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It is now widely recognized that a key to unraveling the nonperturbative chiral dynamics of QCD hidden
in the deep-inelastic-scattering observables is the flavor structure of sea-quark distributions in the nucleon.
We analyze the flavor structure of the nucleon sea in both the unpolarized and longitudinally polarized
parton distribution functions within the flavor SU(3) chiral quark-soliton model, which contains only one
adjustable parameter, Δms, the effective mass difference between the strange and nonstrange quarks.
Particular attention is paid to a nontrivial correlation between the flavor asymmetry of the unpolarized and
longitudinally polarized sea-quark distributions and also to a possible particle-antiparticle asymmetry of the
strange-quark distributions in the nucleon. We also investigate the charge-symmetry-violation effects in the
parton distribution functions exactly within the same theoretical framework, which is expected to provide
us with valuable information on the relative importance of the asymmetry of the strange and antistrange
distributions and the charge-symmetry-violation effects in the valence-quark distributions inside the
nucleon in the resolution scenario of the so-called NuTeVanomaly in the extraction of the Weinberg angle.
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I. INTRODUCTION

The physics of the nucleon structure function is founded
on a fine balance between perturbative and nonperturbative
QCD. The standard approach to deep-inelastic-scattering
(DIS) physics is based on the so-called factorization
theorem, which states that the DIS scattering cross section
is factorized into two parts, i.e., the hard part—which is
tractable within the framework of perturbative QCD—and
the soft part containing the information of the nonpertur-
bative nucleon structure [1–5]. Customarily, the soft part is
treated as a black box, which should be determined through
experiments. This is certainly a reasonable strategy. We,
however, believe that—even if this part is completely fixed
by experiments—one would still want to know why these
parton distribution functions (PDFs) take the forms so
determined. Furthermore, we now realize that a key
ingredient to revealing the nonperturbative chiral dynamics
of QCD is hidden in the soft part of the DIS physics
in the form of the flavor structure (or flavor dependence)
of the sea-quark (or antiquark) distributions [6–17].
Unfortunately, what can be extracted from the well-founded
inclusive DIS analyses are only the combinations of quark
plus sea-quark (or antiquark) distributions. To separate out
antiquark distributions, we need either neutrino-induced
DIS scattering measurements, semi-inclusive DIS (SIDIS)
measurements, or Drell-Yan measurements. Because of the
smallness of the neutrino-induced DIS cross section, here
we are forced to use nuclear targets, which inevitably
introduces large theoretical uncertainties in addition to
statistical errors arising from the smallness of the

event-counting rate of neutrino-induced reactions [18–24].
On the other hand, a lot of efforts have been made towards
understanding the SIDIS mechanism [25–29], in particular
the fragmentation mechanism of a quark or an antiquark
into observed hadrons [30–35]. Still, one must say that our
understanding of the semi-inclusive reaction mechanism
remains at a fairly lower level than that of inclusive
reactions. A complementary approach to DIS physics is
necessary here to clarify the possibly important role of the
chiral dynamics of QCD in the DIS physics, based on
effective models of QCD or lattice QCD.
Although there are lots of models of baryons, the chiral

quark-soliton model (CQSM), first proposed by Diakonov,
Petrov, and Pobylitsa, would probably be the best one [36],
at least as an effective model of the internal partonic
structure of the baryons including the nucleon. (The
practical numerical method for handling the CQSM was
established in Ref. [37] based on the general methodology
of Kahana and Ripka [38]. The unique feature of the
CQSM, which plays an important role in the so-called
nucleon spin problem, was also pointed out in this paper.
For early reviews of the CQSM, see Refs. [39–42].) The
CQSM has a lot of merits over other effective models of
baryons. First, it is a relativistic mean-field theory of
quarks, with the inclusion of infinitely many Dirac-sea
orbitals, which means that it is a field-theoretical model
including infinitely many dynamical degrees of freedom.
Second, the mean-field is of hedgehog shape, in harmony
with the nonperturbative dynamics expected from large-Nc
QCD. One interesting consequence of this unique feature of
the model is the strong spin-isospin correlation (or anti-
correlation) in the generated nucleon seas [37]. Third, in*wakamatu@phys.sci.osaka‑u.ac.jp
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association with the first advantage, its field-theoretical
nature enables us to make a reasonable estimation of not
only quark distributions but also of antiquark distributions
[43–53]. Last but not least, only one parameter of the flavor
SU(2) version of the model, i.e., the dynamically generated
quark mass M, is already fixed to be M ≃ 375 MeV from
low-energy phenomenology as well as on theoretical
grounds [36]. To handle the strange-quark degrees of
freedom in the nucleon, we must extend the model to
flavor SU(3). However, this flavor SU(3) extension of the
model needs to introduce only one additional parameter,
i.e., the mass difference between the strange and nonstrange
quarks [52,53]. This means that we can still make nearly
parameter-free predictions for PDFs. This should be con-
trasted with variant species of meson-cloud (convolution)
models, which are also believed to incorporate the non-
perturbative chiral dynamics of QCD. In fact, the meson-
cloud models contain quite a few model parameters, such as
several meson-quark coupling constants, coupling form
factors, parameters of parton distributions in the mesons,
and so forth [54,55]. Moreover, the model predictions often
depend critically on how many meson-baryon intermediate
states are included in the theoretical calculations. This last
fact is sometimes a serious obstruction to giving unique and
quantitatively trustable predictions on the sea-quark dis-
tributions in the nucleon. We emphasize again that the
CQSM does not suffer from these bothersome problems,
because it is nearly parameter free. As a matter of course,
the biggest problem or shortcoming common to all the low-
energy effective models of the nucleon including the
CQSM is a lack of explicit gluon degrees of freedom.
This point should always be kept in mind when applying
low-energy models of the nucleon to the DIS physics, as we
shall discuss later.
The main purpose of the present paper is to unravel the

nonperturbative chiral dynamics of QCD hidden in
the parton distribution functions of the nucleon through
the analysis of the flavor structure of the nucleon seas. An
important point is that the flavor structure of the nucleon
seas including the strange-quark degrees of freedom is
analyzed simultaneously for the unpolarized PDFs and for
the longitudinally polarized PDFs within a single theoreti-
cal framework. This framework is the flavor SU(3) version
of the CQSM, which contains only one adjustable param-
eter, i.e., the effective mass difference between the strange
and nonstrange quarks. To get a feeling about the reliability
of the model, we first carry out a systematic comparison
between the model predictions and the results of the most
recent unbiased global fits by the NNPDF Collaboration.
In our opinion, this systematic comparison is of special
importance. This is due to the fact that if one picks up only
a specific distribution function, it would not be extremely
difficult to reproduce the corresponding empirical distri-
butions, especially using models like the meson-cloud
models, which contain many parameters and degrees of

freedom. Unfortunately, it sometimes happens that such an
agreement is fortuitous and the same model with the same
set of parameters fails to reproduce other independent
distributions. This is the reason why we believe it is
important to check how well a particular model can or
cannot reproduce a wide class of empirical PDFs
simultaneously.
We also investigate the charge-symmetry-violating

(CSV) effects in the parton distribution functions based
on exactly the same theoretical framework. The motivation
to investigate the CSV effects in the nucleon parton
distributions is as follows. In order to resolve the widely
known anomaly of the Weinberg angle of the electroweak
standard model raised in the analysis of the neutrino-
induced DIS measurements by the NuTeV group [56,57],
two mechanisms from QCD are believed to play important
roles: the asymmetry of the strange- and antistrange-quark
distributions in the nucleon, and the CSV effects in the
valence-quark distributions in the proton and the neutron.
Which of these ingredients is more important is not a
completely settled issue [58–72]. We believe that an
analysis of the s-s̄ asymmetry and the CSV distributions
within a single theoretical framework would provide us
with valuable information on the relative importance of
these two mechanisms.
This paper is organized as follows. First, in Sec. II we try

to estimate the reliability of the model by comparing the
predictions of the SU(3) CQSM for the unpolarized PDFs
with the recent global fits by the NNPDF Collaboration
[73]. Next, we concentrate on inspecting the characteristic
feature of the model predictions for the flavor structure of
the unpolarized light-flavor sea-quark distributions, which
has not been reliably determined on an observational basis
alone. The characteristic predictions of the SU(3) CQSM
are compared with the predictions of other models of the
sea-quark distributions in the nucleon as well as with other
empirical information if available. In Sec. III, a similar
analysis is carried out for the longitudinally polarized
PDFs, the global analyses of which was recently reported
by the NNDPD Collaboration [74]. Next, in Sec. IV we
investigate the CSV effects in the light-flavor quark and
antiquark distributions within the framework of the SU(3)
CQSM. An emphasis is put on getting useful information
on the relative importance of the CSV effects and the
strange- and antistrange-quark asymmetry in the resolution
of the NuTeV anomaly of the Weinberg angle. Finally, we
summarize what we have learned about the flavor structure
of the nucleon seas in Sec. V.

II. FLAVOR SU(3) CQSM AND
UNPOLARIZED PDFs

The theoretical formulation of the flavor SU(3) CQSM
for evaluating the PDFs in a baryon was already described
in detail in our previous papers [52,53]. [The SU(3) CQSM
itself was first proposed in Ref. [75].] We therefore give
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here only a brief sketch of it by focusing on its basic
theoretical structure. The model Lagrangian of the flavor
SU(3) CQSM is a straightforward extension of the SU(2)
one. It is given by

L ¼ L0 þ LSB; ð1Þ

where

L0 ¼ ψ̄ðxÞði∂ −MUγ5ðxÞÞψðxÞ; ð2Þ

with

Uγ5ðxÞ ¼ eiγ5πðxÞ=fπ ; πðxÞ ¼ πaðxÞλa ða ¼ 1;…; 8Þ
ð3Þ

being the SU(3) symmetric part of the Lagrangian, while

LSB ¼ −ψ̄ðxÞΔmsPsψðxÞ; ð4Þ

with

ΔmsPs ¼

0
B@

0 0 0

0 0 0

0 0 Δms

1
CA ð5Þ

is the SU(3) symmetry-breaking (SB) part resulting from
the mass difference between the strange and nonstrange
quarks. (Here, we neglect the light-quark masses so that
Δms ≡ms −mu;d ¼ ms.) The above effective Lagrangian
contains eight meson fields [instead of three as in the case
of the flavor SU(2) model]. However, we recall that in the
framework of the CQSM these meson fields are not
independent fields of quarks, as inferred from the fact that
there is no kinetic term for the meson fields in the above
basic Lagrangian of the model.
The fundamental dynamical assumptions of the model

are as follows.
(i) First, the lowest-energy classical solution (or the

mean-field solution) is obtained by embedding the
SU(2) mean-field solution of hedgehog shape into
the SU(3) matrix. [The same dynamical assumption
is also used in the more familiar SU(3) Skyrme
model [76–78].]

(ii) The second is the SU(3) symmetric quantization
of the rotational motion in the collective coordi-
nate space.

