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We present predictions for the γ�N → N� helicity amplitudes, where N� is a member of the ½70; 1−�
supermultiplet. We combine the results from the single quark transition model for the helicity amplitudes
with the results of the covariant spectator quark model for the γ�N → N�ð1535Þ and γ�N → N�ð1520Þ
transitions. The theoretical estimations from the covariant spectator quark model are used to calculate three
independent functions A; B, and C of Q2, where Q2 ¼ −q2 and q is the momentum transfer. With the
knowledge of the functions A; B, and C we estimate the helicity amplitudes for the transitions
γ�N → N�ð1650Þ, γ�N → N�ð1700Þ, γ�N → Δð1620Þ, and γ�N → Δð1700Þ. The analysis is restricted
to reactions with proton targets. The predictions for the transition amplitudes are valid for Q2 > 2 GeV2.
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I. INTRODUCTION

One of the challenges of modern physics is the descrip-
tion of the internal structure of the hadrons. It is believed
that the substructure of the hadrons in general and the
nucleon and the nucleon resonances in particular, are ruled
by quantum chromodynamics (QCD), in terms of quark
and gluon degrees of freedom. Although QCD can be
useful for reactions at highQ2, it becomes more complex at
low and intermediate Q2, which restrains the theoretical
predictions for that range [1,2]. Therefore in practice to
obtain predictions for small Q2 one has sometimes to rely
on effective degrees of freedom as the constituent quarks.
The quark substructure of a baryon can in first approxi-

mation be classified in terms of the SUð6Þ spin-flavor
symmetry, combined with the Oð3Þ group for radial and
rotational excitations. In that framework the spin 1=2
baryons, including the nucleon, and the spin 3=2 baryons
can be classified in supermultiplets ½SUð6Þ; LP� character-
ized by angular momentum (J), quark total spin
(S ¼ 1=2; 3=2), orbital angular momentum (L) and parity
(P). In the notation ½SUð6Þ; LP�, SUð6Þ represents the
number of particles of the multiplet (including all spin
projections). Then the nucleon (JP ¼ 1

2
þ) is part of the

½56; 0þ� supermultiplet and the states N�ð1535Þ (JP ¼ 1
2
−),

also represented by S11ð1535Þ, and N�ð1520Þ (JP ¼ 3
2
−),

also represented by D13ð1520Þ are part of the ½70; 1−�
supermultiplet [3].
The use of the SUð6Þ ⊗ Oð3Þ group [3,4] to represent

the wave functions of a baryon (three-quark system)
combined with the electromagnetic interaction in impulse
approximation leads to the so-called single quark transition
model (SQTM) [5–7]. Here, single means that only one
quark couples with the photon (impulse approximation). In
these conditions the SQTM can be used to parametrize the
transition current between two supermultiplets, in an

operational form that includes only four independent terms,
with coefficients exclusively dependent of Q2.
In particular, the SQTM can be used to parametrize the

γ�N → N� transitions, where N� is a nucleon (isospin 1=2)
or a Δ (isospin 3=2) excitation from the ½70; 1−� super-
multiplet, in terms of three independent functions of Q2:
A;B, and C [1,5–8]. The relation between the functions
A;B, and C and the amplitudes are presented in Table I. In
the table, besides the transitions γ�N → S11ð1535Þ and
γ�N → D13ð1520Þ, one has expressions for the transitions
γ�N → S11ð1650Þ, γ�N → D13ð1700Þ, γ�N → S31ð1620Þ,
and γ�N → D33ð1700Þ. Once the coefficients A;B, and C
are determined it is possible to predict the transition helicity
amplitudes for all the resonances from the ½70; 1−� super-
multiplet. The relations presented in the table are based in
the exact SUð6Þ spin-flavor symmetry broken by the color-
hyperfine interaction between quarks. That interaction

TABLE I. Amplitudes A1=2 and A3=2 estimated by SQTM for
the proton targets (N ¼ p). The angle θS is the mixing angle
associated with the S11 states (θS ¼ 31°). The angle θD is the
mixing angle associated with the D13 states (θS ¼ 6°).

State Amplitude

S11ð1535Þ A1=2
1
6
ðAþ B − CÞ cos θS

D13ð1520Þ A1=2
1

6
ffiffi
2

p ðA − 2B − CÞ cos θD
A3=2

1

2
ffiffi
6

p ðAþ CÞ cos θD
S11ð1650Þ A1=2

1
6
ðAþ B − CÞ sin θS

S31ð1620Þ A1=2
1
18
ð3A − Bþ CÞ

D13ð1700Þ A1=2
1

6
ffiffi
2

p ðA − 2B − CÞ sin θD
A3=2

1

2
ffiffi
6

p ðAþ CÞ sin θD
D33ð1700Þ A1=2

1

18
ffiffi
2

p ð3Aþ 2Bþ CÞ
A3=2

1

6
ffiffi
6

p ð3A − CÞ
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leads to the configuration mixing between various baryon
states characterized by some mixing angles, estimated from
hadron decays [1,3,4,7]. Note however, that as the SQTM is
based exclusively on the valence quark degrees of freedom,
we should not expect a good description of the reactions at
low Q2, where meson cloud effects may be very important
[1,2,8–14]. Calculations for the same helicity amplitudes
using quark models can be found in Refs. [1,8,9,15–26].
The covariant spectator quark model was applied in the

