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The underlying mixing of scalar mesons is studied in η0 → ηππ decay within a generalized linear sigma
model of low-energy QCD, which contains two nonets of scalar mesons and two nonets of pseudoscalar
mesons (a quark-antiquark nonet and a four-quark nonet). The model has been previously employed in
various investigations of the underlying mixings among scalar mesons below and above 1 GeV (as well as
those of their pseudoscalar chiral partners) and has provided a coherent global picture for the physical
properties and quark substructure of these states. The potential of the model is defined in terms of two- and
four-quark chiral nonets and based on the number of underlying quark and antiquark lines in each term in
the potential, a criterion for limiting the number of terms at each order of calculation (and systematically
further improving the results thereafter). At the leading order, which corresponds to neglecting terms in the
potential with higher than eight quark and antiquark lines, the free parameters of the model have been
previously fixed in detailed global fits to scalar and pseudoscalar experimental mass spectra below and
above 1 GeV together with several low-energy parameters. In the present work, the same order of potential
with fixed parameters is used to further explore the underlying mixings among scalar mesons in the
η0 → ηππ decay. It is found that the linear sigma model with only a single lowest-lying nonet is not accurate
in predicting the decay width, but inclusion of the mixing of this nonet with the next-to-lowest-lying nonet,
together with the effect of the final-state interaction of pions, significantly improves this prediction and
agrees with the experiment up to about 1%. It is also shown that, while the prediction of the leading order of
the generalized model for the Dalitz parameters is not close to the experiment, the model is able to give a
reasonable prediction of the energy dependencies of the normalized decay amplitude squared and that
this is expected to improve with further refinement of the complicated underlying mixings. Overall, this
investigation provides further support for the global picture of scalar mesons: those below 1 GeV are
predominantly four-quark states and significantly mix with those above 1 GeV, which are closer to the
conventional p-wave quark-antiquark states.
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I. INTRODUCTION

The scalar mesons continue to attract the attention of
many investigators for their important roles in low-energy
QCD [1]. Although not all their properties have been fully
uncovered, a great deal of progress has been made over the
past couple of decades [2–70]. Now, there seems to be an
emerging agreement about their quark substructure.
Historically, the light scalar mesons (below 1 GeV) with
their low mass and inverted mass spectrum [where the
lightest isosinglet f0ð500Þ is lighter than the isodoublet
K�

0ð800Þ which is in turn lighter than the isovector a0ð980Þ
that is nearly degenerate in mass with the heavier isosinglet
f0ð980Þ] found a natural template in an ideally mixed
fourquark MIT bag model [71]. An ideally mixed pure
four-quark picture, while giving a perfect description of the

mass spectra of the scalars below 1 GeV, seems to need
some distortions to be able to describe some of the decay
channels of these states. On the other hand, for the scalars
above 1 GeV, while seeming to be close to the conventional
p-wave quark-antiquark states, some of their properties
deviate from such an idealized picture. In short, the scalars
below 1 GeV appear to be close to four-quark states with
some distortions, and those above 1 GeVappear to be close
to quark-antiquark states with some distortions. The natural
question would be whether such distortions on the quark
substructure of both of these sets of states is due to a mixing
among these states. The idea of mixing is intuitively
understandable since some of the scalars below and above
1 GeV are very broad [such as, for example, f0ð500Þ and
f0ð1370Þ, or K�

0ð800Þ], and there is no reason that they
should not refrain from mixing with members having
the same quantum numbers in a nearby nonet (see
Refs. [72–78]). In Ref. [78], the idea of such mixings and
their effects on the properties of isovectors and isodoublets
was studied within a nonlinear chiral Lagrangian model and
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was shown that allowing a four-quark scalar nonet below
1 GeV to slightly mix with a quark-antiquark scalar nonet
above 1 GeV provides a natural explanation for certain
aspects of the mass spectrum and decay properties of both
nonets of scalars. For example, it explains that, when a pure
four-quark nonet below 1 GeV mixes with a pure quark-
antiquark nonet above 1 GeV, due to level repulsion, the
scalar mesons below 1 GeV are pushed down in mass and
hence become lighter than expected. Also, it shows that
several unexpected mass and decay properties of the scalars
above 1 GeV stem from this underlying mixing: the fact that
the experimental mass of a0ð1450Þ is higher than that of
K�

0ð1430Þ (which is unexpected if these two states were to
belong to the same pure quark-antiquark nonet) is due to a
“level crossing” that takes place in this mixing, which also
naturally explains several unexpected decay properties of the
states above 1 GeV [78]. In Ref. [79] (and references
therein), such mixing patterns were further studied in a
generalized linear sigma model. The advantages of linear vs
nonlinear model are (a) the scalar and pseudoscalar states
become chiral partners, form chiral nonets, and the under-
lying chiral symmetry and its breakdown establish connec-
tions and constraints on various parameters of the model; (b)
reliable experimental inputs on both scalar and pseudoscalar
mesons can be used in determining the model parameters;
and (c) the statuses of some of the pseudoscalar states that
are not quite established (such as ηð1405Þ, which is stated to
be a good “non-q̄q” candidate [80], or dynamically gen-
erated in the f0ð980Þη channel [81]) can be explored in this
approach as well. The main disadvantage of the linear model

vs the nonlinear model is the fact that in scattering and decay
processes one has to carefully deal with the individual
contributions that are often large but tend to regulate each
other in a very delicate manner (“local cancelations”). This is
a disadvantage compared to, for example, chiral perturbation
theory [82], in which corrections are systematically con-
trolled at different orders. Nevertheless, for the present
objective of studying the global picture for the family
relations and mixings among various scalar states below
2 GeV, the generalized linear model in which all such states
are explicitly kept in the Lagrangian, instead of being
integrated out, seems to be an efficient framework.
Although the description of η0 → ηππ seems to be beyond
the immediate effectiveness of chiral perturbation theory
[83], this decay has been studied in some variations of this
framework [84].
The tree-level Feynman diagrams representing the

η0 → ηππ decay are shown in Fig. 1. These include
a four-point interaction diagram (contact diagram) together
with diagrams representing the contributions of isovector
and isosinglet scalar mesons. This is a suitable decay
channel for studying the role of scalar mesons and their
underlying mixing patterns. To probe the effect of such
underlying mixings, we use both a single-nonet SU(3)
linear sigma model as well as a generalized version that
contains two nonets of scalar mesons (a two-quark nonet
and a four-quark nonet). In either case, the computation of
the partial decay width and the energy dependencies of the
normalized decay amplitude are the points of contact with
the experiment. The individual amplitudes are

M4p ¼ −γð4Þ;

Mfi ¼
ffiffiffi
2

p
γfiηη0γfiππ

1

m2
fi
þ ðp − kÞ2

¼
ffiffiffi
2

p
γfiηη0γfiππ

1

m2
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þ ½m2
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FIG. 1. Feynman diagrams representing the decay η0 → ηππ: contact term (left), contribution of isosinglet scalars (middle), and
contribution of isovectors (right).
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where the subscripts i and j run over the number of
isosingle and isovector intermediate states, respectively; ω1

and ω2 are the pion energies; and the coupling constants are
defined as

−L ¼ 1

2
γð4Þηη0π · π þ γfiππffiffiffi

2
p fiπ · π þ γfiηηfiηη

þ γfiηη0fiηη
0 þ γajπηaj · πηþ γajπη0aj · πη

0 þ � � � :
ð2Þ

Following the standard calculation, the partial decay
width is then obtained from

Γη0→ηππ ¼
1

64π3mη0

Z
dw1dw2jMj2; ð3Þ

with the total amplitude

M ¼ M4p þ
X
i

Mfi þ
X
j

Maj : ð4Þ

Equations (1), (2), (3), and (4) serve as our “templates” for
various investigations in this work. The experimental data
for decay width [1] is given in Table I.
In addition to the partial decay width, the energy

dependence of the normalized decay amplitude squared
can be compared with the experiment. For this comparison,
it is common to use Dalitz variables

X ¼
ffiffiffi
3

p

Q
ðω1 −ω2Þ;

Y ¼ −
2þmη=mπ

Q
ðω1 þω2Þ− 1þ 2þmη=mπ

Q
ðmη0 −mηÞ;

ð5Þ
where Q ¼ mη0 −mη − 2mπ . Then, the normalized decay
amplitude squared can be expanded in powers of X and Y.
In the generalized parametrization [1],

M2 ¼MðX;YÞ2
Mð0;0Þ2 ¼ 1þ aY þ bY2 þ cXþ dX2 þ � � � ; ð6Þ

where a, b, c, and d are real-valued parameters and c ¼ 0
in the isospin-invariant limit. The experimental data [1] for
a, b, and d are given in Table II. See also Refs. [85,86].
In Sec. II, we present the predictions of single nonet

SU(3) linear sigma model for the η0 → ηππ decay. We then
present a brief review of the double nonet generalized linear
sigma model in Sec. III, followed by its predictions for the
relevant two-body decays in Sec. IV and of the η0 → ηππ
decay in Sec. V. We give our approximation for the effect of
final-state interactions in Sec. VI and a summary and
discussion of the results in Sec. VII.

II. SINGLE NONET APPROACH

The role of scalar mesons in ππ, πK, and πη scattering
channels was extensively studied in a single nonet SU(3)
linear sigma model in Ref. [89]. It was shown that when the
tree-level scattering amplitudes are unitarized with the
simple K-matrix unitarization method the model is able
to explain the experimental data on the I ¼ J ¼ 0 ππ
scattering amplitude up to around 1.2 GeV. The first pole
found in this unitarized amplitude clearly agrees with the
properties of the light and broad sigma meson (with mσ ¼
0.457 GeV and Γσ ¼ 0.632 GeV), and the second pole
agrees with the properties of f0ð980Þ (with mf0 ¼
0.993 GeV and Γf0 ¼ 0.051 MeV). Within the same
framework, a light and broad kappa meson (with mκ ¼
0.798–0.818 GeV and Γκ ¼ 0.257–0.614 GeV) was iden-
tified in the studies of I ¼ 1=2, J ¼ 0, and πK scattering
amplitude. Similarly, a coherent picture was observed in the
studies of I ¼ 1, J ¼ 0, and πη scattering amplitude in
which a scalar resonance with the properties of a0ð980Þ is
clearly detected (with ma0 ¼ 0.890–1.013 GeV and Γa0 ¼
0.109–0.241 GeV). These investigations were carried out

TABLE I. Experimental decay width of η0 → ηπþπ− (first column), η0 → ηπ0π0 (second column), and η0 → ηππ in the isospin-
invariant limit (last column).