(iii) The third is the perturbative treatment of the SU(3)
symmetry-breaking mass term. We recall that this
mass difference Δms between the strange and non-
strange quarks is the only parameter of the model.

We fix this single parameter as follows. The mass
difference is taken as an adjustable parameter in the
physically reasonable range ms ¼ 80–120 MeV. As a
general rule, the distribution functions for the light-flavor

u and d quarks are generally rather insensitive to the value
of Δms. As naturally expected, the strange-quark distribu-
tions are the most sensitive to the value of Δms. We found
that an overall good reproduction of the shape of the
empirical strange-quark distribution sðxÞ þ s̄ðxÞ is obtained
with the choice Δms ¼ 80 MeV. We therefore fix the value
ofΔms to be 80 MeVand continue to use this value in all of
the following calculations. This means that there are no
remaining free parameters in the model.
Before discussing the predictions of the SU(3) CQSM

for the unpolarized PDFs in comparison with the empirical
information given at high-energy scales, we think it is
important to explain our general strategy for applying an
effective model to DIS physics. It is widely believed that
the predictions of effective models of hadrons should be
taken as those given in the low-energy domain of non-
perturbative QCD, while the parton distribution functions
extracted from experiments correspond to the high-energy
scale of perturbative QCD. A difficult question is how to
harmonize these two domains of QCD. It is customarily
assumed that the model predictions for PDFs given at the
low-energy scale can be related to empirically extracted
PDFs at high energy through the QCD evolution equation.
The central difficulty we encounter here is a matching scale
problem. That is, it is far from trivial how to specify the
exact model energy scale from which one starts the
evolution as above. Most effective models of baryons—
like the MIT bag model or the meson cloud models—use a
fairly low starting energy Q2

ini ≃ 0.16 GeV2. On the other
hand, there is some argument that the starting energy
of the CQSM should be taken to be a little higher. In fact,
we recall here the argument by Petrov et al. based on the
instanton picture of the QCD vacuum [79,80], which is
thought to give a theoretical foundation for the CQSM.
According to them, the scale of the CQSM is set by
the inverse of the average instanton size ρ as Qini∼
1=ρ ∼ 600 MeV. Although reasonable, it seems to us that
the relation between the choice of the initial scale and the
average instanton size is very qualitative. It just indicates
that any choice between Q2

ini ≃ 0.3 GeV2 and Q2
ini ≃

0.4 GeV2 would be equally suitable. A fully satisfactory
choice of the initial energy scale of evolution would be
obtained only when one carries out a proper renormaliza-
tion procedure of nonperturbative QCD, as is actually done
in the framework of lattice QCD, although the calculation
of the PDFs is not yet possible in this promising frame-
work. (Another advantage of the lattice QCD treatment is
that the renormalization is carried out at a fairly high-
energy scale, i.e., Q2 ¼ 4 GeV2, where one can safely start
the perturbative evolution to higher energy scales.) Even
though there is a theoretical indication that the model scale
of the CQSM is higher than that of other effective models of
baryons, it is still much smaller than the scale of 1 GeV, so
that some sensitivity of the final predictions on the choice
of the initial scale of evolution cannot be completely
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avoided. For instance, we find that the two choices
Q2

ini ¼ 0.30 GeV2 and Q2
ini ¼ 0.40 GeV2 cause a differ-

ence in the range of 4–8% for the heights of valence-like
peaks of the unpolarized PDFs at Q2 ¼ 2 GeV2. Since
better agreement with the empirical PDFs is obtained
with the choice Q2

ini ¼ 0.30 GeV2, we continue to use this
value, which was the value used in our previous
studies [50–53].
In any case, we emphasize again that the value Q2

ini ¼
0.30 GeV2 that we use as the initial scale of evolution in the
CQSM is a little higher than the value Q2

ini ≃ 0.16 GeV2

frequently used in many effective models of baryons, like
the MIT bag model or the meson cloud models. This
difference is sometimes critical, because the validity of
using the perturbative evolution equation at too low energy
scales is a delicate question. In fact, we show in Fig. 1 the
QCD running coupling constant at the next-to-leading
order (NLO) as a function of Q2. (Here we have used
the exact solution of the NLO evolution equation with the
standard minimal subtraction scheme in the fixed-flavor
scheme with nf ¼ 3 even beyond the charm threshold.
However, the effects of charm on the quantity discussed
here would be very small as compared with the necessary
precision of our discussion.) One sees that the αS at the
scale of Q2 ¼ 0.16 GeV2 ¼ ð400 MeVÞ2 already shows a
diverging behavior, which casts some doubt on the use of
the perturbative renormalization group equation at such
scales. On the other hand, at the initial energy scale of the
CQSM, i.e., at Q2 ¼ 0.30 GeV2 ≃ ð550 MeVÞ2, perturba-
tive QCD may be barely applicable. [Whether the value of

αS ≃ 0.84 at the scale Q2 ¼ 0.30 GeV2 is large or small is
a delicate question. However, a more transparent measure
of the applicability of the perturbative renormalization
group equation is provided by the change rate of αS as a
function of Q2, which can be easily determined. Another
remark is that, if one uses the leading-order (LO) evolution
equation, the diverging behavior of αSðQ2Þ appears at a
lower energy scale. This is one of the reasons why many
low-energy models, like the MIT bag model or the meson
cloud models, adopt the LO evolution equation together
with a very low starting energy of evolution. However,
since the main purpose of our analysis is to compare the
predictions of the SU(3) CQSM with the NNPDF fits
carried out at NLO, the consistency requires us to use the
evolution scheme at NLO.)
As shown above, although our choice of a slightly higher

starting energy of evolution is preferable from the stand-
point of using the perturbative renormalization group
equation, there is one thing that we must pay attention
to. The key quantities in our argument here are the
momentum fractions of quarks and gluons as functions
of the energy scale Q2. Up to this time, the momentum
fractions of quarks and gluons in the nucleon at the high-
energy scale are fairly precisely known. Given below are
the empirical values for the quark and gluon momentum
fractions hxiQ and hxiG given at Q2 ¼ 4 GeV2 by the
MRST2004 analysis [81,82]:

hxiQ ¼ 0.579; hxiG ¼ 0.421: ð6Þ

Here, for simplicity, we have neglected very small error
bars. As an interesting trial, we carried out a downward
evolution of the quark and gluon momentum fraction by
starting with these known empirical values at the high-
energy scale. The results are shown, respectively, by the
solid and the long-dashed curves in Fig. 2.
As anticipated, as Q2 decreases the quark momentum

fraction hxiQ increases, whereas the gluon momentum
fraction hxiG decreases, eventually becoming zero at a
certain energy scale [83,84]. An important observation here
is the fact that, at the model energy scale of the CQSM, i.e.,
Q2 ¼ 0.30 GeV2 ≃ ð550 MeVÞ2, the gluon still carries
about 20% of the nucleon momentum. Since the CQSM
is an effective quark model—which does not contain
explicit gluon degrees of freedom—to start the evolution
at Q2 ¼ 0.30 GeV2 amounts to neglecting the important
role of gluons, which are likely to carry about 20% of the
nucleon momentum even at this relatively low-energy
scale. We will show later that this observation has an
important phenomenological consequence in the interpre-
tation of the predictions of the CQSM evolved to the high-
energy scales.
Before proceeding further, it would be fair to refer to

another limitation of the CQSM. The limitation is due to a
general restriction from the limit of a large number of colors
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FIG. 1 (color online). The QCD running coupling constant
αS ≡ g2=4π at NLO as a function of Q2. The filled (red) triangle
corresponds to the frequently used starting energy scale of
evolution in the MIT bag model or meson cloud models, whereas
the filled (blue) square corresponds to the starting energy scale
used in the CQSM.
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Nc. As argued by Diakonov et al. [43,80], the CQSM
provides a practical realization of large-Nc QCD, so that the
parton distribution functions depend on the Bjorken var-
iable x in such a way that Ncx ¼ Oð1Þ in the limit
Nc → ∞. Since Nc ¼ 3 in nature, this dictates that the
CQSM is a good approximation to QCD only in the region
of “not too small” x in order to comply with the above
scaling law. A more concrete argument on the applicability
range of x was provided by Petrov et al. [85]. Since the
CQSM is an effective theory of QCD, which is not
renormalizable, it needs a physical cutoff. An effective
regularization energy Λcut is provided by the inverse of the
average instanton size ρ as Λcut ∼ 1=ρ ∼ 600 MeV. Petrov
et al. argued that, in the region x ≤ ðM=ΛcutÞ=Nc ≃ 0.1, the
model predictions for the parton distributions are sensitive
to the cutoff energy and/or the detail of the regularization
method, and as such they are not necessarily reliable. In the
following study, we take the less ambitious and more
pragmatic standpoint that the CQSM is one of the effective
models of baryons (like the MIT bag model or the meson
cloud models), and we will show the predicted PDFs in the
whole range of x, i.e., 0 < x < 1, although the above
caution should be kept in mind.
Now we are in a position to compare the predictions of

the SU(3) CQSM for the unpolarized PDFs with the
empirically extracted ones. First, to get a feeling about
the degree of success or failure of the model, we compare
our predictions with the recent unbiased global fits of
unpolarized PDFs by the NNPDF Collaboration. (Here, we
use the NNPDF NLO2.1 fits at NLO with nf ¼ 3 [73].)

The NNPDF fits are given at Q2 ¼ 2 GeV2 for the
following combinations of the PDFs:

(i) the singlet distribution, ΣðxÞ≡Pnf
i¼1ðqiðxÞþ q̄iðxÞÞ;

(ii) the gluon, gðxÞ;
(iii) the total valence, VðxÞ≡Pnf

i¼1ðqiðxÞ − q̄iðxÞÞ;
(iv) the nonsinglet triplet, T3ðxÞ≡ ðuðxÞ þ ūðxÞÞ−

ðdðxÞ þ d̄ðxÞÞ;
(v) the sea asymmetry distribution, ΔSðxÞ≡d̄ðxÞ−ūðxÞ;
(vi) the strange-antistrange sum, SþðxÞ≡ sðxÞ þ s̄ðxÞ;
(vii) the strange-antistrange difference, S−ðxÞ≡

sðxÞ − s̄ðxÞ.
In order to make a comparison, the CQSM predictions

given at the initial scale Q2
ini ¼ 0.30 GeV2 are evolved to

the corresponding scale of Q2 ¼ 2 GeV2 by using the
evolution equations at NLO.
Figure 3 shows the comparison for the PDFs xT3ðxÞ,

xΔSðxÞ, xSþðxÞ, and xS−ðxÞ. We find fairly good agree-
ment between the theory and the NNPDF fits for the
flavor-nonsinglet triplet distribution T3ðxÞ and the light-
flavor sea asymmetry ΔSðxÞ. The detailed inspection
reveals that the agreements are not perfect. However, in
view of the almost parameter-free nature of the model, this
agreement can be taken as one of the nontrivial successes of
the CQSM, which properly takes account of the chiral
dynamics of QCD. [Incidentally, we stress that the dis-
tributions T3ðxÞ and ΔSðxÞ are quite insensitive to the value
of Δms.]
Turning to the strange distributions, we find that the

model prediction for SþðxÞ ¼ sðxÞ þ s̄ðxÞ appears to
overestimate the NNPDF fit by roughly a factor of 2.
This feature of the model prediction is anticipated. As
was intensively discussed for the SU(3) Skyrme model,
the SU(3)-symmetric collective quantization supple-
mented with the perturbative treatment of the SU(3)-
breaking mass-difference term [which is used in our
treatment of the SU(3) CQSM] is in danger of overesti-
mating the effects of kaon clouds, which might in turn
lead to an overestimation of the strange-quark compo-
nents in the nucleon [86–88]. We conjecture that plau-
sible predictions for the strange and antistrange
distributions in the nucleon would lie just between the
predictions of the SU(3) CQSM and the SU(2) CQSM,
which amounts to multiplying the SU(3) CQSM predic-
tions for sðxÞ and s̄ðxÞ by a factor of 1=2. As a matter of
fact, the reduction factor of just 1=2 has no strict
foundation and is ad hoc. It can be any number between
1 and 0. In principle, this reduction factor can be treated
as an additional parameter of the model. However, there
is no absolutely trustworthy empirical information to fix
this parameter. We therefore simply say that—as seen
from Fig. 3—after multiplying by this reduction factor of
1=2, the model prediction for SþðxÞ is consistent at the
order-of-magnitude level with the current NNPDF fit,
except for the larger-x region where the NNPDF fit does
not necessarily respect the positivity of the distribution.