past to the electromagnetic structure of the nucleon [27]
and the S11ð1535Þ, D13ð1520Þ excitations [28,29]. The
determination of the transition helicity amplitudes are
based mainly on the valence quark content, but some
information about additional effects like the meson cloud
dressing can be inferred from the formalism. One can then
use the results from the covariant spectator quark model for
the A1=2 amplitude in the S11ð1535Þ transition and the two
transverse amplitudes (A1=2 and A3=2) in the D13ð1520Þ
transition, to calculate A;B, and C. Note, however, that
because the valence quark effects are dominant only at large
Q2, the results are accurate only in that region. Based on the
results of the covariant spectator quark model for the
γ�N → S11ð1535Þ and γ�N → D13ð1520Þ transitions we
estimate that the predictions of the model should be
accurate for the Q2 > 2 GeV2 region.
As the covariant spectator quark model breaks the

SUð2Þ-isospin symmetry, the use of that model to calculate
the functions A;B, and C from the SQTM has to be
understood as an approximation, with a degree of error
proportional to the percentage of the SUð2Þ breaking. As a
consequence the estimation for neutral reactions (with
neutron targets) will be less reliable, since in the covariant
spectator quark model those reactions depend significantly
of the SUð2Þ breaking. For instance, the neutron electric
form factor would vanish if the SUð2Þ symmetry breaking
was not considered [27].
The article is organized as follows: In the next section we

present the relations between the γ�N → N� amplitudes for
the N� resonances of the ½70; 1−� supermultiplet and the
functions A; B, and C, according to the SQTM. In Sec. III
we discuss the formalism of the covariant spectator quark
model. The expressions of the covariant spectator quark
model for the S11ð1535Þ and D13ð1520Þ excitations are
presented in Sec. IV. The numerical results for the ½70; 1−�
amplitudes are presented in Sec. V. The summary and the
conclusions are in Sec. VI.

II. DETERMINATION OF THE FUNCTIONS
A; B, AND C

The expressions for the γ�N → N� amplitudes for a N�
resonance from the ½70; 1−� supermultiplet calculated by
the SQTM [7,8] are presented in Table I. For the mixing
angles we use the values from Ref. [7]: θS ¼ 31° and
θD ¼ 6°. Since the SQTM estimates are derived from the
interaction of quarks with transverse photons there are no

estimates for the amplitudes S1=2 [7]. Using the table, we
can write in particular for the S11ð1535Þ (label S11) and
D13ð1520Þ (label D13) cases:

AS11
1=2 ¼

1

6
ðAþ B − CÞ cos θS; ð2:1Þ

and

AD13
1=2 ¼ 1

6
ffiffiffi
2

p ðA − 2B − CÞ; ð2:2Þ

AD13
3=2 ¼ 1

2
ffiffiffi
6

p ðAþ CÞ; ð2:3Þ

where in the last expressions we approximate cos θD ¼
0.99 → 1.
From the previous relations, we obtain

A ¼ 2
AS11
1=2

cos θS
þ

ffiffiffi
2

p
AD13
1=2 þ

ffiffiffi
6

p
AD13
3=2 ; ð2:4Þ

B ¼ 2
AS11
1=2

cos θS
− 2

ffiffiffi
2

p
AD13
1=2 ; ð2:5Þ

C ¼ −2
AS11
1=2

cos θS
−

ffiffiffi
2

p
AD13
1=2 þ

ffiffiffi
6

p
AD13
3=2 : ð2:6Þ

An interesting approximation is the case AD13
3=2 ≃ 0. From

Eq. (2.3) we conclude that the approximation is equivalent
to Aþ C≃ 0, or C≃ −A, reducing the number of func-
tions to be determined to only 2 (A and B). In the case
AD13
3=2 ≃ 0, we obtain then

AS11
1=2 ≃ 1

6
ð2Aþ BÞ cos θS; ð2:7Þ

AD13
1=2 ≃

ffiffiffi
2

p

6
ðA − BÞ: ð2:8Þ

The study of the γ�N → D13ð1520Þ transition suggests
that the amplitude A3=2 falls off faster than A1=2 with Q2,
justifying the approximation A3=2 ≃ 0 for large Q2 [29]. In
the covariant spectator quark model, in particular AD13

3=2 ≈ 0
when the meson cloud effects are not included. Therefore,
in that model the results for AD13

3=2 are interpreted as the
exclusive consequence of the meson cloud effects.
However, the falloff of A3=2 is slow when compared with
the typical falloff from the meson cloud effects [29]. In
order to check if our estimate can be improved in this paper
we include also a parametrization for the amplitude AD13

3=2 ,
which simulates the meson cloud effects.

