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Until recently precision electroweak computations were fundamentally uncertain due to lack of
knowledge about the existence of the Standard Model Higgs boson and its mass. For this reason
substantial calculational machinery had to be carried along for each calculation that changed the Higgs
boson mass and other parameters of the Standard Model. Now that the Higgs boson is discovered and its
mass is known to within a percent, we are able to compute reliable semianalytic expansions of electroweak
observables. We present results of those computations in the form of expansion formulas. In addition to the
convenience of having these expressions, we show how the approach makes investigating new physics
contributions to precision electroweak observables much easier.

DOI: 10.1103/PhysRevD.90.033006 PACS numbers: 12.15.-y, 13.66.Jn, 12.60.-i, 13.38.Dg

I. INTRODUCTION

Precision electroweak analysis has played an important
role in testing the Standard Model (SM) and constraining
new physics. Now this program has entered a new era with
the discovery of the Higgs boson [1,2]. On one hand, the
subpercentage-level determination of the Higgs boson mass
[1–3] constitutes the last piece of a complete set of input
observables. Electroweak observables can now be calcu-
lated to unprecedented accuracy, leading to unprecedented
sensitivity to new physics beyond the SM. On the other
hand, measurements of the Higgs observables, such as its
decay widths and branching ratios, will push our under-
standing of elementary particle physics to more stringent
tests. In this paper we focus on the former aspect. For the
latter aspect, see e.g. [4].
The standard approach of precision electroweak analysis

is to perform a χ2 analysis, which involves varying themodel
parameters, or equivalently, a set of input observables to
minimize the χ2 function. In practice, this can be facilitated
by an expansion about some reference values of the input,
since we have a set of well-measured input observables that
allows little variation. We present such an expansion
formalism, and apply it to deriving constraints on new
physics models. Most of the numerical results in this paper
reflect state-of-the-art calculations of the electroweak
observables, as implemented in the ZFITTER package [5,6].
Our paper is organized as follows. We first review the

definition of the electroweak observables under consider-
ation in Sec. II. Then in Sec. III we present the expansion
formalism for calculating the SM and new physics con-
tributions to the observables. The result will be that given
the values of six input observables, and the new physics
model, all observables can be easily calculated. The tools
needed in this calculation, including the reference values of
all observables, and the expansion coefficients, are pre-
sented. Next, we illustrate how to use the formalism by

working out some new physics examples in Sec. IV. Finally,
in Sec. V we summarize.

II. STANDARD MODEL PARAMETERS
AND OBSERVABLES

The parameters of the SM include the gauge couplings
g3, g2, g1, the Yukawa couplings yf, flavor angles, the
Higgs vacuum expectation value v and self-coupling λ. For
the purpose of precision electroweak analysis, with incon-
sequential errors we can treat all Yukawa couplings except
that for the top quark as constants, and correspondingly set
the lepton and light quark masses to their default values in
ZFITTER (see [5]). Then there are six parameters1 in the
theory:

fg3; g2; g1; yt; v; λg: ð1Þ

There are an infinite number of SM observables that can
be defined. They correspond to well-defined quantities
that are measured in experiments. The SM predicts each
observable as a function of the parameters in Eq. (1). The
success of the SM relies on the fact that the predictions for
all observables agree with precision measurements, with
suitable choices of the parameters. If some new physics
beyond the SM were to exist, it could potentially destroy
the agreement. Thus, precision analysis enables us to put
stringent constraints on new physics models. In this paper
we focus on the following list of observables, mostly
relevant to precision tests of the electroweak theory.

(i) Pole mass of the particles: mZ, mW , mt, mH.
(ii) Observables associated with the strengths of the

strong, weak, and electromagnetic interactions:

1We do not include flavor Cabibbo-Kobayashi-Maskawa
angles in our calculations since all standard precision electroweak
observables do not substantively depend on these angles.
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αsðmZÞ, GF, and αðmZÞ. The Fermi constant GF is
defined via the muon lifetime [7]. αðmZÞ is related to
the fine structure constant α0 defined in the Thom-
son limit via