FIG. 2 (color online). The quark and gluon longitudinal
momentum fractions as functions of Q2, obtained by solving
the QCD evolution equation at NLO with the initial conditions
hxiQ ¼ 0.579 and hxiG ¼ 0.421 given at Q2 ¼ 4 GeV2 by the
MRST2004 analysis [81,82]. The filled (blue) square corre-
sponds to the starting energy scale used in the CQSM.
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Also very interesting is the asymmetry of the strange and
antistrange distributions. A noteworthy feature of the
NNPDF fit is that the difference distribution xS−ðxÞ≡
x½sðxÞ − s̄ðxÞ� has a peak around x ∼ 0.5. Very curiously,
this feature is perfectly consistent with the prediction of
the SU(3) CQSM. The good agreement is not limited to
the position of the peak. The absolute magnitude of the
asymmetry is also consistent with the NNPDF fit. Note that
the bare prediction of the SU(3) CQSM and the prediction
reduced by a factor of 1=2 are both consistent with the
NNPDF fit within the uncertainty band, although we prefer
the reduced prediction.
Next, in Fig. 4 we show the model predictions for the

singlet distribution ΣðxÞ, the gluon distribution gðxÞ, and
the net valence distribution VðxÞ in comparison with the

NNPDF fits. As compared with the success for the non-
singlet distributions, we find that the model prediction
overestimates the NNPDF fit by about 20%. The reason for
this discrepancy may be interpreted as follows. We already
pointed out that, at the starting energy scale of evolution,
the gluon field is likely to carry about 20% of the total
nucleon momentum, which means that the quark fields
carry only about 80% of the nucleon momentum. On the
other hand, the CQSM is an effective quark model, which
does not contain explicit gluon degrees of freedom; the net
nucleon momentum is naturally saturated by the momenta
of quarks and antiquarks at the model scale. Thus, we
simply set the gluon distribution to zero at the starting
energy scale of evolution, i.e., at Q2

ini ¼ 0.30 GeV2. This
naturally fails to take into account the fact that the net
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FIG. 3 (color online). The predictions of the SU(3) CQSM for the nonsinglet and strange-quark distributions evolved from
Q2

ini ¼ 0.30 GeV2 to Q2 ¼ 2 GeV2 in comparison with the NNPDF2.1 NLO global fits shown by the shaded areas [74]. The solid
curves are the predictions of the SU(3) CQSM. The long-dashed curves for the strange-quark distribution are the predictions of the
SU(3) CQSM reduced by a factor of 1=2 (see text).
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the NNPDF2.1 NLO fits.
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momentum fraction of quarks at the initial scale must be
only about 80%, which would then lead to an overestima-
tion of the flavor singlet combination of the quark and
antiquark distribution ΣðxÞ by about 20%. For the same
reason, we cannot expect that the model can give a
reasonable description of the gluon distribution even
though a nonzero gluon distribution is generated through
evolution. Naturally, the gluon distribution obtained in this
way has no valence-like peak like that observed in the
empirical fit.
Turning to the total valence distribution VðxÞ, one again

observes that the model prediction overestimates the
NNPDF fit by about 20%. The reason for this overesti-
mation is slightly more complicated than that for the singlet
distribution ΣðxÞ. Since this distribution VðxÞ is given as a
difference of the quark and antiquark distributions, it does
not couple to the gluon distribution at the process of
evolution, which is different from the distribution ΣðxÞ.
Still, since it is a symmetric sum of the three flavors (u, d,
and s), the possible overestimation of the net distribution at
the initial energy scale pointed out before is likely to remain
at higher energy scales. Another possible reason would be
that the model might still underestimate the sum of the
light-flavor sea-quark distributions, i.e., ūðxÞ þ d̄ðxÞ,
which leads to an overestimation of the combination
uðxÞ − ūðxÞ þ dðxÞ − d̄ðxÞ þ sðxÞ − s̄ðxÞ, provided that
the contribution of sðxÞ − s̄ðxÞ in this combination is small.
A lesson learned from the above analysis can be

described as follows. The overall agreement between the
SU(3) CQSM and the NNPDF2.1 NLO fits are fairly good
in light of the nearly parameter-free nature of the model
predictions. However, the agreement is not naturally
perfect. The main reason for a discrepancy would be the
neglect of the gluon degrees of freedom, which appear to
play non-negligible roles in the flavor-singlet channel even
at relatively low-energy scales. On the other hand, we
shall see in the next section that the role of gluons at the
low-energy model scale of the CQSM is likely to be
much less important in the case of longitudinally polarized
distributions.
Now that we have a feeling about the reliability of the

model as well as its limitations (through the comparison
with the unbiased global fits of the unpolarized PDFs by the
NNPDF groups), we turn our attention to a more detailed
inspection of the flavor structure of the sea-quark
(-antiquark) distributions in the nucleon. To unravel the
underlying physics, a comparison with related theoretical
investigations (as well as other experimental information if
available) is particularly instructive. First, we call attention
to the strange distribution sðxÞ þ s̄ðxÞ in the nucleon
extracted from the analysis of charged kaon production
in SIDIS by the HERMES Collaboration [25]. As is widely
known, the extracted sðxÞ þ s̄ðxÞ distribution appears to
have an intriguing two-component structure as illustrated in
Fig. 5. Here, following Ref. [89], the HERMES data with

x < 0.1 are represented by the open circles, while those
with x > 0.1 are represented by the filled black circles.
The observed two-peaked structure motivated Chang and

Peng to introduce an interesting physical interpretation, to
be explained below [89]. (See also the more recent paper by
Chang, Cheng, Peng, and Liu [90].) Their interpretation is
based on the idea of intrinsic charm in the nucleon, which
was proposed many years ago by Brodsky, Hoyer, Petesen,
and Sakai (BHPS model) [91,92]. According to BHPS, the
intrinsic sea is a component that is expected to have a
valence-like peak at larger x, while the extrinsic sea is
thought to be generated through QCD splitting processes.
Inspired by this idea, Chang and Peng proposed an idea that
x > 1 HERMES data are dominated by an “intrinsic” sea,
while x < 0.1 data are from an “extrinsic” sea [89].
According to them, a component of the HERMES data,
which has a peak around x ∼ 0.1–0.3 can be reproduced by
the intrinsic five-quark model (see the solid curve in Fig. 5)
with the mixing rate Puudss̄

5 ≃ 0.024 for the five-quark
component in the nucleon. At first sight, this appears to
provide a reasonable explanation of the peak structure of
x½sðxÞ þ s̄ðxÞ� in the higher-x region. However, the follow-
ing question immediately arises. Admitting that accounting
for the five-quark component nicely explains the peak
structure at higher x, how can one explain the sea-like
component in the lower-x domain? What is important to
recognize here is the fact that the solid curve in Fig. 5
shows the theoretical prediction, which was obtained
after taking account of the evolution effects by solving
the evolution equation starting from the scale Q2

ini ¼
0.25 GeV. This means that, to explain the whole
HERMES data including the lower-x behavior, one abso-
lutely needs a significant sea-like component at the starting
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FIG. 5. HERMES’s strange-quark distribution [25] in compari-
son with the prediction of the five-quark model of Chang and
Peng [89], evolved toQ2 ¼ 2.5 GeV2 from the initial scale of the
model Q2

ini ¼ 0.25 GeV2.
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energy scale. What generates these sea-like components?
Assuming the correctness of the HERMES extraction, they
must be higher Fock components of the nucleon state, like
the seven-quark component, five-quark plus gluon, and so
on. It is not absolutely clear whether the valence-like
peak structure of the strange-quark distribution—which
is obtained by confining to the lowest five-quark Fock
component only—will remain after taking account of all
the these higher Fock components of the nucleon wave
function.
To answer the question raised above, we find it useful to

look into the prediction of the SU(3) CQSM for the strange
and antistrange distribution functions at the low-energy
model scale. They are shown in Fig. 6. Very interestingly,
the model predicts a sizable difference between the strange-
and antistrange-quark distributions. The strange-quark
distribution xsðxÞ shows a two-component structure, i.e.,
the valence-like peak in the higher-x region and the sea-like
component in the lower-x region. On the other hand, the
antistrange-quark distribution has only a sea-like peak in
the lower-x region. In particular, one finds that the s-quark
distribution has a larger x component than the s̄-quark
distribution. Very interestingly, this feature is expected
from the kaon cloud model of the nucleon advocated by
Signal and Thomas [58], Burkardt and Warr [59], and also
by Brodsky and Ma [60] many years ago. According to the
kaon cloud picture, the strange- and antistrange-quark
distributions in the proton are generated through the virtual
dissociation process p → Λþ Kþ. In these virtual inter-
mediate states, the s quark is contained in a baryon, i.e., in
Λ, while the s̄ quark is contained in a meson, i.e., in Kþ.
This is used to explain why the s quark has a harder
valence-like component than the s̄ quark [59,60]. Although