III. COVARIANT SPECTATOR QUARK MODEL

In the covariant spectator quark model, baryons are
treated as three-quark systems. The baryon wave functions

G. RAMALHO PHYSICAL REVIEW D 90, 033010 (2014)

033010-2



are derived from the quark states according to the
SUð6Þ ⊗ Oð3Þ symmetry group. A quark is off-mass-shell,
and free to interact with the photon fields, and other two
quarks are on-mass-shell [13,27,30,31]. Integrating over
the quark-pair degrees of freedom we reduce the baryon to
a quark-diquark system, where the diquark can be repre-
sented as an on-mass-shell spectator particle with an
effective mass of mD [27,29–31].
The electromagnetic interaction with the baryons is

described by the photon coupling with the constituent
quarks in the relativistic impulse approximation, and the
quark electromagnetic structure is represented in terms of
the quark form factors parametrized by a vector meson
dominance mechanism [27,31,32]. The parametrization of
the quark current was calibrated in the studies of the
nucleon form factors [27], by the lattice QCD data for the
decuplet baryons [31], and encodes effectively the gluon
and quark-antiquark substructure of the constituent quarks.
The quark current has the general form [27,31]

jμqðQ2Þ ¼ j1ðQ2Þγμ þ j2ðQ2Þ iσ
μνqν
2M

; ð3:1Þ

whereM is the nucleon mass and ji ði ¼ 1; 2Þ are the Dirac
and Pauli quark form factors. In the SUð2Þ-flavor sector the
functions ji can also be decomposed into the isoscalar (fiþ)
and the isovector (fi−) components

jiðQ2Þ ¼ 1

6
fiþðQ2Þ þ 1

2
fi−ðQ2Þτ3; ð3:2Þ

where τ3 acts on the isospin states of baryons (nucleon or
resonance). The details can be found in Refs. [13,27,31].
Since the quark current includes a Pauli term, the quarks
have nonzero anomalous magnetic moment (κq) in the
present formalism.
In the study of inelastic reactions (the final state has

a mass different from the initial state) we replace γμ →

γμ − qqμ

q2 in Eq. (3.1). This procedure is equivalent to the use

of the Landau prescription in the transition current and
ensures the conservation of the transition current between
the baryon states [33–35]. The term restores current
conservation but does not affect the results of the observ-
ables [33].
When the nucleon (ΨN) and the final resonance R (ΨR),

where R stands for a N� nucleon resonance, wave functions
are written in terms of the single quark and quark-pair
states, the transition current can be written in the relativistic
impulse approximation [27,30,31] as

Jμ ¼ 3
X
Γ

Z
k
Ψ̄RðPþ; kÞjμqΨNðP−; kÞ; ð3:3Þ

where P−; Pþ, and k are the nucleon, the resonance, and the
diquark momenta respectively. In the previous equation the

index Γ labels the possible states of the intermediate
diquark, the factor 3 takes account of the contributions
from the other quark pairs by the symmetry, and the
integration symbol represents the covariant integration over
the diquark on-mass-shell momentum.
In the calculation of the transition current it is convenient

to project the states on the isospin symmetric components
(label S) or the isospin antisymmetric components (label
A). We can define then, the Q2 dependent coefficients

jAi ¼ 1

6
f1þ þ 1

2
f1−τ3; ð3:4Þ

jSi ¼
1

6
f1þ −

1

6
f1−τ3: ð3:5Þ

See Refs. [13,27,31] for more details. For future discussion
we note that

jAi þ 1

3
jSi ¼

2

9
ðfiþ þ 2fi−τ3Þ: ð3:6Þ

Using Eq. (3.3), we can express the transition current in
terms of the coefficients jA;Si and the radial wave functions
ψN and ψR [27–29]. The radial wave functions are scalar
functions that depend on the baryon and diquark momenta.
Those functions parametrize the momentum distributions
of the quark-diquark systems. From the transition current
we can extract the form factors and the helicity transition
amplitudes, defined in the rest frame of the resonance (final
state), for the reaction under study [1,2,28,29].
As mentioned, the representation of the quark current

in terms of a vector meson dominance parametrization
[13,27,31] simulates in an effective way the internal structure
of the constituent quarks, including the meson cloud
dressing of the quarks. There are however some processes
such as the meson exchanged between the different quarks
inside the baryon, which cannot be reduced to simple
diagrams with quark dressing. Those processes are regarded
as arising from a meson exchanged between the different
quarks inside the baryon and can be classified as meson
cloud corrections to the hadronic reactions [13,14,29].
The covariant spectator quark model was already applied

to theΔð1232Þ system [36,37], to some nucleon resonances
like the Roper, N�ð1520Þ; N�ð1535Þ, N�ð1710Þ and
Δð1600Þ [28,29,38,39] and several reactions with strange
baryons [14,40,41].
In the present work the necessary input from the

covariant spectator quark model is the transition form
factors (that can be rewritten as helicity amplitudes)
for the γ�N → N� transitions with N� ¼ S11ð1535Þ;
D13ð1520Þ. The γ�N→ S11ð1535Þ and γ�N → D13ð1520Þ
transitions were analyzed in Refs. [28,29]. In those papers
we used the parametrization of the nucleon system given
by Ref. [27], which requires two parameters to describe
the radial wave function ψN , and the parametrization of
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the quark current described below. In order to obtain a
complete representation of the systems S11ð1535Þ and
D13ð1520Þ, one has to define convenient radial wave
functions that ensures the orthogonality between those
wave functions with the nucleon wave function. The
subject is discussed in the Appendix for the S11ð1535Þ
case, and in Ref. [29] for the D13ð1520Þ case. In simple
words we can say that we define the N� radial wave
functions with the same long range parametrization as the
nucleon and define a new short range parameter for each
resonance. Therefore, we add to the model of the nucleon
one new parameter for resonance. For the case of the
D13ð1520Þ, we include a simple parametrization of the
meson cloud, as discussed in Ref. [29], in order to
reproduce the amplitude A3=2.

