heavy quarkonia can
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have a large perturbative scale, μ0 ≳ 2mQ, which is well
separated from the soft scales responsible for the binding.
Although there is as yet no formal proof for the NRQCD
factorization, the clear separation of momentum scales for
the input fragmentation functions provides a good justifi-
cation for using the formalism as a reasonable conjecture.1

Our conclusions and summary are given in Sec. V.

II. THE PERTURBATIVE QCD
FACTORIZATION FORMALISM

We briefly summarize the fundamentals of the NRQCD
factorization applied to heavy quarkonium production at
collider energies, and review how higher order corrections
to its perturbative short-distance functions in singlet chan-
nels produce power enhancements relative to the behavior
of the singlet channel at LO [36–38]. We then argue that the
cross section for producing a heavy quarkonium at large
transverse momentum pT ≫ mH at collider energies can be
expanded as a power series of m2

H=p
2
T , and that the leading

power term and the first subleading power terms can be
perturbatively factorized into infrared safe short-distance
functions (“hard parts”) in convolution with nonperturba-
tive but universal long-distance fragmentation functions.
The short-distance hard parts can be systematically calcu-
lated as a power series in αsðpTÞ.

A. The NRQCD factorization of heavy quarkonium
production at high pT

The NRQCD factorization approach to heavy quarko-
nium production [6] expresses the inclusive cross section
for the direct production of a quarkonium state H as a
sum of “short-distance” coefficients times NRQCD long-
distance matrix elements (LDMEs),

σHðpT;mQÞ ¼
X

½QQ̄ðnÞ�
σ̂½QQ̄ðnÞ�ðpT;mQ;ΛÞh0jOH

½QQ̄ðnÞ�ðΛÞj0i:

ð1Þ

Here Λ ∼OðmQÞ is the ultraviolet cutoff of the NRQCD
effective theory. The short-distance coefficients σ̂½QQ̄ðnÞ� are
perturbatively calculated in powers of αs, and are essen-
tially the process-dependent perturbative QCD cross sec-
tions to produce a QQ̄ pair in various color, spin, and
orbital angular momentum states ½QQ̄ðnÞ� (including the
parton distributions of incoming hadrons). The LDMEs are
nonperturbative, but universal, representing the probability
for a QQ̄ pair in a particular state, ½QQ̄ðnÞ� to evolve into a
heavy quarkonium. The sum over the ½QQ̄ðnÞ� states is
organized in terms of powers of the pair’s relative velocity
v, an intrinsic scale of the LDMEs. For J=ψ production,

for example, current production phenomenology mainly
uses four NRQCD LDMEs, corresponding to the cc̄ pair

produced in 3S½1�1 , 1S½8�0 , 3S½8�1 , and 3P½8�
J states, respectively,

where the superscript [1] (or [8]) refers to a color singlet
(or octet) heavy quark pair. The color singlet model and
color evaporation model can be thought as a truncation
of and a special approximation to the NRQCD approach,
respectively [3,44].
In the production of the heavy quark pair that evolves

into a heavy quarkonium, the heavy quark mass,
mQ ≫ ΛQCD, regulates the perturbative final-state collinear
logarithmic behavior. The NRQCD factorization formalism
is an effective field theory approach to separate the long-
distance soft physics at the scale mQv and below from the
short-distance hard physics at the scale of mQ and larger.
However, when pT ≫ mH, the perturbative functions in
Eq. (1) will have calculable powers of lnðp2

T=m
2
QÞ, which

should be resummed systematically. Furthermore, for
the production of certain spin-color ½QQ̄ðnÞ� states, new
partonic production channels only open up beyond LO in
αs. As we shall see below, some of these channels can be
enhanced by powers of pT=mQ compared to their leading
order estimates. For simplicity, we discuss the CSM, as a
special case of NRQCD [3] and as an example to illustrate
power enhancements at higher orders. These considerations
will motivate an expansion of the cross section for the
production of a heavy quark pair in powers of mQ=pT first,
before expanding coefficient functions in powers of αs.
In the CSM, quarkonia are formed only from color-

singlet, low invariant mass heavy quark pairs, produced
perturbatively with the same quantum numbers as the
bound states in question. At LO in αs, the perturbative
partonic cross section in a hadronic collision is given by the
2 → 3 partonic subprocess, gg → QQ̄ðPÞg, that produces a
pair of color singlet heavy quarks at high transverse
momentum pT , as shown in Fig. 1, where heavy quarko-
nium momentum is defined in light-cone coordinates as

Pμ ≡
�
mTffiffiffi
2

p ey;
mTffiffiffi
2

p e−y;pT

�
ð2Þ

with rapidity y and mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ p2
T

p
, and pT ¼

ffiffiffiffiffiffi
p2
T

p
in

the lab frame. For the discussion in this paper, it is more
convenient to work in a frame in which the heavy
quarkonium has no transverse component as Pμ¼
ðPþ;P−;0TÞ with Pþ¼½mT coshyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tþm2

Tsinh
2y

p
�= ffiffiffi

2
p

and P−¼½mT coshy−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tþm2

Tsinh
2y

p
�= ffiffiffi

2
p

expressed in
terms of the rapidity and transverse momentum in the
lab frame. In order to produce a color singlet, spin-1
nonrelativistic QQ̄ pair at this order, the spinor trace of
the heavy quark pair is contracted by the projection
operator [6],

Pð3S1Þ ∝ C½1�ij γ · ϵðPÞðγ · P=2þmQÞ; ð3Þ
1In Refs. [42,43], model fragmentation functions have been

calculated following this approach.
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where ϵμðPÞ is the polarization vector for the spin-1 heavy

quark pair, and C½1�ij ¼ 1=Ncδij with the superscript “[1]”
indicating a color singlet, Nc ¼ 3 for the SUðNcÞ color of
QCD, and i; j ¼ 1; 2; Nc, the color indices of the heavy
quark and antiquark. Since the final-state gluon has to
balance the transverse momentum of the produced heavy
quark pair, both quark propagators of the Feynman diagram
in Fig. 1 have to be off shell by the order of pT . With the
projection operator in Eq. (3), the fermion trace does not
give an invariant that grows with pT , and the LO cross
section in the CSM behaves as 1=p8

T , falling much faster
than the generic 1=p4

T behavior of leading power 2 → 2
partonic cross sections. Phenomenologically, the LO con-
tribution in the CSM has the wrong pT shape for the J=ψ
transverse momentum distribution at collider energies,
and a normalization which can be more than 2 orders of
magnitudes smaller than the high-pT Tevatron and LHC
data [5,10,11,13].
At NLO, real-gluon radiative contributions to the cross

section in CSM come from 2 → 4 Feynman diagrams, as
shown in Fig. 2, where in addition to the heavy quark pair,
there are two light partons (or another pair of heavy quarks
in the case of associated production) in the final state, while
virtual contributions come from the interference between
the LO diagram in Fig. 1 and its one-loop corrections. The
additional light parton in the final state in Fig. 2 allows the
production of a color octet heavy quark pair at distance
scale 1=pT , and opens up a large phase space for the pair to
neutralize its color to become a spin-1, color singlet at
much later times, up to the order of 1=mQ. In addition, the
heavy quark pair produced at the distance scale of 1=pT ≪
1=mQ is relativistic and can be in various relativistic spin

states before the pair converts itself into the nonrelativistic
spin-1, color singlet state by radiating additional gluon(s) at
a later time.
The contribution from various relativistic spin states of

the heavy quark pair can be separated by a Fierz trans-
formation to decompose the quark spinor trace, as indicated
in Fig. 2 by a dashed line. Like the LO case, the two off-
shell propagators needed to produce a heavy quark pair at
large pT give a factor 1=p8

T. However, at this order the
heavy quark spinor trace in the numerator can now produce
a p2

T enhancement. Such factors are isolated by a vector,
γ · P or an axial vector, γ5γ · P spin projection as shown in
the figure. In this way, the NLO contribution can gain a
p2
T=m

2
Q enhancement compared to the LO contribution, and

become much larger than the LO term at high pT . It is this
power enhancement that is mainly responsible for the factor
of 10 enhancement discovered by explicit calculations at
NLO in the CSM [36–38].
There is no complete NNLO calculation available for

heavy quarkonium production at high pT in the CSM. The
perturbative contribution at this order receives real con-
tributions from the 2 → 5 Feynman diagrams with one
active heavy quark pair. With an additional parton in the
final state, this contribution can potentially gain two powers
of p2

T=m
2
Q enhancement over the LO from the type of

diagram on the left in Fig. 3, and one power from the
diagram on the right, respectively. Since the perturbative
production rate of a single parton at high pT already has the
strongest pT behavior at 1=p4

T , we do not expect additional
power enhancements from contributions beyond NNLO.
In summary, in these CSM examples, the lowest order

in αs for σ̂½QQ̄ðnÞ� is not always consistent with the leading
power in pT when pT ≫ mQ. Large enhancements in the
CSM from higher order calculations, even at high pT ,
suggest that we need to supplement the simplest perturba-
tive expansion in the powers of αs for the CSM, and by
implication for the NRQCD factorization of Eq. (1), to take
into account radiation from heavy quark pairs produced at
short, and intermediate, time scales.
We propose to expand the production cross section of

heavy quarkonia at high pT in powers of 1=pT first, when
pT ≫ mH, and only then to expand perturbatively factor-
izable hard parts in powers of αs. In the remainder of
this section, we argue that the cross section for producing

P

FIG. 1. Sample lowest-order diagram for heavy quarkonium
production from the gluon-gluon fusion channel in the CSM.

P P

k

P

k

FIG. 2. Sample NLO Feynman diagrams for heavy quarkonium production at high pT in hadronic collisions.
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a heavy quarkonium at large transverse momentum at
collider energies can be expanded as a power series of
1=p2

T , and that the leading power term and the first
subleading power terms can be perturbatively factorized
into infrared safe short-distance hard parts in convolution
with nonperturbative but universal long-distance fragmen-
tation functions [25,26].

B. Fragmentation and the factorization formula

Producing a pair of heavy quarks is a necessary
condition for producing a heavy quarkonium. In terms
of 1=p2

T expansion, the first two power contributions to
the cross section of heavy quarkonium production at high
pT can be presented in terms of the sample diagrams in

Fig. 4. These figures are shown in cut diagram notation, in
which the amplitude and complex conjugate are com-
bined into a forward scattering diagram and the final state
is identified by a vertical line. The diagram on the left
represents the leading power term in 1=p2

T expansion
and can be interpreted as the perturbative production of a
single parton (say a gluon of momentum pg) at the short-
distance scale 1=pT . This parton fragments into a heavy
quarkonium at a much later time (∼1=mH). The diagram
on the right represents a first subleading power term in the
1=p2

T expansion and corresponds to the production of a
heavy quark pair at the short distance scale, which then
fragments into a heavy quarkonium. In addition, there
are 1=p2

T power suppressed contributions to the produc-
tion of a single active parton in hadronic collisions, the
diagram on the left in Fig. 4. These include contributions
from short-distance collisions involving a single parton
from one incoming hadron and two partons from the
other, the latter being represented by twist-4 multiparton
correlation functions [39,45]. Other power-suppressed
terms in the 1=p2

T expansion include the production of
a pair of collinear and on-shell light partons, such as those
shown in Fig. 5 plus other combinations and interfer-
ences. With all contributions up to the first subleading
power in 1=p2

T , we have the corresponding factorization
formula [25,26],

EP
dσAþB→HþX

d3P
ðPÞ ≈

X
f

Z
dz
z2

Df→Hðz;mQÞEc
dσ̂AþB→fðpcÞþX

d3pc

�
pc ¼

1

z
p

�

þ
X

½QQ̄ðκÞ�

Z
dz
z2

dudvD½QQ̄ðκÞ�→Hðz; u; v;mQÞ

× Ec

dσ̂AþB→½QQ̄ðκÞ�ðpcÞþX

d3pc

�
PQ ¼ u

z
p; PQ̄ ¼ ū

z
p; P0

Q ¼ v
z
p; P0̄

Q ¼ v̄
z
p

�

þ
X

½ff0�≠½QQ̄ðκÞ�

Z
dz
z2

dudvD½ff0�→Hðz; u; v;mQÞ

× Ec
dσ̂AþB→½ff0�ðpcÞþX

d3pc

�
P1 ¼

u
z
p; P2 ¼

ū
z
p; P3 ¼

v
z
p; P4 ¼

v̄
z
p

�
; ð4Þ

where pμ ¼ PμðmH ¼ 0Þ in a frame in which the heavy
quarkonium moves along the z axis, defined in and below
Eq. (2). In this expression, the renormalization scale μ and
the factorization scale μF are suppressed,

P
f indicates a sum

over all parton flavors, f ¼ q; q̄; g, including heavy flavors
withmQ ≪ pT , while

P
½QQ̄ðκÞ� runs over both color and spin

states of heavy quark pairs ½QQ̄ðκÞ�, which will be specified
below, and, finally,

P
½ff0� runs over all twist-4 four-parton

states excluding those already included in
P

½QQ̄ðκÞ�. The
variables z, u, and v, with ū ¼ 1 − u and v̄ ¼ 1 − v, in
Eq. (4) are light-cone momentum fractions defined as

z≡ pþ

pþ
c

ð5Þ

for the single-parton fragmentation term,

z≡ pþ

Pþ
Q þ Pþ

Q̄

¼ pþ

P0þ
Q þ P0þ

Q̄

¼ pþ

pþ
c
; u≡ z

Pþ
Q

pþ ;

ū≡ z
Pþ
Q̄

pþ ; v≡ z
P0
Q
þ

pþ ; v̄≡ z
P0̄
Q
þ

pþ ; ð6Þ

for the heavy quark pair fragmentation term, and
similarly,

FIG. 3. Sample NNLO Feynman diagrams having the p2
T=m

2
Q

power enhancement over the LO contribution to heavy quarko-
nium production.
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z≡ pþ

Pþ
1 þ Pþ

2

¼ pþ

Pþ
3 þ Pþ

4

¼ pþ

pþ
c
; u≡ z

Pþ
1

pþ ;

ū≡ z
Pþ
2

pþ ; v≡ z
Pþ
3

pþ ; v̄≡ z
Pþ
4

pþ ; ð7Þ

for the other twist-4 fragmentation terms. The superscript
“þ” in these definitions indicates the momentum component
along the light-cone “þ” direction in a frame where the
heavy quarkonium momentum has only “þ” component
without “−” and “⊥” components. Here, we assume that
mH=pþ ≪ 1. In this frame, the heavy quarkonium momen-
tum pμ ¼ pþn̄μ with a light-cone vector n̄μ ¼ ð1; 0; 0⊥Þ.
The light-cone components of a general four-dimensional
momentum are kμ ¼ ðkþ; k−;k⊥Þ, where k� ≡ ðk0 � kzÞ=ffiffiffi
2

p
. The “þ” component of momentum p can be projected

out by another light-cone vector nμ ¼ ð0; 1; 0⊥Þ as pþ ¼
p · n with n · n̄ ¼ 1 and n2 ¼ n̄2 ¼ 0. Although the total
momentum of the heavy quark pair is the same for both the
scattering amplitude and its complex conjugate, the individ-
ual heavy quark momentum in the amplitude does not have
to be the same as the heavy quark momentum in the complex
conjugate amplitude. That is, u does not have to be the same
as v, as defined in Eq. (6). The range for the momentum
fractions u and v, and ū and v̄, is 0 to 1.
Although there is nontrivial interference in the momen-

tum fractions of the heavy quarks, there is no interference
between two-quark and single-gluon states, of the sort
shown in Fig. 6, which might suggest a correction

suppressed by only a single power of pT . As we shall
see in Sec. III below Eq. (25), however, after the internal
integrations of the heavy quark subdiagram are carried out,
the only vectors that can couple to the gluon of momentum
pc at the vertex above the dashed line are orthogonal to the
physical polarizations of that gluon. As a result, the gluon
pole at p2

c ¼ 0 is canceled, and the heavy quark loop
couples to the hard scattering through a contact term on the
right of the cut. The momentum space regions associated
with this diagram are then absorbed naturally into the heavy
quark fragmentation term in the factorized cross section.
The cross sections dσ̂AþB→fðpcÞþX, dσ̂AþB→½QQ̄ðκÞ�ðpcÞþX

and dσ̂AþB→½ff0�ðpcÞþX in Eq. (4) include all information on

g'PgP

qP qP'

P

1

2 2

1

P

P

P P

P 1

22

1
gP g'

g'PgP

P

P

1

2 2

1

P

P

P P

P
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the incoming states. When A and B are hadrons, the
dσ̂AþB→fþX in Eq. (4) includes the leading power contri-
bution from collisions of one active parton from each
colliding hadron, which are proportional to convolutions
with parton distribution functions (PDFs) at factorization
scale μF. They also include the first 1=p2

T suppressed
contribution from collisions involving one parton from one
colliding hadron and two from the other, given by con-
volutions of a PDF from one hadron with a twist-4 four-
parton correlation function from the other [39,45], as noted
above. The Df→Hðz;mQÞ are fragmentation functions for
off-shell partons of flavor f to produce a quarkonium
state H of momentum p [46,47]. The mQ dependence of
these functions indicates that the quarkonium state H is a
bound state of heavy quarks of mass mQ. The functions
D½QQ̄ðκÞ�→Hðz; u; v;mQÞ are generalized fragmentation func-
tions defined below for a state consisting of a relativistic
heavy quark pair ½QQ̄ðκÞ� to fragment into the same
quarkonium state H. The D½ff0�→Hðz; u; v;mQÞ represents
all twist-4 fragmentation functions, excluding those involv-
ing a heavy quark pair, D½QQ̄ðκÞ�→Hðz; u; v;mQÞ, which are
already included in the second term on the right-hand side
of Eq. (4).
In this paper, we neglect all contributions involving twist-

4 multiparton correlation functions of colliding hadrons,
because these contributions are expected to be suppressed by
Λ2
QCD=p

2
T and small even at moderate pT ≫ mH, compared

to the leading power term in Eq. (4). For the NLP
contribution, we keep only the fragmentation contribution
from heavy quark pairs, the middle term on the right side of
Eq. (4). This is because only this term can produce a pair of
heavy quarks with correct quark flavor, which we assume
has a much larger probability to fragment into a heavy

quarkonium than that of a light gluon at the LP, so that it can
compensate in part the power suppression of 1=p2