we believe that this meson cloud picture gets straight to the
point in a qualitative sense, not too much can be expected
regarding its quantitative predictability because the meson
cloud models generally contain too many adjustable
parameters and large ambiguities. A great advantage of
the CQSM is that it does not assume any explicit meson-
baryon intermediate states, like the nucleon and pion, the
nucleon and rho meson, the lambda and kaon, etc. Note that
the above difference between the strange- and antistrange-
quark distributions is an automatic consequence of the
almost parameter-free calculation. Here, it is very important
to recognize the fact that not only the valence-like compo-
nent but also the sea-like component are generated as a
consequence of solving the bound-state equation of the
nucleon. In this sense, one can refer to the latter as an
“intrinsic” sea but not an “extrinsic” sea, even though it is
not a component with valence-like character. The point is
that the basic theoretical framework of the CQSM is the
mean-field theory (followed by the collective quantization
of the zero-energy rotational modes), which enables us to
incorporate infinitely many higher multiquark components
in the language of perturbative Fock-space expansion. This
argument indicates that the decomposition of the quark seas
into “intrinsic” and “extrinsic” components is a strongly
model-dependent or theoretical-scheme-dependent idea.
Also interesting here is the effect of evolution. We show

in Fig. 7 the prediction of the SU(3) CQSM evolved to
Q2 ¼ 2.5 GeV2 corresponding to the HERMES SIDIS
extraction of the distribution x½sðxÞ þ s̄ðxÞ�. One sees that
the trace of the valence-like peaked structure of the
distribution xsðxÞ still remains, albeit faintly. However,
it is smoothly connected to the sea-like structure in the
lower-x domain. Accordingly, we no longer see a clear
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FIG. 6. The SU(3) CQSM predictions for the strange and antistrange distributions in the nucleon at the model energy scale. The left
panel is in linear scale in x, while the right panel is in log scale.
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two-component structure in xsðxÞ. On the other hand, since
the distribution xs̄ðxÞ has only a sea-like component even at
the low-energy model scale, the evolved distribution is
simply sea-like.
After these considerations, it is instructive to compare

the prediction of the strange- plus antistrange-quark dis-
tribution with the corresponding HERMES extraction as
well as several other global fits. The filled black circles
in Fig. 8 represent the HERMES SIDIS extraction for
x½sðxÞ þ s̄ðxÞ�. The thicker shaded area represents the
NNPDF global fit given at Q2 ¼ 2.0 GeV2, while the
thinner shaded area is the CTEQ6.5 fit corresponding to
Q2 ¼ 2.5 GeV2. (Here, the NNPDF fit corresponds to a
slightly lower scale, but the effect of this difference is
expected to be small compared to the sizably large differ-
ence with the CTEQ6.5 fit.) The newer CT10 fit (dash-
dotted curve) is also shown for reference. The bare
prediction of the SU(3) CQSM is represented by the solid
curve, whereas the reduced prediction of the SU(3) CQSM
is represented by the long-dashed curve. (For the reason
already explained, we prefer the reduced prediction for the
strange-quark distributions.) As pointed out above, the
SU(3) CQSM prediction for x½sðxÞ þ s̄ðxÞ� at Q2 ¼
2.5 GeV2 does not show any clear two-component struc-
ture, which is indicated by the HERMES data. Note that
this is also a common feature of all the global fits including
those of the NNPDF Collaboration and the CTEQ
Collaboration. As is well known, the HERMES extraction
of the strange distribution heavily depends on the expect-
ation that our understanding of the semi-inclusive
charged-kaon production mechanism is robust enough.
Actually, the small-x data in the HERMES extraction
corresponds to a relatively low-energy kinematical region,

say,Q2 ∼ 1 GeV2, where one would generally expect fairly
large higher-twist corrections to the DIS analysis. Still
another problem pointed out by Leader, Sidorov, and
Stamenov is that the HERMES analysis uses the factorized
QCD treatment of the data in a kinematical region where it
is not necessarily justified [93]. We also point out that the
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most recent HERMES analysis [94], which is claimed to
confirm their earlier analysis [25], was criticized in a recent
paper by Stolarski [95]. Stolarski emphasized the impor-
tance of carrying out a careful analysis in which not only
the multiplicity sum of the kaons but also that of the pion
(as well as other combinations of Kþ and K−) multiplicities
are analyzed simultaneously. In any case, we strongly feel
that some totally independent extraction of the strange-
quark distributions—for example, by using the neutrino-
induced inclusive DIS measurements—is highly desirable.
Chang and Peng pushed their idea of an “intrinsic” sea

even further by considering the combination of the dis-
tributions ūðxÞ þ d̄ðxÞ − sðxÞ − s̄ðxÞ [98]. According to
them, this combination is particularly interesting because
the contribution from the “extrinsic” seas is expected to just
cancel in this combination, so that it is only sensitive to the
“intrinsic” sea. Their analysis goes as follows. First, they
proposed to extract this distribution in an empirical way,
i.e., by using the HERMES SIDIS data for x½sðxÞ þ s̄ðxÞ�
at Q2 ¼ 2.5 GeV2 [25] and the CTEQ6.6 fit for the
distribution x½ūðxÞ þ d̄ðxÞ� at the same scale [96],

x½ūðxÞ þ d̄ðxÞ − sðxÞ − s̄ðxÞ� ⇒ x½ūðxÞ þ d̄ðxÞ�CTEQ6.6
− x½sðxÞ þ s̄ðxÞ�HERMES:

ð7Þ
The resultant distribution is shown as filled circles in the
left panel of Fig. 9. A prominent feature of the so-obtained
x½ūðxÞ þ d̄ðxÞ − sðxÞ − s̄ðxÞ� is an expected valence-like
peaked structure. Next, they calculated the corresponding

distribution on the basis of the BHPS model [91,92], which
gives

ūðxÞ þ d̄ðxÞ − sðxÞ − s̄ðxÞ ¼ PuūðxūÞ þ Pdd̄ðxd̄Þ
− 2Pss̄ðxs̄Þ; ð8Þ

where PQQ̄ðXQ̄Þ is the x distribution of Q̄ in the Fock
component juudQQ̄i of the nucleon state vector. In this
calculation, they assumed that the probability of the
intrinsic sea is proportional to 1=m2

Q, with mQ being the
mass of quark (antiquark) Q. This BHPS prediction is then
evolved toQ2 ¼ 2.5 GeV2 by takingQ2

ini ¼ ð0.5 GeVÞ2 as
the initial energy scale of evolution. The result is shown by
the solid curve in the left panel of Fig. 9. Chang and Peng
emphasized that the qualitative agreement between the data
and the calculation provides strong support for the exist-
ence of the intrinsic u- and d-quark seas and also for the
adequacy of the BHPS idea.
We point out that the valence-like peaked structure of the

empirically extracted distribution x½ūðxÞ þ d̄ðxÞ − sðxÞ −
s̄ðxÞ� may critically depend on the following two factors:

(i) the two-component structure of the HERMES SIDIS
data for x½sðxÞ þ s̄ðxÞ�, and

(ii) the relative magnitudes of the sea-like components
of the ūþ d̄ distribution and the sþ s̄ distribution in
the lower-x domain.

To confirm this, we first check what happens if we do not
use the HERMES SIDIS data for the strange-quark dis-
tribution. In fact, from the viewpoint of internal consis-
tency, it would be more legitimate to extract the distribution
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FIG. 9 (color online). The distribution x½ūðxÞ þ d̄ðxÞ − sðxÞ − s̄ðxÞ� obtained by using the CTEQ6.6 global fit for ūþ d̄ [96] and the
HEREMES SIDIS data for sþ s̄ [25]. The left panel shows the comparison with the prediction of the BPHS five-quark model due to
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in question by using the same extraction framework for
both x½ūðxÞ þ d̄ðxÞ� and x½sðxÞ þ s̄ðxÞ�. The dotted and
dash-dotted curves in the right panel of Fig. 9 correspond to
the results obtained by using the CTEQ6L fit [96] and the
CT10 fit [97], respectively. One finds a big difference
between these two fits. The distribution obtained from the
CT10 fit has a peaked structure, whereas that obtained from
the CTEQ6L does not. The origin of this difference can
primarily be traced back to the relative magnitudes of the
sþ s̄ and ūþ d̄ distributions in the lower-x region. (We
point out that the CT10 fit gives a larger magnitude for the
sþ s̄ distribution than either the CTEQ6L fit or the
NNPDF fit.) For reference, we also show in the right
panel of Fig. 9 the prediction of the CQSM (long-dashed
curve). As explained before, we have used the reduced
prediction for the x½sðxÞ þ s̄ðxÞ� distribution. It is interest-
ing to see that the resultant distribution x½ūðxÞ þ d̄ðxÞ −
sðxÞ − s̄ðxÞ� is remarkably similar in shape to that of the
CTEQ6L fit, which does not show a peaked structure. In
any case, all these theoretical and semiempirical predictions
for the distribution x½ūðxÞ þ d̄ðxÞ − sðxÞ − s̄ðxÞ� lie within
the wide uncertainty band indicated by the CTEQ6.5 fit,
which in fact allows both peaked and peakless structures.
Undoubtedly, to get more reliable information on the x
dependence of this interesting combination x½ūðxÞþ
d̄ðxÞ − sðxÞ − s̄ðxÞ�, we need to get more reliable informa-
tion on the light-flavor sea-quark distribution x½ūðxÞ þ
d̄ðxÞ� and the strange-quark distribution x½sðxÞ þ s̄ðxÞ� in
the nucleon.
The interesting idea of a “two-component” quark sea was

also advocated by Liu and others based on the path-integral
formulation or within the framework of lattice QCD
[90,99,100]. According to them, the light-flavor u- and
d-quark seas consist of the connected sea and the dis-
connected sea, while the strange as well as the charm sea
comes only from the disconnected sea. On the basis of this
idea, they carried out a phenomenological extraction of the
connected and disconnected pieces of the light-flavor sea,
ūðxÞ þ d̄ðxÞ. They first assumed that the disconnected-sea
component of the ūðxÞ þ d̄ðxÞ distribution is proportional
to the sðxÞ þ s̄ðxÞ distribution,

ūdsðxÞ þ d̄dsðxÞ ¼ 1

R
½sðxÞ þ s̄ðxÞ�; ð9Þ

with the proportionality constant

R ¼ hxisþs̄

hxiuþūðDIÞ
¼ hxisþs̄

hxiūdsþūds
¼ 0.857ð40Þ; ð10Þ

which they estimated from lattice data. Then, they extracted
the connected-sea component of the ūðxÞ þ d̄ðxÞ distribu-
tion by using the CT10 PDF fit for ūðxÞ þ d̄ðxÞ and the
HERMES SIDIS data for the strange-quark distribution
sðxÞ þ s̄ðxÞ,