IV. PARAMETRIZATION OF S11ð1535Þ AND
D13ð1520Þ AMPLITUDES

We will discuss now the parametrizations of the ampli-
tudes associated with the γ�N → S11ð1535Þ and γ�N →
D13ð1520Þ transitions. To distinguish between the two
cases we will use the label S (or S11) for the S11 state,
and the label D (or D13) for the D13 state. Then MS
represents the S11 mass (≈1.535 GeV) and MD represents
theD13mass (≈1.520 GeV). The details of the structure of
those systems can be found in Refs. [28,29]. Here we will
discuss only the main features of those transitions.
For the γ�N → S11ð1535Þ we consider the calculation

from Ref. [28], developed for the high Q2 region, that we
extend in the present work also to the low Q2 region. The
details are presented in the Appendix. Recall that the
S11ð1535Þ state is described in the present model using
exclusively the valence quark degrees of freedom. The
interesting properties of the S11ð1535Þ amplitudes are also
discussed in Refs. [41,42].
For the γ�N → D13ð1520Þ transition we use the model

from Ref. [29], particularly for the valence quark contri-
butions. Since one of the amplitudes (A3=2) vanishes in the
covariant spectator quark model formalism, when only the
valence quark contributions are taken into account, we
investigate also the impact of considering a meson cloud
parametrization for that amplitude.

A. Resonance S11ð1535Þ
The electromagnetic structure of the γ�N → S11ð1535Þ

transition can be parametrized by two independent form
factors F�

1 and F�
2 [28,42]. The experimental data suggests

that F�
2 ≃ 0 for large Q2, more specifically for

Q2 > 1.5 GeV2. As for the F�
1, the data are well described

by the covariant spectator quark model. Combining both
results, for large Q2 we can calculate A1=2 using

A1=2 ¼ −
ffiffiffi
2

p

3
FSðf1þ þ 2f1−τ3ÞIS11 cos θS; ð4:1Þ

where

IS11ðQ2Þ ¼
Z
k

kz
jkjψS11ðPþ; kÞψNðP−; kÞ; ð4:2Þ

and

FS ¼ 2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMS þMÞ2 þQ2

8MðM2
S −M2Þ

s
: ð4:3Þ

In the previous equations IS11 gives an integral defined in
the S11 rest frame, but it can also be written in a covariant
form [28]. In the S11 rest frame one has Pþ ¼ ðMS; 0; 0; 0Þ
and P− ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ jqj2

p
; 0; 0;−jqjÞ, where jqj is the mag-

nitude of the photon three-momentum.
As mentioned already, the experimental result for F�

2

vanishes for Q2 > 1.5 GeV2 [28]. This can be interpreted
as a consequence of the cancellation between valence quark
and meson cloud effects [28,41,42]. Therefore, although
the estimate from the valence quark contribution is non-
zero, if we want to estimate the final result for F�

2, the best
approximation is F�

2 ¼ 0. A consequence of the previous
result is that we obtain the best estimate for A1=2 when we
neglect F�

2 in the calculations.
At the moment we discuss the S11ð1535Þ state under the

assumption that the contributions with core spin 1=2 (core
spin is the sum of the quark spins) are the more important
components of the wave function (contributions propor-
tional to cos θS). However, the S11ð1535Þ state has also
contributions from states with core spin 3=2 (proportional
to sin θS). Those contributions were not calculated at the
moment in the context of the covariant spectator quark
model framework, although that can be done in the future,
using the formalism developed in Ref. [29].
As we did not include the possible effects of the core spin

3=2 component, it may happen that we are underestimating
the magnitude of the amplitude A1=2. However, the explicit
inclusion of those effects would also reduce the previous
result from the spin 1=2 component from Ref. [28], since
we need to correct that value by cos θS, because the limit
cos θS ¼ 1 was used in that work. To accommodate the
core spin 3=2 components in an effective way we simply
take Eq. (4.1) with cos θS ¼ 1. Future calculations can test
the previous assumption. However, for the propose of the
present work we did not expect that the results would be
significantly affected by the explicit inclusion of the terms
with sin θS, which are omitted in the present calculation.