Experiment [η0 → ηπþπ−] Experiment [η0 → ηπ0π0] Experiment (averageda)
Γ (MeV) 0.086� 0.004 0.0430� 0.0022 0.086� 0.003

aFor the average value x̄þ δx̄ of measurements xi þ δxi, we use x̄ ¼ P
ixiwi=

P
iwi; δx̄ ¼ ðPiwiÞ−1=2 with the weight

wi ¼ 1=ðδxiÞ2, and δxtotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δx2syst þ δx2stat

q
.

TABLE II. Experimental Dalitz slope parameters for η0 → ηπþπ− (first column), η0 → ηπ0π0 (second column), and η0 → ηππ in the
isospin-invariant limit (third column).

Parameter
Experiment [η0 → ηπþπ−]

VES [87]
Experiment [η0 → ηπ0π0]

GAM4 [88]
Experiment (averaged)
isospin invariant limit

a −0.127� 0.016� 0.008 −0.066� 0.016� 0.003 −0.094� 0.012
b −0.106� 0.028� 0.014 −0.063� 0.028� 0.004 −0.082� 0.021
d −0.082� 0.017� 0.008 −0.067� 0.020� 0.003 −0.075� 0.014
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within a nonrenormalizable linear sigma model in which
the Lagrangian has the general structure

L ¼ −
1

2
Trð∂μM∂μM†Þ − V0ðMÞ − VSB; ð7Þ

where the chiral fieldM is constructed out of scalar nonet S
and pseudoscalar nonet ϕ,

M ¼ Sþ iϕ; ð8Þ

and transforms linearly under chiral transofrmation

M → ULMU†
R; ð9Þ

and V0 is an arbitrary function of the independent
SUð3ÞL × SUð3ÞR × Uð1ÞV invariants

I1 ¼ TrðMM†Þ; I2 ¼ TrðMM†MM†Þ;
I3 ¼ Tr½ðMM†Þ3�; I4 ¼ 6ðdetM þ detM†Þ: ð10Þ

The symmetry breaker VSB has the minimal form

VSB ¼ −2TrðASÞ; ð11Þ

where A ¼ diag (A1; A2; A3) are proportional to the three
“current”-type quark masses. The vacuum values satisfy

hSbai ¼ αaδ
b
a: ð12Þ

In the isospin-invariant limit,

A1 ¼ A2 ≠ A3; α1 ¼ α2 ≠ α3: ð13Þ

Using “generating equations” that express the chiral sym-
metry of V0 together with the minimum equation

�∂V
∂Sba

�
¼ 0; ð14Þ

masses of pseudoscalars are completely determined based
on the underlying chiral symmetry together with the

choice of symmetry breakers [both Uð1ÞA and SUð3ÞL ×
SUð3ÞR → SUð2Þ isospin]. The scalar masses, on the other
hand, are not all predicted; in the most general case, only the
mass of isodoublet kappameson is predicted, whereas, if the
renormalizability is imposed, the isovector mass and one of
the isosinglet masses are determined. It was found in
Ref. [89] that it is necessary not to impose the renomaliz-
ability condition in order to be able to fit to the ππ and πK
scatttering amplitudes and to get a reasonable description of
the πη amplitude. In the nonrenormalizable case, the “bare”
scalar masses mBAREðσÞ, mBAREðf0Þ, and mBAREða0Þ (i.e.,
the Lagrangian masses that are different than the physical
masses that are related to the poles of the appropriate
unitarized scattering amplitudes) and the scalar mixing
angle θs are found from fits to various low-energy data in
Ref. [89]. Here, we use the same set of parameters to study
the η0 → ηππ decay. In this case, the required coupling
constants in our template equations (1)–(4) are computed
from the generating equations that express the symmetry of
the Lagrangian (7) (a computational algorithm is presented
in Ref. [90]),

γð4Þ ¼
X
a;b

� ∂4V
∂ϕ2

1∂ϕ1
2∂ϕa

a∂ϕb
b

�
0

ðRϕÞa2ðRϕÞb3;

γa0πη ¼
X
a

� ∂3V
∂S21∂ϕa

a∂ϕ1
2

�
0

ðRϕÞa2;

γa0πη0 ¼
X
a

� ∂3V
∂S21∂ϕa

a∂ϕ1
2

�
0

ðRϕÞa3;

γfiππ ¼
1ffiffiffi
2

p
X
a

� ∂3V
∂Saa∂ϕ2

1∂ϕ1
2

�
0

ðRsÞaiþ1;

γfiηη0 ¼
X
a;b;c

� ∂3V
∂Saa∂ϕb

b∂ϕc
c

�
0

ðRsÞaiþ1ðRϕÞb2ðRϕÞc3; ð15Þ

where the bare couplings and the rotation matrices (Rs
and Rϕ) are given in Appendix A. Here, f1 ¼ σ and
f2 ¼ f0ð980Þ. We find

Γðη0→ηππÞ¼0.61�0.01MeV Single nonetðbare resultÞ:
ð16Þ
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FIG. 2 (color online). Projections of jM̂j2 ¼ jMðx; yÞj2=jMð0; 0Þj2 onto the y − jM̂j2 and x − jM̂j2 planes (single nonet model).
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Clearly, despite the success of the nonrenormalizable
single nonet SU(3) linear sigma model in describing the
low-energy scatterings discussed above, it estimates this
partial decay width about seven times larger than the
experimental value displayed in Table I.
The energy dependence of the normalized decay

amplitude squared is compared with the experiment in
Fig. 2, and the Dalitz parameters that characterize the
energy expansion of this amplitude squared are given in
Table III. Comparing with the averaged experimental
values of Table II, we see that there is a qualitative order
of magnitude agreement, at best. This lack of accuracy of
the single nonet approach raises the natural question of
whether the underlying mixing among scalar mesons
(which are clearly important players in this decay) has
a noticeable effect on these estimates. One of the
important roles of the scalars is to balance the large
contribution due to the contact term (M4p) as can be seen
in Fig. 3. Moreover, the eta systems (both the two below
1 GeV as well as those above 1 GeV) can mix and have a
nontrivial effect on this decay estimate. The single nonet
approach does not take these mixing effects among the
scalars and among the pseudoscalars into account, which
can have important consequences for this partial decay
width. This motivates us to further study this decay within
the generalized linear sigma model (which contains two
scalar nonets and two pseudoscalar nonets) in this
investigation.

III. BRIEF REVIEW OF THE GENERALIZED
LINEAR SIGMA MODEL

The model employs the 3 × 3 matrix chiral nonet
fields [79]:

M ¼ Sþ iϕ; M0 ¼ S0 þ iϕ0: ð17Þ

The matrices M and M0 transform in the same way under
chiral SU(3) transformations but may be distinguished
by their different Uð1ÞA transformation properties. M
describes the bare quark-antiquark scalar and pseudoscalar
nonet fields, while M0 describes bare scalar and pseudo-
scalar fields containing two quarks and two antiquarks.
At the symmetry level in which we are working, it is
unnecessary to further specify the four-quark field con-
figuration. The four-quark field may, most generally, be
imagined as some linear combination of a diquark-
antidiquark and a “molecule" made of two quark-antiquark
“atoms.”
The general Lagrangian density that defines our model is

L ¼ −
1

2
Trð∂μM∂μM†Þ − 1

2
Trð∂μM0∂μM0†Þ

− V0ðM;M0Þ − VSB; ð18Þ

where V0ðM;M0Þ stands for a function made from
SUð3ÞL × SUð3ÞR [but not necessarily Uð1ÞA] invariants
formed out of M and M0.
As previously discussed [79], the leading choice of terms

corresponding to eight or fewer underlying quark plus
antiquark lines at each effective vertex reads

V0¼−c2TrðMM†Þþca4TrðMM†MM†Þ
þd2TrðM0M0†Þþea3ðϵabcϵdefMa

dM
b
eM0c

fþH:c:Þ

þc3

�
γ1 ln

�
detM
detM†

�
þð1− γ1Þ ln

TrðMM0†Þ
TrðM0M†Þ

�
2

: ð19Þ

All the terms except the last two (which mock up the axial
anomaly) have been chosen to also possess the Uð1ÞA
invariance. A possible term ½TrðMM†Þ�2 is neglected for
simplicity because it violates the Okubo-Zweig-Iizuka rule.
The symmetry-breaking term that models the QCD mass
term takes the form given in Eq. (11). The model allows for
two-quark condensates, αa ¼ hSaai, as well as four-quark
condensates, βa ¼ hS0aai. Here, we assume isotopic spin
symmetry so A1 ¼ A2 ≠ A3 and

α1 ¼ α2 ≠ α3; β1 ¼ β2 ≠ β3: ð20Þ

We also need the “minimum” conditions,�∂V0

∂S
�
þ
�∂VSB

∂S
�

¼ 0;

�∂V0

∂S0
�

¼ 0: ð21Þ

TABLE III. The predicted Dalitz parameters in single nonet
linear sigma model of Ref. [89].