T of the
hard parts to provide comparable contributions to the total
production rate at moderate pT . That is, we neglect the
third term in Eq. (4) because we expect that the creation of a
heavy quarkonium from fragmentation functions of twist-4
light-parton states is suppressed at least by α2sðmQÞ in
comparison with the fragmentation from a heavy quark pair
with correct quark flavor. We leave detailed estimates of the
size of neglected terms to future work.
It is natural to suppose that the contribution to the heavy

quarkonium production comes from the region of phase
space where the quark and the antiquark have the same
momentum, PQ ¼ PQ̄ or u ¼ v ¼ 1=2, which is preferred
by the quarkonium wave function. However, for a pair
produced at very short distance ∼1=pT , which is of a size
too small for a physical quarkonium to be formed, the quark
and antiquark clearly do not need to have precisely the
same momentum. Their relative momentum changes while
they are evolving to a lower momentum scale by radiation.
It is the nonperturbative fragmentation functions at or near
the input momentum scale (∼2mQ) that are proportional to
the wave function of the produced heavy quarkonium,
which strongly suppresses those configurations where the
heavy quark and antiquark have a large relative momentum
fraction. That is, at hadronic scales, the ½QQ̄� fragmentation
function is peaked in the region where u ¼ v ¼ 1=2, and
vanishes when u and v approach 0 or 1.
If the fragmentation functions fall sufficiently fast when

u; v → 0 or 1, one could make an additional approximation
to the factorization formalism in Eq. (4) by setting u ¼
v ¼ 1=2 in the perturbative hard part dσ̂AþB→½QQ̄ðκÞ�þX, and
derive the following approximate factorization formula:

EP
dσAþB→HþX

d3P
ðPÞ ≈

X
f

Z
dz
z2

Df→Hðz;mQÞEc
dσ̂AþB→fðpcÞþX

d3pc
ðpc ¼ p=zÞ

þ
X

½QQ̄ðκÞ�

Z
dz
z2

D½QQ̄ðκÞ�→Hðz;mQÞ

× Ec

dσ̂AþB→½QQ̄ðκÞ�ðpcÞþX

d3pc
ðPQ ¼ PQ̄ ¼ P0Q ¼ P0Q̄ ¼ p=2zÞ; ð8Þ

where we did not list the subleading power terms that are
neglected in this paper, and where the integrated ½QQ̄ðκÞ�-
fragmentation functions are given by

D½QQ̄ðκÞ�→Hðz;mQÞ≡
Z

dudvD½QQ̄ðκÞ�→ðz; u; v;mQÞ; ð9Þ

which, like the leading power single-parton fragmentation
functions, depends only on the total momentum fraction z
of the pair, carried by the observed heavy quarkonium H.
Without knowing exactly how fast the pair fragmentation

functions fall when u and vmove away from 1=2, however,
we do not make this approximation in the calculations
presented in this paper.
The validity of the perturbative QCD factorization

formalism in Eq. (4) [or (8)] requires the suppression of
quantum interference between the dynamics above and
below the dashed lines in Fig. 4 (and in Fig. 5). That is, the
dominant contributions of partonic processes in Fig. 4
should necessarily come from the phase space where the
fragmenting partons (the gluon in the diagram on the left,
and the heavy quark pairs on the right) are forced to their
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mass shells, and are consequently long lived compared to
the time scale of the hard collision below the dashed line.
The figures illustrate how these regions arise. The momen-
tum of the single active parton (the gluon), Pg on the left
diagram in Fig. 4, is forced to P2

g ∼ 0 at the boundary of
phase space. Similarly, in the diagram on the right in Fig. 4
(and those in Fig. 5) the limit of low invariant mass for the
Q; Q̄ pair is at the boundary in phase space, and in this
region the loop momentum flowing between the two lines
is pinched between mass shell singularities. This happens
on both sides of the cut, that is, in the amplitude and,
independently, in the complex conjugate amplitude. It is the
contribution of this, nonleading region that is summarized
in the power suppressed terms in Eq. (4) for both heavy
quarks of Fig. 4 and the light partons of Fig. 5.
We can illustrate the pinch of loop momenta in Fig. 4 by

labeling the heavy quark and antiquark momenta in the
amplitude as, PQ ¼ P=2þ q and PQ̄ ¼ P=2 − q, respec-
tively. The integral over q then takes the form

M∝
Z

d4q
ð2πÞ4Tr

�
ĤðP;q;QÞ −γ · ðP=2−qÞþmQ

ðP=2−qÞ2−m2
Qþ iε

D̂ðP;qÞ

×
γ · ðP=2þqÞþmQ

ðP=2þqÞ2 −m2
Qþ iε

�
; ð10Þ

where ĤðP; q;QÞ represents the production of the heavy
quark pair with a hard scale Q, D̂ðP; qÞ represents the
fragmentation of the pair, and q is the relative momentum
of the pair in the amplitude, which does not have to be the
same as the relative momentum of the pair in the complex
conjugate amplitude. If the total momentum of the heavy
quark pair is dominated by the Pþ component in a frame in
which the heavy quarkonium is moving in theþz direction,
we can identify the relevant perturbative contribution to the
integration of q in Eq. (10) by examining the pole structure
of its q− integration. From the denominators in Eq. (10),
we have

q− ¼ q2⊥ − 2m2
Qðqþ=PþÞ

Pþ þ 2qþ
− iεθðPþ þ 2qþÞ

→
q2⊥

Pþ þ 2qþ
− iε;

q− ¼ −
q2⊥ þ 2m2

Qðqþ=PþÞ
Pþ − 2qþ

þ iεθðPþ − 2qþÞ

→ −
q2⊥

Pþ − 2qþ
þ iε: ð11Þ

These two denominators pinch the q− integral so long as we
are away from the region qþ → �Pþ=2, where one of the
pair carries all the momentum, and the other is at rest. We
shall assume that this region is strongly suppressed for
producing a bound quarkonium, and that Pþ ≫ mQ (that is,
pT ≫ mQ in the lab frame). In any case, it is clear from

Eq. (11) that the contributions from the diagram on the right
in Fig. 4 are forced into the region of phase space where the
heavy quark and antiquark are both close to their mass
shells, and are factorized from the short-distance hard-
scattering process. We must still argue, of course, that this
factorization is respected by higher orders in the perturba-
tive expansion.
The predictive power of the factorization formula in

Eq. (4) relies on our ability to do systematic perturbative
calculations of the short-distance partonic hard parts in
powers of αs and of the evolution kernels for the scale
dependence of these fragmentation functions, as well as on
the universality of the fragmentation functions. The accu-
racy of the perturbative calculations and the strength of
their predictive power depends on the stability of the
perturbative expansion in powers of αs, and the approxi-
mation of neglecting terms that are even higher powers in
the m2

H=p
2
T expansion.

An important feature of the perturbative QCD factori-
zation formalism in Eq. (4) is that the short-distance
partonic hard parts should not depend on the details of
the quarkonium states they produce. Therefore, we can
extract the short-distance partonic hard parts in Eq. (4)
perturbatively order by order in powers of αs by applying
the same factorization formula to the production of partonic
states, H ¼ g; q; q̄; ½QQ̄ðκÞ�. When H in Eq. (4) is a
partonic state, both the cross section to produce the partonic
state on the left of the equation and the fragmentation
functions to the partonic state on the right of the equation
can be systematically evaluated by calculating Feynman
diagrams order by order in powers of αs, with a regulari-
zation for the collinear singularity when mQ=pT → 0.
Since the short-distance partonic hard parts on the right
side of Eq. (4) are infrared safe, the partonic cross sections
on the left and the fragmentation functions on the right of
the factorized equation share the same collinear divergen-
ces, if any, order by order in αs. That is, factorization
requires that the perturbative fragmentation functions to a
given partonic state should absorb all collinear singularities
of the cross section for that partonic state.

C. Arguments for factorization

We now go on to give a justification of the factorization
formula in Eq. (4). In our discussion, we will revisit several
arguments given in Ref. [39], where a general analysis for
factorization of power-suppressed corrections in hadron-
hadron scattering was introduced.
The development of factorized cross sections begins with

an examination of amplitudes, most conveniently in terms
of the general properties of perturbation theory diagrams
[48]. We begin by noting that although factorization is
simplest to formulate when all particles are massless, the
presence of masses does not by itself require a reformu-
lation of factorized cross sections [39]. Particle mass
dependence can be incorporated consistently both into
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hard scattering functions and long-distance parton
distributions and fragmentation functions [49,50]. New,
power-suppressed corrections to factorization in inclusive
and semi-inclusive cross sections are associated not with
fixed mass scales, such as mQ, but with long-distance,
nonperturbative effects. Power suppressed mass corrections
in m2

Q=p
2
T can be included in the partonic short distance

functions by keeping the heavy quark mass term of pQCD
Lagrangian as a new local interaction term.
A convenient classification of potential sources of power

corrections requires an analysis of regions of momentum
space where integrals are forced near or to the mass shell. In
[48] these are referred to as pinch surfaces, an example of
which we have seen in Eq. (10). In principle, any pinch
surface is associated either with the leading power factor-
ized cross section, or with a power-suppressed (and in
general) factorized correction to the leading-power factor-
ized form. In a hard-scattering cross section, the contribu-
tions of any region can be put into a factorized form, but
this form will only be useful if its components have some
features of universality. For example, in Eq. (4) the “new”
quark pair fragmentation function is independent of the
choice of initial state, jA; Bi. It is possible to estimate the
overall power behavior by using the techniques of [48], and
we will not reproduce all these arguments here.
Because any cross section, and in particular a single-

particle inclusive cross section, is effectively the sum over
all possible such regions of momentum space, a cross
section dσAþB→CðpÞþX=dpT for hadron C of momentum p
can in principle be thought of a sum of factorized terms,
each with its characteristic dependence on pT . Of these, the
leading power term is of special interest. In cut diagram
notation [51], the relevant pinch surfaces are illustrated on
the left-hand side of Fig. 7. This figure and other figures in
this section represent pinch surfaces in physical gauges.
The situation in covariant gauge is slightly more complex,
but the basic conclusions are unchanged.
For Fig. 7, and indeed all pinch surfaces [48], on-shell

lines correspond to physically realizable processes involv-
ing free, classical propagation and local interaction of
partons with finite momenta. Such processes can also be

dressed in all possible ways by a “cloud” of soft partons,
represented by S in the figure. In the leading configuration,
one parton from each of the two hadrons collides to initiate
the hard scattering, while the spectators of each hadron
move into the final state, interacting with each other along
the way. These sets of mutually collinear particles are
sometimes referred to as “incoming jets,” J1 and J2 in the
figure. The hard scattering produces a parton of momentum
pg ¼ p=z, labeled as a gluon in the figure, with 0 < z < 1,
and this parton radiates a jet, JC=g, of collinear partons,
some of which eventually emerge into the final state,
including the observed hadron CðpÞ. In individual pertur-
bative diagrams, soft gluons are attached to the incoming as
well as outgoing “jets.”
The right-hand side of Fig. 7 shows the result of

factorization, which can be demonstrated in various ways,
but which is described for leading-power fragmentation
in some detail in Refs. [23,47]. At leading power, the
fragmentation function Dg→CðpÞ decouples from the rest
of the process, leaving behind the cross section ~σ for
the production of a parton of momentum pg ¼ p=z,
schematically as

σ1þ2→CðpÞþX ¼ ~σ1þ2→gþX ⊗ Dg→CðpÞ: ð12Þ

In general, the coupling of all soft gluons to the fragment-
ing jet is represented (again to leading power) by eikonal
(Wilson) lines, as indicated in the figure. Conventionally,
these are chosen in a direction p̄, opposite to the particle
momentum, p, but this is a matter of convention. In ~σ,
soft gluons cancel in the inclusive sum over states, and the
incoming jets are organized into parton distributions. As
argued in Refs. [23,47], all leading pinch surfaces take
this form.
Nonleading powers in the cross section are associated

with nonleading pinch surfaces, where lines are forced to
the mass shell at pinch surfaces, but where the integrals
from these regions are suppressed by extra inverse powers
of pT relative to leading power. They must still correspond
to physically realizable processes, however, and can be
classified as power-suppressed corrections to the leading
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FIG. 7 (color online). Leading power pinch surface corresponding to single-parton fragmentation.
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factorization of Fig. 7. Figure 8 illustrates several basic
possibilities, which we have already encountered in con-
nection with Eq. (8) above. Additional partons may be
attached to the hard part within the incoming (or other) jet,
as indicated by T in the figure. Extra soft gluons may
attach directly to the hard scattering, as indicated by U. The
power counting of Ref. [51] shows that pinch surfaces
involving T are nonleading by 1=Q2 in any inclusive hard
scattering with scale Q for unpolarized cross sections,
where Q is the hard scale (in our case, pT). Such
corrections are examples of factorization at 1=Q2 into
multiparton matrix elements, as discussed in Ref. [39].
In the same reference, it was shown that pinch surfaces
involving soft lines directly attached to the hard part are
suppressed by 1=Q4 in general.
Finally, soft lines may attach the leading fragmenting jet

to other jets at the pinch surface, as indicated by V, but now
with the leading-power couplings that lead to the factorized
result of Fig. 7 removed. In this case, we must analyze these
pinch surfaces from the point of view of Ref. [39]. We
consider a region where all lines in the jet JC=g, which
contains the final-state parton, are off shell by some fixed
squared mass, call itM2. Let us take the jet’s momentum as
approximately pμ

g ¼ pμ=z ∼Qn̄μ, where n̄μ is a lightlike
vector. To recall our notation, we write for any jet line
Pμ ∼Qn̄μ þ ðM2=QÞnμ þ pT , where p2

T ∼M2 and where
n̄ · n ¼ 1, n̄2 ¼ n2 ¼ 0. This is a standard scaling of jetlike
momentum, as developed in [48]. Soft lines that flow into
the jet must have n components of order M2=Q for the jet
lines to remain off shell by order M2. We consider first, as
in [39], the “soft central region,” where all components of
soft momenta are of the same order. Once the leading terms
are removed, the first nonleading contribution is suppressed
by one order of soft momentum, so that the contributions is
down by order M2=Q relative to leading power. But this is
not the end of the story. In this case, the conditions
necessary to factor the soft momenta from all other jets
(as on the right of Fig. 7) are satisfied [52], and, as shown in
[39], these gluons cancel when we sum over all cuts of the
diagrams that are consistent with fixed attachments of soft

lines to the fragmenting jet JC=g.
2 Remainders are now of

order M4=Q4. For a more general analysis, it is sometimes
necessary to study another region of soft momenta, the so-
called “Glauber region,” in which the transverse momenta
of soft gluons increase to order M, while light-cone
components remain at order M2=Q. This region, however,
requires that the soft momenta attach only to spectator lines
of the incoming jets [39]. Otherwise, light cone momentum
components are not pinched, and one or both may be
increased to order M. In the case at hand, it is the n
component that is free to be deformed to order M, taking
the jet lines off shell to order QM, and thus away from the
pinch surface. We conclude that nonperturbative effects
found in this way are suppressed to order 1=Q4.
It is worth noting at this point the relationship of the

above discussion of power corrections to the treatment of
power corrections associated with nuclear dependence in
Refs. [53] and [54]. Reference [53] was concerned with
transverse momentum broadening, while Ref. [54] studied
the influence of soft rescatterings on fragmentation. In the
terminology we have introduced above, both involved an
analysis of corrections of the type T in Fig. 8, and identified
effects suppressed by order 1=Q2. Both are proportional
to multiparton matrix elements in an initial-state hadron,
times a perturbative hard-scattering function. We anticipate
these matrix elements to be of order Λ2

QCD, so that they
are relatively modest in their effects, and can be neglected
for most hard scattering phenomenology, except when
enhanced, for example, by nuclear sizes [53,54].
Of course, as we have noted above in connection with

Fig. 5, power-suppressed pinch surfaces involving more than
a single parton at the hard scattering are possible for final
state jets as well as the incoming hadrons. We generally
expect these to be small, as in the incoming case, but matrix
elements involving the hadronization of heavy quark pairs
into heavy quarkonia may be an exception. We have in mind
a role for the color singlet matrix elements of NRQCD. Of
particular interest are quark pairs in a color singlet configu-
ration with a total transverse momentum pT or greater.
These appear in pinch surfaces associated with the produc-
tion of a heavy pair at short distances, which may be created
in a singlet configuration, or may evolve into a singlet
configuration. Such surfaces are illustrated in Fig. 9, and
include the right-hand side of Fig. 4.
The leading behavior of such surfaces is suppressed by

1=p2
T relative to the overall leading power that of the

surfaces shown in Fig. 7, simply because two partons rather
than one attach to the hard scattering [48]. (This is the same
pT suppression as for item T in Fig. 8.) At the same time, if
the nonperturbative dynamics for these processes is greatly

g
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S
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J2

C(p)
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p

1

FIG. 8 (color online). Nonleading power pinch surfaces asso-
ciated with additional initial-state partons (T) and soft gluons
attached to the hard scattering (U).

2Specifically, we neglect the n̄μ component of the soft gluon
momenta in the lines of the fragmenting jet, where they are
negligible. We then integrate the remainder of the diagram over
these light cone components. The cancellation occurs in the
resulting sum over final states.
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enhanced relative to the fragmentation functions of indi-
vidual partons, and here we have in mind the fragmentation
of gluons by color octet matrix elements in NRQCD, they
may be competitive, or even dominate for a range of pT . As
indicated by the figure, the same factorization properties
analyzed in Refs. [23,47] for single-parton fragmentation
apply to the fragmentation of a jet initiated by two partons,

σ1þ2→½QQ̄�ð→CðpÞþX0ÞþX ¼ ~σ1þ2→½QQ̄�þX ⊗ D½QQ̄�→CðpÞ;

ð13Þ

in this case heavy quarks have a total transverse momentum
that is greater than or equal to pT ≫ mQ.
Recalling again that nonleading pinch surfaces enter

the cross section additively, we recognize the momentum
configurations of Fig. 9 as the source of the heavy pair
correction term in Eq. (4). This requires us to introduce
and analyze these multiparton fragmentation functions, in
the spirit of similar analyses in Refs. [53] and [54] for
higher-twist matrix elements of incoming hadrons. In the
following, we will formulate some of the basic properties of
these new two-parton fragmentation functions, D½QQ̄�→CðpÞ,
when the hadron CðpÞ is a heavy quarkonium H.