B. Resonance D13ð1520Þ
The valence quark contributions for the γ�N →

D13ð1520Þ form factors can be written as [29]

GM ¼ 1

3
ffiffiffi
3

p M
MD −M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMD −MÞ2 þQ2

ðMD þMÞ2 þQ2

s h
ðf1þ þ 2f1−τ3Þ

þMD þM
2M

ðf2þ þ 2f2−τ3Þ
i
ID13; ð4:4Þ
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GE ¼ −GM; ð4:5Þ

where

ID13ðQ2Þ ¼
Z
k

kz
jkjψD13ðPþ; kÞψNðP−; kÞ: ð4:6Þ

The expression for the Coulomb quadrupole form factor
GC is not relevant for the present work, since the
SQTM expressions do not apply to the S1=2 amplitude.
Also, in the last case the integral is represented in the
resonance D13 rest frame: Pþ ¼ ðMD; 0; 0; 0Þ and
P− ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ jqj2

p
; 0; 0;−jqjÞ, where jqj is the magnitude

of the photon three-momentum.
From the form factors, we can calculate the helicity

amplitudes, using [29]

A1=2 ¼ FDGM þ 1

4
FDGπ

4; ð4:7Þ

A3=2 ¼
ffiffiffi
3

p

4
FDGπ

4; ð4:8Þ

where

FD ¼ e
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MD −M
MD þM

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMD þMÞ2 þQ2

2M

r
: ð4:9Þ

In Eqs. (4.7) and (4.8), Gπ
4 is a new function, which

vanishes if only the valence quark contributions are
considered, but that can be used to parametrize the pion
and other meson cloud effects.
The fit to the A3=2 data gives

Gπ
4 ¼ 1.354

�
Λ2
4

Λ2
4 þQ2

�
3

Fρ; ð4:10Þ

where Λ2
4 ¼ 20 GeV2. The function Fρ is defined as

Fρ ¼
m2

ρ

m2
ρ þQ2 þ 1

π
Γ0
ρ

mπ
Q2 log Q2

m2
π

: ð4:11Þ

In the last expression, mρ and mπ are the ρ and pion mass,
respectively and Γ0

ρ ¼ 0.149 GeV [29].
Note that the parametrization of the amplitude A3=2 given

by Eqs. (4.8) and (4.10) is in the region Q2 ¼ 5–10 GeV2,
dominated by the function Fρ ∝ 1=ðQ2 logQ2Þ due to the
large cutoff (Λ2

4 ¼ 20 GeV2) in the tripole factor. Therefore
in the intermediate Q2 region, A3=2 shows a slow falloff,
contrary to what we would expect from a meson cloud
contribution.
It is worth mentioning that other quark models predict

nonzero contributions for the amplitude A3=2 [15–20,22–
25]. However, those estimates are small in general, and
about 20%–40% of the measured values [15,18–20,22–25].

Those results can be interpreted as an indication that the
meson cloud effects are the dominant contribution for the
amplitude A3=2, as assumed in Ref. [29] in the context of
the covariant spectator quark model. Also the results of the
Excited Baryon Analysis Center (EBAC) coupled-channel
reaction model supports the idea that the meson cloud
effects are the dominant contribution for the amplitude
A3=2 [43].

V. RESULTS

Wewill present the results in the following way: First we
show the results from the covariant spectator quark model
for the γ�N → S11ð1535Þ and γ�N → D13ð1520Þ ampli-
tudes. Next we calculate the functions A;B, and C using the
expressions derived in Sec. II. Finally we use the functions
A;B, and C to estimate the amplitudes A1=2 and A3=2 for the
remaining electromagnetic transitions.

A. Model for the γ�N → S11ð1535Þ and
γ�N → D13ð1520Þ amplitudes

The results of amplitude A1=2 for the γ�N → S11ð1535Þ
transition, given by Eq. (4.1), are presented in Fig. 1. The
deviation between model and data at low Q2 can be the
consequence of the meson cloud not included in the model.
For the S1=2 there are evidences that it is correlated with
A1=2 at large Q2 [42].
The results of the amplitudes A1=2 and A3=2 relative for

transition γ�N → D13ð1520Þ are presented in Fig. 2. For the
amplitude A1=2, given by Eq. (4.7) we consider only the
valence quark contributions given by Eq. (4.4) and drop
the term Gπ

4 . As for A3=2, since the valence quark con-
tributions vanishes (in the limit sin θD → 0), we present the
result obtained by the parametrization of the meson cloud
given by Eq. (4.8).
From Figs. 1 and 2 we may conclude that one has a good

description of the data (about two standard deviations) for
the γ�N → N�ð1535Þ transition when Q2 > 2.5 GeV2 and
for the γ�N → N�ð1520Þ transition when Q2 > 1.5 GeV2.
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FIG. 1. Results for the γ�p → Sþ11ð1535Þ amplitude A1=2. Data
points from CLAS [44] and JLab/Hall C [45].
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Wemay then say that the covariant spectator quark model is
reliable for Q2 > 2 GeV2.

B. Calculation of A; B, and C

In the calculation of the coefficients A;B, and C we
consider two different approximations:

(i) Model 1.—We use the approximation AD13
3=2 ≡ 0,

based on Eqs. (2.7) and (2.8), and calculate the
two independent functions (A and B). The results are
represented by a dashed line. In this case only
valence quark degrees of freedom are considered.

(ii) Model 2.—We include the parametrization of the
meson cloud effects for the amplitude AD13

3=2 given by
Eq. (4.10), and calculate the three coefficients using
Eqs. (2.4)–(2.6). The results are represented by a
solid line.