Parameter Single nonet model

a −0.114� 0.001
b −0.001� 0.001
d −0.063� 0.001

4 point

f0

a0

1.0 0.5 0.0 0.5 1.0
100

50

0

50

y

M
i

FIG. 3. Individual contributions to the η0 → ηππ decay
amplitude in the single nonet model. The large contribution of
contact term M4p is balanced with the contributions of f0ð980Þ
and a0ð980Þ.
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There are 12 parameters describing the Lagrangian and
the vacuum: six coupling constants given in Eq. (19), the
two quark mass parameters (A1 ¼ A2; A3), and the four
vacuum parameters (α1 ¼ α2;α3; β1 ¼ β2; β3). Ten of these
parameters (c2, ca4 , d2, e

a
3 , α1, α3, β1, β3, A1, and A3) are

determined using the four minimum equations together
with the following six experimental inputs for the masses,
pion decay constant, and the ratio of strange to nonstrange
quark masses:

m½a0ð980Þ� ¼ 984.7� 1.2 MeV;

m½a0ð1450Þ� ¼ 1474� 19 MeV;

m½πð1300Þ� ¼ 1300� 100 MeV;

mπ ¼ 137 MeV;

Fπ ¼ 131 MeV;

A3

A1

¼ 20 → 30: ð22Þ

Clearly, m½πð1300Þ� and A3=A1 have large uncertainties,
which in turn dominate the uncertainty of predictions.
The remaining two parameters (c3 and γ1) only affect

the isosinglet pseudoscalars (for which the properties also
depend on the 10 parameters discussed above). However,
there are several choices for the determination of these two
parameters depending on how the four isosinglet pseudo-
scalars predicted in this model are matched to many
experimental candidates below 2 GeV. The two lightest
predicted by the model (η1 and η2) are identified with
ηð547Þ and η0ð958Þ with masses

mexp½ηð547Þ� ¼ 547.853� 0.024 MeV;

mexp½η0ð958Þ� ¼ 957.78� 0.06 MeV: ð23Þ

For the two heavier ones (η3 and η4), there are six ways that
they can be identified with the four experimental candidates
above 1 GeV: ηð1295Þ, ηð1405Þ, ηð1475Þ, and ηð1760Þ
with masses

mexp½ηð1295Þ� ¼ 1294� 4 MeV;

mexp½ηð1405Þ� ¼ 1409.8� 2.4 MeV;

mexp½ηð1475Þ� ¼ 1476� 4 MeV;

mexp½ηð1760Þ� ¼ 1756� 9 MeV: ð24Þ

This leads to six scenarios considered in detail in Ref. [79].
The two experimental inputs for the determination of the
two parameters c3 and γ1 are taken to be TrM2

η and
detM2

η, i.e.,

TrðM2
ηÞ ¼ TrðM2

ηÞexp;
detðM2

ηÞ ¼ detðM2
ηÞexp: ð25Þ

Moreover, for each of the six scenarios, γ1 is found from a
quadratic equation, and as a result, there are altogether 12
possibilities for the determination of γ1 and c3. Since only
trace and determinant of experimental masses are imposed
for each of these 12 possibilities, the resulting γ1 and c3 do
not necessarily recover the exact individual experimental
masses; therefore, the best overall agreement between the
predicted masses (for each of the 12 possibilities) was
examined in Ref. [79]. Quantitatively, the goodness of each
solution was measured by the smallness of the quantity

χsl ¼
X4
k¼1

jmtheo
sl ðηkÞ −mexp

s ðηkÞj
mexp

s ðηkÞ
; ð26Þ

in which s corresponds to the scenario (i.e., s ¼ 1 � � � 6)
and l corresponds to the solution number (i.e., l ¼ I; II).
The quantity χsl × 100 gives the overall percent discrep-
ancy between our theoretical prediction and experiment.
For the six scenarios and the two solutions for each
scenario, χsl was analyzed in Ref. [79]. Some of these
scenarios, such as those involving ηð1405Þ, are clearly not
favored. This suggests that ηð1405Þ is of a more compli-
cated quark substructure that can be probed by the present
model, and this is consistent with the investigation of
Ref. [81] in which it is shown that this state may be
dynamically generated in the f0ð980Þη interaction. For the
third scenario [corresponding to the identification of η3 and
η4 with experimental candidates ηð1295Þ and ηð1760Þ] and
solution I, the best agreement with the mass spectrum of
the eta system was obtained (i.e., χ3I was the smallest).
For the present analysis, too, all six scenarios are examined,
and it is again found that the best overall result (both for
the partial decay width of η0 → ηππ as well as the energy
dependence of its squared decay amplitude) is obtained
for scenario “3I” consistent with the analysis of Ref. [79].
In this work, we only present the result of the 3I scenario.
To reduce the model uncertainty for the analysis of
η0 → ηππ decay, we have further refined the numerical
study of Ref. [79] for scenario 3I and have displayed the
result in Fig. 4, in which χ3I is plotted over the parameter
space m½πð1300Þ�-A3=A1 that are two of the model inputs
with the largest experimental uncertainties.
Consequently, all 12 parameters of the model (at the

present order of approximation) are evaluated by the
method discussed above using four minimum equations
and eight experimental inputs. The uncertainties of the
experimental inputs result in uncertainties on the 12
model parameters, which in turn result in uncertainties
on physical quantities that are computed in this model. In
the work of Ref. [79], all rotation matrices describing
the underlying mixing among two- and four-quark com-
ponents for each spin and isospin state are computed. For
scalars,
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�
aþ0 ð980Þ
aþ0 ð1450Þ

�
¼ L−1

a

�
S21
S021

�
;

�
K0ð800Þ
K�

0ð1430Þ
�
¼ L−1

κ

�
S31
S031

�
;

2
66664
f1
f2
f3
f4

3
77775¼ L−1

0

2
66664
fa
fb
fc
fd

3
77775; ð27Þ

where L−1
a , L−1

κ , and L−1
0 are the rotation matrices for I ¼ 1,

I ¼ 1=2, and I ¼ 0, respectively; fi; i ¼ 1..4 are four of the
physical isosinglet scalars below 2 GeV [in this model, f1
and f2 are clearly identified with f0ð500Þ and f0ð980Þ, and
the two heavier states resemble two of the heavier isosinglet
scalars above 1 GeV]; and

fa ¼
S11 þ S22ffiffiffi

2
p ∝ nn̄;

fb ¼ S33 ∝ ss̄;

fc ¼
S011 þ S022ffiffiffi

2
p ∝ nsn̄s̄;

fd ¼ S033 ∝ nnn̄n̄: ð28Þ

For pseudoscalars,�
πþð137Þ
πþð1300Þ

�
¼R−1

π

�
ϕ2
1

ϕ02
1

�
;

�
Kþð496Þ
K0þð1460Þ

�
¼R−1

K

�
ϕ3
1

ϕ03
1

�
;

2
6664
η1

η2

η3

η4

3
7775¼R−1

0

2
6664
ηa

ηb

ηc

ηd

3
7775; ð29Þ

where R−1
π , R−1

K , and R−1
0 are the rotation matrices for I ¼ 1,

I ¼ 1=2, and I ¼ 0 pseudoscalars, respectively; ηi; i ¼ 1.4
are four of the physical isosinglet pseudoscalars below
2 GeV; and

ηa ¼
ϕ1
1 þ ϕ2

2ffiffiffi
2

p ∝ nn̄;

ηb ¼ ϕ3
3 ∝ ss̄;

ηc ¼
ϕ01

1 þ ϕ02
2ffiffiffi

2
p ∝ nsn̄s̄;

ηd ¼ ϕ03
3 ∝ nnn̄n̄: ð30Þ

In the present work, we use the results obtained in
Ref. [79] to compute the decay properties of η0 → ηππ
without introducing any new parameters and find a reason-
able agreement between the model prediction and experi-
ment. This provides a further test of the underlying two- and
four-quark mixing among scalar mesons below and above
1 GeV and the appropriateness of the generalized linear
sigma model developed in Ref. [79] and references therein.

IV. TWO-BODY DECAYS

Since the scalar-pseudoscalar-pseudoscalar coupling
constants are essential in analyzing the η0 → ηππ decay,
for orientation, we first calculate some of these couplings
that appear in the prediction of the model for the main two-
body decays of the scalar mesons below 1 GeV (for states
above 1 GeV, additional components such as mixing
with glueballs would have to be included and will be
presented in future works). The three decay widths that are
particularly relevant for our analysis are

Γ½fi→ ππ� ¼ 3

�
qγ2fiππ
8πm2

fi

�

Γ½aj → πη� ¼ qγ2ajπη
8πm2

aj

Γ½K�
0 → πK� ¼ 3

�
qγ2κπK
16πm2

κ

�
; ð31Þ
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3 I 0.1 , min 0.0014

0.01
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0.09

FIG. 4 (color online). Contour plot of function χ3I [defined
in Eq. (26)] over the m½πð1300Þ�-A3=A1 plane for scenario
3I in which the four isosinglet pseudoscalar states predicted
by this model η1, η2, η3, and η4 are identified with the four
experimental candidates ηð547Þ, η0ð958Þ, ηð1295Þ, and ηð1760Þ,
respectively. The minimum of χ3I occurs at m½πð1300Þ� ¼
1.30 GeV and A3=A1 ¼ 29.40, at which it has a value of
χmin
3I < 0.0015, and shows an overall uncertainty of less than

0.15% between the four isosinglet pseudoscalar masses
predicted by the model and the central values of the four
experimental masses. (Note that the total experimental uncer-
tainty

P
iΔm

exp
i =mexp

i ≈ 0.0083, where mexp
i � Δmexp

i ; i ¼ 1…4,
denotes the four experimental masses.)
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where q is the center-of-mass momentum of the final
state mesons [for a generic two-body decay A → BC
by q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

A − ðmB þmCÞ2�½m2
A − ðmB −mCÞ2�

p
=ð2mAÞ].

The coupling constants are related to the bare couplings,

γfiππ ¼
1ffiffiffi
2

p
� ∂3V
∂fi∂πþ∂π−

�

¼ 1ffiffiffi
2

p
X
I;A;B

� ∂3V
∂fI∂ðϕ2

1ÞA∂ðϕ1
2ÞB

�
ðL0ÞIiðRπÞA1ðRπÞB1;

γaπη ¼
� ∂3V
∂a−∂πþ∂η

�

¼
X
A;B;I

� ∂3V
∂ðS21ÞA∂ðϕ2

1ÞB∂ηI
�
ðLaÞA1ðRπÞB1ðR0ÞI1;

γκKπ ¼
� ∂3V
∂κ0∂K−∂πþ

�

¼
X
A;B;C

� ∂3V
∂ðS32ÞA∂ðϕ1

3ÞB∂ðϕ2
1ÞC

�
ðLκÞA1ðRKÞB1ðRπÞC1;

ð32Þ

where A, B, and C can take values of 1 and 2 (with 1
referring to nonet M and 2 referring to nonet M0) and
I is a placeholder for a, b, c, and d that, respectively,
represent the four bases in Eqs. (28) and (30). L0,
Rπ , La, R0, Lκ, and RK are the rotation matrices
defined in Sec. III. The bare coupling constants are all
given in Appendix B. The kappa coupling is defined
as −L ¼ γκKπffiffi

2
p ðK̄τ · πκ þ H:c:Þ þ � � �.