αðmZÞ ¼
α0

1 − Δαl − Δαt − Δαð5Þhad

: ð2Þ

We treat α0 ¼ 1=137.035999074ð44Þ [7,8] as a
constant, since it is extraordinarily well measured.
The contribution from leptonsΔαl and the top quark
Δαt are perturbatively calculable and known very
accurately, so the uncertainty in αðmZÞ essentially
comes from the incalculable light hadron contribu-

tion Δαð5Þhad, which is extracted from low energy
eþe− → hadrons data via dispersion relations [7].
For simplicity, we will occasionally (especially in
subscripts) drop the scale “(mZ)” in αsðmZÞ and

αðmZÞ, and write Δαð5Þhad as Δα in the following.
(iii) Z boson decay observables: total width ΓZ, and

partial widths into fermions Γf ≡ ΓðZ → ff̄Þ. Also
we define and use the invisible and hadronic partial
widths2:

Γinv ≡ 3Γν;

Γhad ≡ ΓðZ → hadronsÞ≃ Γu þ Γd þ Γc þ Γs þ Γb:

ð3Þ

The ratios of partial widths are defined and also
included in our observables list:

Rl ≡ Γhad

Γl
; Rq ≡ Γq

Γhad
; ð4Þ

where l and q denote any one of the lepton and
quark species, respectively.

(iv) eþe− → hadrons cross section at the Z pole:

σhad ¼ 12π
ΓeΓhad

m2
ZΓ2

Z
: ð5Þ

(v) Forward-backward asymmetries for eþe− → ff̄ at
the Z pole:

Af
FB ¼ σF − σB

σF þ σB
¼ 3

4
AeAf: ð6Þ

The asymmetry parameters Af are related to the
definition of the effective electroweak mixing angle
sin2θfeff by

Af ¼ 2ð1 − 4jQfjsin2θfeffÞ
1þ ð1 − 4jQfjsin2θfeffÞ2

; ð7Þ

where Qf is the electric charge of fermion f.
The experimental results for these observables are listed in
Table I. For all the Z pole observables, we use the numbers
presented in [10], which are combinations of various
experimental results at LEP and SLC. Among these
observables, lepton universality is assumed only for
sin2θeeff . For sin2θeeff, we also list the PDG combination
[7] of D0 [11] and CDF [12] results (the second number).
mW from [13] is the average of LEP2 [14] and Tevatron
[13] results. mH is the PDG average [7] of ATLAS [1] and
CMS [3] results.

TABLE I. The list of observables, their experimental and
reference values, and percent relative uncertainties. We set Ôref

i0 ¼
Ôexpt

i0 for the input observables, and calculate Ôref
i for the other

observables. The percent relative uncertainty P½Ôref
i � is the

maximum deviation of Ôi from Ôref
i in units of percentage when

the input observables are varied within experimental errors; see
Eq. (17) (e.g. mW deviates from ½mW �ref by at most 0.01%).

Ôi Ôexpt
i Ôref

i P½Ôref
i �

mZ ½GeV� 91.1876(21) [10] 91.1876

GF ½GeV−2� 1.1663787ð6Þ×10−5 [7] 1.1663787×10−5

Δαð5Þhad 0.02772(10) [7] 0.02772
mt ½GeV� 173.20(87) [15] 173.20
αsðmZÞ 0.1185(6) [7] 0.1185
mH ½GeV� 125.9(4) [7] 125.9
αðmZÞ 7.81592ð86Þ×10−3 [7] 7.75611×10−3 0.01
mW ½GeV� 80.385(15) [13] 80.3614 0.01
Γe ½MeV� 83.92(12) [10] 83.9818 0.02
Γμ ½MeV� 83.99(18) [10] 83.9812 0.02
Γτ ½MeV� 84.08(22) [10] 83.7916 0.02
Γb ½MeV� 377.6(1.3) [10] 375.918 0.04
Γc ½MeV� 300.5(5.3) [10] 299.969 0.06
Γinv ½GeV� 0.4974(25) [10] 0.501627 0.02
Γhad ½GeV� 1.7458(27) [10] 1.74169 0.04
ΓZ ½GeV� 2.4952(23) [10] 2.49507 0.03
σhad ðnbÞ 41.541(37) [10] 41.4784 0.01
Re 20.804(50) [10] 20.7389 0.03
Rμ 20.785(33) [10] 20.7391 0.03
Rτ 20.764(45) [10] 20.7860 0.03
Rb 0.21629(66) [10] 0.215835 0.02
Rc 0.1721(30) [10] 0.172229 0.01
sin2θeeff 0.23153(16) [10] 0.231620 0.04