III. THE FRAGMENTATION FUNCTIONS

Determination of the perturbative short distance func-
tions in Eq. (4) requires the perturbative calculations of
both the partonic cross sections on the left of the equation,
and partonic fragmentation functions on the right. The
factorization assures that the partonic cross sections
and the fragmentation functions share the same nonper-
turbative long-distance dynamics. The precise forms of the
partonic hard parts in Eq. (4) depend on the operator
definitions of the fragmentation functions. The operator
definition for a single parton of flavor f to fragment into
hadrons was first introduced by Collins and Soper [46].
This definition was further discussed in the context of
heavy quarkonium production in Refs. [23,47]. In this
section, we derive operator definitions of fragmentation

functions, D½QQ̄ðκÞ�→Hðz; u; v;mQÞ, for a heavy quark pair
½QQ̄ðκÞ� of quantum number κ including both color and
spin of the pair, to fragment into a heavy quarkonium H.
To derive explicit operator definitions for the heavy

quark pair fragmentation functions, we need to identify the
leading power contribution to heavy quarkonium produc-
tion in the heavy quark pair fragmentation channel, as
sketched in the right diagram in Fig. 4. We first perform a
collinear expansion of all the momenta of the active heavy
quark and antiquark in the partonic part (below the dashed
line) to reduce the four-dimensional momentum convolu-
tions to one-dimensional convolutions of light-cone momen-
tum fractions. Then we factorize color and spin indices
between the partonic hard parts that produce the pair and
the fragmentation functions that describe the transformation
of the produced pair to a bound quarkonium. From this
process, we drive explicit cut vertices defining the ½QQ̄ðκÞ�-
fragmentation functions, and the corresponding projection
operators to define the partonic hard part for producing
the pair.
We write the heavy quark pair fragmentation channel of

heavy quarkonium production in Fig. 4 as

dσAB→½QQ̄�→HðPÞ

¼
Z

d4pc

ð2πÞ4
d4q1
ð2πÞ4

d4q2
ð2πÞ4 ½ĤAB→½QQ̄�ðPQ;PQ̄; P

0
Q; P

0̄
QÞ

× T̂ ½QQ̄�→HðPÞðPQ; PQ̄; P
0
Q; P

0̄
Q;PÞ�dPSðPÞ; ð14Þ

where Ĥ and T̂ represent the process below and above the
dashed line in Fig. 4, respectively. The dashed line in the
figure represents color and spinor traces between Ĥ and T̂ ,
and dPSðPÞ denotes the differential phase space of the
observed final state. The function Ĥ includes all necessary
initial-state factors needed for calculating the cross section,
including parton distributions if A and B are hadrons. In
Eq. (14), heavy quark and antiquark momenta are
expressed in terms of three independent momenta, pc,
q1, and q2,
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p

H

Q

1

2

C(p)

J

J

S

J
Q

p
Q

p

Q
p[QQ]H

1

2

J

J

p

p
Q

Q S

C(p)

FIG. 9 (color online). Nonleading pinch surface representing the production of a pair at short distances.
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PQ ¼ pc

2
þ q1; PQ̄ ¼ pc

2
− q1;

P0
Q ¼ pc

2
þ q2; P0̄

Q ¼ pc

2
− q2; ð15Þ

where pc ¼ PQ þ PQ̄ ¼ P0
Q þ P0̄

Q is the total momentum
of the pair, while q1 ¼ ðPQ − PQ̄Þ=2 and q2 ¼
ðP0

Q − P0̄
QÞ=2 represent the relative momenta of the quark

and antiquark in the amplitude and complex conjugate
amplitude, respectively. When the light-cone component of
physically observed quarkonium momentum, pþ (or pT in
the laboratory frame) is much larger than heavy quark
mass, mQ, and larger than the typical virtuality of active

quark and antiquark in T̂ , as discussed in the last section,
we can approximate the contribution to the cross section in
Eq. (14) by expanding the momenta of heavy quarks and
antiquarks in Ĥ along the direction of the observed heavy
quarkonium, and obtain the leading power term as

dσAB→½QQ̄�→HðPÞ≈
Z

dzdudv½ĤAB→½QQ̄�ðP̂Q; P̂Q̄; P̂
0
Q;P̂

0̄
QÞ

× ~T ½QQ̄�→HðPÞðz;u;v;PÞ�dPSðPÞ; ð16Þ

where

P̂μ
Q ¼

�
pþ
c

2
þ qþ1

�
n̄μ ¼ 1

2

�
1þ 2qþ1

pþ
c

�
pþ
c n̄μ ≡ 1

2
ð1þ ζ1Þ

pμ

z
¼ u

z
pμ;

P̂0μ
Q ¼

�
pþ
c

2
þ qþ2

�
n̄μ ¼ 1

2

�
1þ 2qþ2

pþ
c

�
pþ
c n̄μ ≡ 1

2
ð1þ ζ2Þ

pμ

z
¼ v

z
pμ;

P̂μ
Q̄ ¼

�
pþ
c

2
− qþ1

�
n̄μ ¼ 1

2
ð1 − ζ1Þ

pμ

z
¼ ð1 − uÞp

μ

z
¼ ū

z
pμ;

P̂0μ
Q̄ ¼

�
pþ
c

2
− qþ2

�
n̄μ ¼ 1

2
ð1 − ζ2Þ

pμ

z
¼ ð1 − vÞp

μ

z
¼ v̄

z
pμ; ð17Þ

with momentum fractions: ζ1 ≡ 2qþ1 =p
þ
c , ζ2 ≡ 2qþ2 =p

þ
c ,

and z, u and v, which are defined in Eq. (6). In Eq. (16), the
collinear heavy quark pair correlation function is

~T ½QQ̄�→Hðz; u; v;PÞ ¼
Z

d4pc

ð2πÞ4
d4q1
ð2πÞ4

d4q2
ð2πÞ4 δ

�
z −

pþ

pþ
c

�

× δ

�
u −

1

2

�
1þ 2qþ1

pþ
c

��

× δ

�
v −

1

2

�
1þ 2qþ2

pþ
c

��

× T̂ ½QQ̄�→HðPQ; PQ̄; P
0
Q; P

0̄
Q;PÞ:

ð18Þ

To complete the derivation of exact operator definitions
of heavy quark pair fragmentation functions, we need to
factorize the color and spinor traces between Ĥ and ~T in
Eq. (16).
For a pair of produced heavy quarks, the color of the pair

can be in either a color singlet “[1]” or a color octet “[8]”
state with the projection operators proportional to δab and
ðtBÞab, respectively, where a; b ¼ 1; 2;…Nc are color
indices for the heavy quark pair as shown in Fig. 4, and
tB is the generator in the fundamental representation of the
group SUðNcÞ color. We can assume that the function ~T is
a linear combination of singlet and color-averaged octet
contributions. The projection operators that project on these
½QQ̄�-fragmentation functions in definite color representa-
tion can be taken as

C½1�ab;cd ¼
�
δabffiffiffiffiffiffi
Nc

p
��

δcdffiffiffiffiffiffi
Nc

p
�
;

C½8�ab;cd ¼
1

N2
c − 1

X
B

½
ffiffiffi
2

p
ðtBÞab�½

ffiffiffi
2

p
ðtBÞcd�; ð19Þ

and the corresponding color projection operators for the
partonic hard part as

~C½1�ba;dc ¼
�
δbaffiffiffiffiffiffi
Nc

p
��

δdcffiffiffiffiffiffi
Nc

p
�
;

~C½8�ba;dc ¼
X
A

½
ffiffiffi
2

p
ðtAÞba�½

ffiffiffi
2

p
ðtAÞdc�: ð20Þ

As required, the color projection operators satisfy the
normalization condition,

X
abcd

C½I�ab;cd ~C
½J�
ba;dc ¼ δIJ ð21Þ

with I; J ¼ 1; 8. However, the exact coefficients of C and ~C
are not unique and any constant factor can be moved
between them, as long as they satisfy the normalization
condition in Eq. (21). Our choice of normalization here
matches the convention often adopted in NRQCD
factorization.
The separation of the spinor traces of heavy quarks

between the short-distance function Ĥ and the long-
distance part ~T in Eq. (16) is implemented by a Fierz
reshuffling of spinor indices. In the limitmQ=pT → 0, there

KANG et al. PHYSICAL REVIEW D 90, 034006 (2014)

034006-12



are only three leading power spin projection operators for
the produced heavy quark pair in Fig. 4,

ðγ · pÞji; ðγ · pγ5Þji; ðγ · pγα⊥Þji; ð22Þ

where the superscript “α” has two independent values.
These three projection operators, up to a choice of
normalization factors to be discussed below, cover the
total four spin degrees of freedom of the produced heavy
quark pair. They are the vector (v), axial vector (a), and
tensor (t) forms of the γ matrices, respectively. The same
projection operators also apply to the produced heavy
quark pair in the complex conjugate of the scattering
amplitude. Note that, because the heavy quark mass mQ
of the partonic hard parts is set to zero in the hard scattering
part H, the tensor projection gives nonvanishing contribu-
tions only if the trace of heavy quark spin in H includes
both projections γ · pγα⊥, which have even numbers of
gamma matrices.
The choice of coefficients for these spin projection

operators is not unique, as long as the projection operators
for the production of the heavy quark pair and the
corresponding spin projection for the cut vertices defining
the fragmentation functions of the pair are normalized to
unity. We adopt the following spin projection operators
for the partonic hard part, that is, the part below the dashed
line in Fig. 4:

~PðvÞðpÞji;kl ¼ ðγ · pÞjiðγ · pÞkl;
~PðaÞðpÞji;kl ¼ ðγ · pγ5Þjiðγ · pγ5Þkl;
~PðtÞðpÞji;kl ¼

X
α¼1;2

ðγ · pγα⊥Þjiðγ · pγα⊥Þkl; ð23Þ

which are independent of the momentum fractions of
fragmenting quarks and antiquarks. Correspondingly, we
have spin projections for the cut vertices that define the
heavy quark pair fragmentation functions, the part above
the dashed line in Fig. 4,

PðvÞðpÞij;lk ¼
1

4p · n
ðγ · nÞij

1

4p · n
ðγ · nÞlk;

PðaÞðpÞij;lk ¼
1

4p · n
ðγ · nγ5Þij

1

4p · n
ðγ · nγ5Þlk;

PðtÞðpÞij;lk ¼
1

2

X
β¼1;2

1

4p · n
ðγ · nγβ⊥Þij

1

4p · n
ðγ · nγβ⊥Þlk;

ð24Þ

where the light-cone vector n was introduced in the last
section to pick up the “þ” light-cone momentum compo-
nent. Similar to the color decomposition, the projection
operators for spin decomposition satisfy an orthonormality
condition,

X
ijlk

PðsÞ
ij;lkðpÞ ~Pðs0Þ

ji;klðpÞ ¼ δss
0 ð25Þ

with s; s0 ¼ v; a; t.
Using these projection operators, we can verify our claim

that the gluon in the quark pair-single gluon interference
diagram, Fig. 6 has no pole in p2

c, so that this contribution
can be absorbed into the normal diagonal quark pair
fragmentation. The only projection operators that can
contribute to the interference term in Fig. 6 are the vector
and axial vector, because the trace of the heavy quark loop
in the hard scattering would vanish otherwise (there is no
matching tensor projection in the hard part on the right of
the cut where the gluon of momentum pc emerges.) After
integration of the internal loop momenta of the diagram
above the dashed line in the figure (at fixed values of the
variable u on the left), the only vectors that are left to
couple to the gluon are pμ

c and nμ. Choosing the light-cone
gauge, n · A ¼ 0, the gluon propagator Gμνðpc; nÞ is
orthogonal to nμ, while pμ

cGμ
νðpc; nÞ ¼ nν=pc · n, which

depends only on the total longitudinal momentum of the
quark pair. If we choose a covariant gauge, the same
cancellation follows by applying Ward identities to the hard
scattering below the dashed line and to the heavy quark
loop above the line. Note that this argument assumes that
the spin of the heavy quark state is not fixed.
Before discussing the matrix element realization of the

pair fragmentation functions, we will point out a technical
issue characteristic of multiparton factorization expansions,
like the one here. Consider first, the single-parton frag-
mentation channel of heavy quarkonium production, on the
left of Fig. 4. The light-cone momentum of the fragmenting
parton (e.g., Pþ

g ) is always larger than final state quarko-
nium momentum, pþ. The same is the case for the total
momentum of the fragmenting heavy quark pair on the
right of the figure. In the heavy quark pair fragmentation
channel, however, the light-cone momentum of one of the
heavy quarks or antiquarks in the process vanishes when u,
ū, v, or v̄ vanishes, even though the total light-cone
momentum of the pair pþ

c is always larger than the
observed quarkonium momentum, pþ in both the ampli-
tude and complex conjugate. This is illustrated by the
correction to the hard function, H in Fig. 10, in which the
heavy quark, of momentum ðP̂Q þ kÞμ, radiates a gluon
of momentum k before going on shell with momentum

P̂Q PQ

1

2P

k

P

^

FIG. 10. Feynman diagram that has an end-point singularity
when the heavy quark momentum P̂Q vanishes.
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P̂μ
Q ¼ ðPþ

Q; 0; 0TÞ ¼ ððu=zÞpþ; 0; 0TÞ. As appropriate for a
line emerging from the hard part, P̂2

Q ¼ 0, and

ðP̂Q þ kÞ2 ¼ 2Pþ
Qk

− ¼ u
z
pþk−; ð26Þ

which vanishes as u → 0. This produces a 1=u “end-point”
singularity in the corresponding contribution to H at
u → 0. Similarly, a diagram with the gluon radiated from
the heavy antiquark would give an end-point singularity
proportional to 1=ū. In general, taking into account the
complex conjugate of the scattering amplitude, the partonic
hard part, when calculated by using the projection operators
in Eq. (23), will have terms with end-point singularities
proportional to 1=uūvv̄ ¼ 1=uð1 − uÞvð1 − vÞ, where as
many as two of these factors may vanish simultaneously.

Such end-point singularities are by no means unique to
heavy quarkonium production, and appear, for example, in
the calculation of exclusive processes [55]. They will not
result in divergences in the production cross sections as long
as the heavy quark pair fragmentation functions vanish
when the quark and antiquark have very different collinear
momenta. With this in mind, we could choose to move
systematically such end-point singularities from the partonic
hard parts to the corresponding fragmentation functions by
using a different combination of spin projection operators
and cut vertices. This option is discussed in Appendix A, but
here we will retain the projections described above.
Using the color and spinor projection operators in

Eqs. (19), (20), (23), and (24), we separate the color and
spinor traces in Eq. (16), and derive the factorized con-
tribution to heavy quarkonium production from the heavy
quark pair fragmentation channel, as presented in Eq. (4),

dσAB→½QQ̄�→HðPÞ ≈
X

½QQ̄ðκÞ�

Z
dzdudvD½QQ̄ðκÞ�→Hðz; u; v;mQÞ

× dσ̂AþB→½QQ̄ðκÞ�ðpcÞþXðPQ ¼ upþ
c ; PQ̄ ¼ ūpþ

c ; P0
Q ¼ vpþ

c ; P0̄
Q ¼ v̄pþ

c Þ; ð27Þ

where pþ
c ¼ pþ=z, and where ½QQ̄ðκÞ� labels the color/

spin state of the heavy quark pair produced at short
distances. We adopt the notation κ ¼ sI, s ¼ v; a; t for
spin and I ¼ 1; 8 for color. The sum over κ runs over all

spin and color states of the pair, and the factorization scale
dependence is suppressed. The perturbative hard-scattering
functions dσ̂ in Eq. (27) are constructed from the short-
distance functions H of Eq. (16), by

dσ̂AþB→½QQ̄ðκÞ�ðpcÞþXðPQ ¼ upþ
c ; PQ̄ ¼ ūpþ

c ; P0
Q ¼ vpþ

c ; P0̄
Q ¼ v̄pþ

c Þ
¼ ½ĤðPQ ¼ upþ

c ; PQ̄ ¼ ūpþ
c ; P0

Q ¼ vpþ
c ; P0̄

Q ¼ v̄pþ
c Þ ~PðsÞðpþ

c ÞÞ ~C½I��dPSðpcÞ; ð28Þ

where dPSðpcÞ is the differential phase space of the produced heavy quark pair of momentum pc. The corresponding heavy
quark pair fragmentation functions are given by

D½QQ̄ðκÞ�→Hðz; u; v;mQÞ ¼ ½z2PðsÞðpcÞC½I� ~T QQ̄→Hðz; u; v;PÞ�

¼
Z

d4pc

ð2πÞ4
d4q1
ð2πÞ4

d4q2
ð2πÞ4 z

2δ

�
z −

pþ

pþ
c

�
δ

�
u −

1

2

�
1þ 2qþ1

pþ
c

��

× δ

�
v −

1

2

�
1þ 2qþ2

pþ
c

��
½PðsÞðpcÞC½I�T̂ QQ̄→HðPQ; PQ̄; P

0
Q; P

0̄
Q;PÞ�

¼
Z

pþdy−

2π
e−iðpþ=zÞy−

Z
pþdy−1
2π

eiðpþ=zÞð1−vÞy−
1

Z
pþdy−2
2π

e−iðpþ=zÞð1−uÞy−
2

× PðsÞ
ij;lkðpÞC½I�ab;cd

X
X

h0jψ̄c;lðy−1 Þψd;kð0ÞjHðpÞXihHðpÞXjψ̄a;iðy−Þψb;jðy− þ y−2 Þj0i; ð29Þ

where the factor z2 in the second equality is a result of
changing the final-state phase space for producing a heavy
quarkonium of momentum P to a heavy quark pair of
momentum pc, so that d3P=EP ≈ z2d3pc=Ec. Like parton
distribution functions (PDFs) and multiparton correlation

functions (MPCFs) of colliding hadrons, fragmentation
functions (FFs) of a single parton, a heavy quark pair, or
other combination of partons, are fundamental in QCD.
Unlike PDFs and MPCFs, FFs are defined in terms of a
product of two matrix elements (one from scattering
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amplitude and the other from its complex conjugate). The
moments of FFs are not necessarily local, because only
final states with a heavy quarkonium are included in the
sum over final states, H þ X, in Eq. (29). (In the following,
we will suppress the explicit sum over states.) Fragmenta-
tion functions carry the fundamental information of how
color neutral hadrons emerge from the colored parton(s)
produced in high energy collisions.
The heavy quark pair fragmentation functions