We begin with the decay width of f0ð500Þ to two pions,
which is the benchmark test of any low-energy QCD
model. At the present level of approximation, the main
uncertainties in fixing the free parameters of the model are
on experimental inputs for the ratio of strange to nonstrange
quark masses (A3=A1) and on the mass of πð1300Þ
resonance. Hence, the m½πð1300Þ�-A3=A1 plane is numeri-
cally scanned, and the decay width is computed. The result
is displayed in Fig. 5 showing that for most parts of the
parameter space the lightest isosinglet state f0ð500Þ (or σ)
is broad with the decay width comparable to the latest PDG
result. The decay width averaged over the entire parameter
space is

FIG. 5 (color online). Contour plots of the prediction of the model for the main two-body decay widths of light scalar mesons over the
m½πð1300Þ�-A3=A1 plane: Γ½f0ð500Þ → ππ� (top left) is predicted to be very large, Γ½f0ð980Þ → ππ� (top right) and Γ½a0ð980Þ → πη�
(bottom left) are within the expected experimental ranges, and Γ½K�

0ð800Þ → πK� (bottom right) near highm½πð1300Þ�mass is large and
in addition receives unitarity corrections due to the πK final-state interaction.
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Γ½f0ð500Þ → ππ� ¼ 530� 100 MeV; ð33Þ
where the uncertainty represents one standard deviation
around the average. This is consistent with the decay width
predicted in this model from the pole of the K-matrix
unitarized ππ scattering amplitude. Therefore, the model
clearly detects a light and broad isosinglet scalar meson.
Similarly, the predictions of the model over the

m½πð1300Þ�-A3=A1 plane for Γ½f0ð980Þ→ππ�, Γ½a0ð980Þ→
πη�, and Γ½K�

0ð800Þ → πK� are shown in Fig. 5 with the
averaged values:

Γ½f0ð980Þ → ππ� ¼ 35� 27 MeV;

Γ½a0ð980Þ → πη� ¼ 57� 44 MeV;

Γ½K�
0ð800Þ → πK� ¼ 58� 90 MeV: ð34Þ

The first three overlap with the expected experimental
ranges [1]. The averaged decay width of K�

0ð800Þ is not as
large as expected, even though we see in Fig. 5 that there is
a region in the parameter space (toward high values of
m½πð1300Þ�) where this decay width has the right order of
magnitude. However, in a separate work [91], it is shown
that the prediction of the model for the I ¼ 1=2, J ¼ 0, πK
scattering amplitude describes the experimental data well
up to around 1 GeV. It is also shown that the poles of the
K-matrix unitarized scattering amplitude (the κ pole) results

in a light and broad K�
0ð800Þ with a mass around

710–770 MeV and decay width around 610–700 MeV.
We interpret the reduction in mass and the increase in the
decay width to be the effect of the final-state interactions of
πK that are estimated by the simple K-matrix method.
The main two-body decay channels of the light scalars

presented in this section are in a reasonable agreement with
the experiment. This gives an initial test of some of the
scalar-pseudoscalar-pseudoscalar coupling constants that
will be incorporated in the study of η0 → ππ decay in the
next section.

V. BARE PREDICTION OF THE GENERALIZED
LINEAR SIGMA MODEL FOR η0 → ηππ DECAY

In this section, we present the bare prediction of themodel
(i.e., without unitarity corrections due to the final-state
interaction of pions) for the decay width and the energy
dependencies of the normalized decay amplitude squared. In
the next section, we include the effect of these unitarity
corrections. The Feynman diagrams of Fig. 1 include the
contact term interaction together with the contributions
of the four isosinglet scalars ðf1; � � � ; f4Þ as well as the
two isovector scalars (a1 and a2). Some of the scalar-
pseudoscalar-pseudoscalar coupling constants were dis-
cussed in previous sections, and the remaining ones are

γð4Þ ¼
X
I;J;A;B

� ∂4V
∂ηI∂ηJ∂ðϕ2

1ÞA∂ðϕ1
2ÞB

�
ðR0ÞI1ðR0ÞJ2ðRπÞA1ðRπÞB1;

γfiηη0 ¼
� ∂3V
∂fi∂η∂η0

�
¼

X
K;I;J

� ∂3V
∂fK∂ηI∂ηJ

�
ðL0ÞKiðR0ÞI1ðR0ÞJ2;

γajπη0 ¼
� ∂3V
∂aþj ∂π−∂η0

�
¼

X
A;B;I

� ∂3V
∂ðS21ÞA∂ðϕ1

2ÞB∂ηI
�
ðLaÞAjðRπÞB1ðR0ÞI2; ð35Þ

where K, I, and J run over the bases a, b, c, and d defined
in Eqs. (28) and (30) and A and B can take values of 1 and 2
(with 1 referring to nonet M and 2 to nonet M0), and the
rotation matrices are all defined in Eqs. (27) and (29). All
bare coupling constants are calculated and presented in
Appendix B.
We first note that theknown “current algebra” result for this

decay is recovered by decoupling the four-quark nonet M0
and imposing the large scalar mass limit (see Appendix C).
This illustrates how contributions of scalar mesons balance
the large contribution of the four-point interaction and results
in the known small current algebra result.
It is important to examine the bare predictions first in order

to be able to then test different methods of unitarity
corrections that in turn shed light on the important issue
of final-state interactions. Using the physical coupling
constants defined above (together with those discussed in
the previous section), we compute the partial decay width by

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38
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0.0015

0.0020

0.0025

m 1300 GeV

'
G

eV

Scenario 3I

A3 A1 27

A3 A1 28

• A3 A1 29

A3 A1 30

FIG. 6. Bare prediction (without unitarity corrections) of the
generalized linear sigma model for the partial decay width of
η0 → ηππ.
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incorporating these couplings into our template equa-
tions (1)–(4). The bare predictions for scenario 3I (previously
defined in Fig. 4) are plotted in Fig. 6 for the range of
m½πð1300Þ� and several values of A3=A1. Although the
model prediction is of a comparable order of magnitude to
the experiment and gets closer to the experimental bounds for
low values ofm½πð1300Þ�, overall it is larger than that of the
experiment. The result is, however, closer to the experiment
compared to that predicted by the single nonet approach. To
find the best agreement, we search for the values of
m½πð1300Þ� and A3=A1 that minimize function χΓ defined as

χΓðm½πð1300Þ�; A3=A1Þ

¼ jΓtheoðm½πð1300Þ�; A3=A1Þ − Γexpj
Γexp : ð36Þ

We also use a χ2 fit for a double check. The best predicted
decay widths from the χ and χ2 fits are found with
m½πð1300Þ� ¼ 1.22� 0.01 and A3=A1 ¼ 30.00� 0.25:

Γðη0 → ηππÞ ¼ 0.15� 0.01 MeV

Generalized linear sigmamodel ðbare resultÞ: ð37Þ

The bare prediction for the energy dependence of the
normalized decay amplitude squared is shown in Fig. 7 and
compared with the averaged experimental data of Table II.
The best fits to the Dalitz parameters result in the best
values of m½πð1300Þ� ¼ 1.38 GeV and A3=A1 ¼ 28.75
(see Table IV), which are within the parameter space of

the model [Eq. (22)], however, do not coincide with the best
values of these parameters found in the partial decay width
analysis in Eq. (37). This shows that, although inclusion of
mixing among scalar and among pseudoscalars clearly
improves the model predictions, it is necessary to account
for the effect of final-state interactions. A general character-
istic of the linear sigma model is the cancelation of a large
four-point contribution with those of scalar mesons, which
for the bare predictions is shown in Fig. 8.

VI. UNITARITY CORRECTIONS

In principle, there are corrections due to the final-state
interactions of ππ and πη. These effects have been studied
within the present model in Ref. [92] in which the final-
state interactions of pions were studied in unitarization of
the ππ scattering amplitude and recently in unitarization of
πK and πη scattering amplitudes in Refs. [91,93]. In the ππ
analysis, it is found that the effect of the final-state
interactions on the properties of the sigma meson is large,
and this manifests itself in the substantial difference
between the bare sigma mass (Lagrangian mass) and the
physical sigma mass found from the pole of the K-matrix
unitarized I ¼ J ¼ 0, ππ scattering amplitude (it is found
[92] that the physical mass of sigma is around 480 MeV,
and its decay width is 450–500 MeV). On the contrary, the
properties of a0ð980Þ probed in the πη scattering analysis
[93] do not show a significant shift between the bare mass
of a0ð980Þ (Lagrangian mass) and that probed in the
K-matrix unitarized πη scattering amplitude. Since we
are investigating the η0 → ηππ decay within the same
framework of Refs. [92,93], we take the effect of ππ
final-state interactions to be the dominant one.
Our main motivation in this work is to learn about the

scalar meson mixing patterns; therefore, it is natural for us
to approximate the unitarity corrections in a language that
is explicitly expressed in terms of the shifts in the scalar
meson properties (from their bare Lagrangian values to
their physical values). For this purpose, the K matrix
provides a reasonable tool to both account for unitarity
corrections as well as to probe the underlying mixings.

FIG. 7 (color online). Projections of jM̂j2 ¼ jMðx; yÞj2=jMð0; 0Þj2 onto the y − jM̂j2 and x − jM̂j2 planes (bare prediction of the
generalized linear sigma model).

TABLE IV. Dalitz parameters obtained in fitting the bare
generalized linear sigma model to experiment in a χ fit (best
point at m½πð1300Þ� ¼ 1.38� 0.02 and A3=A1 ¼ 28.75þ1.25

−1.75 ) and
a χ2 fit (best point at m½πð1300Þ� ¼ 1.38� 0.01 and
A3=A1 ¼ 27.25þ1.50

−0.25 ).