ūcsðxÞ þ d̄csðxÞ≡ ½ūðxÞ þ d̄ðxÞ� − ½ūdsðxÞ þ d̄dsðxÞ�
¼ ½ūðxÞ þ d̄ðxÞ�CT10
−
1

R
½sðxÞ þ s̄ðxÞ�HERMES: ð11Þ

The connected and disconnected seas for ūþ d̄ extracted
from the above-explained phenomenological analysis are
shown in Fig. 10 by the filled squares and filled circles,
respectively. Note that, by construction, the sum of these
two components, i.e., the connected sea and the discon-
nected sea, coincides with the CT10 global fit shown by the
dash-dotted curve. They emphasized that the connected-sea
component so extracted appears to have a valence-like peak
around x≃ 0.1–0.2. However, it seems to us that their
separation into the two components is not independent of
the structure of the HERMES data for the strange-quark
distribution. Going back to the original physical idea of Liu
et al. [99,100], it is certainly true that the distribution
ūðxÞ þ d̄ðxÞ is generally given as a sum of the connecte-
and disconnected-sea contributions. This is similar to the
idea of Chang and Peng [89,98]. In their language, it
roughly corresponds to saying that the distribution ūðxÞ þ
d̄ðxÞ consists of the “intrinsic” sea and the “extrinsic” sea.
However, it should be recognized that there is no rigorous
correspondence between the two terminologies, i.e., the
idea of “intrinsic” and “extrinsic” seas and that of con-
nected and disconnected seas in the language of lattice
QCD. In fact, according to Chang and Peng, the strange-
quark distribution x½sðxÞ þ s̄ðxÞ� also contains the “intrin-
sic” component. But this “intrinsic” sea requires at least a
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FIG. 10 (color online). The connected (filled circles) and
disconnected (filled squares) seas for ūðxÞ þ d̄ðxÞ extracted
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M. WAKAMATSU PHYSICAL REVIEW D 90, 034005 (2014)

034005-12



five-quark component, which needs to take account of
disconnected seas within the framework of lattice QCD.
In our opinion, just like as the decomposition into the

“intrinsic” and “extrinsic” seas is a model-dependent idea,
the decomposition into the connected sea and the discon-
nected sea has a definite meaning only within the frame-
work of lattice QCD. The only model-independent notion
is the separation into quark and antiquark distributions. In
fact, we show in Fig. 10 the prediction of the SU(3) CQSM
for x½ūðxÞ þ d̄ðxÞ� (solid curve). Although it slightly
underestimates the magnitude of ūþ d̄ in the small-x
region as compared with the CT10 global fit [97], an
important fact is that it does not show any two-component
structure, similar to the CT10. Furthermore, within the
framework of the CQSM, there is no idea of decomposing
the antiquark distributions into two components (like the
“intrinsic” and “extrinsic” seas). Both are contained within
a single theoretical scheme without any separation between
them. This reconfirms that the separation of the antiquark
distribution into the “intrinsic” and “extrinsic” components
or into the connected and disconnected seas is a theoretical-
scheme-dependent idea, although we would never deny its
usefulness for understanding the nature of quark seas in the
nucleon.

III. FLAVOR SU(3) CQSM AND
LONGITUDINALLY POLARIZED PDFs

In this section, we compare the predictions of the SU(3)
CQSM for the longitudinally polarized PDFs with empiri-
cally extracted ones. Similarly as for the unpolarized PDFs,
to get a feeling about the degree of success or failure of the
model, we first compare our predictions with the recently
reported global fits of the longitudinally polarized PDFs
by the NNPDF Collaboration, i.e., NNPDFpol1.0 [74].
The NNPDF fits for the longitudinally polarized PDFs are
given at Q2 ¼ 1 GeV2 for the following combinations of
the PDFs:

(i) the flavor singlet, ΔΣðxÞ≡Pnf
i¼1ðΔqiðxÞþ

Δq̄iðxÞÞ;
(ii) the gluon, ΔgðxÞ;
(iii) the isospin triplet, ΔT3ðxÞ≡ ðΔuðxÞ þ ΔūðxÞÞ−

ðΔdðxÞ þ Δd̄ðxÞÞ;
(iv) the SU(3) octet, ΔT8ðxÞ≡ ΔuðxÞ þ ΔūðxÞ þ

ΔdðxÞ þ Δd̄ðxÞ − 2ðΔsðxÞ þ Δs̄ðxÞÞ;
(v) the u plus ū, ΔuðxÞ þ ΔūðxÞ;
(vi) the d plus d̄, ΔdðxÞ þ Δd̄ðxÞ;
(vii) the s plus s̄, ΔsðxÞ þ Δs̄ðxÞ.
To make a comparison, the CQSM predictions are

evolved from the initial scale Q2
ini ¼ 0.30 GeV2 to the

scale Q2 ¼ 1.0 GeV2 where the NNPDF fits are given. As
before, the gluon distribution at the initial scale is simply
set to zero.
Figure 11 shows the comparison for the polarized

PDFs xΔT3ðxÞ, xΔT8ðxÞ, xΔΣðxÞ, and xΔgðxÞ. One can
say that the agreement between the theoretical predictions

and the global fits is fairly good—obviously much better
than for the case of the unpolarized PDFs. From the
similar analysis for the unpolarized distributions, we
could have expected a good agreement for the nonsinglet
distributions, like ΔT3ðxÞ and ΔT8ðxÞ. However, as
opposed from the unpolarized case, we clearly also get
much better agreement for the flavor-singlet quark dis-
tribution ΔΣðxÞ and the gluon distribution ΔgðxÞ.
Remember that, in the case of unpolarized PDFs, the
flavor-singlet quark distribution was not reproduced very
well. We argued that a possible reason for this discrep-
ancy may be traced back to the neglect of the fact that
the quark fields likely carry only about 80% of the
nucleon momentum at the model scale of Q2

ini≃
0.30 GeV2. Put another way, a good agreement for the
flavor-singlet polarized distribution ΔΣðxÞ indicates that
the neglect of the gluon contribution at the model energy
scale does little harm. Accordingly, the following picture
emerges. At the low-energy scale corresponding to the
CQSM, the gluon is likely to carry about 20% of the
nucleon momentum fraction, but it carries negligibly
small polarization. It is interesting to point out that this
observation is consistent with the claim in the paper by
Efremov, Goeke, and Pobylitsa [101]. In fact, on the general
grounds of large-Nc QCD, they argued that the polarized
gluon distribution is 1=Nc suppressed compared to the
unpolarized one.
Note however that this does not mean that the gluon

polarization remains small at high-energy scales. If the
quark has a positive polarization at the low-energy scale,
the polarization of gluons grows rapidly through the
process of scale evolution. To get a feeling for the evolution
effect, we solve the coupled evolution equation at NLO for
the net quark polarization and the gluon polarization at
NLO by starting with the initial condition of the CQSM,
i.e., ΔΣ ¼ 0.35 and ΔG ¼ 0.0 at Q2

ini ¼ 0.30 GeV2. The
net gluon polarization ΔG obtained in this way is shown in
Table I for some typical values of Q2.
We see that, even if we assume that ΔG ¼ 0 at the low-

energy model scale, the gluon polarization increases
rapidly as Q2 becomes large. Very recently, the DSSV
Collaboration carried out a systematic analysis of the gluon
polarization in the nucleon by paying particular attention to
the data offered by polarized proton-proton collisions
available at the Relativistic Heavy Ion Collider [102].
The final answer from their new global fit, corresponding
to the scale Q2 ¼ 10 GeV2, is shown in Fig. 5 of their
paper. This figure gives estimates for the 90% C.L. area in
the plane spanned by the truncated moments of ΔgðxÞ
calculated in 0.05 ≤ x ≤ 1 and 0.001 ≤ x ≤ 0.05. Their
result can be summarized asZ

1

0.05
ΔgðxÞdx ¼ 0.194þ0.060−0.060 ð12Þ

and
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Z
0.05

0.001
ΔgðxÞdx ¼ 0.166þ0.062−0.046: ð13Þ

Summing up the contributions of both x regions, this would
give

Z
1

0.001
ΔgðxÞdx ¼ 0.361þ0.683−0.522: ð14Þ

Note that the central value of the moment ofΔgðxÞ, i.e.,ΔG
is positive with a sizable magnitude, although the negative
value is not completely excluded due to the still large
uncertainty coming from the integral in the small-x region.
It is clear from the analysis above that a positive value of
ΔG is theoretically more than natural. A difficult puzzle
would arise if the results of global fits at the high-energy
scale give a negative gluon polarization.
Next, in Fig. 12 we compare the prediction of the

SU(3) CQSM for the distributions xðΔuðxÞ þ ΔūðxÞÞ,
xðΔdðxÞ þ Δd̄ðxÞÞ, xðΔsðxÞ þ Δs̄ðxÞÞ, and xΔgðxÞ with
the NNPDF fits, together with the slightly older DSSV08
global fits. One sees that the model predictions for
xðΔuðxÞ þ ΔūðxÞÞ and xðΔdðxÞ þ Δd̄ðxÞÞ are remarkably
consistent with both the NNPDF fits and the DSSV08 fits
[103], which are close to each other anyway. What is
problematic is the polarized strange-quark distribution.

TABLE I. The net longitudinal gluon polarization ΔG as a
function of Q2, obtained by solving the QCD evolution equation
at NLO under the assumption that ΔG ¼ 0 and ΔΣ ¼ 0.35 at the
initial energy scale of the CQSM.

Q2½GeV2� 0.30 1.0 4.0 10.0

ΔGðQ2Þ 0.0 0.21 0.40 0.51
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FIG. 11 (color online). The NNPDFpol1.0 fits for the polarized PDFs xΔT3ðxÞ, xΔT8ðxÞ, xΔΣðxÞ, and xΔgðxÞ in comparison with the
predictions of the SU(3) CQSM.
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The NNPDF fit gives a negative strange-quark polarization,
whereas the DSSV08 fit gives a positive polarization, at
least in the larger-x region. This means that the presently
available empirical information is not sufficient to deter-
mine the longitudinally polarized strange-quark distribu-
tion with confidence. The difference between the two
determinations lies in the fact that the DSSV fits depend
more heavily on the data of semi-inclusive DIS reactions.
As we have already pointed out, we feel that our under-
standing of the mechanism of the semi-inclusive reactions
has not reached a satisfactory level as compared with that of
the inclusive DIS reactions. At any rate, it is interesting to
point out that the prediction of the SU(3) CQSM for the
strange-quark polarization is negative and consistent with
the NNPDF fit, at least qualitatively. Finally, the shapes of
the gluon distributions are also fairly different between the
NNPDF fit and the DSSV08 fit. However, the uncertainty

bands for ΔgðxÞ are sizably large in both fits. We point out
that the prediction of the CQSM, obtained by assuming
ΔgðxÞ ¼ 0 at the model scale, is within the (broad) error
band of the NNPDF fit.
After confirming that the predictions of the SU(3)