D½QQ̄ðκÞ�→Hðz; u; v;mQÞ can also be generated by

Feynman diagrams in Fig. 11 in terms of the momentum
space cut vertices,

V ½QQ̄ðκÞ�ðz; u; vÞ ¼
Z

d4pc

ð2πÞ4
d4q1
ð2πÞ4

d4q2
ð2πÞ4 P

ðsÞ
ij;lkðpcÞC½I�ab;cd

× z2δ

�
z −

pþ

pþ
c

�
δ

�
u −

1

2

�
1þ 2qþ1

pþ
c

��

× δ

�
v −

1

2

�
1þ 2qþ2

pþ
c

��
; ð30Þ

where heavy quark momenta are specified as in
Eq. (15).
The heavy quark pair fragmentation functions in Eq. (29)

are appropriate to the light-cone gauge, but because the
quark fields are at different points in space-time, they are
not in a gauge invariant form. With insertion of gauge links,
we obtain an explicitly gauge invariant definition of our
heavy quark fragmentation functions,

D½QQ̄ðκÞ�→Hðz; u; v;mQÞ ¼
Z

pþdy−

2π

pþdy−1
2π

pþdy−2
2π

e−iðpþ=zÞy−eiðpþ=zÞð1−vÞy−
1 e−iðpþ=zÞð1−uÞy−

2

× PðsÞ
ij;lkðpÞC½I�ab;cdh0jψ̄c0;lðy−1 Þ½ΦðFÞ

n ðy−1 Þ�†c0c½ΦðFÞ
n ð0Þ�dd0ψd0;kð0ÞjHðpÞXi

× hHðpÞXjψ̄a0;iðy−Þ½ΦðFÞ
n ðy−Þ�†a0a½ΦðFÞ

n ðy− þ y−2 Þ�bb0ψb0;jðy− þ y−2 Þj0i; ð31Þ

where all fields are located on the light cone in the n
direction, with zero “þ” and “⊥” components, and where
repeated indices are summed. In Eq. (31), the gauge link in
the matrix color representation j ¼ F; A (for fundamental
and adjoint, respectively) is given by

ΦðjÞ
n ðy−Þ ¼ P exp

�
−ig

Z
∞

y−
dλn · AðjÞðnλÞ

�
; ð32Þ

where P denotes path ordering and AðjÞ is the gauge field in
the representation j. In Eq. (31), the heavy quark pair
fragmentation functions are defined with gauge links in
fundamental representation. Such detailed gauge links are a
universal feature of fragmentation functions involving
colored partons [46], and are required for gauge invariance.
We shall not review arguments for their presence here,
except to note that in the terminology of Sec. II above they
are necessary to match the fragmentation function to the
leading pinch surfaces of the diagrams in covariant gauges.
Equation (31) is our operator definition for heavy quark
pair fragmentation functions.
For the fragmentation of a color singlet heavy quark pair,

C½1� in Eq. (19), the two gauge links for each matrix element
in Eq. (31) reduce to a single gauge link between the
positions of two quark fields, by the identity

½ΦðjÞ
n ðy−Þ�†a0a½ΦðjÞ

n ðy− þ y−2 Þ�ab0 ¼ ½UðjÞðy−; y− þ y−2 Þ�a0b0 ;
ð33Þ

where we define a path ordered exponential with arbitrary
beginning and end points by

UðjÞðx−2 ; x−1 Þ ¼ P exp

�
−ig

Z
x−
2

x−
1

n · AðjÞðnλÞ
�
; ð34Þ

noting that

UðjÞðx2; x1Þ† ¼ UðjÞðx1; x2Þ: ð35Þ

For a color-singlet projection, the two path-ordered expo-
nentials thus overlap and cancel each other outside the
region between the heavy quark pair.
The octet projection in Eq. (19) can be introduced in the

final state at x− ¼ ∞, or at a finite distance, which we may
think of as a three-gauge link “junction.” In this case, only
an adjoint gauge link will connect the two matrix elements,
and should be chosen to extend to infinity in the nμ

direction within the matrix elements, to preserve gauge
invariance. A similar construction is necessary for octet
matrix elements in nonrelativistic QCD [47].

y1y+y2 0y

'
P

d

P

Q

l

QP
k

P

Q

ji

P
a

Q
'

b

P

c

FIG. 11 (color online). Feynman diagram representation of
heavy quark pair fragmentation functions.
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A general form consistent with gauge invariance is, for the right-hand matrix element in Eq. (31),

hHðpÞXjψ̄a0;iðy−Þ½ΦðFÞ
n ðy−Þ�†a0aðtCÞab½ΦðFÞ

n ðy− þ y−2 Þ�bb0ψb0;jðy− þ y−2 Þj0i
¼ hHðpÞXjψ̄a0;iðy−Þ½UðFÞ

n ðy−; x−Þ�a0a½UðAÞ
n ð∞; x−Þ�CC0 ðtC0 Þab

× ½UðFÞðx−; y− þ y−2 Þ�bb0ψb0;jðy− þ y−2 Þj0i; ð36Þ

where now adjoint index C0 will be summed against the conjugate (left-hand) matrix element. The junction has been chosen
at an arbitrary point x−, and we show below that the product does not depend on x−. The identity in Eq. (36) is illustrated
in Fig. 12.
Independence of x− follows from the defining differential equations for an ordered exponential in the minus direction,

∂
∂w−U

ðjÞðw−; z−Þ ¼ −igtðjÞe Aþ
e ðw−ÞUðjÞðw−; z−Þ;

∂
∂z−U

ðjÞðw−; z−Þ ¼ UðjÞðw−; z−Þ½igtðjÞe Aþ
e ðz−Þ�; ð37Þ

where the product is in group indices of representation j.
Equation (37) allows us to evaluate the change of the junction product with x−,

∂
∂x− ½U

ðFÞ
n ðy−; x−Þ�a0a½UðAÞ

n ð∞; x−Þ�CC0 ðtC0 Þab½UðFÞðx−; y− þ y−2 Þ�bb0

¼ igAþ
E ðx−Þ½UðFÞ

n ðy−; x−Þ�a0a½UðAÞ
n ð∞; x−Þ�CDð½tE; tD�ab þ ðTEÞDC0 ðtC0 ÞabÞUðFÞ

bb0 ðx−; y−Þ; ð38Þ

where we have relabeled index C0 toD in the first term, and
ðTEÞDC0 in the second term is the generator in the adjoint
representation. We now recall the Lie algebra basics,

½tE; tD�ij ¼ ifEDC0 ðtC0 Þij; ðTEÞDC0 ¼ −ifEDC0
; ð39Þ

to confirm that the derivative vanishes. As a result, the
junction between the gauge links in fundamental and
adjoint representation may be placed anywhere on the
light cone.
In summary, for color singlet fragmentation functions,

no gauge link is necessary between the two matrix elements
of the heavy quark pair, while for fragmentation of an octet
pair, the matrix elements can be connected by a gauge link
in adjoint representation, as in NRQCD [23,47]. In the

latter case, the adjoint link connects at each end to a
junction of two finite gauge links in fundamental repre-
sentation at an arbitrary location on the light cone.

IV. THE EVOLUTION OF FRAGMENTATION
FUNCTIONS

In this section, we develop a closed set of evolution
equations for both single-parton and heavy quark pair
fragmentation functions, which are necessary to evaluate
heavy quarkonium production at collider energies at the
accuracy of 1=p2

T power corrections. We calculate the
evolution kernels that appear in these equations to low-
est order.

A. The evolution equations

A QCD factorization formalism for a physical observ-
able, like the one in Eq. (4), necessarily leads to evolution
equations for the variation of the factorization scale. This is
because a physical cross section for heavy quarkonium
production should not depend on the choice of the
factorization scale μ,

0 ¼ d
d ln μ2

dσAþB→HþXðPÞ

¼ d
d ln μ2

fDf→Hðμ; mQÞ ⊗ dσ̂AþB→fþXðμ; pTÞþ

þD½QQ̄ðκÞ�ðμ; mQÞ ⊗ dσ̂AþB→½QQ̄ðκÞ�þXðμ; pTÞg; ð40Þ
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FIG. 12 (color online). A schematic illustration of Eq. (36),
where thin lines are for gauge links in the fundamental repre-
sentation, while the thick line is for the gauge link in the adjoint
representation.
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where the symbol ⊗ represents the convolutions of parton
momentum fraction shown in Eq. (4). As indicated by
the choice of arguments, the fragmentation functions, D,
are independent of pT and other kinematic invariants of the
hard scattering, and the hard-scattering functions, dσ̂, are
independent of the heavy quark mass. They share depend-
ence only on the convolution variables and αsðμÞ. By
applying the physical condition (40) to the factorization

formula in Eq. (4) perturbatively, and demanding that the
LP and NLP terms in 1=p2

T vanish, we derive a closed set
of evolution equations for the single-parton and heavy
quark pair fragmentation functions to this accuracy, as we
now show.
Consider first the leading power in the 1=p2

T expansion,
keeping only the first term on the right-hand side of Eq. (4).
The physical condition in Eq. (40) requires

� ∂
∂ ln μ2 Df→Hðz; μ2;mQÞ

�
⊗ dσ̂AþB→fðpcÞþXðpc ¼ p=z; μ2Þ

þDf→Hðz; μ2;mQÞ ⊗
� ∂
∂ ln μ2 dσ̂AþB→fðpcÞþXðpc ¼ p=z; μ2Þ

�
¼ 0; ð41Þ

order by order in powers of αs. In Eq. (41), the factorization
scale, μ dependence of the short distance function,
dσ̂AþB→fðpcÞþX, is a result of subtracting the collinear
logarithmic divergences of the partonic cross section,
which are generated by radiation from the fragmenting
(single) parton. For example, the diagram in Fig. 13 (left)
contributes to the production cross section, and has the
following logarithmic collinear divergence from the radi-
ation of the final-state gluon:

Z
Oðp2

TÞ dk2T
k2T

≡
Z

Oðp2
T Þ

μ2

dk2T
k2T

þ
Z

μ2 dk2T
k2T

: ð42Þ

The first term on the right is short distance in nature and
gives the factorization scale μ dependence to σ̂AþB→fðpcÞþX
in Eq. (41), while the second term is absorbed into the
gluon fragmentation function to a heavy quarkonium. That
is, ∂dσ̂=∂ ln μ2 is one power of αs higher than dσ̂ in
Eq. (41), and perturbatively, we have

∂
∂ ln μ2Df→Hðz; μ2;mQÞ

¼
X
f0

Z
1

z

dz0

z0
Df0→Hðz0; μ2;mQÞγf→f0 ðz=z0; αsÞ; ð43Þ

where
P

f0 runs over all parton flavors and γf→f0 ðz=z0; αsÞ
are the perturbatively calculable evolution kernels for a
parton of flavor f and momentum fraction z to evolve into
another parton of flavor f0 carrying the momentum fraction
z0. Equation (43) is the well-known leading power DGLAP
evolution equation for the fragmentation functions. Notice
that to calculate the kernel at this order we do not need an
explicit regularization for the k2T → 0 limit, which appears
in these calculations only in intermediate steps. We now
show how to extend this reasoning to the next power in pT .
Applying the physical condition in Eq. (40) to the

factorization formalism in Eq. (4), including the NLP term,
we obtain

0 ¼ D0
f→H ⊗ σ̂AþB→fðpcÞþX þD0

½QQ̄ðκÞ�→H ⊗ dσ̂AþB→½QQ̄ðκÞ�ðpcÞþX

þDf→H ⊗ σ̂0AþB→fðpcÞþX þD½QQ̄ðκÞ�→H ⊗ dσ̂0AþB→½QQ̄ðκÞ�ðpcÞþX; ð44Þ
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FIG. 13 (color online). Left: A sample Feynman diagram responsible for the leading logarithmic fragmentation contribution to heavy
quarkonium production at the leading power in 1=pT . Right: A sample diagram that generates powerlike collinear divergence,
responsible for the creation of a heavy quark pair between the distance scales 1=pT and 1=μ0 ∼ 1=ð2mQÞ, and for the nonlinear mixing
evolution from a gluon to a fragmenting heavy quark pair, as well as power-suppressed short-distance contributions to the production of
a heavy quark pair.

HEAVY QUARKONIUM PRODUCTION AT COLLIDER … PHYSICAL REVIEW D 90, 034006 (2014)

034006-17



where the prime represents ∂=∂ ln μ2, and repeated partonic
indices are summed over. In this expression, the leading-
power hard scattering function dσ̂AþB→fþXðpT; μÞ is al-
ready fully determined at leading power, including its μ
dependence, which is specified by Eq. (43), and which we
can represent as

dσ̂0AþB→fþX ¼ −γf0→f ⊗ dσ̂AþB→f0þX: ð45Þ

In contrast, the nonleading-power short distance function in
Eq. (44), dσ̂AþB→½QQ̄ðκÞ�ðpcÞþX, which describes the produc-
tion of a heavy quark pair, has two types of factorization
scale dependence.
The first source of μ dependence in dσ̂AþB→½QQ̄ðκÞ�ðpcÞþX

comes from absorbing collinear logarithmic divergences in
the evolution of the heavy quark pairs themselves. This is
analogous to the μ dependence in Eq. (43). It is propor-
tional to dσ̂AþB→½QQ̄ðκÞ� and hence its kernel is dimension-
less. The second source of factorization scale dependence is

from the production of a heavy quark pair from a light
parton, or a single heavy quark or antiquark, and is hence
proportional to dσ̂AþB→fþX. As a result, this kernel has
dimensions of inverse mass squared. The only available
scale is μ itself, because the heavy quark distribution shares
only this scale with the hard scatterings. We thus have for
the μ derivatives of quark pair hard scattering functions,

dσ̂0AþB→½QQ̄ðκÞ�ðpcÞþX

¼ −Γ½QQ̄ðκ0Þ�→½QQ̄ðκÞ� ⊗ dσ̂AþB→½QQ̄ðκ0Þ�þX

−
1

μ2
γf0→½QQ̄ðκÞ� ⊗ dσ̂AþB→f0þX; ð46Þ

where γf0→½QQ̄½κ� is dimensionless. To cancel the resulting
dependence in Eq. (44), we must supplement the leading
power evolution equation in Eq. (43) by adding a power
correction in μ2, as (first in schematic, then in detailed form)

∂
∂ ln μ2 Df→Hðz; μ2;mQÞ ¼ Df0→H ⊗ γf→f0 þ

1

μ2
D½QQ̄ðκ0Þ�→H ⊗ γf→½QQ̄ðκ0Þ�

¼
X
f0

Z
1

z

dz0

z0
Df0→Hðz0; μ2;mQÞγf→f0 ðz=z0; αsÞ

þ 1

μ2
X

½QQ̄ðκ0Þ�

Z
1

z

dz0

z0

Z
1

0

du0
Z

1

0

dv0D½QQ̄ðκ0Þ�→Hðz0; u0; v0; μ2;mQÞ

× γf→½QQ̄ðκ0Þ�ðz=z0; u0; v0; αsÞ; ð47Þ

where the mass dimension of μ2 compensates the dimen-
sion of the heavy quark pair fragmentation function
D½QQ̄ðκ0Þ�→H, and where the evolution kernels are process
independent and can be calculated perturbatively, as will be
done in the next subsection.
The pattern just illustrated, in which a pair of partons

(in this case heavy quarks) is produced in the course of
evolution of single partons (whether quark, antiquark or
gluon), is analogous to a similar effect in the evolution

of gluon distributions, as analyzed in the context of
nuclear shadowing in Refs. [56–58]. By analogy to that
case, for very large values of pT , leading-power
evolution should dominate the relevant cross section. At
the same time, measured fragmentation functions may be
expected to show substantial contributions from lower,
but still perturbative, values of factorization scales,
where they mix strongly with quark pair fragmentation
functions.
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FIG. 14 (color online). Left: A sample Feynman diagram responsible for the leading logarithmic fragmentation contribution to heavy
quarkonium production at the next-to-leading power in the 1=pT expansion. Right: A diagram that gives a correction to the short
distance function for producing a single fragmenting gluon. Because it is free of collinear divergence, this diagram does not generate
mixed evolution from a heavy quark pair to a single fragmenting parton.
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In addition to diagrams similar to the one in Fig. 13
(right), which generate the powerlike collinear divergence,
there are diagrams, like the one in Fig. 14 (left), that
contribute to the partonic hard part dσ̂AþB→½QQ̄ðκÞ�ðpcÞþX

in Eq. (44) with logarithmic factorization scale, μ depend-
ence from subtracting logarithmic collinear divergences
generated by radiation from the pair. Just as in Eq. (42),
the logarithmic divergences are absorbed into the non-
perturbative fragmentation functions, in this case, into
the heavy quark pair fragmentation functions, while the
finite first term contributes to the partonic hard part
dσ̂AþB→½QQ̄ðκÞ�ðpcÞþX in Eq. (44). The derivative ∂=∂ ln μ2
on dσ̂AþB→½QQ̄ðκÞ�ðpcÞþX, when combined perturbatively
with the term proportional to the derivative of
D½QQ̄ðκÞ�→H in Eq. (44), because of their common overall
1=p2

T dependence, leads to a linear evolution equation for
the heavy quark pair fragmentation functions,

∂
∂ ln μ2D½QQ̄ðκÞ�→Hðz; u; v; μ2;mQÞ

¼
X

½QQ̄ðκ0Þ�

Z
1

z

dz0

z0

Z
1

0

du0
Z

1

0

dv0

×D½QQ̄ðκ0Þ�→Hðz0; u0; v0; μ2;mQÞ
× Γ½QQ̄ðκÞ�→½QQ̄ðκ0Þ�ðz=z0; u; v; u0; v0;αsÞ; ð48Þ

where the evolution kernels, Γ, are process independent.
They will be calculated to first nontrivial order later in this
section. In Eqs. (47) and (48), we keep only the first
subleading power corrections involving fragmentation of
heavy quark pairs, and neglect other power correction
terms, as discussed in Sec. II. Combining Eqs. (47) and
(48), we have a closed set of evolution equations for single-
parton and heavy quark pair fragmentation functions to
heavy quarkonium.
As we shall see, the power dependence in Eq. (46) arises

diagrammatically from subtracting powerlike collinear
divergences in the partonic cross section, which result
from a single parton evolving into a heavy quark pair by
radiating a light parton, for example, as illustrated by the
diagram in Fig. 13 (right). For the heavy quark pair
produced in either a vector, an axial vector, or a tensor
state, as discussed in Sec. III below Eq. (25), or from
explicit calculations below in this section, only the contact
term of the gluon propagator in Fig. 13 (right) contributes
to the partonic cross section to produce a pair of heavy
quarks. In the limit pT ≫ mQ, or equivalently neglecting
the heavy quark mass, all partonic diagrams similar to
Fig. 13 (right), including those in which the final-state
gluon is radiated from either the gluon or the heavy (anti)
quark, have a powerlike collinear divergence,