Parameter χ fit χ2 fit

a −0.024þ0.025
−0.017 −0.039þ0.015

−0.003

b 0.0001þ0.0110
−0.0034 0.008þ0.002

−0.008

d −0.029þ0.012
−0.001 −0.020þ0.003

−0.009
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The K matrix has the advantage of not introducing any new
parameters into the analysis, hence allowing us to establish
a direct connection between the bare Lagrangian properties
of scalars and the physical properties of scalars probed in
fits to appropriate experimental data. We follow the prior
work presented in Ref. [92] in which a detailed analysis
of the I ¼ J ¼ 0, ππ scattering amplitude is given. The
K-matrix unitarized scattering amplitude is given by

T0
0 ¼

T0
0
B

1 − iT0
0
B ; ð38Þ

where T0
0
B is the bare scattering amplitude calculated from

the Lagrangian. It is shown in Ref. [92] that

T0
0
B ¼ Tα þ

X
i

Ti
β

m2
fi
− s

; ð39Þ
with

Tα¼
1

64π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
π

s

r �
−5γð4Þππ þ 2

p2
π

X
i

γ2fiππ ln

�
1þ4p2

π

m2
fi

��
;

Ti
β¼

3

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
π

s

r
γ2fiππ; ð40Þ

where pπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

π

p
=2, the scalar-pseudoscalar-

pseudoscalar couplings γfiππ are defined in Sec. I, and
γð4Þππ is the pion four-point coupling constant. It is shown in
Ref. [89] that the K-matrix unitarized amplitude (38) can be

expressed as a constant background and a sum over simple
poles

T0
0 ≈ ~Tα þ

X
i

~Ti
β

zi − s
; ð41Þ

where ~Tα is the constant (complex) background; the simple
poles zi ¼ ~m2

i − i ~m ~Γi with ~mi and ~Γi are interpreted as the
physical mass and decay width of the ith isosinglet scalar
meson, respectively; and ~Ti

β are the residues. Moreover, it
can be shown that

j ~Ti
βj ≈ ~mi

~Γi; ð42Þ

which resembles the corresponding numerators in the bare
amplitude (39) where

Ti
βjs¼m2

i
¼ miΓi: ð43Þ

Comparing Eqs. (39), (41), (42), and (43), we see that
unitarity corrections effectively shift the isosinglet scalar
masses and decay widths:

mi → ~mi

Γi → ~Γi: ð44Þ

In the decay η0 → ηππ the unitarity corrections for the
sigma meson are the most important ones. We account for

FIG. 8. Individual contributions to the bare decay amplitude of η0 → ηππ. The large contribution of the contact term is balanced with
the large contributions of scalar mesons.
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these corrections by shifting the bare mass and decay width
to two pions according to Eq. (44). The second shift in
Eq. (44) can also be expressed in terms of the shift in the
coupling constant, i.e.,

mσ → ~mσ;

γσππ → ~γσππ; ð45Þ

where ~mσ and ~γσππ are those found from the lowest pole
z1 ¼ ~m2

σ − i ~mσΓσ of the scattering amplitude [92], and
since Γσ ≈ Γ½σ → ππ�,

~γσππ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π ~m2

σΓσ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2
σ − 4m2

π

p
s

: ð46Þ

Recalculating the partial decay width of η0 → ηππ (pre-
sented in the previous section) with the new substitutions
(45), we find the results displayed in Fig. 9, showing that
the model predictions easily cross into the experimental
range. The same effect can be taken into account for the

f0ð980Þ, but that has a negligible effect on the results
presented. On the two-dimensional parameter space of the
model (m½πð1300Þ�, A3=A1), the point that gives the best
agreement with the experimental value of the decay width
is (1.29 GeV, 29.75), obtained by minimizing χ defined in
Eq. (36) (as well as by minimizing the conventional χ2).
The decay width in this case is

Γðη0 → ηππÞ ¼ 0.085þ0.003
−0.002 MeV

Generalized linear sigma model ðunitarized resultÞ: ð47Þ

This result is within 1.2% of experimental data on the
decay width.
The energy dependencies of the normalized decay

amplitude squared are plotted in Fig. 10, and fits to the
Dalitz parameters are given in Table V. It is found that
the point ðm½πð1300Þ�; A3=A1Þ ¼ ð1.38 GeV; 29.75Þ gives
the best agreement with the experiment. Although this
point and the best point for the decay width (presented
above) are both within the parameter space of the model,
they do not coincide, showing the need for further

FIG. 9. Prediction of the generalized linear sigma model for the partial decay width of η0 → ηππ. The final-state interactions of pions
are taken into account by shifting the mass and coupling constant of the sigma meson according to Eq. (45).

FIG. 10 (color online). Projects of the normalized decay amplitude squared onto planes containing x and y parameters (shaded
regions) are compared with the experimental data (error bars). The final-state interactions of pions are taken into account by shifting the
mass and coupling constant of the sigma meson according to Eq. (45).
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improvement of this complicated decay, and will be further
discussed in next section. The general feature of linear
sigma model in which scalar mesons “conspire” to balance
the large contribution of the contact term can be seen
in Fig. 11.
Similarly, we can estimate the final state interactions for

the single nonet model of Sec. II. We find that the decay
width improves

Γðη0 → ηππÞ ¼ 0.35� 0.01 MeV

Single nonet ðunitarized resultÞ: ð48Þ
However, the energy dependencies worsen in this case
(Fig. 12 and Table VI). This shows that the effects of
unitarity corrections alone are not sufficient and there

seems to be the effect of mixing that should be taken into
account. In this case, the individual contributions are shown
in Fig. 13.

VII. CONCLUDING DISCUSSION

In this work, we examined the η0 → ηππ decay as a probe
of scalar meson substructure and mixing patterns within a
generalized linear sigma model of low-energy QCD that is
formulated in terms of two scalar meson nonets and two
pseudoscalar meson nonets (a two- and a four-quark nonet
for each spin). We first showed that the single nonet model
of Ref. [89], despite its considerable success in describing
ππ, πK, and πη low-energy scatterings, gives inaccurate
predictions for the partial decay width of η0 → ηππ as well
as the energy dependencies of its normalized decay
amplitude squared. Since this decay involves η and η0 as

TABLE V. Dalitz parameters in unitarized generalized linear
sigma model from fits (both χ fit as well as χ2 fit) to the
experiment. The presented results are the closest agreement with
the experiment that occur at point ðm½πð1300Þ�; A3=A1Þ ¼
ð1.38� 0.01 GeV; 29.75� 0.25Þ.
Parameter χ fit χ2 fit

a −0.079þ0.019
−0.021 −0.079� 0.019

b 0.024þ0.010
−0.009 0.024� 0.009

d −0.028� 0.001 −0.028� 0.001
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FIG. 11. Individual contributions to the decay amplitude. The final-state interactions of pions are taken into account by shifting the
mass and coupling constant of sigma meson according to Eq. (45).
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FIG. 12 (color online). Projections of jM̂j2 ¼ jMðx; yÞj2=jMð0; 0Þj2 onto the y − jM̂j2 and x − jM̂j2 planes (unitarized single nonet
model). While the effect of final-state interactions improves the partial decay width predicted by the single nonet model, the energy
dependencies worsen. This shows that there is more into this decay than just the effect of final-state interactions.

TABLE VI. Predicted decay parameters in the unitarized single
nonet approach of Ref. [89].

Parameter Single nonet model

a −2.17� 0.01
b 2.37� 0.01
d 0.11� 0.01
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well as intermediate scalar mesons and these states are
known to have nontrivial mixings with states with the same
quantum numbers above 1 GeV, and since such mixings
have been previously [79] given important insights into the
physical properties of both scalar as well as pseudoscalar
mesons, in thiswork,we explored the effect of thesemixings
on this decay. We investigated whether the inclusion of
mixing can have a tangible effect and whether such effects
improve the predictions of the single nonet linear sigma
model for this decay. We showed that inclusion of the
underlying mixings (even without unitarity corrections)
considerably improves the partial decay width prediction
as well as the energy dependencies of the normalized decay
amplitude squared. We then showed that inclusion of the
final-state interaction of pions further improves the predic-
tions and brings the partial decay width towithin 1.2% of its
experimental value and considerably improves the predic-
tions for theDalitz parameters. Our findings are summarized
in several tables in this final section. Table VII gives our
results for the partial decay width and Dalitz parameters in
the single nonet linear sigmamodel as well as its generalized
version, both with and without accounting for the final-state
interaction of pions.
We note that while the predictions ofDalitz parameters are

improved in the fourth column of Table VII they are still far
from their experimental values. However, we further note
that since the Dalitz variables X and Y are relatively small
over much of their domain, the difference in the normalized
decay amplitude itself is not that large for most of the
domain. To illustrate this, Fig. 14 zooms in on the X, Y
domain in four steps. Inside each “loop,” the closeness of the
model prediction for the energy dependence of the normal-
ized decay amplitude squared is measured with the quantity

χ̄M2 ¼ 1

N

XN
i

jðM2ÞexpðXi; YiÞ − ðM2ÞtheoðXi; YiÞj
ðM2ÞexpðXi; YiÞ

; ð49Þ

where the normalized decay matrix element is defined in
Eq. (6) and the averaged experimental data are in Table II.
The results are presented in Table VIII and clearly show an

averaged agreement with experiment (for the two cases that
the best energy dependencies are obtained, i.e., the second
and the fourth rows of Table VIII, is around 6%), despite the
much less agreement on Dalitz coefficients displayed in
Table VII.
The dependencies of the results on the choice of points in

the two-dimensional parameter space m½πð1300Þ� and
A3=A1 are summarized in Tables IX and X. The fact that
the best points for the partial decay width and energy
dependencies of the normalized decay amplitude squared
do not occur at the same point can be interpreted as an

FIG. 13. Individual contributions to the η0 → ηππ decay am-
plitude in the unitarized single nonet model. The large contri-
bution of contact term M4p is balanced with the contributions of
scalars. Unitarity corrections are taken into account.

1.0 0.5 0.0 0.5 1.0
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FIG. 14. The breakdown of XY domain into four subregions
(loops).

TABLE VII. Comparison with the experiment the predictions
by the single nonet linear sigma model (first two columns) and
those by the generalized linear sigma model (the last two
columns) for the decay width and the Dalitz parameters of
η0 → ηππ decay. The goodness of the predictions is measured by
the smallness of the parameter χ defined for a generic quantity q
as χq ¼ jðqexp − qtheoÞ=qexpj (i.e., χq × 100 gives the percent
difference between the theory and experiment). The predictions
of the generalized linear sigma model depend on the choice of
points in its two-dimensional parameter space (m½πð1300Þ�,
A3=A1): In the third column, the minima of χΓ and of χDalitz ¼
χa þ χb þ χd occur at point (1.22 GeV, 30.00) and at point
(1.38 GeV, 28.75), respectively, whereas in the fourth column, the
minima of χΓ and of χDalitz occur at (1.29 GeV, 29.75) and at
(1.38 GeV, 29.75), respectively. Clearly, the shortcomings of the
single nonet linear sigma model of Ref. [89] can be seen in
the first two columns: The decay width is several times larger than
the experimental value, and the unitarity corrections do not
improve the situation and in fact worsen the Dalitz parameter
predictions. On the other hand, the generalized linear sigma
model significantly improves the predictions and gives the decay
width in the unitarized version to 1.2% of the experimental value
and also improves the Dalitz parameter predictions.