CQSM for the longitudinally polarized PDFs are remark-
ably consistent with the empirically extracted PDFs—
especially the NNPDFpol1.0 fit—we now turn to a more
detailed inspection of the flavor structure of the longitu-
dinally polarized sea-quark (-antiquark) distributions. We
first show in Fig. 13 the predictions of the CQSM for
the flavor (or isospin) asymmetry for the longitudinally
polarized sea-quark distributions, i.e., xðΔūðxÞ − Δd̄ðxÞÞ in
comparison with the DSSV09 fit. The thinner shaded area
and the thicker shaded area are the allowed bands of the
DSSV09 fit given at Q2 ¼ 10 GeV2 with Δχ2=χ2 ¼ 2%
and Δχ2 ¼ 1, respectively. The solid curve is the prediction
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FIG. 12 (color online). The SU(3) CQSM predictions for the distributions xðΔuðxÞ þ ΔūðxÞÞ, xðΔdðxÞ þ Δd̄ðxÞÞ, xðΔsðxÞ þ Δs̄ðxÞÞ,
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of the SU(3) CQSM, while the dashed curve is that of
the SU(2) CQSM. The corresponding prediction of the
Bochum group within the SU(2) CQSM is also shown for
reference [104]. We first point out that our prediction and
that of the Bochum group are sizably different in spite of
the fact that they are based on the same SU(2) CQSM. The
reason for this discrepancy is not absolutely clear. We
conjecture that a possible reason is that their calculation
used a schematic soliton profile function, while we use the
solution of the self-consistent mean-field equation. Another
reason may be that their predictions were obtained by using
what they call the “interpolation formula,” which is an
approximate method of calculating PDFs or any nucleon
observables within the framework of the CQSM [43]. In
any case, our prediction for ΔūðxÞ − Δd̄ðxÞ is significantly
smaller than that of the Bochum group. Furthermore, the
prediction of the SU(3) CQSM is much smaller than that of
the SU(2) model. This provides a rare case in which the
SU(3) CQSM and the SU(2) CQSM give significantly
different predictions for the light-flavor u- and d-quark
distributions. One can see that the prediction of the SU(3)
CQSM is consistent at the order-of-magnitude level with
the DSSV fit, although the positions of the peaks are
slightly different. In any event, we find that the CQSM
predicts a fairly large flavor (isospin) asymmetry not only
for the unpolarized sea-quark distributions but also for the
longitudinally polarized sea-quark distributions. This
should be contrasted with the prediction of the meson
cloud models. Although it is known that the meson cloud
models nicely reproduce the isospin asymmetry of the
unpolarized sea-quark distributions, their predictions for

the longitudinally polarized sea-quark distributions are
generally very small or even diverging.
The reason that ΔūðxÞ − Δd̄ðxÞ is large was already

discussed in several papers by Diakonov et al. [43,44].
According to their large-Nc argument, uðxÞ − dðxÞ and
also ūðxÞ − d̄ðxÞ are 1=Nc suppressed as compared with
ΔuðxÞ − ΔdðxÞ and ΔūðxÞ − Δd̄ðxÞ, which was claimed to
explain the fact that ΔūðxÞ − Δd̄ðxÞ is large. However, in
realityNc ¼ 3 and the explicit numerical calculation within
the CQSM reveals that ūðxÞ − d̄ðxÞ and ΔūðxÞ − Δd̄ðxÞ
actually have comparable magnitudes [52]. Furthermore,
the large-Nc argument tells us little about the x depend-
encies of these distribution functions. The explicit x
dependencies can be known only through explicit numeri-
cal calculation within the CQSM. To answer the above
question beyond the simple large-Nc counting argument,
we therefore think it is instructive to look more closely at
the predictions of the CQSM for four basic twist-2 PDFs,
i.e., the isoscalar and isovector combinations of the
unpolarized and longitudinally polarized PDFs. [To avoid
unnecessary complexity, we show here the predictions of
the SU(2) CQSM. This is enough because the essential
physics of strong spin-isospin correlation is already
embedded in the SU(2) model in the form of a rotational
symmetry-breaking mean field.]
In Fig. 14, the long-dashed curves stand for the con-

tributions of the three valence quarks in the mean field,
whereas the dash-dotted curves are those of the vacuum-
polarized Dirac-sea quarks. The sums of these two con-
tributions are shown by the solid curves. In this figure, the
distribution functions in the negative-x region must be
interpreted as antiquark distributions according to the rule

uð−xÞ þ dð−xÞ ¼ −½ūðxÞ þ d̄ðxÞ�; ð15Þ

uð−xÞ − dð−xÞ ¼ −½ūðxÞ − d̄ðxÞ�; ð16Þ

Δuð−xÞ þ Δdð−xÞ ¼ þ½ΔūðxÞ þ Δd̄ðxÞ�; ð17Þ

Δuð−xÞ − Δdð−xÞ ¼ þ½ΔūðxÞ − Δd̄ðxÞ�; ð18Þ

with 0 < x < 1. The sign difference between the unpolar-
ized and longitudinally polarized distributions originates
from the symmetry properties under the charge-conjugation
transformation. As one can see, the contributions of the
three valence quarks have more or less similar shapes. They
are peaked around x ∼ 0.2–0.4. On the other hand, one sees
totally different behaviors of the contributions of Dirac-sea
quarks in different distribution functions, all of which are
already known to play important roles in reproducing the
empirical distributions. One may however notice that the
Dirac-sea contributions are surprisingly similar in shape
for the two isovector distributions, i.e., for uðxÞ − dðxÞ and
ΔuðxÞ − ΔdðxÞ. The fact that uðxÞ − dðxÞ > 0 in the
negative-x region means that ūðxÞ − d̄ðxÞ < 0 for the
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FIG. 13 (color online). The predictions of the SU(2) and SU(3)
CQSM for the polarized light-flavor sea-quark asymmetry
xðΔūðxÞ − Δd̄Þ in comparison with the DSSV09 global fit
[105]. The dash-dotted curve is the prediction of the SU(2)
CQSM by the Bochum group [104], whereas the long-dashed
curve is our prediction in the same model. The prediction of the
SU(3) CQSM is shown by the solid curve.
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physical value of x in the range 0 < x < 1, which naturally
explains the famous NMC observation. On the other hand,
ΔuðxÞ − ΔdðxÞ > 0 in the negative-x region indicates that
ΔūðxÞ − Δd̄ðxÞ > 0 for physical x. We recall that, in the
energy spectrum of the single-particle Dirac equation for
quarks under the hedgehog mean field, there are two
(deformed) Dirac continuums: the positive-energy one
and the negative-energy one. Here we concentrate on the
negative-energy Dirac continuum and also on the Dirac-sea
contribution to the PDFs in the negative-x region, which
correspond to antiquark distributions. The strong similarity
in the shapes of uðxÞ − dðxÞ and ΔuðxÞ − ΔdðxÞ in the
negative-x region actually corresponds to anticorrelation,
because of the rules (16) and (18). It appears that this
anticorrelation is compatible with the grand spin-0 nature of

the negative-energy Dirac continuum, although a more
convincing argument is highly desirable. (We recall here
the fact that the mean-field solution under the hedgehog
potential is known to have a quantum number of K ¼ 0,
whereK ≡ Sþ T, with S and T being the ordinary spin and
isospin operators, is called the grand spin operator.)
We have seen that the CQSM predicts a large flavor

asymmetry not only for the unpolarized sea-quark distri-
bution but also for the longitudinally polarized sea-quark
distribution, i.e., ΔūðxÞ − Δd̄ðxÞ > 0. We are also inter-
ested in the polarized ū and d̄ seas. Shown in Fig. 15 are the
predictions of the SU(3) CQSM in comparison with the
DSSV09 fits [105]. For completeness, we also show a
comparison for the polarized strange-quark distribution and
the polarized gluon distribution, because they are also given
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FIG. 14 (color online). The predictions of the SU(2) CQSM for the four basic twist-2 PDFs, i.e., the isoscalar and isovector
combinations of the unpolarized and longitudinally polarized PDFs. The long-dashed curves are the contributions of the three valence
quarks in the mean field, whereas the dash-dotted curves are those of the vacuum-polarized Dirac-sea quarks. The sums of these two
contributions are shown by the solid curves.
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as a set in the DSSV09 fits. The model predicts that xΔūðxÞ
is positive, while xΔd̄ðxÞ is negative with sizable magni-
tude. One confirms that the predictions of the SU(3) CQSM
for xΔūðxÞ and xΔd̄ðxÞ are both consistent at the order-of-
magnitude level with the DSSV09 fits. The DSSV central
fit for the polarized ū distribution shows a nodal behavior
around x ∼ 0.08, which is not reproduced by the CQSM.
From the theoretical viewpoint, however, such a nodal
behavior of the distributionΔūðxÞ is difficult to understand.
We again suspect that our incomplete understanding of the
semi-inclusive processes can be a cause of this unnatural
nodal behavior of the global fit. Turning to the strange-
quark distributions, the SU(3) CQSM predicts a negative
polarization, while the result of the DSSV09 fit is positive
in the higher-x range, where the distribution is dominant.
However, we have already pointed out that the more recent

NNPDF fits give a negative strange-quark polarization [74],
which is qualitatively consistent with the prediction of the
SU(3) CQSM. Incidentally, in the DSSV analysis, the
equality of the polarized strange and antistrange distribu-
tions were assumed from the beginning. Very interestingly,
according to the SU(3) CQSM, the negative polarization of
the strange plus antistrange distribution turns out to mostly
come from the strange quark, and the polarization of the
antistrange quark is very small. This means that the model
predicts a sizable particle-antiparticle asymmetry not only
for the unpolarized strange-quark distributions but also for
the longitudinally polarized ones. We recall that this feature
is also qualitatively consistent with the picture of the kaon
cloud model proposed by Signal and Thomas [58],
Burkardt and Warr [59], and also by Brodsky and Ma
[60]. In fact, the strange sea in the proton is thought to be
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generated through the virtual dissociation process of the
proton into the Λ and the Kþ, i.e., p → Λþ Kþ. Note the
apparent asymmetry of the s quark and s̄ quark in this
process. The s quark is contained in the spin-1=2 Λ, while
the s̄ quark is contained in the spin-0 Kþ. This naturally
explains why the polarization of s̄ quark is smaller than that
of the s quark.