The results for coefficients A;B, and C are presented in
Fig. 3 for model 1 (dashed line) and model 2 (solid line).
Note that the function B is the same for both models,

since it is independent of AD13
3=2 [see Eq. (2.5)]. For future

discussion we note also that the difference A − C is also the
same in both models [see Eqs. (2.4) and (2.6)]. From
Table I we may then conclude that the amplitudes A1=2
will be the same for both models for the cases S11ð1650Þ
and D13ð1700Þ.

C. γ�N → N� amplitudes

Using the parametrization from the SQTM of the
amplitudes A1=2 and A3=2 given in Table I, and the results
of the coefficients A;B, and C presented in Fig. 3, we can
calculate the amplitudes for the transitions γ�N →
N�ð1650Þ, γ�N → N�ð1700Þ, γ�N → Δð1620Þ, and γ�N →
Δð1700Þ, relative to the reactions with proton targets.
We recall that the range of application of the model
is Q2 > 2 GeV2.
We compare our results with the CLAS data from

Refs. [48,49], labeled as CLAS-1; preliminary data from
CLAS, labeled as CLAS-2 [2,50]; MAID data [51,52],
and PDG data for Q2 ¼ 0 [47]. The CLAS-1 data include
data at the photon point [49] (single pion production)
and atQ2 ¼ 0.65 GeV2 (double pion production) [48]. Not
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FIG. 2 (color online). Results for the γ�p → Dþ
13ð1520Þ am-
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included are the data from Refs. [7,53] composed by single
pion production only and results presented in proceedings,
conferences, and workshops.
The estimates based on the SQTM formalism for the

helicity amplitudes relative to the γ�N → S11ð1650Þ and
γ�N → D13ð1700Þ transitions are presented in Fig. 4. In the
figure, models 1 and 2 for the amplitudes A1=2 are
indistinguishable because A − C is the same for both
models, as discussed previously. The amplitude A3=2 for
the γ�N → D13ð1700Þ transition, vanishes in model 1,
because Aþ C ¼ 0 in that case (by construction). We
may conclude then that model 1 is insufficient to describe
the data. For that reason and also because of the results for

the γ�N → D13ð1520Þ transition in the following we favor
model 2.
From the graph for the γ�N → S11ð1650Þ transition we

conclude that both models have the same magnitude as the
data, although the MAID data have very small error bars.
As for the γ�N → D13ð1700Þ transition, one cannot draw
too many conclusions, since there are no data available for
largeQ2, except that our estimate for model 2 is close to the
data point from CLAS-1 for A3=2, and it is possible that
model 2 can provide a good estimate for larger Q2. For the
amplitude A1=2 the model underestimate in absolute value
the data at low Q2.
The results for the γ�N → S31ð1620Þ and γ�N →

D33ð1700Þ transitions are presented in Fig. 5. For the
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13ð1700Þ transitions. Model 1 (dashed line) and model 2
(solid line). CLAS data from Refs. [48,49], MAID data from
Refs. [51,52] and PDG data from Ref. [47].
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γ�N → S31ð1620Þ we conclude that model 1 gives the
wrong sign and magnitude for the A1=2 amplitude. As for
the γ�N → D33ð1700Þ, model 1 approaches the results from
model 2 when Q2 increases. Back to the γ�N → S31ð1620Þ
transition we conclude that model 2 is close to the data for
Q2 > 1 GeV2 and underestimates the MAID data by about
1–2 standard deviations, since the error bars are very small.
For the γ�N → D33ð1700Þ transition, we cannot conclude
much, because there are no data forQ2 > 1.5 GeV2, except
that both models are close to the CLAS-2 data for
Q2 > 1 GeV2, and therefore they may be used to make
projections for higher Q2.
In order to check the predictions shown in Figs. 4 and 5,

new data on the resonances with masses above 1.6 GeVare
needed forQ2 > 2 GeV2, where the estimate for quark core
contributions can be confronted to the data. The data on
double charged pion electroproduction forQ2 ¼ 2–5 GeV2

expected from the experiments with the CLAS detector,
will allow us for the first time to explore most of the
resonances in a mass range up to 2.0 GeV for Q2 <
5 GeV2 [54].

D. Parametrization for high Q2

In order to facilitate the comparison with future exper-
imental data, we derived simple analytic approximations
for our numerical results at large Q2. Based in the expected
large Q2 behavior: A1=2 ∝ 1=Q3 and A3=2 ∝ 1=Q5 [55], we
choose for large Q2, the forms

A1=2ðQ2Þ ¼ D

�
Λ2

Λ2 þQ2

�
3=2

; ð5:1Þ

A3=2ðQ2Þ ¼ D

�
Λ2

Λ2 þQ2

�
5=2

: ð5:2Þ

In the previous expressionsD is a coefficient and Λ a cutoff
that depend on the amplitude (A1=2 or A3=2) and transition.
We note however that these parametrizations are valid for a
restricted region of Q2, since in the covariant spectator
quark model the form factors and amplitudes are affected
by logarithm corrections in Q2 for large Q2 [28,29,36].
All amplitudes, except for the γ�N → S31ð1620Þ tran-

sition, are well described by the analytic forms of Eqs. (5.1)
and (5.2). The numerical results for D and Λ2 are presented
in Table II. The parameters were calculated in order to
reproduce the results from model 2 exactly for
Q2 ¼ 5 GeV2, but they also provide good approximations
for values of Q2 up to 10 GeV2, or even larger.
We found out that the amplitude A1=2 for the transition