Single nonet
(bare)

Single nonet
(unitarized)

MM0
(bare)

MM0
(unitarized)

χΓ 6.09 3.07 0.74 0.012
χa 0.21 22.08 0.74 0.16
χb 0.99 30.02 1.0 1.29
χd 0.16 2.4 0.61 0.63
χtotal 7.45 57.57 3.10 2.09
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estimate of our theoretical uncertainty. At the present order
of accuracy of this model, we have ignored effects such as
terms in the potential with higher than eight quark and
antiquark lines as well as the scalar and pseudoscalar
glueballs. Both of these are expected to have some effects
on the results. Since the Uð1ÞA anomaly plays an important
role in the eta sector, we have made an initial investigation
of the effect of the higher-order Uð1ÞA breaking term
(which is related to higher-order instanton contributions
at the quark level) and have observed that this term
improves the picture by bringing the two points in the
parameter space closer together. This is quite encouraging
and will be presented in detail in a separate work [94]. It is
also interesting to further apply the present model to study
the isospin-violating η → 3π decay [95,96] and to examine
the effect of various unitarization methods [97].
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APPENDIX A: COUPLING CONSTANTS IN THE
SINGLE-NONET MODEL

The rotation matrices are

2
664
π0

η

η0

3
775¼RϕðθpÞ

2
664
ϕ1
1

ϕ2
2

ϕ3
3

3
775¼

2
6664

1ffiffi
2

p − 1ffiffi
2

p 0

apffiffi
2

p apffiffi
2

p −bp
bpffiffi
2

p bpffiffi
2

p ap

3
7775
2
664
ϕ1
1

ϕ2
2

ϕ3
3

3
775; ðA1Þ

with ap¼ðcosθp−
ffiffiffi
2

p
sinθpÞ=

ffiffiffi
3

p
, bp¼ðsinθpþ

ffiffiffi
2

p
cosθpÞ=ffiffiffi

3
p

, where θp is the pseudoscalar (octet-singlet) mixing
angle. Similarly,

2
664
a00
σ

f0

3
775¼ RsðθsÞ

2
664
S11
S22
S33

3
775¼

2
664

1ffiffi
2

p − 1ffiffi
2

p 0

asffiffi
2

p asffiffi
2

p −bs
bsffiffi
2

p bsffiffi
2

p as

3
775
2
664
S11
S22
S33

3
775; ðA2Þ

with as¼ðcosθs−
ffiffiffi
2

p
sinθsÞ=

ffiffiffi
3

p
, bs¼ðsinθsþ

ffiffiffi
2

p
cosθsÞ=ffiffiffi

3
p

where θs is the scalar (octet-singlet) mixing angle.

TABLE IX. Dependency on the choices of m½πð1300Þ�, A3=A1

of the bare model predictions (without the effect of unitarity
corrections due to the final-state interaction of pions). In the first
to last columns, respectively, the values of these two parameters
are 1.30 GeV, 29.40 (best model prediction for the eta masses);
1.22 GeV, 30.00 (best prediction for the decay width); and
1.38 GeV, 28.75 (best prediction for the energy dependencies). In
each column, the targeted quantities are highlighted in bold, and
their closeness to experimental data is measured with their
corresponding χ.

MM0 (bare) ðχminÞmass¼0.14% ðχminÞΓ¼74% ðχminÞE:D:¼235%

m½πð1300Þ� 1300 1220 1380
A3=A1 29.40 30.00 28.75
mη1 (MeV) 547 554 539
mη2 (MeV) 959 979 947
mη3 (MeV) 1294 1229 1364
mη4 (MeV) 1756 1788 1710
Γ (MeV) 0.42 0.15 0.97
a 0.24 0.88 −0.024
b −0.026 0.07 0.0001
d −0.037 −0.07 −0.029

TABLE X. Dependency on the choices of m½πð1300Þ�, A3=A1

of the unitarized model predictions (with the effect of the final-
state interaction of pions). In the first to last columns, respec-
tively, the values of these two parameters are 1.3 GeV, 29.40
(best model prediction for the eta masses); 1.29 GeV, 29.75 (best
prediction for the decay width); and 1.38 GeV, 29.75(best
prediction for the energy dependencies). In each column, the
targeted quantities are highlighted in bold, and their closeness to
experimental data is measured with their corresponding χ.

MM0 (unitarized)
ðχminÞmass
¼ 0.14%

ðχminÞΓ
¼ 1.2%

ðχminÞE:D:
¼ 207%

m½πð1300Þ� 1300 1290 1380
A3=A1 29.40 29.75 29.75
mη1 (MeV) 547 550 544
mη2 (MeV) 959 956 936
mη3 (MeV) 1294 1285 1364
mη4 (MeV) 1756 1762 1715
Γ (MeV) 0.072 0.085 0.62
a 10.84 −9.48 −0.079
b 24.72 26.2 0.024
d −0.29 0.22 −0.028

TABLE VIII. Displayed numbers in the second-to-last columns
are χ̄M2 [defined in Eq. (49)] over the four loops of Fig. 14 [see
Eq. (6)]. The predictions of the generalized linear sigma model
depend on the choice of points in its two-dimensional parameter
space (m½πð1300Þ�, A3=A1). The displayed values of m½πð1300Þ�
and A3=A1 give the best result for partial decay width without/
with the final-state interactions (first/third rows) and the best
result for the energy dependencies of the normalized decay
amplitude squared without/with the final-state interactions
(second/fourth row).

m½πð1300Þ�
ðGeVÞ A3=A1 Dotted-dashed Dashed Dotted Solid

1.22 30.00 0.14 0.27 0.41 0.54
1.38 28.75 0.01 0.03 0.04 0.07
1.29 29.75 1.0 2.2 4.7 7.6
1.38 29.75 0.005 0.02 0.04 0.06
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The coupling constants are

γð4Þ ¼ −
1

ð2FK − FπÞF3
π
apbp½−4F2

Kð5
ffiffiffi
2

p
apbpðm2

η −m2
η0 Þ − 84FπV4Þ

þ F2
πð4m2

BAREða0Þ þ 2m2
BAREðσÞa2s þ 2

ffiffiffi
2

p
ðm2

BAREðf0Þ −m2
BAREðσÞasbs

þ 2m2
BAREðf0Þb2s − 6a2pm2

η − 7
ffiffiffi
2

p
apbpm2

η þ 7
ffiffiffi
2

p
apbpm2

η0 − 6b2pm2
η0 þ 84FπV4Þ

− 4FKFπð2m2
BAREða0Þ þm2

BAREðσÞa2s þm2
BAREðf0Þb2s − 3a2pm2

η − 5
ffiffiffi
2

p
apbpm2

η

þ 5
ffiffiffi
2

p
apbpm2

η0 − 3b2pm2
η0 þ 84FπV4Þ�; ðA3Þ

γaπη ¼
ffiffiffi
2

p

Fπ
apðm2

BAREða0Þ −m2
ηÞ; γaπη0 ¼

ffiffiffi
2

p

Fπ
bpðm2

BAREða0Þ −m2
η0 Þ;

γσππ ¼
1

Fπ
asðm2

BAREðσÞ −m2
πÞ; γf0ππ ¼

1

Fπ
bsðm2

BAREðf0Þ −m2
πÞ: ðA4Þ

For η0 decay, we will also need

γσηη0 ¼ −
1

ð2FK − FπÞF2
π
apbp½−2m2

BAREðσÞa2sbsF2
π þ

ffiffiffi
2

p
m2

BAREðσÞa3sFπð−2FK þ FπÞ

þ 2bsFπð−m2
BAREðσÞb2sFπ þ b2pFπm2

η þ a2pFπm2
η0 −

ffiffiffi
2

p
apbpð2FK − FπÞðm2

η −m2
η0 ÞÞ

þ asð
ffiffiffi
2

p
m2

BAREðσÞb2sFπð−2FK þ FπÞ − apbpð4F2
K − 4FKFπ þ 3F2

πÞðm2
η −m2

η0 Þ
þ

ffiffiffi
2

p
a2pð2FK − FπÞFπð2m2

η −m2
η0 Þ þ

ffiffiffi
2

p
ð2FK − FπÞFπð−b2pðm2

η − 2m2
η0 Þ

þ 18ð2FK − FπÞV4ÞÞ�; ðA5Þ

γf0ηη0 ¼ −
1

ð2FK − FπÞF2
π
apbp½2m2

BAREðf0Þa3sF2
π þ

ffiffiffi
2

p
m2

BAREðf0Þa2sbsFπð−2FK þ FπÞ

þ 2asFπðm2
BAREðf0Þb2sFπ − b2pFπm2

η − a2pFπm2
η0 þ

ffiffiffi
2

p
apbpð2FK − FπÞðm2

η −m2
η0 ÞÞ

þ bsð
ffiffiffi
2

p
m2

BAREðf0Þb2sFπð−2FK þ FπÞ − apbpð4F2
K − 4FKFπ þ 3F2

πÞðm2
η −m2

η0 Þ
þ

ffiffiffi
2

p
a2pð2FK − FπÞFπð2m2

η −m2
η0 Þ þ

ffiffiffi
2

p
ð2FK − FπÞFπð−b2pðm2

η − 2m2
η0 Þ

þ 18ð2FK − FπÞV4ÞÞ�: ðA6Þ

With five inputs of mπ ¼ 137 MeV, mK ¼ 493.677�
0.016 MeV, mη ¼ 547.853� 0.024 MeV, mη0 ¼ 957.78�
0.06 MeV, and Fπ ¼ 131 MeV, we find the five Lagrangian
parameters: α1 ¼ 0.065 GeV, α3 ¼ 0.13 GeV, A1 ¼
0.00061 GeV3,A3 ¼ 0.024 GeV3, andV4 ¼ −0.23 (in addi-
tion, these inputs result inθp ¼ 6.64° andFK=Fπ ¼ 1.53).To-
gether with the bare scalar masses found from fit to pion-pion
I ¼ J ¼ 0 scattering amplitude [89],mBAREðσÞ¼0.847GeV,
mBAREðf0Þ ¼ 1.3 GeV, mBAREða0Þ¼1.1GeV, and θs¼
−6.1°, we find the numerical values of the coupling constants:

γσππ ¼ 3.53 GeV;

γf0ππ ¼ 9.57 GeV;

γa0πη ¼ 4.71 GeV;

γa0πη0 ¼ 2.77 GeV;

γσηη0 ¼ −0.56 GeV;

γf0ηη0 ¼ 2.94 GeV;

γð4Þ ¼ 78.69 GeV: ðA7Þ
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APPENDIX B: THREE-AND FOUR-POINT BARE COUPLINGS