IV. FLAVOR SU(3) CQSM AND CHARGE-
SYMMETRY-VIOLATING PDFs

The effective Lagrangian, which takes account of the
CSV, is given as

L ¼ L0 þ LSB þ LCSV; ð19Þ
where L0 and LSB were already given, while the CSV part
LCSV can be written as

L ¼ −Δmψ̄
λ3
2
ψ ; ð20Þ

with Δm≡mu −md ≃ −4 MeV. The CSV effects for the
PDFs in the nucleon can be investigated by treating this
SU(2)-breaking part of the effective Lagrangian as the first-
order perturbation. The general method is exactly the same
as the one used in the perturbative treatment of the SU(3)
symmetry-breaking term LSB. Note however that the mass
difference between the u and d quarks is far smaller than

that between the strange quark and the u and d quarks.
Consequently, the perturbative treatment of the CSV part
LCSV has an even better foundation than that of LSB. Since
the necessary formalism was already explained in our
previous paper, we do not repeat the detailed derivation
here. For completeness, however, we summarize below the
final theoretical expressions, which are necessary for the
actual calculation.
Within the framework of the SU(3) CQSM, the PDFs for

the u; d, and s quarks are represented as linear combina-
tions of three independent functions qð0ÞðxÞ, qð3ÞðxÞ, and
qð8ÞðxÞ as

uðxÞ ¼ 1

3
qð0ÞðxÞ þ 1

2
qð3ÞðxÞ þ 1

2
ffiffiffi
3

p qð8ÞðxÞ; ð21Þ

dðxÞ ¼ 1

3
qð0ÞðxÞ − 1

2
qð3ÞðxÞ þ 1

2
ffiffiffi
3

p qð8ÞðxÞ; ð22Þ

sðxÞ ¼ 1

3
qð0ÞðxÞ − 1ffiffiffi

3
p qð8ÞðxÞ: ð23Þ

In the SU(3)-symmetric limit, these three distributions
generally consist of the zeroth-order term and the first-
order term in the corrective angular velocity Ω of the
rotating soliton. (The zeroth-order term corresponds to the
mean-field predictions.) They are given as

qð0ÞðxÞ ¼ h1iN · fðxÞ; ð24Þ

qð3ÞðxÞ ¼
�
D38ffiffiffi
3

p
�

N
· fðxÞ þ

�X3
i¼1

fD3i; Rig
�

N

· k1ðxÞ þ
�X7

K¼4

fD3K; RKg
�

N

· k2ðxÞ; ð25Þ

qð8ÞðxÞ ¼
�
D88ffiffiffi
3

p
�
· fðxÞ þ

�X3
i¼1

fD8i; Rig
�

N

· k1ðxÞ þ
�X7

K¼4

fD8K; RKg
�

N

· k2ðxÞ: ð26Þ

The functions fðxÞ, k1ðxÞ, and k2ðxÞ are defined in Eqs. (33), (76), and (77) of Ref. [53]. (They are all calculable
once the solutions of the mean-field equations are given.) Here, the term containing the function fðxÞ is the zeroth-
order term in Ω, while the terms containing the functions k1ðxÞ and k2ðxÞ are the first-order terms in Ω. The Dab’s as
functions of the collective coordinates ξA are the standard Wigner rotation matrices, while Ra is the right-rotation
generator [as in the SU(3) Skyrme model]. In the above expressions, hOiB should be understood as an abbreviated
notation for the matrix element of a collective operator O between a baryon state B with appropriate quantum
numbers, i.e.,

hOiB ≡
Z

ΨðnÞ�
YTT3;JJ3

½ξA�O½ξA�ΨðnÞ
YTT3;JJ3

½ξA�dξA: ð27Þ

The relevant matrix elements of the collective space operators between the nucleon state appearing in the above
expressions are given by Eqs. (186)–(188) of Ref. [53].
There are two types of CSV corrections to the distributions qð0ÞðxÞ, qð3ÞðxÞ, and qð8ÞðxÞ. We can show that the

first corrections, which were called the dynamical plus kinematical corrections in Ref. [53] (see also Refs. [106,107]), are
given by
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qð0Þðx;ΔmdynþkinÞ ¼ −
2ΔmI1ffiffiffi

3
p hD38iN · ~k0ðxÞ; ð28Þ

qð3Þðx;ΔmdynþkinÞ ¼ −
2ΔmsI1

3
hD38D38iN · ~k0ðxÞ − ΔmI1

�X3
i¼1

fD38; D38g
�

N

·

�
~k1ðxÞ −

K1

I1
k1ðxÞ

�

− ΔmI2

�X7
i¼4

fD3K;D3Kg
�

N

·

�
~k2ðxÞ −

K2

I2
k2ðxÞ

�
; ð29Þ

qð8Þðx;ΔmdynþkinÞ ¼ −
2ΔmI1

3
hD88D88iN · ~k0ðxÞ − ΔmI1

�X3
i¼1

fD8i; D3ig
�

N

·

�
~k1ðxÞ −

K1

I1
k1ðxÞ

�

− ΔmI2

�X7
i¼4

fD8K;D3Kg
�

N

·

�
~k2ðxÞ −

K2

I2
k2ðxÞ

�
: ð30Þ

Here, I1, I2, K1, and K2 are various moments of inertia of
the soliton defined through Eqs. (49)–(52) in Ref. [53]. On
the other hand, the functions ~k0ðxÞ, ~k1ðxÞ, and ~k2ðxÞ are
given by Eqs. (142), (155), and (156), respectively, in the
same paper [53].
The necessary matrix elements of the collective space

operators in the proton state can be easily calculated, and
they are shown in Table II. The three matrix elements in the
left column take the same values as for the neutron state,
whereas the four matrix elements in the right column have
the opposite sign of those in the neutron state.
The second correction to the PDFs arises from the

mixing of the SU(3) representation by the CSV mass term
[53,106,107]. Due to the presence of the CSV mass term,
the nucleon state is not a pure SU(3) octet, but it is a linear
combination of three SU(3) representations,

jNi≃ j8; Ni þ dN
10
j10; Ni þ dN27j27; Ni; ð31Þ

with the mixing constants

dN
10

¼
ffiffiffi
5

p

15

�
α0 þ 1

2
γ0
�
I2; ð32Þ

dN27 ¼ −
ffiffiffi
6

p

75

�
α0 −

1

6
γ0
�
I2: ð33Þ

Here, the constants α0 and γ0 are given by

α0 ¼
�

σ̄

Nc
−
K2

I2

�
Δm
2

; ð34Þ

γ0 ¼ −
�
K1

I1
−
K2

I2

�
Δ; ð35Þ

with Nc ¼ 3 being the number of colors, whereas σ̄ is
defined in Eq. (206) of Ref. [53].
Combining all of the above functions, the CSV correc-

tions to the PDFs can be evaluated in the following manner:

δuðxÞ≡ upðxÞ − dnðxÞ ¼ 2

3
δqð0Þðx;ΔmdynþkinÞ þ ½δqð3Þðx;ΔmdynþkinÞ þ δqð3Þðx;ΔmrepÞ�

þ 1ffiffiffi
3

p ½δqð8Þðx;ΔmdynþkinÞ þ δqð8Þðx;ΔmrepÞ�; ð36Þ

δdðxÞ≡ dpðxÞ − unðxÞ ¼ 2

3
δqð0Þðx;ΔmdynþkinÞ − ½δqð3Þðx;ΔmdynþkinÞ þ δqð3Þðx;ΔmrepÞ�

þ 1ffiffiffi
3

p ½δqð8Þðx;ΔmdynþkinÞ þ δqð8Þðx;ΔmrepÞ�; ð37Þ

δsðxÞ≡ spðxÞ − snðxÞ ¼ 2

3
δqð0Þðx;ΔmdynþkinÞ − 2ffiffiffi

3
p ½δqð8Þðx;ΔmdynþkinÞ þ δqð8Þðx;ΔmrepÞ�: ð38Þ
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Now, we show in Fig. 16 the predictions of the SU(3)
CQSM for the CSV PDFs evolved to the scale Q2 ¼
10 GeV2 in comparison with some other theoretical pre-
dictions. The solid and long-dashed curves stand for the
predictions of the SU(3) CQSM for xδuV ≡ x½upVðxÞ −
dnVðxÞ� and xδdV ≡ x½dpVðxÞ − unVðxÞ�, respectively. The
long dash-dotted and dotted curves are the predictions of
Rodionov, Thomas, and Londergan based on the bag model
with quark-diquark correlations [68]. On the other hand,
the short-dashed and short-dash-dotted curves are the
predictions of Glück, Jimenez-Delgado, and Reya based
on the QED radiative (or splitting) mechanism [70]. (The
CSV effects arising from the QED splitting mechanism
were also proposed independently by Martin et al. [71].)
First, we point out that all the models predict that

δuVðxÞ < 0 and δdVðxÞ > 0 at least for the dominant
components in the larger-x region. Comparing the predic-
tions of the SU(3) CQSM and those of the bag model, we
find that the former are much smaller than the latter. To
understand the cause of this difference, it is instructive to
compare the basic framework of these models in some
detail. In the framework of the CQSM, the mass difference
between the u and d quarks is the only origin of the CSV
effects in the PDFs. Once the perturbative treatment of this

mass difference is accepted, there is no ambiguity in the
theoretical treatment. On the other hand, the refined bag-
model treatment of Rodionov et al. is based on a quite
different assumption on the CSV mechanism [68], which
was first proposed by Sather [67] and has been used in most
investigations of the CSV PDFs in the past. This treatment
is critically dependent on the quark-diquark picture for the
intermediate states in the DIS amplitudes. To be more
concrete, their treatment starts with the parton-model
expression for a quark distribution function,

qðxÞ ¼ MN

X
X

jhXjψþð0ÞjNij2 × δðMNð1 − xÞ − pþ
X Þ;

ð39Þ

where ψ� ¼ ð1þ γ0γ3Þψ=2, jNi is the nucleon state, and
jXi represents all possible final states, which are obtained
from jNi by removing a quark or adding an antiquark. The
state jXi is thought to have the following Fock-space
expansion: jXi ¼ 2q; 3qþ q̄; 4qþ 2q̄;…. Based on the
idea that for large enough x (say, x ≥ 0.2) the valence
quarks dominate, it was postulated that a reasonable
estimate of qðxÞ can be obtained by including only two-
quark intermediate states for jXi. It was further assumed
that this intermediate two-quark state can be approximated
by a diquark with definite massMD. The validity of both of
these assumptions is not absolutely certain. In particular,
the latter postulate, i.e., the two-body kinematics in the
intermediate state, is a highly nontrivial assumption. We
refer to Ref. [108] for a detailed criticism of the framework
used for evaluating the CSV effects in PDFs based on the
quark-diquark hypothesis.
In any case, a common feature of most calculations based

on this quark-diquark picture is that they predict fairly large
CSV corrections in PDFs ranging from 2% to 10%, which
is much larger than the CSVeffects expected from the low-
energy CSV phenomena, which are generally known to be
less than 1%. In view of this situation, it is important to
estimate the size of CSV effects in PDFs without relying
upon the quark-diquark picture. So far, there have been
only a few such attempts. One is the study by Cao and
Signal based on a meson cloud model [108]. In their
treatment, hadron mass differences between the isospin
multiplets are the only sources of the CSVeffects in PDFs.
Another independent analysis was carried out by Benesh
and Goldman based on a quark model [109]. In their
treatment, the effects due to the u-d quark mass difference
and the Coulomb interaction of the electrically charged
quarks were taken into account. Both of these studies
showed that the CSV effects in PDFs are considerably
smaller than those obtained based on the quark-diquark
picture. The present calculation (based on a totally different
theoretical framework) appears to give additional support to
this conclusion by Cao and Signal and also by Benesh and
Goldman.
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FIG. 16 (color online). The predictions of the SU(3) CQSM for
the CSV PDFs δuVðxÞ and δdVðXÞ corresponding Q2¼10GeV2.
Also shown are the bag model predictions by Rodionov-Thomas-
Londergan [68], and the predictions based on the QED radiative
mechanism due to Glück-Delgado-Reya (GDR) [70].

TABLE II. The matrix elements of the relevant collective space
operators in the proton state.