Z
Oðp2

TÞ dk2T
ðk2TÞ2

≡
Z

Oðp2
TÞ

μ2

dk2T
ðk2TÞ2

þ
Z

μ2 dk2T
ðk2TÞ2

: ð49Þ

Similar to Eq. (42), the first term on the right in Eq. (49)
contributes to the partonic hard parts, while the second
term is absorbed into the nonperturbative fragmentation
function, in this case, into the single gluon fragmentation
function. As in Eq. (49), we need not regulate the
k2T → 0 limit, because we need only the dependence on
μ in the short-distance functions.
Taken together, Eqs. (47) and (48) control the evolution

and mixing of single-parton and quark pair fragmentation
functions. As we have seen, they are a direct result of
factorization at leading and next-to-leading power, Eq. (4).
Mixing proceeds through the evolution of the single-parton
fragmentation functions, which feeds into the heavy pair
fragmentation functions at order 1=μ2, while the evolution
of the heavy pair fragmentation function is diagonal. As
noted above, this is the same pattern that is encountered in
the evolution equations linking single- to two-gluon dis-
tributions in nuclear shadowing [56–58]. The power
correction to single-parton evolution is necessary to organ-
ize the production of heavy quark pairs at time scales
between the short-distance scale 1=pT and the scale
associated with the heavy quark mass, 1=mQ. In this
evolution, the heavy quark mass serves as a collinear
infrared cutoff, so that the single-power correction domi-
nates over the entire range of evolution to which perturba-
tion theory can be applied.3

The combination of the factorization formula in Eq. (4)
and the evolution equations in Eq. (47) organizes contri-
butions to the production of heavy quark pairs according to
distance scales (or times) where (or when) the pair was
produced. The first term in Eq. (4) describes the production
of the heavy quark pairs at any fixed time after the initial
hard collision. This term behaves as 1=p4

T . The second term
describes pair production right at the hard collision, and
behaves as 1=p6

T . It is important to emphasize, however,
that the 1=p4

T term includes contributions from pairs
produced at any fixed time scale smaller than 1=mQ.
The full evolution equation of the single-parton fragmen-
tation function in Eq. (47) describes how the heavy quark
pair is produced at any intermediate, but still perturbative,
scale in the fragmentation process. The DGLAP, leading
power contribution, the first term on the right of Eq. (47),
describes the evolution of the single active parton before
the creation of the heavy quark pair. The power suppressed

3We also note in passing that these evolution equations, in
which the logarithmic derivatives of matrix elements of lower-
dimension operators give terms proportional to (“mix with”)
matrix elements of higher dimension operators, but not vice versa
[or not from the process like the one in Fig. 14 (right)], is the
opposite of the mixing found from the renormalization of
composite operators with dimension greater than 4. The matrix
elements of such operators will involve positive powers of a UV
cutoff μ in general, and derivatives of these matrix elements will
generate matrix elements of operators with lower, rather than
higher, dimension. The essential difference is that the latter are
ultraviolet divergences, and the former collinear singularities.

HEAVY QUARKONIUM PRODUCTION AT COLLIDER … PHYSICAL REVIEW D 90, 034006 (2014)

034006-19



second term in Eq. (47) then organizes the production of the
heavy quark pair at any stage during the evolution. Pairs
produced at intermediate times then evolve according to
Eq. (48), in general changing their spin and color through
radiation. If the evolution equation (47) has only the
DGLAP term on the right, the evolved single-parton
fragmentation function is restricted to the situation when
the heavy quark pair is produced at the latest times, 1=mQ
or beyond. The presence of the second term in the evolution
equation, Eq. (47), the mixing term, completes the picture
by allowing the production of heavy quark pairs between
the time scale of the initial hard collision, 1=pT and the
time scale of 1=mQ.

B. Kernels of mixed evolution

In this subsection, we present our calculation of the new
evolution kernels, γf→½QQ̄ðκ0Þ�ðz=z0; u0; v0; αsÞ, which are
responsible for the evolution of a single parton of flavor
f to a heavy quark pair, at the first nontrivial order in αs.
Wewill extract evolution kernels below by evaluating the

factorization scale dependence of parton fragmentation
functions. Because evolution kernels are perturbative, we
can derive them by studying the scale dependence of parton
fragmentation functions to partonic states. More specifi-
cally, for extracting the kernel, γf→½QQ̄ðκ0Þ�ðz=z0; u0; v0; αsÞ,
we apply the factorized evolution equations in Eq. (47) to
states of a perturbative heavy quark pair, H ¼ ½QQ̄ðκ0Þ�,
where κ0 represents a spin and color state of the pair. In this
way, both single quark and gluon fragmentation functions
to a heavy quark pair can be represented by Feynman
diagrams, as shown in Fig. 15, with the following cut
vertex:

VqðzÞ ¼
Z

d4pc

ð2πÞ4 z
2δ

�
z −

p · n
pc · n

��
1

Nc

XNc

i¼1

δi0i
γ · n

4pc · n

�

ð50Þ

for a quark fragmentation function, and cut vertex,

VgðzÞ ¼
Z

d4pc

ð2πÞ4 z
2δ

�
z −

p · n
pc · n

�

×

�
1

N2
c − 1

XN2
c−1

a¼1

δa0a

�
1

2
~dμνðpcÞ

��
ð51Þ

with

~dμνðpcÞ ¼ −gμν þ pμ
cnν þ nμpν

c

pc · n
−

p2
c

ðpc · nÞ2
nμnν; ð52Þ

for a gluon fragmentation function. In Eqs. (50) and (51), i
and a are color indices of fragmenting quark and gluon,
respectively.

To calculate the evolution kernels γð2Þf→½QQ̄ðκ0Þ�ðz=z0; u0; v0Þ
with f ¼ g; q; q̄; Q and Q̄, we first apply the evolution
equation in Eq. (47) to the production of a heavy quark pair
½QQ̄ðκ0Þ�ðz0; u0; v0Þ with total momentum p=z0, where z0, u0
and v0 specify the “þ” components of quark and antiquark
momenta, as shown in Fig. 15. We then expand both sides
of Eq. (47) to order α2s,

∂
∂ ln μ2D

ð2Þ
f→½QQ̄ðκ0Þ�ðz=z0; μ2; u0; v0Þ ¼

Z
z0

z

dz1
z1

Dð1Þ
g→½QQ̄ðκ0Þ�ðz1=z0; μ2; u0; v0Þγ

ð1Þ
f→gðz=z1Þ þ

1

μ2

Z
z0

z

dz1
z1

Z
1

0

du1

Z
1

0

dv1

×Dð0Þ
½QQ̄ðκ1Þ�→½QQ̄ðκ0Þ�ðz1=z0; u1; v1; u0; v0Þγ

ð2Þ
f→½QQ̄ðκ1Þ�ðz=z1; u1; v1Þ; ð53Þ

where the superscript ðiÞ with i ¼ 0; 1; 2 indicates the power in αs. With the zeroth order fragmentation function of the
heavy quark pair,

Dð0Þ
½QQ̄ðκ1Þ�→½QQ̄ðκ0Þ�ðz1=z0; u1; v1; u0; v0Þ ¼ δκ1κ

0
δð1 − z1=z0Þδðu1 − u0Þδðv1 − v0Þ; ð54Þ

we can rewrite Eq. (53) as

1

μ2
γð2Þf→½QQ̄ðκ0Þ�ðz=z0; u0; v0Þ ¼

∂
∂ ln μ2D

ð2Þ
f→½QQ̄ðκ0Þ�ðz=z0; μ2; u0; v0Þ

−
Z

z0

z

dz1
z1

Dð1Þ
g→½QQ̄ðκ0Þ�ðz1=z0; μ2; u0; v0Þγ

ð1Þ
f→gðz=z1Þ; ð55Þ
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FIG. 15 (color online). The generic Feynman diagrams for an
off-shell single parton (quark or gluon) to fragment into a heavy
quark pair.
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where Dð2Þ
f→½QQ̄ðκ0Þ�ðz=z0; μ2; u0; v0Þ is the order α2s fragmen-

tation function for a single parton of flavor f and mo-
mentum fraction z to fragment into a heavy quark pair
½QQ̄ðκ0Þ� with quark and antiquark momentum fractions
ðz0; u0; v0Þ, as shown in Fig. 15. For example, the left
diagram in Fig. 16 contributes to the light-quark fragmen-
tation function at this order. Equation (55) exhibits how
evolution kernels are proportional to the variation of the
fragmentation functions. The second term on the right in
Eq. (55) automatically removes contributions to the varia-
tion that have been included in the normal DGLAP
evolution. Higher order corrections to the evolution kernels
can be derived systematically in the same way by expand-
ing the evolution equation for fragmentation to a heavy
quark pair to higher order in αs.
To derive the mixing evolution kernel,

γð2Þf→½QQ̄ðκ0Þ�ðz=z0; u0; v0Þ, for a single fragmenting parton of

flavor f to evolve to a heavy quark pair, we need, according
to Eq. (55), to calculate the order α2s single-parton

fragmentation function, Dð2Þ
f→½QQ̄ðκ0Þ�ðz=z0; μ2; u0; v0Þ, and

the order αs heavy quark pair fragmentation function,

Dð1Þ
g→½QQ̄ðκ0Þ�ðz1=z0; μ2; u0; v0Þ from a gluon of intermediate

momentum fraction z1, since γð1Þf→gðz=z1Þ, the first order
DGLAP evolution, kernel is known.
For the fragmentation of a light quark, we need to

evaluate the Feynman diagrams in Fig. 16, where, without
losing generality, we can take z0 ¼ 1, u0 ¼ u, v0 ¼ v and
κ0 ¼ κ for simplicity of notation. The diagram on the left

contributes to Dð2Þ
q→½QQ̄ðκÞ�ðz; μ2; u; vÞ, while the diagram in

the middle and the one on the right contribute to

Dð1Þ
g→½QQ̄ðκÞ�ðz1; μ2; u; vÞ and γð1Þq→gðz=z1Þ, respectively.

From the decay of a gluon, as shown in Fig. 16, we can
only have a color octet heavy quark pair with a vector spin
projection, κ ¼ v8, which we impose by the operator
~PðvÞðpÞji;kl, Eq. (23). From the diagram on the left in
Fig. 16, we have in a light-cone gauge,

Dð2Þ
q→½QQ̄ðv8Þ�ðz; μ2; u; vÞ ¼ g4sCg

Z
d4pc

ð2πÞ4 θðμ
2 − p2

cÞz2δ
�
z −

pþ

pþ
c

�
Tr½γ · pγα�Tr½γ · pγβ�

×
PαμðpÞ
p2

PβνðpÞ
p2

Tr

�
γ · n
4pþ

c

γ · pc

p2
c

γνγ · ðpc − pÞγμ γ · pc

p2
c

�
ð2πÞδððpc − pÞ2Þ; ð56Þ

where the μ2 indicates the factorization scale dependence
of the partonic fragmentation function (see more dis-
cussion below), gs is the strong coupling constant, Cg ¼
ðN2

c − 1Þ=ð4NcÞ is the color factor, and PαμðpÞ [or PβνðpÞ]
is the gluon’s polarization tensor in n · A ¼ 0 light-cone
gauge,

PαμðpÞ ¼ −gαμ þ
pαnμ þ nμpα

p · n
: ð57Þ

Since we take the limit p2 → 0 for all evolution kernels and
perturbative hard parts, the parton-level fragmentation

function Dð2Þ
q→½QQ̄ðv8Þ�ðz; μ2; u; vÞ in Eq. (56) has a potential

power singularity in 1=p2, which we shall see is
absent. The same 1=p2 singularity also appears in

Dð1Þ
g→½QQ̄ðv8Þ�ðz1; μ2; u; vÞ from themiddle diagram in Fig. 16.

The factorization formalism ensures the cancellation of
power singularities in p2 between the two terms in Eq. (55).
At this order, such cancellation can be handled analytically,

by reorganizing Dð2Þ
q→½QQ̄ðv8Þ�ðz; μ2; u; vÞ. From Eq. (57), we

have

PαμðpÞ ¼
�
−gαμ þ

pαnμ þ nμpα

p · n
−

p2

ðp · nÞ2 nαnμ
�

þ p2

ðp · nÞ2 nαnμ

≡ ~dαμðpÞ þ
p2

ðp · nÞ2 nαnμ; ð58Þ
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FIG. 16 (color online). Left: Lowest order Feynman diagram (α2s ) for a light quark to fragment into a heavy quark pair. Center: Lowest
order Feynman diagram (αs) for a gluon to fragment into a heavy quark pair. Right: Lowest order Feynman diagram (αs) for a quark to
split into a gluon and a quark.
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where ~dαμðpÞ is defined as in the cut vertex of Eq. (52), and
represents the sum over the gluon’s physical polarizations.
It is transverse to both nμ and pμ,

pα ~dαμðpÞ ¼ nα ~dαμðpÞ ¼ 0: ð59Þ

Using Eq. (58), we rewrite the gluon propagator as

GαμðpÞ ¼ iPαμðpÞ
p2

¼ i ~dαμðpÞ
p2

þ inαnμ

ðp · nÞ2 ; ð60Þ

where the first term is the pole term, proportional to the
gluon’s physical polarization tensor, and the second term is
a contact term, or the “special propagator” [59],

Gαμ
s ðpÞ≡ inαnμ

ðp · nÞ2 : ð61Þ

Also, by construction, the two terms of the gluon propa-
gator in Eq. (60) are orthogonal, ~dαμðpÞGμν

s ðpÞ ¼ 0.
In general, in Eq. (56), the term with the apparent

1=p2 mass singularity is to be exactly canceled by the
subtraction term in Eq. (55), and the term with the
special gluon propagator, which does not have
the mass singularity, is the only one that contributes
to the short-distance evolution kernel. In this case,
however, since Tr½γ · pγα� ¼ 4pα and pα ~dαμðpÞ ¼ 0 the
terms with the apparent 1=p2 mass singularities in
Eq. (56) vanish,

Dð1Þ
g→½QQ̄ðv8Þ�ðz; μ2;u; vÞ ¼ g2sC

ð1Þ
g

Z
d4pc

ð2πÞ4 θðμ
2 − p2

cÞz2δ
�
z −

pþ

pþ
c

�

× Tr½γ · pγα�Tr½γ · pγβ�PαμðpcÞ
p2
c

PβνðpcÞ
p2
c

1

2
~dμνðpcÞð2πÞ4δ4ðp − pcÞ ¼ 0; ð62Þ

and similarly for the other terms involving the physical propagator.
By applying Eq. (60), we reexpress Dð2Þ

q→½QQ̄ðv8Þ�ðz; μ2; u; vÞ in Eq. (56) as

Dð2Þ
q→½QQ̄ðv8Þ�ðz; μ2; u; vÞ ¼ g4sCg

Z
d4pc

ð2πÞ4 θðμ
2 − p2

cÞz2δ
�
z −

pþ

pþ
c

�
Tr½γ · pγα�Tr½γ · pγβ�

��
nαnμ

ðp · nÞ2
��

nβnν
ðp · nÞ2

��

× Tr

�
γ · n
4pþ

c

γ · pc

p2
c

γνγ · ðpc − pÞγμ γ · pc

p2
c

�
ð2πÞδððpc − pÞ2Þ: ð63Þ

Therefore, from Eq. (55), we find the mixing evolution
kernel for a light quark to a heavy quark pair,

1

μ2
γð2Þq→½QQ̄ðv8Þ�ðz; u; vÞ ¼

∂
∂ ln μ2D

ð2Þ
q→½QQ̄ðv8Þ�ðz; μ2; u; vÞc;

ð64Þ
where the subscript c indicates the contact term, or special

propagator. The function Dð2Þ
q→½QQ̄ðv8Þ�ðz; μ2;u; vÞc is the

fragmentation function for a light quark to produce a heavy
quark pair with the mass singularity removed. It can be
represented by the diagram in Fig. 17, where the gluon line
with a short bar represents the special gluon propagator
defined in Eq. (61) [59].
From Eq. (63), or directly from the diagram in Fig. 17,

we have

Dð2Þ
q→½QQ̄ðv8Þ�ðz; μ2; u; vÞc

¼
Z

μ2 dp2
c

ðp2
cÞ2

α2s

�
N2

c − 1

4Nc

��
64ð1 − zÞ

z2

�
: ð65Þ

As above, the mixing kernel depends only on the integrand
at p2

c ¼ μ2, and is independent of the unphysical power

singularity at p2
c ¼ 0. We note that we could have used an

alternate choice for the factorization scale, as an upper limit
in an integration over p2

c⊥ ¼ p2
cð1 − zÞ=z,

Dð2Þ
q→½QQ̄ðv8Þ�ðz; μ2; u; vÞ

ð⊥Þ
c

¼
Z

μ2⊥ dp2
c⊥

ðp2
c⊥Þ2

α2s

�
N2

c − 1

4Nc

��
64ð1 − zÞ2

z3

�
: ð66Þ

In either case, it is clear from Eq. (65) that the fragmenta-
tion function for a single light quark to a heavy quark pair

k
p

p
c

FIG. 17 (color online). The lowest order (α2s ) contribution to the
mixing evolution kernel for a light quark to fragment into a heavy
quark pair. The gluon line with a short bar is given by the special
propagator in Eq. (61).
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has a powerlike collinear divergence, in contrast to the
logarithmic collinear divergence of leading twist single-
parton fragmentation functions. As noted above, this is
because the single parton and heavy quark pair fragmenta-
tion functions have different mass dimension. The mixing
evolution kernels thus have dimension 1=mass2. Because of
the mass dimension, the normalization of this evolution
kernel is sensitive to the choice of the factorization scale μ2.
In Eq. (65), we identify the factorization scale as a cutoff on
the invariant mass of fragmenting quark, p2

c [60,61].
Instead of the invariant mass, we could have used another
variable to regularize the power collinear divergence, such
as the transverse momentum of the fragmenting quark, p2

c⊥,
as in Eq. (66). Different functional choices of the factori-
zation scale leads to a different z dependence of the quark
fragmentation to heavy pair fragmentation function, and
hence the corresponding mixing evolution kernel given
below. Since the fragmentation process is kinematically
similar to a decay process for the active fragmenting parton,
however, the cutoff on the invariant mass of the fragment-
ing parton not only regularizes the collinear divergence, but
also controls the available phase space for the fragmenta-
tion process and gives the correct threshold behavior if we
produce a massive particle, such as heavy quarkonium
[60,61]. This is the choice we shall make.
In summary, then, from Eq. (65), we obtain the mixing

evolution kernel for a quark to fragment into a vector heavy
quark pair with octet color,