� ∂3V
∂ðS21Þ1∂ðϕ1

2Þ1∂ηa
�

¼ 4
ffiffiffi
2

p ð2ca4α51β1 þ ca4α
4
1α3β3 þ 2c3α3β3γ21 þ 2c3α1β1γ1ð1þ γ1ÞÞ
α31ð2α1β1 þ α3β3Þ

; ðB1Þ

� ∂3V
∂ðS21Þ1∂ðϕ1

2Þ2∂ηa
�

¼ −
8

ffiffiffi
2

p
c3ð−1þ γ1Þðα3β3γ1 þ α1β1ð1þ γ1ÞÞ

α1ð2α1β1 þ α3β3Þ2
; ðB2Þ

� ∂3V
∂ðS21Þ2∂ðϕ1

2Þ1∂ηa
�

¼ 8
ffiffiffi
2

p
c3ð−1þ γ1Þðα3β3γ1 þ α1β1ð1þ γ1ÞÞ

α1ð2α1β1 þ α3β3Þ2
; ðB3Þ

� ∂3V
∂ðS21Þ1∂ðϕ1

2Þ1∂ηb
�

¼ 8c3γ1ðα3β3 þ 2α1β1γ1Þ
α21α3ð2α1β1 þ α3β3Þ

; ðB4Þ

� ∂3V
∂ðS21Þ1∂ðϕ1

2Þ2∂ηb
�
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8c3ð−1þ γ1Þðα3β3 þ 2α1β1γ1Þ
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�
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ffiffiffi
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þ α3β
2
3ðea3α23β3 − 4c3ð−1þ γ1Þγ1Þ�; ðB27Þ

� ∂3V
∂fb∂ηa∂ηd

�
¼ −

8
ffiffiffi
2

p
c3β1ð−1þ γ1Þð2α1β1ð1þ γ1Þ þ α3β3ð−1þ 3γ1ÞÞ

ð2α1β1 þ α3β3Þ3
; ðB28Þ

� ∂3V
∂fb∂ηb∂ηb

�
¼ 8

α33ð2α1β1 þ α3β3Þ3
½α33ð2c3 þ ca4α

4
3Þβ33 þ 6α1α

2
3β1β

2
3ðca4α43 þ 2c3γ1Þ þ 8α31β

3
1ðca4α43 þ 2c3γ21Þ

þ 4α21α3β
2
1β3ð3ca4α43 þ 2c3γ1ð1þ 2γ1ÞÞ�; ðB29Þ

� ∂3V
∂fb∂ηb∂ηc

�
¼ 16

ffiffiffi
2

p
c3α1ð−1þ γ1Þðα23β23 þ 2α21β

2
1γ1 þ 3α1α3β1β3γ1Þ

α23ð2α1β1 þ α3β3Þ3
; ðB30Þ

� ∂3V
∂fb∂ηb∂ηd

�
¼ 8c3β3ð−1þ γ1Þðα3β3 þ 2α1β1ð−1þ 2γ1ÞÞ

ð2α1β1 þ α3β3Þ3
; ðB31Þ
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� ∂3V
∂fb∂ηc∂ηc

�
¼ 32c3α21β3ð−1þ γ1Þ2

ð2α1β1 þ α3β3Þ3
; ðB32Þ

� ∂3V
∂fb∂ηc∂ηd

�
¼ −

8
ffiffiffi
2

p
c3α1ð2α1β1 − α3β3Þð−1þ γ1Þ2

ð2α1β1 þ α3β3Þ3
; ðB33Þ

� ∂3V
∂fb∂ηd∂ηd

�
¼ −

32c3α1α3β1ð−1þ γ1Þ2
ð2α1β1 þ α3β3Þ3

; ðB34Þ

� ∂3V
∂fc∂ηa∂ηa

�
¼ 16

ffiffiffi
2

p
c3α3β3ð−1þ γ1Þðα3β3γ1 þ α1β1ð1þ γ1ÞÞ

α1ð2α1β1 þ α3β3Þ3
; ðB35Þ

� ∂3V
∂fc∂ηa∂ηb

�
¼ −

4ð8ea3α31βc3ð−1þ γ1ÞÞ þ α3β
2
3ðea3α23β3 þ 2c3ð1 − 3γ1 þ 2γ21ÞÞ

ð2α1β1 þ α3β3Þ3
; ðB36Þ

� ∂3V
∂fc∂ηa∂ηc

�
¼ 8

ffiffiffi
2

p
c3α1ð−1þ γ1Þð2α1β1ð1þ γ1Þ þ α3β3ð−1þ 3γ1ÞÞ

ð2α1β1 þ α3β3Þ3
; ðB37Þ

� ∂3V
∂fc∂ηa∂ηd

�
¼ 8c3α3ð−1þ γ1Þð2α1β1ð1þ γ1Þ þ α3β3ð−1þ 3γ1ÞÞ

ð2α1β1 þ α3β3Þ3
; ðB38Þ

� ∂3V
∂fc∂ηb∂ηb

�
¼ −

16
ffiffiffi
2

p
c3α1β3ð−1þ γ1Þðα3β3 þ 2α1β1γ1Þ

α3ð2α1β1 þ α3β3Þ3
; ðB39Þ

� ∂3V
∂fc∂ηb∂ηc

�
¼ 16c3α21ð−1þ γ1Þð−α3β3ð−2þ γ1Þ þ 2α1β1γ1Þ

α3ð2α1β1 þ α3β3Þ3
; ðB40Þ

� ∂3V
∂fc∂ηb∂ηd

�
¼ 8

ffiffiffi
2

p
c3α1ð−1þ γ1Þð−α3β3ð−2þ γ1Þ þ 2α1β1γ1Þ

ð2α1β1 þ α3β3Þ3
; ðB41Þ

� ∂3V
∂fc∂ηc∂ηc

�
¼ 32

ffiffiffi
2

p
c3α31ð−1þ γ1Þ2

ð2α1β1 þ α3β3Þ3
; ðB42Þ

� ∂3V
∂fc∂ηc∂ηd

�
¼ 32c3α21α3ð−1þ γ1Þ2

ð2α1β1 þ α3β3Þ3
; ðB43Þ

� ∂3V
∂fc∂ηd∂ηd

�
¼ 16

ffiffiffi
2

p
c3α1α23ð−1þ γ1Þ2

ð2α1β1 þ α3β3Þ3
; ðB44Þ

� ∂3V
∂fd∂ηa∂ηa

�
¼ −4

α1ð2α1β1 þ α3β3Þ3
½ð8ea3α41β31 þ 12ea3α

3
1α3β

2
1β3 þ 6ea3α

2
1α

2
3β1β

2
3 þ 8c3α23β1β3ð−1þ γ1Þγ1

þ α1α3ðea3α23β33 þ 8c3β21ð−1þ γ21ÞÞÞ�; ðB45Þ
� ∂3V
∂fd∂ηa∂ηb

�
¼ 8

ffiffiffi
2

p
c3β1ð−1þ γ1Þð2α1β1 þ α3β3ð−1þ 2γ1ÞÞ

ð2α1β1 þ α3β3Þ3
; ðB46Þ

� ∂3V
∂fd∂ηa∂ηc

�
¼ 16c3α3ð−1þ γ1Þð2α1β1 þ α3β3γ1Þ

ð2α1β1 þ α3β3Þ3
; ðB47Þ

� ∂3V
∂fd∂ηa∂ηd

�
¼ 8

ffiffiffi
2

p
c3α23ð−1þ γ1Þð2α1β1 þ α3β3γ1Þ

α1ð2α1β1 þ α3β3Þ3
; ðB48Þ
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� ∂3V
∂fd∂ηb∂ηb