— hD38ffiffi
3

p i
p
¼ 1

30

hD38D38ip ¼ 1
15

hD88D38ip ¼ 0

hP3
i¼1 fD3i; D3igip ¼ 10

9
hP3

i¼1 fD8i; D3igip ¼ 2
ffiffi
3

p
45

hP7
K¼4 fD3K;D3Kgip ¼ 34

45
hP3

K¼1 fD8K;D3Kgip ¼ − 2
ffiffi
3

p
45
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Since our main purpose in investigating the CSV PDFs is
to get a feeling for the relative importance of the CSV
effects and the asymmetry of the strange- and antistrange-
quark distributions in the resolution of the NuTeVanomaly,
we compare these distributions in Fig. 17. Here, the solid
curve is the bare prediction of the CQSM for x½sðxÞ − s̄ðxÞ�,
while the long-dashed curve is the prediction reduced by a
factor of 1=2. (The latter is our favorable prediction, as
explained before.) The dash-dotted curve is the CQSM
prediction for the CSV valence distribution x½δuVðxÞ −
δdVðxÞ� divided by a factor of 2. [To understand why we
divide it by 2, compare Eqs. (41) and (42) below.) One sees
that the CSV valence-quark distribution is much smaller
than the asymmetry of the strange- and antistrange-quark
distributions calculated within exactly the same theoretical
framework.
As is well known, the main QCD correction to the

Paschos-Wolfenstein relation is approximately given by the
following formula:

R− ≡ σνNNC − σν̄NNC
σνNCC − σν̄NCC

¼ R−
PW þ δR−

I þ δR−
s ; ð40Þ

where σNC and σCC respectively stand for the neutrino-
nucleon (or antineutrino-nucleon) neutral-current and
charged-current cross sections. Here,

δR−
I ≃

�
1 −

7

3
s2W

�
δUV − δDV

2ðUV þDVÞ
; ð41Þ

δR−
s ≃ −

�
1 −

7

3
s2W

�
S−

UV þDV
; ð42Þ

with s2W ≡ sin2θW ¼ 0.2227� 0.0004 and

QVðQ2Þ ¼
Z

1

0

xqVðx;Q2Þdx; ð43Þ

δQVðQ2Þ ¼
Z

1

0

xδqVðx;Q2Þdx; ð44Þ

S−ðQ2Þ ¼
Z

1

0

x½sðx;Q2Þ − s̄ðx;Q2Þ�dx: ð45Þ

Glück et al. [70] as well as the NuTeV Collaboration
[56,57] pointed out that the above approximate formula is
not accurate enough and proposed a more refined formula
to determine the CSV effects on the determination of
sin θW . However, since our main interest here is the relative
importance of the CSV effects and the particle-antiparticle
asymmetry of the strange-quark distribution, we continue
to use the above formula. Using the obtained distributions
corresponding to the scale Q2 ¼ 10 GeV2, we get the
following estimate for the CSV correction from QCD:

Δs2W jCSV ≃ δR−
I jQCD ≃ −0.00035: ð46Þ

On the other hand, the correction due to the strange-
antistrange asymmetry is given by

Δs2W jstrange ≃ δR−
s ¼ −0.00264ð−0.00528Þ: ð47Þ

Here the number in the parentheses is the bare prediction
of the SU(3) CQSM that is not multiplied by a factor of
1=2. Note that this estimate is consistent at the order-
of-magnitude level with the independent estimate by
Ding, Xu, and Ma [64], which was δR−

s ≃ −0.00297 to
−0.00498. Thus the effect of CSVoriginating from the u-d
quark mass difference is an order of magnitude smaller than
that of the strange asymmetry. We however recall that there
is another mechanism which generates the CSV effects in
the quark distributions. It is the QED splitting mechanism
proposed by Glück et al. and Martin et al. The recent
estimate by Glück et al. gives

Δs2W jQED ¼ δR−
I jQED ¼ −0.002: ð48Þ

Since this CSV mechanism is from QED and it is totally
independent of the CSVeffect of QCD origin, we may add
all the above corrections to the Weinberg angle. This gives

Δs2W jsum ¼ QEDþ strangeþ CSV

¼ −0.002 − 0.00264 − 0.00035

≃ −0.0050: ð49Þ

This means that the NuTeV measurement of sin2 θW ¼
0.2277ð16Þ will be shifted to sin2 θW ¼ 0.2227ð16Þ, which
agrees with the standard value 0.2228(4), although we
should perform a more careful analysis in light of the
approximate nature of the above correction formula.
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FIG. 17 (color online). The SU(3) CQSM predictions for the
CSV valence-quark distribution in comparison with the strange
asymmetry distribution.
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Nonetheless, our finding here can be summarized as
follows. The effect of the particle-antiparticle asymmetry
of the strange-quark distribution on the NuTeV anomaly
seems to be much larger than the CSVeffect in the valence-
quark distribution originating from the u-d quark mass
difference. However, the CSV effect due to the QED
splitting mechanism is an increasing function of the scale
[70,71] and its effect on the NuTeV anomaly can have the
same order of magnitude as that of the strange asymmetry
at the scale of Q2 ¼ 10 GeV2.
Since one of the advantages of the CQSM is that it can

give reasonable predictions not only for the quark distri-
butions but also for the antiquark distributions, we think it
would be interesting to evaluate the CSV effect in the sea-
quark distributions in this model. The solid and long-
dashed curves in Fig. 18 represent the CSV light-flavor
sea-quark distributions defined by

δūðxÞ≡ ūpðxÞ − d̄nðxÞ; ð50Þ

δd̄ðxÞ≡ d̄pðxÞ − ūnðxÞ: ð51Þ

Here, the solid and long-dashed curves correspond to the
predictions of the SU(3) CQSM, while the dash-dotted and
short-dashed curves correspond to the predictions based on
the QED splitting mechanism [70]. Very curiously, the
predictions of the SU(3) CQSM for δūðxÞ and δd̄ðxÞ and
the corresponding predictions due to the QED splitting
mechanism have nearly equal magnitudes but their signs
are opposite. This means that, if we add up both contri-
butions, a sizable cancellation occurs, which would indi-
cate that the net CSV effects on the sea-quark distribution
would be very small and hard to observe experimentally.

As a final check, we estimate the CSV effect on the
valence-like strange-quark distribution, i.e., s−ðxÞ≡
sðxÞ − s̄ðxÞ in comparison with the CSV effects on the
light-flavor valence-quark distribution. The results are
shown in Fig. 19, which confirms that the CSV effect on
the strange distribution is in fact very small.

V. SUMMARY AND CONCLUSION

To conclude, we have analyzed the unpolarized and
longitudinally polarized PDFs in the nucleon within the
SU(3) CQSM, which contains only one adjustable param-
eter, Δms, the mass difference between the strange and
nonstrange quarks. Through detailed comparisons with the
recent global PDF fits by the NNPDF, DSSV, and CTEQ
Collaborations (among others), we could confirm that—
despite its nearly parameter-free nature—the model repro-
duces all the qualitative characteristics of the empirically
determined PDFs. Besides, it gives unique and nontrivial
predictions on the flavor structure of the sea-quark
distributions: the flavor asymmetry of the unpolarized
sea-quark distributions, ūðxÞ − d̄ðxÞ < 0, dictated by the
famous NMC measurement; the flavor asymmetry of the
longitudinally polarized sea-quark distributions, ΔūðxÞ >
0, Δd̄ðxÞ < 0; the particle-antiparticle asymmetry of the
unpolarized strange-quark distribution, sðxÞ − s̄ðxÞ ≠ 0;
and the particle-antiparticle asymmetry of the longitudi-
nally polarized strange-quark distributions, ΔsðxÞ < 0,
Δs̄ðxÞ≃ 0. The success is naturally connected with the
fact that the model incorporates the most important feature
of QCD in the nonperturbative low-energy domain, i.e., the
spontaneous chiral symmetry breaking and the appearance
of the associated Goldstone bosons. Still, an important
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FIG. 18 (color online). The predictions of the SU(3) CQSM
for the CSV sea-quark (-antiquark) distributions at Q2 ¼
10 GeV2 in comparison with the corresponding distributions
generated by the QED splitting mechanism due to Glück-
Delgado-Reya (GDR) [70].
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FIG. 19 (color online). The SU(3) CQSM prediction for the
CSV effects on the valence-like strange-quark distribution
x½spVðxÞ − snVðxÞ� with sVðxÞ≡ sðxÞ − s̄ðxÞ in comparison with
the CSV effects on the light-flavor valence-like distributions
x½upVðxÞ − dnVðxÞ� and x½dpVðxÞ − unVðxÞ�.
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difference with more familiar meson cloud models should
be clearly recognized. As stated above, the CQSM predicts
a large isospin asymmetry not only for the unpolarized seas
but also for the longitudinally polarized ones. On the other
hand, although the meson cloud models nicely explain the
flavor asymmetry of the unpolarized sea-quark distribu-
tions, they generally predict a very small spin polarization
of sea quarks, reflecting the fact that the pion carries no spin
and the effects of a heavier meson cloud are suppressed. In
light of this important difference, a more unambiguous
confirmation of the flavor asymmetry of the longitudinally
polarized sea-quark distribution is an urgent task.
We have pointed out that in order for the model

predictions to be taken as reliable in a quantitative sense,
we need two remedies. First, the information from phe-
nomenological global fits indicates that the gluon carries
about 20% of the nucleon momentum fraction even at the
low-energy scale corresponding to the CQSM. Naturally,
this fact is not properly incorporated in effective quark
models like the CQSM. As we have seen, this seems to be a
cause of a roughly 20% overestimate of the flavor-singlet
combination of the unpolarized PDFs. However, we have
also shown that the neglect of the gluon degrees of freedom
at the model energy scale is likely to do little harm in
the case of the longitudinally polarized PDFs. This is the
reason why the success of the model is more salient for the
longitudinally polarized PDFs than for the unpolarized
PDFs. The second problem is that the SU(3)-symmetric
collective quantization (with the subsequent perturbative
treatment of the SU(3) symmetry-breaking mass difference
between the strange and nonstrange quarks) might tend to

overestimate the kaon cloud effects, thereby being in
danger of overvaluing the magnitudes of the strange-quark
distributions. As the present analysis (especially the
detailed comparison with the unbiased NNPDF global fits)
strongly indicates, plausible predictions for the strange- and
antistrange-quark distributions would correspond to an
average of the SU(3) CQSM and the SU(2) CQSM, which
means that we can get reliable predictions for the
strangeness-related distributions if we multiply the bare
predictions of the SU(3) CQSM by a reduction factor of
about 1=2. After this modification to the strange-quark
distributions is taken into account, we have good reason to
believe that the SU(3) CQSM is already giving reliable
predictions with 20–30% accuracy for both the unpolarized
and longitudinally polarized PDFs, including the key issues
of the present research, i.e., the flavor structure of the sea-
quark distribution in the nucleon. We hope that these
characteristic predictions reported in the present paper will
be tested through more elaborate analyses of the neutrino-
induced DIS measurements, the semi-inclusive DIS mea-
surements, the polarized Drell-Yan processes in pp or pp̄
collisions, etc., that will be carried out in the near future.
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