γð2Þq→½QQ̄ðv8Þ�ðz; u; vÞ ¼ α2s

�
N2

c − 1

4Nc

��
64ð1 − zÞ

z2

�
; ð67Þ

when the factorization scale is chosen to be a cutoff on the
invariant mass of the fragmenting quark. Similarly, we find
that the evolution kernel for the fragmentation of a light
antiquark to a color octet vector heavy quark pair is equal to
that of the corresponding quark,

γð2Þq̄→½QQ̄ðv8Þ�ðz; u; vÞ ¼ γð2Þq→½QQ̄ðv8Þ�ðz; u; vÞ; ð68Þ

while the mixing evolution kernels for a light quark to other
channels of heavy quark pairs vanish.
Similar to the analysis of quark fragmentation after

Eq. (64), following the same reasoning for gluon fragmen-
tation we find

1

μ2
γð2Þg→½QQ̄ðκÞ�ðz; u; vÞ ¼

∂
∂ ln μ2 D

ð2Þ
g→½QQ̄ðκÞ�ðz; μ2;u; vÞc;

ð69Þ

where the subscript c again indicates the use of contact
terms or special propagators. In this case, the order α2s
fragmentation function for a gluon to a heavy quark pair is
given by the square of the three diagrams in Fig. 18. The
diagram with a gluon special propagator is necessary for
gauge invariance of the mixing kernels for a gluon to
fragment into a color octet heavy quark pair. As an
example, we present here the detailed derivation of the
kernel for a gluon to a color singlet heavy quark pair with
the vector spin projection ½QQ̄ðv1Þ�.
The diagram on the right in Fig. 18 does not contribute to

the production of a color singlet pair. We only need to
evaluate contributions from the other two diagrams. From
the square of the diagram on the left in Fig. 18, we have

Dð2−llÞ
g→½QQ̄ðv1Þ�ðz; μ2; u; vÞ ¼ g4sC

ðsÞ
g

Z
d4pc

ð2πÞ4 θðμ
2 − p2

cÞz2δ
�
z −

pþ

pþ
c

��
1

2
~dμνðpcÞ

�

× Tr½γ · pγργ · ðup − pcÞγα�Tr½γ · pγβγ · ðvp − pcÞγσ�
PμρðpcÞ

p2
c

PσνðpcÞ
p2
c

×
1

ðup − pcÞ2
1

ðvp − pcÞ2
Pαβðpc − pÞð2πÞδððpc − pÞ2Þ

¼
Z

μ2 dp2
c

ðp2
cÞ2

α2s

�
1

4Nc

��
8z2ð2u − 1Þð2v − 1Þ − 8zðuþ v − 1Þ þ 4

ð1 − uÞð1 − vÞ
�
; ð70Þ

where the superscript ð2 − llÞ indicates the square of the diagram on the left at the order of α2s . The color factor for the
singlet channel is CðsÞg ¼ 1=ð4NcÞ. After adding contributions that include the crossed diagrams, we derive the partonic
fragmentation function from a gluon to a color singlet heavy quark pair,

Dð2Þ
g→½QQ̄ðv1Þ�ðz; μ2; u; vÞ ¼

Z
μ2 dp2

c

ðp2
cÞ2

ð4α2sÞ
�

1

4Nc

�
½z2 þ ð1 − zÞ2�

�ðu − ūÞðv − v̄Þ
uūvv̄

�
; ð71Þ

pu

c
p

(1-u)p

p
c p

p

c

FIG. 18 (color online). Diagrams that contribute to the splitting
function for a gluon to fragment into a heavy quark pair.
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where the factor ½1=4Nc� represents the color factor, and
where as above ū ¼ 1 − u and v̄ ¼ 1 − v. As discussed
above, if we choose the factorization scale to be a cutoff on
the transverse momentumof fragmenting gluon,p2

c⊥, wewill
have an extra factor ð1 − zÞ=z on the right of this expression.
From Eqs. (69) and (71), we obtain the mixing evolution

kernel for a gluon to fragment into a heavy quark pair of the
state κ ¼ v1,

γð2Þg→½QQ̄ðv1Þ�ðz; u; vÞ ¼ ð4α2sÞ
�

1

4Nc

�
½z2 þ ð1 − zÞ2�

×

�ðu − ūÞðv − v̄Þ
uūvv̄

�
: ð72Þ

A different choice of the factorization scale would result in
a different expression for the evolution kernel in Eq. (72),
but the difference would be finite and perturbative, and
absorbed into the corresponding fragmentation function.
Evolution kernels for a gluon to fragment into a heavy
quark pair in other color and spin states are derived
similarly, and the results are presented in Appendix B.
In addition to the evolution kernels from a light quark

and a gluon to a heavy quark pair, we also need evolution
kernels for a heavy quark (and antiquark) to fragment into
a heavy quark pair, which could be important when

pT ≫ mQ. The heavy quark (or antiquark) evolution
kernels can be derived in the same way,

1

μ2
γð2ÞQ→½QQ̄ðκÞ�ðz; u; vÞ ¼

∂
∂ ln μ2 D

ð2Þ
Q→½QQ̄ðκÞ�ðz; μ2; u; vÞc;

ð73Þ
where the subscript c indicates the use of contact terms
(with a bar as shown in Fig. 19). The fragmentation
function for a heavy quark to a pair can be derived from
the square of diagrams in Fig. 19. Differently from the
fragmentation of a light quark or a gluon at this order, a
heavy quark can fragment into a heavy quark pair with a
transverse spin from the square of the diagram on the left in
Fig. 19. In this case, we find

Dð2Þ
Q→½QQ̄ðt1Þ�ðz; μ2; u; vÞc ¼ g4sC

ðsÞ
Q

Z
d4pc

ð2πÞ4 θðμ
2 − p2

cÞz2δ
�
z −

pþ

pþ
c

�
ð2πÞδððpc − pÞ2Þ

×
1

4p · n
Tr½γ · nγ · pcγ

νγρ⊥γ · pγμγ · ðpc − pÞγβγ · pγσ⊥γαγ · pc�

×

�
1

p2
c

�
2 Pαβðpc − upÞ

ðpc − upÞ2
Pμνðpc − vpÞ
ðpc − vpÞ2 PρσðpÞ

¼
Z

μ2 dp2
c

ðp2
cÞ2

α2s

�
C2
F

Nc

�
8ð1 − zÞz2

ū v̄ð1 − zuÞð1 − zvÞ ; ð74Þ

where CF ¼ ðN2
c − 1Þ=2Nc and the color factor

CðsÞQ ¼ C2
F=Nc. From Eq. (73), we obtain the mixing

evolution kernel for a heavy quark to fragment into a
heavy quark pair with a transverse spin,

γð2ÞQ→½QQ̄ðt1Þ�ðz;u;vÞ ¼ α2s

�
C2
F

Nc

��
8ð1− zÞz2

ū v̄ð1−uzÞð1−vzÞ
�
: ð75Þ

Other mixing evolution kernels from a heavy quark or an
antiquark to various color and spin states of a heavy quark
pair are given in Appendix B.

C. Kernels for quark pair evolution

In this subsection, we present the calculation of evolution
kernels for a heavy quark pair to fragment into another heavy
quark pair: Γ½QQ̄ðκÞ�→½QQ̄ðκ0Þ�ðz=z0; u; v; u0; v0; αsÞ at order αs.
Similarly to the calculation of evolution kernels for a

single parton to fragment into a heavy quark pair, we apply
the evolution equation in Eq. (48) to the production of a
heavy quark pair ½QQ̄ðκ0Þ� of total momentum p=z0, using
the pair as state H, as shown in Fig. 20. We then expand
both sides of Eq. (48) to order αs,

∂
∂ ln μ2D

ð1Þ
½QQ̄ðκÞ�→½QQ̄ðκ0Þ�ðz=z0; u; v; u0; v0; μ2Þ ¼

X
½QQ̄ðκ1Þ�

Z
z0

z

dz1
z1

Z
1

0

du1

Z
1

0

dv1 ×Dð0Þ
½QQ̄ðκ1Þ�→½QQ̄ðκ0Þ�ðz1=z0; u1; v1; u0; v0Þ

× Γð1Þ
½QQ̄ðκÞ�→½QQ̄ðκ1Þ�ðz=z1; u; v; u1; v1Þ: ð76Þ

c
p

u (1-u)pp

c
p

p

FIG. 19 (color online). Diagrams that contribute to the mixing
evolution kernel for a heavy quark to fragment into a heavy
quark pair.
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Using the zeroth order fragmentation in Eq. (54), we find

Γð1Þ
½QQ̄ðκÞ�→½QQ̄ðκ0Þ�ðz=z0; u; v; u0; v0Þ

¼ ∂
∂ ln μ2D

ð1Þ
½QQ̄ðκÞ�→½QQ̄ðκ0Þ�ðz=z0; u; v; u0; v0; μ2Þ: ð77Þ

That is, the evolution kernels of heavy quark pair frag-
mentation functions are given by the variation of the heavy
quark pair fragmentation functions with respect to the
factorization scale.
The heavy quark pair fragmentation functions for a pair

of total momentum pc ¼ PQ þ PQ̄ with spin-color state
½QQ̄ðκÞ� to evolve into another pair of total momentum
p=z0 with spin-color state ½QQ̄ðκ0Þ� are given by calculating
the cut diagrams represented in Fig. 20. The bottom of the
diagram is contracted with the momentum space cut vertex
given in Eq. (30), while the top of the diagram is contracted
with the spin and color projection operators, ~PðsÞðp=z0Þ and
~CðIÞ, in Eqs. (23) and (20), respectively. Without losing any
generality, we can set z0 ¼ 1 in Eq. (77).
At order αs, the heavy quark pair fragmentation function

can receive contributions from the squares of diagrams with
real gluon radiation in Fig. 21, as well as from interference
between the diagrams with a virtual gluon in Fig. 22 and the
lowest order diagram [same as the diagram (a) without the
gluon]. Both real and virtual contributions to the parton
level fragmentation functions have logarithmic ultraviolet
and collinear singularities that share the same coefficients
at this order, while the infrared divergences of these
diagrams cancel among themselves, as they must, from

the factorization. From Eq. (77), the evolution kernels

Γð1Þ
½QQ̄ðκÞ�→½QQ̄ðκ0Þ� can be read off as the coefficients of the

logarithmic divergences, and do not depend on the regu-
larization and factorization scheme. In the following, we
describe our calculation for the evolution kernels by
deriving the coefficients of the logarithmic divergences
from both the real and virtual diagrams in Figs. 21 and 22.
As an example, we provide in the remainder of this
subsection the detailed derivation of the evolution kernel
for a heavy quark pair of quantum numbers v8 to another
pair with the same quantum numbers, v8. Calculations for
evolution kernels between other quark-antiquark states
are very similar, and complete results are given in
Appendix C.
In n · A ¼ 0 light-cone gauge, diagrams (c) and (d) in

Fig. 21 do not contribute. As an example, the square of
diagram (a), as sketched in Fig. 23, has the expression

Dð1;R−aa†Þ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ ¼ g2sCa

Z
d4pc

ð2πÞ4
d4q1
ð2πÞ4

d4q2
ð2πÞ4

d4k
ð2πÞ4 θðμ

2 − p2
c⊥Þ

× ð2πÞ4δ4ðpc − pþ − kÞz2δ
�
z −

pþ

pþ
c

�
δ

�
u −

1

2
−
qþ1
pþ
c

�
δ

�
v −

1

2
−
qþ2
pþ
c

�

× ð2πÞ4δ4
�
pc

2
− q1 − ū0pþ

�
ð2πÞ4δ4

�
pc

2
− q2 − v̄0pþ

�
ð2πÞδðk2ÞPαβðkÞ

×
1

4pþ
c
Tr½γ · nγ · pγβγ · ðpc=2þ q1Þ�

1

ðpc=2þ q1Þ2 þ iε

×
1

4pþ
c
Tr½γ · nγ · ðpc=2þ q2Þγαγ · p�

1

ðpc=2þ q2Þ2 − iε
; ð78Þ

where μ2 dependence can be a cutoff on either p2
c or p2

c⊥ since we are only interested in the coefficient of the logarithmic
divergence. In this expression, Ca ¼ ðN2

c − 2Þ=ð2NcÞ is the color factor and PαβðkÞ is the gluon polarization tensor given in
Eq. (57). Using the δ functions to fix phase space integration over pc; q1, and q2, and

Z
d4k
ð2πÞ4 θðμ

2 − k2⊥Þð2πÞδðk2Þ ¼
1

16π2

Z
μ2

dk2⊥
Z

∞

0

dkþ

kþ

Z
dk−δ

�
k− −

k2⊥
2kþ

�
; ð79Þ

we obtain

P
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'
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z

Q
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FIG. 20 (color online). Generic Feynman diagrams for an off-
shell pair of heavy quarks to fragment into an on-shell heavy
quark pair.
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Dð1;R−aa†Þ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ ¼

Z
μ2 dk2⊥

k2⊥

�
αs
2π

�
N2

c − 2

2Nc

�
u
u0
þ z

��
v
v0
þ z

�

× δðū − zū0Þδðv̄ − zv̄0Þ z
2

Z
pþ=z

0

dkþ

kþ
δ

�
1 − zþ kþ

pþ=z

�
; ð80Þ

where the upper limit of the kþ integration is constrained by pþ=z due to the delta function. The square of diagram (b) in
Fig. 21 and the interference contribution from diagrams (a) and (b) have similar expressions and we obtain total real
contribution at this order,

Dð1;RÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v;u0; v0; μ2Þ ¼

Z
μ2 dk2⊥

k2⊥

�
αs
2π

�
z
2

Z
pþ=z

0

dkþ

kþ
δ

�
1 − zþ kþ

pþ=z

�

×

�
N2

c − 2

2Nc

�
u
u0
þ z

��
v
v0
þ z

�
δðū − zū0Þδðv̄ − zv̄0Þ

þ 1

Nc

�
u
u0
þ z

��
v̄
v̄0
þ z

�
δðū − zū0Þδðv − zv0Þ

þ 1

Nc

�
ū
ū0
þ z

��
v
v0
þ z

�
δðu − zu0Þδðv̄ − zv̄0Þ

þ N2
c − 2

2Nc

�
ū
ū0
þ z

��
v̄
v̄0
þ z

�
δðu − zu0Þδðv − zv0Þ

�

≡
Z

μ2 dk2⊥
k2⊥

�
αs
2π

��
1

2Nc

�
SþΔ½8�

−
z
2

Z
pþ=z

0

dkþ

kþ
δ

�
1 − zþ kþ

pþ=z

�
; ð81Þ
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FIG. 21. Feynman diagrams with real gluon radiation that contribute to the first order evolution kernels of heavy quark pair
fragmentation functions.. The double line represents the eikonal propagator from the ordered exponentials (gauge links).
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FIG. 22 (color online). Feynman diagrams with a virtual gluon that contribute to the first order evolution kernels of heavy quark pair
fragmentation functions.
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where we define

S� ¼
�
u
u0
� ū
ū0

��
v
v0
� v̄
v̄0

�
;

Δ½8�
� ¼ fðN2

c − 2Þ½δðu − zu0Þδðv − zv0Þ
þ δðū − zū0Þδðv̄ − zv̄0Þ�
∓2½δðu − zu0Þδðv̄ − zv̄0Þ þ δðū − zū0Þδðv − zv0Þ�g:

ð82Þ

In Eq. (81), the kþ integration has a pole at z ¼ 1, which
corresponds to the infrared divergence of the real contri-
bution when the momentum fraction of the radiated gluon
vanishes. (This is sometimes referred to as a rapidity
divergence.) To make manifest the infrared cancellation
between the real and virtual contributions, we regularize
this z → 1 divergence by separating out a plus distribution,

Z
pþ=z

0

dkþ

kþ
δ

�
1 − z −

kþ

pþ=z

�

¼
Z

pþ=z

0

dkþ

kþ

�
δ

�
1 − z −

kþ

pþ=z

�
− δð1 − zÞ

�

þ
Z

pþ=z

0

dkþ

kþ
δð1 − zÞ ð83Þ

≡ 1

ð1 − zÞþ
þ δð1 − zÞ

Z
pþ

0

dkþ

kþ
: ð84Þ

To identify the distribution in Eq. (84), we have changed
variables in the first term on the right in Eq. (84), which is
not singular, using kþ ¼ ð1 − xÞpþ=z, so that

Z
pþ=z

0

dkþ

kþ

�
δ

�
1 − z −

kþ

pþ=z

�
− δð1 − zÞ

�

¼
Z

1

0

dx
1 − x

½δðx − zÞ − δð1 − zÞ�

≡
Z

1

0

dx
δðx − zÞ
ð1 − xÞþ

¼ 1

ð1 − zÞþ
; ð85Þ

which is the standard plus distribution of ð1 − zÞ, with the
property

Z
1

a

dz
ð1 − zÞþ

fðzÞ

≡ −fð1Þ ln 1

1 − a
þ
Z

1

a

dz
1 − z

½fðzÞ − fð1Þ�; ð86Þ

for a smooth test function fðzÞ. For the second term in
Eq. (84), which is divergent, we will combine its integrand
directly with corresponding terms from virtual corrections.
Substituting Eq. (84) into Eq. (81), we obtain a compact

expression for the full real contribution,

Dð1;RÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ

¼
Z

μ2 dk2⊥
k2⊥

�
αs
2π

��
1

2Nc
SþΔ½8�

−
1

2

z
ð1 − zÞþ

þ 2CAΔ0

Z
pþ

0

dkþ

kþ

�
; ð87Þ
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FIG. 23 (color online). Sample cut diagram with a real gluon
that contributes to the heavy quark pair fragmentation function at
order of αs.
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FIG. 24 (color online). Cut diagrams that give the virtual contribution to heavy quark pair fragmentation function at order of αs.
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where CA ¼ Nc, Sþ and Δ½8�
− are given in Eq. (83), and

Δ0 ¼ δð1 − zÞδðu − u0Þδðv − v0Þ: ð88Þ

The virtual contribution to the first-order fragmen-
tation functions in Eq. (77), which we will combine
with Eq. (87) to derive the evolution kernels, is given

by the interference between the lowest order diagram
and the diagrams with a virtual gluon loop in Fig. 22.
In the light-cone gauge, diagrams (e)–(j) in Fig. 22
do not contribute. The total virtual contribution is
given by the cut diagrams in Fig. 24 and their complex
conjugates.
In detail, the cut diagram (a) in Fig. 24 gives