�
¼ 32c3α1β1ð−1þ γ1Þðα3β3 þ 2α1β1γ1Þ

α3ð2α1β1 þ α3β3Þ3
; ðB49Þ

� ∂3V
∂fd∂ηb∂ηc

�
¼ 8

ffiffiffi
2

p
c3α1ð−1þ γ1Þðα3β3 þ 2α1β1ð−1þ 2γ1ÞÞ

ð2α1β1 þ α3β3Þ3
; ðB50Þ

� ∂3V
∂fd∂ηb∂ηd

�
¼ 8c3α3ð−1þ γ1Þðα3β3 þ 2α1β1ð−1þ 2γ1ÞÞ

ð2α1β1 þ α3β3Þ3
; ðB51Þ

� ∂3V
∂fd∂ηc∂ηc

�
¼ 32c3α21α3ð−1þ γ1Þ2

ð2α1β1 þ α3β3Þ3
; ðB52Þ

� ∂3V
∂fd∂ηc∂ηd

�
¼ 16

ffiffiffi
2

p
c3α1α23ð−1þ γ1Þ2

ð2α1β1 þ α3β3Þ3
; ðB53Þ

� ∂3V
∂fd∂ηd∂ηd

�
¼ 16c3α33ð−1þ γ1Þ2

ð2α1β1 þ α3β3Þ3
; ðB54Þ

� ∂4V
∂ηa∂ηa∂ðϕ2

1Þ1∂ðϕ1
2Þ1

�
¼ 4ð6ca4α51β1 þ 3ca4α

4
1α3β3 þ 8c3α3β3γ21 þ 8c3α1β1γ1ð1þ γ1ÞÞ

α41ð2α1β1 þ α3β3Þ
; ðB55Þ

� ∂4V
∂ηa∂ηa∂ðϕ2

1Þ1∂ðϕ1
2Þ2

�
¼

� ∂4V
∂ηa∂ηa∂ðϕ2

1Þ2∂ðϕ1
2Þ1

�
¼ −

32c3β1ð−1þ γ1Þðα3β3γ1 þ α1β1ð1þ γ1ÞÞ
α1ð2α1β1 þ α3β3Þ3

; ðB56Þ

� ∂4V
∂ηa∂ηb∂ðϕ2

1Þ1∂ðϕ1
2Þ1

�
¼ 8

ffiffiffi
2

p
c3γ1ðα3β3 þ 2α1β1γ1Þ

α31α3ð2α1β1 þ α3β3Þ
; ðB57Þ

� ∂4V
∂ηa∂ηb∂ðϕ2

1Þ1∂ðϕ1
2Þ2

�
¼
� ∂4V
∂ηa∂ηb∂ðϕ2

1Þ2∂ðϕ1
2Þ1

�
¼−8

ffiffiffi
2

p
c3ð−1þγ1Þð2α21β21γ1þα23β

2
3γ1þα1α3β1β3ð2þγ1ÞÞ

α1α3ð2α1β1þα3β3Þ3
; ðB58Þ

� ∂4V
∂ηa∂ηc∂ðϕ2

1Þ1∂ðϕ1
2Þ1

�
¼ 16c3ð−1þ γ1Þγ1

α21ð2α1β1 þ α3β3Þ
; ðB59Þ

� ∂4V
∂ηa∂ηc∂ðϕ2

1Þ1∂ðϕ1
2Þ2

�
¼

� ∂4V
∂ηa∂ηc∂ðϕ2

1Þ2∂ðϕ1
2Þ1

�
¼ 16c3ð−1þ γ1Þð2α1β1 þ α3β3γ1Þ

ð2α1β1 þ α3β3Þ3
; ðB60Þ

� ∂4V
∂ηa∂ηd∂ðϕ2

1Þ1∂ðϕ1
2Þ1

�
¼ 8

ffiffiffi
2

p
c3α3ð−1þ γ1Þγ1

α31ð2α1β1 þ α3β3Þ
; ðB61Þ

� ∂4V
∂ηa∂ηd∂ðϕ2

1Þ1∂ðϕ1
2Þ2

�
¼

� ∂4V
∂ηa∂ηd∂ðϕ2

1Þ2∂ðϕ1
2Þ1

�
¼ 8

ffiffiffi
2

p
c3α3ð−1þ γ1Þð2α1β1 þ α3β3γ1Þ

α1ð2α1β1 þ α3β3Þ3
; ðB62Þ

� ∂4V
∂ηb∂ηb∂ðϕ2

1Þ1∂ðϕ1
2Þ2

�
¼

� ∂4V
∂ηb∂ηb∂ðϕ2

1Þ2∂ðϕ1
2Þ1

�
¼ −

16c3β3ð−1þ γ1Þðα3β3 þ 2α1β1γ1Þ
α3ð2α1β1 þ α3β3Þ3

; ðB63Þ

� ∂4V
∂ηb∂ηc∂ðϕ2

1Þ1∂ðϕ1
2Þ2

�
¼

� ∂4V
∂ηb∂ηb∂ðϕ2

1Þ2∂ðϕ1
2Þ1

�
¼ 8

ffiffiffi
2

p
c3α1ð−1þ γ1Þð−α3β3ð−2þ γ1Þ þ 2α1β1γ1Þ

α3ð2α1β1 þ α3β3Þ3
; ðB64Þ

� ∂4V
∂ηb∂ηd∂ðϕ2

1Þ1∂ðϕ1
2Þ2

�
¼

� ∂4V
∂ηb∂ηd∂ðϕ2

1Þ2∂ðϕ1
2Þ1

�
¼ 8c3ð−1þ γ1Þð−α3β3ð−2þ γ1Þ þ 2α1β1γ1Þ

ð2α1β1 þ α3β3Þ3
; ðB65Þ
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� ∂4V
∂ηc∂ηc∂ðϕ2

1Þ1∂ðϕ1
2Þ2

�
¼

� ∂4V
∂ηc∂ηc∂ðϕ2

1Þ2∂ðϕ1
2Þ1

�
¼ 32c3α21ð−1þ γ1Þ2

ð2α1β1 þ α3β3Þ3
; ðB66Þ

� ∂4V
∂ηc∂ηd∂ðϕ2

1Þ1∂ðϕ1
2Þ2

�
¼

� ∂4V
∂ηc∂ηd∂ðϕ2

1Þ2∂ðϕ1
2Þ1

�
¼ 16

ffiffiffi
2

p
c3α1α3ð−1þ γ1Þ2

ð2α1β1 þ α3β3Þ3
; ðB67Þ

� ∂4V
∂ηd∂ηd∂ðϕ2

1Þ1∂ðϕ1
2Þ2

�
¼

� ∂4V
∂ηd∂ηd∂ðϕ2

1Þ2∂ðϕ1
2Þ1

�
¼ 16c3α23ð−1þ γ1Þ2

ð2α1β1 þ α3β3Þ3
: ðB68Þ

APPENDIX C: RECOVERING CURRENT ALGEBRA

In this appendix, we show how the known current algebra result for this decay is obtained from the present model. The
four-quark fields are decoupled in the limit d2; ea3 → 0 and γ1 → 1, in which

m2
π ¼ −2c2 þ 4ca4α

2
1;

m2
f1

¼ m2
a ¼ −2c2 þ 12ca4α

2
1;

m2
f2

¼ −2c2 þ 12ca4α
2
3;

Fπ ¼ 2α1;

m2
η þm2

η0 ¼ −4c2 −
16c3
α21

þ 4ca4α
2
1 −

8c3
α23

þ 4ca4α
2
3: ðC1Þ

From the above equations, we can solve for the five model parameters:

α1 ¼
Fπ

2
;

α3 ¼ Fπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

f2
þm2

f1
− 3m2

π

12ðm2
f1
−m2

πÞ

s
;

c2 ¼
1

4
ðm2

f1
− 3m2

πÞ;

c3 ¼ −
F2
πðm2

f1
þ 2m2

f2
− 3m2

πÞðm2
f1
−m2

f2
þ 3ðm2

η þm2
η0 − 2m2

πÞÞ
96ð5m2

f1
þ 4m2

f1
− 9m2

πÞ
;

ca4 ¼
m2

f1
−m2

π

2F2
π

: ðC2Þ

We expect to recover the current algebra result when the scalars are decoupled as a result of becoming very heavy, i.e., in the
limit mf1 ¼ mf2 ¼ mf → ∞. In this limit,

lim
mf→∞

α3 ¼
Fπ

2
;

lim
mf→∞

c2 ¼
m2

f

4
;

lim
mf→∞

c3 ¼
−1
96

F2
πðm2

η þm2
η0 − 2m2

πÞ

lim
mf→∞

ca4 ¼
m2

f

2F2
π
: ðC3Þ

The physical vertices (in the limit of d2, ea3 → 0, and γ1 → 1) become
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γð4Þ ¼ 6ca4 sinð2θpÞ þ
16c3 sinð2θpÞ

α41
þ 8

ffiffiffi
2

p
c3 cosð2θpÞ
α31α3

;

γf1ππ ¼ 4ca4α1;

γf2ππ ¼ 0;

γf1ηη0 ¼ 2
ffiffiffi
2

p
ca4 sinð2θpÞα1 þ

8
ffiffiffi
2

p
c3 sinð2θpÞ
α31

þ 8c3 cosð2θpÞ
α21α3

;

γf2ηη0 ¼
8

ffiffiffi
2

p
c3 cosð2θpÞα3 − 4 sinð2θpÞα1ð2c3 þ ca4α

4
3Þ

α1α
3
3

;

γa0πη ¼
8

ffiffiffi
2

p
c3 cosðθpÞ
α31

þ 4
ffiffiffi
2

p
ca4 cosðθpÞα1 −

8c3 sinðθpÞ
α21α3

;

γa0πη0 ¼
8

ffiffiffi
2

p
c3 sinðθpÞ
α31

þ 4
ffiffiffi
2

p
ca4 sinðθpÞα1 þ

8c3 cosðθpÞ
α21α3

; ðC4Þ

which together with Eq. (C3) leads to

γð4Þ ¼ 1

3F2
π
½ðm2

η þm2
η0 − 2m2

πÞð−4
ffiffiffi
2

p
cosð2θpÞ − 8 sinð2θpÞÞ þ 9ðm2

f −m2
πÞ sinð2θpÞ�

γf1ππ ¼
m2

f −m2
π

Fπ
;

γf1ηη0 ¼
1

3Fπ
½ðm2

η þm2
η0 − 2m2

πÞð−2 cosð2θpÞ − 2
ffiffiffi
2

p
sinð2θpÞÞ þ

3ffiffiffi
2

p ðm2
f −m2

πÞ sinð2θpÞ�;

γf2ηη0 ¼
2

3Fπ
½ðm2

η þm2
η0 − 2m2

πÞð−
ffiffiffi
2

p
cosð2θpÞ þ sinð2θpÞÞ −

3

2
ðm2

f −m2
πÞ sinð2θpÞ�;

γa0πη ¼
1

3Fπ
½ðm2

η þm2
η0 − 2m2

πÞð−2
ffiffiffi
2

p
cosðθpÞ þ 2 sinðθpÞÞ þ 3

ffiffiffi
2

p
ðm2

f −m2
πÞ cosðθpÞ�;

γa0πη0 ¼
1

3Fπ
½ðm2

η þm2
η0 − 2m2

πÞð−2 cosðθpÞ − 2
ffiffiffi
2

p
sinðθpÞÞ þ 3

ffiffiffi
2

p
ðm2

f −m2
πÞ sinðθpÞ�: ðC5Þ

Each individual decay amplitude inherits the scalar mass dependency via the physical vertices and propagators. The four-
point amplitude will have the scalar mass dependency

M4p ¼ ξ0 þ ξ1m2
f: ðC6Þ

The isosinglet scalar contribution has the general structure

Mfi ¼
ffiffiffi
2

p
γfiππγfiηη0 × ðpropagatorÞ; ðC7Þ

with

ffiffiffi
2

p
γfiππγfiηη0 ¼ ρ0 þ ρ1m2

f þ ρ2m4
f;

propagator ¼ 1

m2
f þ x

≃ 1

m2
f

−
x
m4

f

þO
�

1

m6
f

�
: ðC8Þ

Thus,

lim
mf→∞

Mfi ¼ ρ1 − xρ2 þ ρ2m2
f: ðC9Þ

Similarly for the a0 contribution,
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Ma0 ¼ γa0πηγa0πη0

�
1

m2
f þ y1

þ 1

m2
f þ y2

�
; ðC10Þ

with

γa0πηγa0πη0 ¼ δ0 þ δ1m2
f þ δ2m4

f;

1

m2
f þ yi

≃ 1

m2
f

−
yi
m4

f

þO
�

1

m6
f

�
: ðC11Þ

Thus,

lim
mf→∞

Ma0 ¼ 2δ1 −
X
i

yiδ2 þ 2δ2m2
f: ðC12Þ

Now, putting everything together, we expect

lim
mf→∞

Mtotal ¼ MC:A:; ðC13Þ

which implies that the following two sum rules must be
upheld:

ξ0 þ ρ1 − xρ2 þ 2δ1 −
X
i

yiδ2 ¼ MC:A:;

ξ1 þ ρ2 þ 2δ2 ¼ 0: ðC14Þ

We find that the second sum rule is identically upheld, and
the first one gives

MC:A: ¼
−1
3F2

π
ðsinð2θpÞðm2

η þm2
η0 − 5m2

πÞ

þ 2
ffiffiffi
2

p
cosð2θpÞðm2

η þm2
η0 − 2m2

πÞÞ: ðC15Þ

Since in the decoupling limit c3 ¼ 0 andmf → ∞, we have

2m2
π → m2

η þm2
η0 ; ðC16Þ

which results in

MC:A: ¼
m2

π

F2
π
sinð2θpÞ; ðC17Þ

in agreement with Eq. (2.4) of Ref. [98].
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