γ�N → S31ð1620Þ cannot be approximated by Eq. (5.1), in
particular by the power 3=2. The falloff of that amplitude is
consistent with a stronger falloff. In order to interpret that
result we start noting that we can write, using Table I and
Eqs. (2.4)–(2.6),

AS31
1=2 ∝

�
2
AS11
1=2

cos θS
þ 4

ffiffiffi
2

p
AD13
1=2 þ 4

ffiffiffi
6

p
AD13
3=2

�
: ð5:3Þ

If the amplitudes AS11
1=2; A

D13
1=2 ∝ 1=Q3, as expected, the

deviation from AS31
1=2 from 1=Q3 is a consequence of a

partial cancellation between the two amplitudes A1=2 in
Eq. (5.3). This interpretation makes sense because those
amplitudes have different signs (see Figs. 1 and 2). Due to
the cancellation between the leading order term Oð1=Q3Þ
of the first two terms, AS31

1=2 is dominated by the second

order terms and the amplitude AD13
3=2 . A simple empirical

parametrization of the amplitude in units of 10−3 GeV−1=2

is AS31
1=2 ¼ 77:21ð Λ2

Λ2þQ2Þ5=2, with Λ2 ¼ 1 GeV2.

VI. SUMMARY AND CONCLUSIONS

In this work we combined the features of the covariant
spectator quark model and the single quark transition
model to predict the transition amplitudes A1=2, A3=2 for
the transitions γ�N → S11ð1650Þ, γ�N → D13ð1700Þ,
γ�N → S31ð1620Þ, and γ�N → D33ð1700Þ. The resonances
in the final state are all members of the ½70; 1−� super-
multiplet. We follow the method used in Refs. [1,7,8], but
we use a theoretical model (quark model) to extract the
characteristic coefficients associated with the transition,
instead of the experimental data, which are contaminated
by meson cloud effects at small Q2.
Since the covariant spectator quark model and the SQTM

are based in the valence quark degrees of freedom, the
range of application of the models is the region of
intermediate and high Q2. In the present case we may
define that region asQ2 > 2 GeV2, based on the results for
the transitions used in the calibration of the SQTM model.
The region Q2 > 2 GeV2 is where meson cloud effects are
expected to play a minor role. However, since the covariant
spectator quark model predicts that A3=2 ¼ 0 for the γ�N →
D13ð1520Þ transition, we explore the possibility of improv-
ing our estimations including a meson cloud parametriza-
tion of that amplitude. We recall that the proposed
parametrization for the meson cloud contribution has a
very slow falloff (large cutoff Λ2

4), which is more typical of
a valence quark contribution than from a meson cloud

TABLE II. Parameters from the high Q2 parametrization,
according to Eqs. (5.1) and (5.2).

State Amplitude Dð10−3 GeV−1=2Þ Λ2 (GeV2)

S11ð1650Þ A1=2 68.90 3.35
S31ð1620Þ A1=2 � � � � � �
D13ð1700Þ A1=2 −8.51 2.82

A3=2 4.36 3.61
D33ð1700Þ A1=2 39.22 2.69

A3=2 42.15 8.42
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effect contribution. The inclusion of a parametrization of
the amplitude A3=2 allows a much better description of the
data for intermediate Q2, although for much larger Q2

(Q2 > 5 GeV2), the models with A3=2 ¼ 0 and A3=2 ≠ 0 are
very similar.
To facilitate the comparison with future experimental

data at high Q2, we present also simple parametrizations of
the amplitudes A1=2 and A3=2 for the different transitions,
compatible with the expected falloff at high Q2:
A1=2 ∝ 1=Q3, A3=2 ∝ 1=Q5. The exception to the previous
rules is the amplitude A1=2 for the γ�N → S31ð1620Þ
transition, where we predict a falloff faster than 1=Q3.
Summarizing, we present predictions for the ½70; 1−�

amplitudes in the region Q2 > 2GeV2, where we can
expect a dominance of the valence quark degrees of
freedom. Nevertheless the meson cloud contributions
may still be important for some electromagnetic transitions.
In addition we present parametrizations for the region
Q2 ≈ 5GeV2, or larger, that can be tested in the future
JLab-12 GeV upgrade.
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APPENDIX: NEW PARAMETRIZATION FOR
THE S11ð1535Þ AMPLITUDES

The S11 system and the γ�N → S11ð1535Þ transition
were studied in Ref. [28] within the covariant spectator
quark model formalism. In that paper it was assumed that
the diquark was pointlike. If we use a more detailed
treatment, where nonpointlike diquark states are consid-
ered, following the formalism of Ref. [29], one has to
correct the normalization factor from N ¼ 1