Dð1;V−aÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ ¼

Z
d4pc

ð2πÞ4
d4q1
ð2πÞ4

d4q2
ð2πÞ4

d4k
ð2πÞ4 θðμ

2 − p2
c⊥Þg2sCVa

ð2πÞ4δ4ðkþ u0pþ − pc=2 − q1Þ

× z2δ

�
z −

pþ

pþ
c

�
δ

�
u −

1

2
−
qþ1
pþ
c

�
δ

�
v −

1

2
−
qþ2
pþ
c

�

× ð2πÞ4δ4
�
pc

2
þ q2 − v0pþ

�
ð2πÞ4δ4

�
pc

2
− q2 − v̄0pþ

�
T a; ð89Þ

where CVa
¼ −1=ð2NcÞ is the color factor. The trace term T a in Eq. (89) is given by

T a ¼
1

4pþ
c
Tr½γ · nγ · p� 1

4pþ
c
Tr½γ · nγ · ðq1 − pc=2Þγαγ · pγβγ · ðpc=2þ q1Þ�

×
iPαβðkÞ

½ðpc=2 − q1Þ2 þ iε�½ðpc=2þ q1Þ2 þ iε�½k2 þ iε� ; ð90Þ

where as above, PαβðkÞ is the gluon polarization tensor given in Eq. (57). Using the δ functions to fix phase space
integration over pc; q1, and q2, we obtain

Dð1;V−aÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ ¼

Z
μ2

dk2⊥
�
αs
2π

��
−

1

2Nc

�
δðz − 1Þδðv − v0Þ

×
Z

dkþδðu − u0 − kþ=pþÞ
�
1

2π

Z
∞

−∞
dk−T a

�
: ð91Þ

The
R∞
−∞ dk− integration above can be carried out by examining the pole structure of T a in k− as follows. From the

denominator of the trace term in Eq. (90), we have three poles in k−,

ð1Þ k2 þ iε ¼ 0 ⇒ k− ¼ k2⊥
2kþ

− iεsgnðkþÞ; ð92Þ

ð2Þ ðkþ u0pþÞ2 þ iε ¼ 0 ⇒ k− ¼ k2⊥
2ðkþ þ u0pþÞ − iεsgnðkþ þ u0pþÞ; ð93Þ

ð3Þ ðk − ū0pþÞ2 þ iε ¼ 0 ⇒ k− ¼ k2⊥
2ðkþ − ū0pþÞ − iεsgnðkþ − ū0pþÞ: ð94Þ

In Fig. 25, we show the positions of these poles on the complex k− plane as a function of kþ=pþ. When kþ < −u0pþ and
kþ > ū0pþ, the k− integration in Eq. (91) vanishes, because all poles are in the same half-plane. After carrying out k−

integration, we obtain

Dð1;V−aÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v;u0; v0; μ2Þ ¼

Z
μ2 dk2⊥

k2⊥

�
αs
2π

��
−

1

2Nc

�
δðz − 1Þδðv − v0Þ

×

��
ū
ū0

�
ðū0 þ uÞ

Z
ū0pþ

0

dkþ

kþ
δðu − u0 − kþ=pþÞ

−
�
u
u0

�
ðu0 þ ūÞ

Z
0

−u0pþ

dkþ

kþ
δðu − u0 − kþ=pþÞ

�
; ð95Þ
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where the kþ integration is singular when u ¼ u0. This singularity will be canceled by the corresponding singularities of
diagrams (b) and (c) in Fig. 24, as required by the factorization.
The cut diagram (b) in Fig. 24 gives the following virtual contribution to the heavy quark pair fragmentation function:

Dð1;V−bÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ ¼ g2sCVb

Z
d4pc

ð2πÞ4
d4q1
ð2πÞ4

d4q2
ð2πÞ4 θðμ

2 − p2
c⊥Þ

× z2δ
�
z −

pþ

pþ
c

�
δ

�
u −

1

2
−
qþ1
pþ
c

�
δ

�
v −

1

2
−
qþ2
pþ
c

�

× ð2πÞ4δ4
�
pc

2
þ q2 − v0pþ

�
ð2πÞ4δ4

�
pc

2
− q2 − v̄0pþ

�
T b: ð96Þ

In Eq. (96), CVb
¼ 1=2 is the color factor, and

T b ¼ −
1

4pþ
c
Tr½γ · nγ · p� 1

4pþ
c
Tr½γ · nγ · ðq1 − pc=2Þγβγ · ðpc=2þ q1Þ�

× Tr½γ · pγα�
�

inαnβ
ðpc · nÞ2

�
1

½ðpc=2 − q1Þ2 þ iε�½ðpc=2þ q1Þ2 þ iε� ; ð97Þ

where inαnβ=ðpc · nÞ2 is the contact term of the gluon propagator. Using the δ functions to fix phase space integration over
pc and q2, and replacing the loop momentum q1 by k, we obtain

Dð1;V−bÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ ¼ −

Z
μ2

dk2⊥
�
αs
2π

��
1

2

�
δðz − 1Þδðv − v0Þ½4uð1 − uÞ�

×

�
−ipþ

c

π

�Z
dk−

�
1

2upþ
c k− − k2⊥ þ iε

��
1

2ð1 − uÞpþ
c ð−k−Þ − k2⊥ þ iε

�

¼ −
Z

μ2 dk2⊥
k2⊥

�
αs
2π

��
1

2

�
δðz − 1Þδðv − v0Þ½4uð1 − uÞ�: ð98Þ

The cut diagram (c) in Fig. 24 gives the following virtual contribution to the heavy quark pair fragmentation function:

Dð1;V−cÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ ¼

1

2
g2sCVc

Z
d4pc

ð2πÞ4
d4q1
ð2πÞ4

d4q2
ð2πÞ4 z

2δ

�
z −

pþ

pþ
c

�
δ

�
u −

1

2
−
qþ1
pþ
c

�
δ

�
v −

1

2
−
qþ2
pþ
c

�

× ð2πÞ4δ4
�
pc

2
− q1 − ū0pþ

�
ð2πÞ4δ4

�
pc

2
þ q2 − v0pþ

�
ð2πÞ4δ4

�
pc

2
− q2 − v̄0pþ

�

×
1

4pþ
c
Tr½γ · nγ · p� 1

4pþ
c
Tr

�
γ · nγ · pðiΣ̂ðPQ; n; μ2ÞÞ

�
iγ · PQ

P2
Q þ iε

��

¼ 1

2
g2sCVc

δðz − 1Þδðu − u0Þδðv − v0Þ

×
1

4pþ Tr½γ · nγ · pðiΣ̂ðPQ; n; μ2ÞÞðiγ · PQÞ�
�

1

P2
Q þ iε

�
: ð99Þ

In Eq. (99), CVc
¼ CF ¼ Nc=2 − 1=ð2NcÞ is the color factor, and

iΣ̂ðPQ; n; μ2Þ ¼
Z

d4k
ð2πÞ4 θðμ

2 − k2⊥Þ
�
ð−iγβÞ iγ · ðkþ PQÞ

ðkþ PQÞ2 þ iε
ð−iγαÞ

��
iPαβðkÞ
k2 þ iε

�
; ð100Þ
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where μ2 is the renormalization scale dependence from
the wave function renormalization at this order, and
PαβðkÞ is the gluon polarization tensor given in
Eq. (57). Since Σ̂ðPQ; n; μ2Þ is a function of vectors PQ
and n, we define [62]

iΣ̂ðPQ; n; μ2Þ≡ γ · PQf1 þ
P2
Q

2PQ · n
γ · nf2; ð101Þ

where f1 and f2 are scalar functions depending only on
Lorentz invariants of four-vectors PQ and n, and the
factorization scale μ2. From Eq. (101), we have

∂
∂P−

Q
ðiΣ̂ðPQ; n; μ2ÞÞ ¼ γ · nðf1 þ f2Þ; ð102Þ

plus terms that vanish as P2
Q → 0. Substituting Eq. (101)

into Eq. (99), and using the identity in Eq. (102), we obtain

Dð1;V−cÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ

¼ 1

2
g2s

�
Nc

2
−

1

2Nc

�
δðz − 1Þδðu − u0Þδðv − v0ÞT c;

ð103Þ

with

T c ¼
i

4pþ Tr

�
γ · p

� ∂
∂P−

Q
ðiΣ̂ðPQ; n; μ2ÞÞ

��

¼ −i
4pþ

Z
d4k
ð2πÞ4 θðμ

2 − k2⊥Þ
PαβðkÞ

½k2 þ iε�½ðkþ PQÞ2 þ iε�2
× Tr½γ · pγβγ · ðkþ PQÞγ · nγ · ðkþ PQÞγα�: ð104Þ

From the denominator above, we have two poles in the k−

integration of T c,

ð1Þ k2 þ iε ¼ 0 ⇒ k− ¼ k2⊥
2kþ

− iεsgnðkþÞ; ð105Þ

ð2Þ ðkþPQÞ2þ iε¼0⇒k−¼−P−
Qþ

k2⊥
2ðkþþPþ

QÞ
− iεsgnðkþþPþ

QÞ: ð106Þ

We show the positions of these poles in the complex k−

plane as a function of kþ=pþ in Fig. 26(c), where we use
Pþ
Q ¼ upþ. As in Fig. 25, the k− integration in Eq. (104)

vanishes when kþ is outside of the range ½−upþ; 0�.
Integrating over k−, we obtain

T c ¼
1

8π2

Z
μ2 dk2⊥

k2⊥

�
3

2
þ 2

Z
0

−upþ

dkþ

kþ

�
ð107Þ

and the virtual contribution from diagram (c) in Fig. 24, is

Dð1;V−cÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ

¼
Z

μ2 dk2⊥
k2⊥

�
αs
2π

��
Nc

2
−

1

2Nc

�
1

2
δðz − 1Þδðu − u0Þ

× δðv − v0Þ
�
3

2
þ 2

Z
0

−upþ

dkþ

kþ

�
: ð108Þ

Similarly, with the pole structure of the k− integration
in Fig. 26(d), we obtain the virtual contribution from
diagram (d) in Fig. 24 as

Dð1;V−dÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ

¼
Z

μ2 dk2⊥
k2⊥

�
αs
2π

��
Nc

2
−

1

2Nc

�
1

2
δðz − 1Þδðu − u0Þ

× δðv − v0Þ
�
3

2
− 2

Z
ūpþ

0

dkþ

kþ

�
: ð109Þ

Combining Eqs. (95), (98), (108), and (109), we have

Dð1;VabcdÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ

¼
Z

μ2 dk2⊥
k2⊥

�
αs
2π

�
δðz − 1Þδðv − v0Þ

��
Nc

2

�
fδðu − u0Þ

�
3

4
þ
Z

0

−upþ

dkþ

kþ

�
þ δðū − ū0Þ

�
3

4
−
Z

ūpþ

0

dkþ

kþ

��

−
�
1

2

�
f4uð1 − uÞg þ

�
1

2Nc

��Z
ū0pþ

0

dkþ

kþ

�
−δðū0 − ū − kþ=pþÞ

�
ū
ū0

�
ðū0 þ uÞ þ δðū − ū0Þ

�
−
3

4
δðū − ū0Þ

þ
Z

0

−u0pþ

dkþ

kþ

�
δðu − u0 − kþ=pþÞ

�
u
u0

�
ðu0 þ ūÞ − δðu − u0Þ

�
−
3

4
δðu − u0Þ

��
: ð110Þ
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FIG. 25 (color online). Positions of k− poles of cut diagram (a)
in Fig. 24 as a function of kþ=pþ.
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The virtual contribution from the complex conjugate diagrams of those in Fig. 24 is the same as that in Eq. (110) but with
the momentum fractions u and v switched.
In Eq. (110), we recognize that ðū=ū0Þðū0 þ uÞ → 1 as ū → ū0, and that ðu=u0Þðu0 þ ūÞ → 1 as u → u0. Thus the kþ

integration,

Z
ū0pþ

0

dkþ

kþ

�
δðū0 − ū − kþ=pþÞ

�
ū
ū0

�
ðū0 þ uÞ − δðū − ū0Þ

�

¼
Z

ū0pþ

0

dkþ

kþ
½δðū0 − ū − kþ=pþÞ − δðū0 − ūÞ�

�
ū
ū0

�
ðū0 þ uÞ ð111Þ

is finite. We now define a plus distribution for ðū0 − ūÞ by

θðū0 − ūÞ
ðū0 − ūÞþ

≡
Z

ū0pþ

0

dkþ

kþ
½δðū0 − ū − kþ=pþÞ − δðū0 − ūÞ�

¼
Z

1

0

dx
1 − x

½δðxū0 − ūÞ − δðū0 − ūÞ�; ð112Þ

which becomes the standard “þ” function of ð1 − zÞ defined in Eq. (85) if we let ū0 → 1. When deriving Eq. (112), we
change variables from kþ to x, through kþ ¼ ð1 − xÞū0pþ. In this notation, we write the total virtual contribution to the
order of αs heavy quark pair fragmentation function as

Dð1;VÞ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0; μ2Þ ¼

Z
μ2 dk2⊥

k2⊥

�
αs
2π

�
δðz − 1Þ

×

��
Nc

2

�
δðu − u0Þδðv − v0Þ

�
3þ Re

�Z
0

−upþ
−
Z

ūpþ

0

þ
Z

0

−vpþ
−
Z

v̄pþ

0

�
dkþ

kþ

�

−
�
1

2

�
½δðv − v0Þ½4uð1 − uÞ� þ δðu − u0Þ½4vð1 − vÞ��

þ
�
−1
2Nc

��
δðv − v0Þ

�
θðū0 − ūÞ
ðū0 − ūÞþ

�
ū
ū0

�
ðū0 þ uÞ þ 3

4
δðū − ū0Þ

þ θðu0 − uÞ
ðu0 − uÞþ

�
u
u0

�
ðu0 þ ūÞ þ 3

4
δðu − u0Þ

�

þ δðu − u0Þ
�
θðv̄0 − v̄Þ
ðv̄0 − v̄Þþ

�
v̄
v̄0

�
ðv̄0 þ vÞ þ 3

4
δðv̄ − v̄0Þ

þ θðv0 − vÞ
ðv0 − vÞþ

�
v
v0

�
ðv0 þ v̄Þ þ 3

4
δðv − v0Þ

���
; ð113Þ

where the generalized “þ” function is defined in Eq. (112), and the divergence in the kþ integration will cancel the
divergences of the real-gluon contributions. Combining this virtual contribution in Eq. (113) with the real contribution in
Eq. (87), and using Eq. (77), we obtain the evolution kernel as

(c)

(1) (2)(2)

(1) (2)
+

-u o

k p+(1)

(d)

+ +k

(1) (2)
u

(2)

o

(1) (2)

(1)

p

FIG. 26 (color online). Positions of k− poles of cut diagrams (c) and (d) in Fig. 24 as a function of kþ=pþ.
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Γð1Þ
½QQ̄ðv8Þ�→½QQ̄ðv8Þ�ðz; u; v; u0; v0Þ ¼

�
αs
2π

���
1

2Nc

��
1

2

z
ð1 − zÞþ

SþΔ½8�
− − δðz − 1Þ

×

�
δðv − v0Þ

�
θðū0 − ūÞ
ðū0 − ūÞþ

�
ū
ū0

�
ðū0 þ uÞ þ θðu0 − uÞ

ðu0 − uÞþ

�
u
u0

�
ðu0 þ ūÞ

�

þ δðu − u0Þ
�
θðv̄0 − v̄Þ
ðv̄0 − v̄Þþ

�
v̄
v̄0

�
ðv̄0 þ vÞ þ θðv0 − vÞ

ðv0 − vÞþ

�
v
v0

�
ðv0 þ v̄Þ

�

þ 3δðv − v0Þδðu − u0Þ
��

−
�
1

2

�
δðz − 1Þ½δðv − v0Þ½4uð1 − uÞ� þ δðu − u0Þ½4vð1 − vÞ��

þ
�
Nc

2

�
δðz − 1Þδðu − u0Þδðv − v0Þ½3 − ln ðuūvv̄Þ�

�
; ð114Þ

where Sþ and Δ½8�
− are given in Eq. (83). This result is consistent with the kernel derived in Ref. [28] except for the

logarithmic term and the contact term. The logarithmic term is a consequence of the different integration limits of kþ
integration between the real contribution in Eq. (87) and the virtual contribution in Eq. (113). As shown in Eqs. (87) and
(113), both the real and virtual contribution have infrared divergences from the kþ integration, and the infrared divergences
are exactly canceled when the real and virtual contributions are combined. More specifically, the cancellation takes place in
the following kþ integration:

4

Z
pþ

0

dkþ

kþ
þ Re

�Z
0

−upþ
−
Z

ūpþ

0

þ
Z

0

−vpþ
−
Z

v̄pþ

0

�
dkþ

kþ
¼ − ln ðuūvv̄Þ: ð115Þ

As required by the factorization, the evolution kernel in Eq. (114) is indeed free of any singularity.
Evolution kernels between different spin-color states of heavy quark pairs can be calculated by using the corresponding

spin-color projection operators derived in Sec. III. At first nontrivial order in αs, some evolution kernels vanish. To make the
evolution (or change) between various spin-color states of heavy quark pairs clearer, we rewrite the evolution equation for
heavy quark pair fragmentation functions in Eq. (48) and corresponding evolution kernels in a matrix form,

∂
∂ ln μ2

0
BBBBBBBBB@

D½QQ̄ðv8Þ�→H

D½QQ̄ðv1Þ�→H

D½QQ̄ða8Þ�→H

D½QQ̄ða1Þ�→H

D½QQ̄ðt8Þ�→H

D½QQ̄ðt1Þ�→H

1
CCCCCCCCCA

¼
�
αs
2π

�

0
BBBBBBBBB@

Kv R T 1 T 2 0 0

~R S ~T 2 0 0 0

T 1 T 2 Ka R 0 0

~T 2 0 ~R S 0 0

0 0 0 0 K0 R0

0 0 0 0 ~R0 S0

1
CCCCCCCCCA

⊗

0
BBBBBBBBB@

D½QQ̄ðv8Þ�→H

D½QQ̄ðv1Þ�→H

D½QQ̄ða8Þ�→H

D½QQ̄ða1Þ�→H

D½QQ̄ðt8Þ�→H

D½QQ̄ðt1Þ�→H

1
CCCCCCCCCA
; ð116Þ

where ⊗ represents the convolution over momentum fractions, z0, u0 and v0, as defined in Eq. (48). The elements of the
matrix form of the evolution kernels are defined as

Kv ¼ Pv8→v8; Ka ¼ Pa8→a8;

K0 ¼ Pt8→t8;

S ¼ Pv1→v1 ¼ Pa1→a1; S0 ¼ Pt1→t1;

R ¼ Pv8→v1 ¼ Pa8→a1; ~R ¼ Pv1→v8 ¼ Pa1→a8;

R0 ¼ Pt8→t1; ~R0 ¼ Pt1→t8;

T 1 ¼ Pv8→a8 ¼ Pa8→v8; T 2 ¼ Pv8→a1 ¼ Pa8→v1;

~T 2 ¼ Pv1→a8 ¼ Pa1→v8; ð117Þ
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with relation to the kernels,

Γ½QQ̄ðκ0Þ�→½QQ̄ðκÞ� ≡
�
αs
2π

�
Pκ→κ0 ; ð118Þ

where κ ¼ sI with s ¼ v; a; t and I ¼ 1; 8 (the same for κ0).
All kernels Pκ→κ0 are given in Appendix C.

V. SUMMARY AND CONCLUSIONS

We have presented a perturbative QCD factorization
formalism for the inclusive production of heavy quarkonia
at large pT , which provides a systematic approach to study
their production at collider energies beyond leading power.
The factorization formalism is organized in terms of a
power expansion of 1=pT , which is equivalent to an
organization in terms of the characteristic times at which
the heavy quark pair is produced, before it transforms into a
physical quarkonium. The leading power contribution
comes from partonic subprocesses in which a single parton
is produced at the hard collision, of distance scale 1=pT ,
followed by single-parton evolution and hadronization into
an observed heavy quarkonium at a much later time. The
subleading power term, which we have discussed in this
paper, describes the production of a heavy quark pair, either
directly at the distance scale of 1=pT , at which the hard
collision takes place, or at any intermediate scale 1=μ up to
1=mQ. Although the rate to produce the pair at intermediate
time 1=μ is suppressed by 1=μ2 in comparison with the
production of single parton, the probability for the pair to
become a heavy quarkonium is larger than that for a single
parton to form a heavy quarkonium by fragmenting into a
heavy quark pair at large times. We have shown in this
paper that both the leading power and next-to-leading
power contributions to the production cross section can
be factorized in terms of perturbatively calculable short-
distance partonic coefficient functions and nonperturbative,
but universal, fragmentation functions for partons to evolve
into observed heavy quarkonia.
We identified operators for heavy quark pair fragmenta-

tion functions, and corresponding projection operators
for calculating the factorized leading and next-to-leading
power short-distance partonic hard parts. We derived a
closed set of evolution equations for both single parton and
heavy quark pair fragmentation functions. We pointed out
that, once we work beyond the leading power, QCD
evolution of fragmentation functions with respect to the
variation of the factorization scale mixes the heavy quark
pair fragmentation functions with single-parton fragmen-
tation functions. Such mixing in evolution corresponds to a
resummation of the probability for the single fragmenting
parton to generate a heavy quark pair from the distance
scale of the hard collision, ∼1=pT , to a scale, 1=μ0 ∼ 1=mQ
at which the fragmentation process becomes nonperturba-
tive. We calculated perturbatively the lowest order evolu-
tion kernels for all channels of heavy quark pair

fragmentation functions, and also derived the first order
evolution kernels for a single parton to evolve into a heavy
quark pair. As expected from the factorization, all calcu-
lated evolution kernels are infrared finite.
The predictive power of this new factorization formalism

relies on the infrared safety of short-distance coefficient
functions, and the universality of the process-independent
fragmentation functions. The short-distance hard parts
reflect partonic dynamics at a distance scale of 1=pT ,
and are the same for the production of all heavy quarko-
nium states. The leading order short distance functions for
the production of a heavy quark pair in all perturbative
color-spin states are presented in a companion paper [41].
In order to compare our calculations with experimental

data, we need fragmentation functions at the input factori-
zation scale, μ0 ≳ 2mQ, so that the evolution equations can
evolve these input fragmentation functions to generate the
fragmentation functions at any other scales. In principle,
input fragmentation functions are nonperturbative and
should be extracted from fitting experimental data, just
as one derives parton fragmentation functions to light
hadrons through QCD global analysis. However, as pointed
out in our companion paper [41], it may also be a very
reasonable conjecture to use the NRQCD factorization
formalism to calculate all input fragmentation functions.
With the calculated/estimated input fragmentation func-
tions, and perturbatively calculated hard parts and evolution
kernels, our new factorization formalism could provide
predictions with absolute normalization, which can be
tested by data from the LHC and other colliders [63].
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APPENDIX A: ANOTHER SET OF SPIN
PROJECTION OPERATORS

The explicit end-point singularities of the short-distance
partonic hard parts, as discussed in Sec. III, reflect the
possibility that the momentum of the produced active quark
or antiquark can vanish, even though the total momentum
of the pair remains finite. This kind of singularity is only
possible when more than one active parton is produced, and
the projection operators for the production, such as those
in Eq. (23), are independent of momenta of active partons
(or the spinors of produced quark and antiquark).
The apparent end-point singularities could be system-

atically removed from the partonic parts, if we modify the
γ · p in the spin projection operators in Eq. (23) as follows:
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ðγ · pÞji →
�
γ · P̂Q̄γ · nγ · P̂Q

2p · n

�
ji
¼

�
uū
z2

�
ðγ · pÞji; ðA1Þ

where P̂μ
Q ¼ ðu=zÞpμ, and P̂μ

Q̄ ¼ ðū=zÞpμ. With this

choice, the spin projection operators for the partonic hard
parts are explicitly proportional to the momenta of the
produced heavy quark and antiquark, via γ · P̂Q ¼P

susðP̂QÞūsðP̂QÞ, with quark spinor us and ūs [or
γ · P̂Q̄ ¼ P

svsð−P̂QÞv̄sð−P̂QÞ for antiquark], where we
have neglected the quark mass for the partonic hard parts.
The explicit dependence on the momenta of the active
quark and antiquark in Eq. (A1) cancels the end-point
singularity when the momentum of the produced heavy
quark or antiquark vanishes. Correspondingly, we adjust
the spin projection operators for the cut vertices of heavy
quark pair fragmentation functions in Eq. (24) by the
following replacement:

1

4p · n
ðγ · nÞij →

p · n

ð2P̂Q · nÞð2P̂Q̄ · nÞ ðγ · nÞij

¼
�
z2

uū

�
1

4p · n
ðγ · nÞij: ðA2Þ

From Eqs. (A1) and (A2), it is clear that the modification of
the spinor projection operators is effectively to move a spin-
independent factor: z4=ðuūvv̄Þ from the partonic hard part
to the definition of the corresponding fragmentation func-
tions. In this paper, we present our results calculated by
using the spinor projection operators in Eqs. (23) and (24),
without this replacement.

APPENDIX B: SINGLE-PARTON TO
DOUBLE-PARTON EVOLUTION KERNELS

In this appendix, we summarize all evolution kernels for
a single parton to evolve into a heavy quark pair at order α2s,
which appear in the evolution equation in Eq. (47). The

detailed calculation of γð2Þq→½QQ̄ðv8Þ�ðz; u; vÞ was given in

Sec. IV B. Like γð2Þq→½QQ̄ðv8Þ�ðz; u; vÞ in Eq. (67), all kernels

below are derived by using the special gluon propagator to
remove the mass singularity analytically, and by choosing
the factorization scale as a cutoff of the invariant mass of
fragmenting parton.
(1) Light-quark case:

γð2Þq→½QQ̄ðv8Þ� ¼ α2s

�
N2

c − 1

4Nc

�
64ð1 − zÞ

z2
; ðB1Þ

γð2Þq→½QQ̄ðv1Þ� ¼ γð2Þq→½QQ̄ða1Þ� ¼ γð2Þq→½QQ̄ða8Þ� ¼ γð2Þq→½QQ̄ðt1Þ�

¼ γð2Þq→½QQ̄ðt8Þ� ¼ 0: ðB2Þ

(2) Light antiquark case:

γð2Þq̄→½QQ̄ðv8Þ� ¼ γð2Þq→½QQ̄ðv8Þ� ¼ α2s

�
N2

c − 1

4Nc

�
64ð1 − zÞ

z2
;

ðB3Þ

γð2Þq̄→½QQ̄ðv1Þ� ¼ γð2Þq̄→½QQ̄ða1Þ� ¼ γð2Þq̄→½QQ̄ða8Þ� ¼ γð2Þq̄→½QQ̄ðt1Þ�

¼ γð2Þq̄→½QQ̄ðt8Þ� ¼ 0: ðB4Þ

(3) Gluon case:

γð2Þg→½QQ̄ðv1Þ� ¼ α2s

�
1

4Nc

�
4ðu − ūÞðv − v̄Þ

uūvv̄

× ½z2 þ ð1 − zÞ2�; ðB5Þ

γð2Þg→½QQ̄ðv8Þ� ¼ α2s
1

2uūvv̄

�
Nc

z2
½4ð1 − zÞ2

− 4ð1 − 2uū − 2vv̄Þð1 − zÞ2ðzþ 2Þ
þðu − ūÞ2ðv − v̄Þ2ð2z4 þ 2z3 − 3z2

− 4zþ 4Þ�þN2
c − 4

Nc
ðu − ūÞðv − v̄Þ½z2

þ ð1 − zÞ2�
�
; ðB6Þ

γð2Þg→½QQ̄ða1Þ� ¼ α2s
4

uūvv̄

�
1

4Nc

�
½z2 þ ð1 − zÞ2�; ðB7Þ

γð2Þg→½QQ̄ða8Þ� ¼ α2s
2

uūvv̄

�
Nc

2
ðū v̄þuvÞ − 1

Nc

�

× ½z2 þ ð1 − zÞ2�; ðB8Þ

γð2Þg→½QQ̄ðt1Þ� ¼ γð2Þg→½QQ̄ðt8Þ� ¼ 0: ðB9Þ

(4) Heavy quark case:

γð2ÞQ→½QQ̄ðv1Þ� ¼ α2s

�
C2
F

Nc

�
4ð1 − zÞð1þ zūÞð1þ zv̄Þ

ū v̄ð1 − zuÞð1 − zvÞ ;

ðB10Þ

γð2ÞQ→½QQ̄ðv8Þ� ¼ α2s

�
N2

c − 1

N3
c

�
1 − z
z2

1

ū v̄

×
4Ncūð1 − zuÞ þ zð1þ zūÞ

1 − zu

×
4Ncv̄ð1 − zvÞ þ zð1þ zv̄Þ

1 − zv
; ðB11Þ
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γð2ÞQ→½QQ̄ða1Þ� ¼ γð2ÞQ→½QQ̄ðv1Þ�

¼ α2s

�
C2
F

Nc

�
4ð1 − zÞð1þ zūÞð1þ zv̄Þ

ū v̄ð1 − zuÞð1 − zvÞ ;

ðB12Þ

γð2ÞQ→½QQ̄ða8Þ� ¼ α2s

�
N2

c − 1

4N3
c

�
4ð1 − zÞð1þ zūÞð1þ zv̄Þ

ū v̄ð1 − zuÞð1 − zvÞ ;

ðB13Þ

γð2ÞQ→½QQ̄ðt1Þ� ¼ α2s

�
C2
F

Nc

�
8ð1 − zÞz2

ū v̄ð1 − zuÞð1 − zvÞ ; ðB14Þ

γð2ÞQ→½QQ̄ðt8Þ� ¼ α2s

�
N2

c − 1

4N3
c

�
8ð1 − zÞz2

ū v̄ð1 − zuÞð1 − zvÞ :

ðB15Þ
(5) Heavy antiquark case:

γð2ÞQ̄→½QQ̄ðv1Þ� ¼ α2s

�
C2
F

Nc

�
4ð1 − zÞð1þ zuÞð1þ zvÞ

uvð1 − zūÞð1 − zv̄Þ ;

ðB16Þ

γð2ÞQ̄→½QQ̄ðv8Þ� ¼ α2s

�
N2

c − 1

N3
c

�
1 − z
z2

1

uv

×
4Ncuð1 − zūÞ þ zð1þ zuÞ

1 − zū

×
4Ncvð1 − zv̄Þ þ zð1þ zvÞ

1 − zv̄
; ðB17Þ

γð2ÞQ̄→½QQ̄ða1Þ� ¼ γð2ÞQ̄→½QQ̄ðv1Þ�

¼ α2s

�
C2
F

Nc

�
4ð1 − zÞð1þ zuÞð1þ zvÞ

uvð1 − zūÞð1 − zv̄Þ ;

ðB18Þ

γð2ÞQ̄→½QQ̄ða8Þ� ¼ α2s

�
N2

c − 1

4N3
c

�
4ð1− zÞð1þ zuÞð1þ zvÞ

uvð1− zūÞð1− zv̄Þ ;

ðB19Þ

γð2ÞQ̄→½QQ̄ðt1Þ� ¼ α2s

�
C2
F

Nc

�
8ð1 − zÞz2

uvð1 − zūÞð1 − zv̄Þ ; ðB20Þ

γð2ÞQ̄→½QQ̄ðt8Þ� ¼ α2s

�
N2

c − 1

4N3
c

�
8ð1 − zÞz2

uvð1 − zūÞð1 − zv̄Þ ;

ðB21Þ

APPENDIX C: HEAVY QUARK PAIR TO HEAVY
QUARK PAIR EVOLUTION KERNELS

In this Appendix, we summarize all evolution kernels for
a heavy quark pair to evolve into a heavy quark pair at the
order of αs, which are derived in both light-cone and
Feynman gauge. We present these kernels in connection
with the evolution equations in the matrix form
in Eq. (116).
(1) Diagonal kernels:

S ¼ Pv1→v1 ¼ Pa1→a1 ¼ CFδð1 − zÞ
�
3δðu − u0Þδðv − v0Þ

þ δðv − v0Þ
�
θðū0 − ūÞ
ðū0 − ūÞþ

ū
ū0
ðū0 þ uÞ þ θðu0 − uÞ

ðu0 − uÞþ
u
u0
ðu0 þ ūÞ

�

þ δðu − u0Þ
�
θðv̄0 − v̄Þ
ðv̄0 − v̄Þþ

v̄
v̄0
ðv̄0 þ vÞ þ θðv0 − vÞ

ðv0 − vÞþ
v
v0
ðv0 þ v̄Þ

��
; ðC1Þ

Ka ¼ Pa8→a8 ¼
Nc

2
½3 − lnðuūvv̄Þ�δð1 − zÞδðu − u0Þδðv − v0Þ − S

N2
c − 1

þ 1

2Nc

z
2ð1 − zÞþ

SþΔ½8�
− ; ðC2Þ

Kv ¼ Pv8→v8 ¼ Ka −
�
1

2

�
δð1 − zÞfδðv − v0Þ½4uð1 − uÞ� þ δðu − u0Þ½4vð1 − vÞ�g; ðC3Þ

S0 ¼ Pt1→t1 ¼ CFδð1 − zÞ
�
3δðu − u0Þδðv − v0Þ

þ δðv − v0Þ
�
θðū0 − ūÞ
ðū0 − ūÞþ

ū
ū0
þ θðu0 − uÞ
ðu0 − uÞþ

u
u0

�

þ δðu − u0Þ
�
θðv̄0 − v̄Þ
ðv̄0 − v̄Þþ

v̄
v̄0
þ θðv0 − vÞ
ðv0 − vÞþ

v
v0

��
; ðC4Þ
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K0 ¼ Pt8→t8 ¼
Nc

2
½3− lnðuūvv̄Þ�δð1− zÞδðu− u0Þδðv− v0Þ

−
S0

N2
c − 1

þ 1

2Nc

z
2ð1− zÞþ

ðSþΔ½8�
− þ S−Δ

½8�
þ Þ: ðC5Þ

(2) Off diagonal kernels:

R ¼ Pv8→v1 ¼ Pa8→a1 ¼
�

1

2Nc

�
z

2ð1 − zÞ SþΔ
½1�
− ;

ðC6Þ

R0 ¼ Pt8→t1 ¼
�

1

2Nc

�
z

2ð1 − zÞ ðSþΔ
½1�
− þ S−Δ

½1�
þ Þ;

ðC7Þ

T 1 ¼ Pv8→a8 ¼ Pa8→v8 ¼
�

1

2Nc

�
z

2ð1 − zÞ S−Δ
½8�
− ;

ðC8Þ

T 2 ¼ Pv8→a1 ¼ Pa8→v1 ¼
�

1

2Nc

�
z

2ð1 − zÞ S−Δ
½1�
− ;

ðC9Þ

PX1→Y8 ¼ ðN2
c − 1ÞPX8→Y1; ðC10Þ

PtI→vJ ¼ PtI→aJ ¼ PvJ→tI ¼ PaJ→tI ¼ 0; ðC11Þ

with X; Y ¼ v; a; t and I; J ¼ 1; 8. We have intro-
duced the following symmetric notations:

S� ¼
�
u
u0
� ū
ū0

��
v
v0
� v̄
v̄0

�
; ðC12Þ

Δ½1�
� ¼ ½δðu − zu0Þ � δðū − zū0Þ�½δðv − zv0Þ

� δðv̄ − zv̄0Þ�; ðC13Þ

Δ½8�
� ¼ fðN2

c − 2Þ½δðu − zu0Þδðv − zv0Þ
þ δðū − zū0Þδðv̄ − zv̄0Þ�
∓2½δðu − zu0Þδðv̄ − zv̄0Þ
þ δðū − zū0Þδðv − zv0Þ�g: ðC14Þ

In the limit that z → 1, we have the power behaviors

S−Δ½1�
− → Oðð1 − zÞ4Þ; ðC15Þ

S−Δ
½1�
þ → Oðð1 − zÞ2Þ; ðC16Þ

S−Δ
½8�
� → Oðð1 − zÞ2Þ; ðC17Þ

SþΔ½1�
− → Oðð1 − zÞ2Þ; ðC18Þ

SþΔ
½1�
þ → Oð1Þ; ðC19Þ

SþΔ
½8�
� → Oð1Þ; ðC20Þ

which is the reason that we do not need the “þ”
prescription for off diagonal kernels.
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