2
to N ¼ 1ffiffi

2
p ,

reducing the first estimate by a factor 1=
ffiffiffi
2

p
. The final

expression for the Dirac form factor F�
1 is then

F�
1 ¼

ffiffiffi
2

p

3
ðf1þ þ 2f1−τ3ÞIS11: ðA1Þ

Another aspect that can be improved in the model from
Ref. [28] is the low Q2 region dependence of the form
factors. In the model from Ref. [28], the nucleon and the
S11 states were not strictly orthogonal therefore the model
failed nearQ2 ¼ 0, because IS11ð0Þ ≠ 0 and A1=2ð0Þ → ∞.
The exact orthogonality between those states demands
IS11ð0Þ ¼ 0. We can fix that problem redefining the radial
wave function in order to obtain IS11ð0Þ ¼ 0. The price to
pay is the introduction of a new parameter in the radial

wave function ψS11, which can be fixed by a fit to the data,
as explained next. The same procedure was used in
Ref. [29] for the D13ð1520Þ wave function.
We note however that even in the present case, where the

model is valid near Q2 ¼ 0, we cannot expect a very good
agreement between model and experimental data at lowQ2,
because the meson cloud effects are not included.

1. Imposing the orthogonality between states

In general, in the covariant spectator quark model
the radial wave functions can be expressed in terms of
the variable ðP − kÞ2, where P and k are respectively the
baryon and the diquark momenta, because the baryon and
the diquark are both on-mass-shell. The dependence in the
momenta can then be represented using the dimensionless
variable

χ ¼ ðMB −mDÞ2 − ðP − kÞ2
MBmD

; ðA2Þ

where MB and mD are respectively the baryon and diquark
masses.
In that case the nucleon wave function is defined as

ψNðP; kÞ ¼
N0

mDðβ1 þ χÞðβ2 þ χÞ ; ðA3Þ

where N0 is a normalization constant and β1; β2 are
parameters determined in Ref. [27] by a fit to the nucleon
form factor data (model II). The numerical values are β1 ¼
0.049 and β2 ¼ 0.717. As β2 > β1, β1 parametrizes the
long range region and β2 the short range region, in the
coordinate space.
The overlap integral (4.2) includes also the S11 radial

wave function. In Ref. [28] we define ψS11 by the same
expression given for the nucleon by Eq. (A3), except for the
momentum and mass of the baryon. The problem of that
choice is that the integral IS11ð0Þ does not vanish, except in
the case MS ¼ M (nucleon and S11 with the same mass).
The reason why IS11ð0Þ ≠ 0, unless MS ¼ M, is because
S11 and the nucleon cannot be at rest in the same frame.
See Ref. [28] for a complete discussion.
We can avoid that problem, defining ψS11 in order to be

orthogonal to the nucleon. We consider then the form

ψS11ðP; kÞ ¼
N1

mDðβ2 þ χÞ
�

1

β1 þ χ
−

λS11
β3 þ χ

�
; ðA4Þ

where β3 is a new parameter and N1 is a new normalization
constant. λS11 is a parameter that can be fixed, once β3 is
known by the orthogonality condition

IS11ð0Þ ¼ 0: ðA5Þ
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The free parameter β3 can be determined by the fit to the
high Q2 data from the γ�N → S11ð1535Þ transition.
The normalization conditions areZ

k
jψNðP̄; kÞj2 ¼ 1;

Z
k
jψS11ðP̄; kÞj2 ¼ 1; ðA6Þ

where P̄ represents in each case the baryon momentum at
the baryon rest frame.

2. Fit to the data

In order to extend the application of the model for the
S11ð1535Þ state, also to the low Q2 regime, we fit Eq. (A1)
to the form factor data. The only adjustable parameter
available is the value of β3 in the ψS11 radial wave function,
included in the integral IS11. As we are taking into account
only the valence quark degrees of freedom, we cannot
expect a good agreement for small Q2, therefore we fit
only the high Q2 data. We consider therefore only the data
with Q2 > 1.5 GeV2.
Our database includes the data from CLAS [44]

(Q2 ¼ 0.3–4.2 GeV2) and from JLab/Hall C [45]
(Q2 ¼ 5.4; 7.0 GeV2). The data from Hall C [45] include
only the amplitude A1=2, assumes that S1=2 is very small,
and has very small error bars. In the fit we double the error
bars from Hall C in order to avoid a high weight from the
Hall C data.
The best fit is obtained for β3 ¼ 0.540. The results for the

form factor F�
1 are presented in Fig. 6, compared with the

data mentioned previously, and the data from the MAID
analysis [51,52]. In the same figure we show also the results
from the valence quark contributions for the Pauli form
factor F�

2. We recall that in that case the experimental data
(not shown in the graph) is consistent with zero for
Q2 > 1.5 GeV2. Although one cannot compare directly
our model for F�

2 with the data due to the lack of meson
cloud effects we can compare it with other estimates of the

quark core effects. In the graph for F�
2 we present therefore

the estimate of the bare core effects given by the EBAC/
JLab model [43]. The EBAC model is a coupled-channel
reaction model that takes into account the meson and
photon coupling with the baryon cores. The result pre-
sented in the graph is obtained when the meson cloud
effects are removed. As we can see in the graph our results
for F�

2 are very close to the EBAC estimates. That result is
remarkable, since no fit relative to the function F�

2 was
considered.
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