0.23200(76) [7]
sin2θbeff 0.281(16) [10] 0.232958 0.03
sin2θceff 0.2355(59) [10] 0.231514 0.04
Ae 0.1514(19) [10] 0.146249 0.44
Ab 0.923(20) [10] 0.934602 0.00
Ac 0.670(27) [10] 0.667530 0.04
Ae
FB 0.0145(25) [10] 0.0160415 0.88

Ab
FB 0.0992(16) [10] 0.102513 0.44

Ac
FB 0.0707(35) [10] 0.0732191 0.48

2Γhad is not quite the sum of all Γq, as there are Oðα3sÞ
corrections that cannot be attributed to any Γq [9]. However, these
corrections are small, and are neglected in ZFITTER. We will come
back to this in Appendix B.
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Table I also contains the reference theory values around
which we expand, and their percent relative uncertainties.
These theory quantities will be introduced and discussed in
detail in Sec. III B.

III. THE FORMALISM

A. Expansion about reference point

Let us denote the set of SM parameters by fpk0g, and the
set of SM observables by fÔig. The theoretical prediction
for each observable can be calculated in the SM as a
function of all parameters:

Ôth
i ¼ ÔSM

i ðfpk0 gÞ: ð8Þ
The notation here is that primed roman indices run from
1 to Np, the number of SM parameters, while unprimed
ones run from 1 to NO, the number of observables under
consideration. Note that Np is finite, while NO can
presumably be infinite (we must at least have NO > Np

in order to test any theory). The analysis in this paper is
done with Np ¼ 6 and NO ¼ 31, with fpk0g given in
Eq. (1) and fÔig listed in Table I.
Next, suppose we want to study some new physics model

beyond the SM, which contains a set of new parameters
collectively denoted as pNP (“NP” for “new physics”).
Then at least some Ôth

i will receive new contribution. We
expect such new contribution to be small, in the light of
apparently good agreement between SM predictions and
precision electroweak data. We can thus write

Ôth
i ¼ ÔSM

i ðfpk0 gÞ þ δNPÔiðfpk0g; pNPÞ: ð9Þ
We wish to decide whether the new physics model is
compatible with precision electroweak data, i.e. whether
the Ôth

i predicted by Eq. (9) are compatible with the
experimentally measured values Ôexpt

i .
One commonmisconception in such analysis is that a new

physics model would be ruled out if, for some very precisely
measured observables, e.g. Gexpt

F ¼ 1.1663787ð6Þ×
10−5 GeV−2, the new physics contribution δNPÔi exceeds
the experimental error. The point is that the SM parameters
fpk0 g are not directly measured experimentally. Rather, in
testing the SM, we adjust fpk0 g and see that for some choice
of all parameters fpref

k0 g, all ÔSM
i agreewell with Ôexpt

i . In the
presence of new physics, we should do the same thing, and
will typically arrive at a different choice of fpref

k0 g, and hence
different ÔSM

i , which may allow the new physics model to
survive (in some regions of parameter space spanned by
pNP) despite a large δNPÔi.
The statements above are made more precise by the χ2

analysis, which is the standard way of doing precision
electroweak analysis. With correlations among the observ-
ables ignored, and experimental errors assumed larger than
theoretical errors, the χ2 function is defined by

χ2ðfpk0 g; pNPÞ ¼
X
i

�
Ôth

i ðfpk0g; pNPÞ − Ôexpt
i

ΔÔexpt
i

�
2

; ð10Þ

where ΔÔexpt
i are the experimental uncertainties of the

observables. To decide whether some pNP in the new
physics model parameter space survives precision tests,
we vary fpk0 g to minimize the χ2 function to find the best
fit to experimental data, and see if this minimum χ2 is small
enough. A good discussion of how to interpret the statistics
of the χ2 distribution can be found in [7].
In principle, one can calculate Ôth

i each time a different
fpk0 g is chosen in this minimization procedure. But in
practice, we can do it once and for all by carrying out an
expansion about some reference point in the SM parameter
space fpref

k0 g. Such an expansion is useful because precision
data do not allow much variation in each parameter. Thus,
let us choose some fpref

k0 g that lead to good agreement
between ÔSM

i and Ôexpt
i , and write

ÔSM
i ðfpk0 gÞ ¼ Ôref

i þ
X
k0

∂ÔSM
i

∂pk0
ðpk0 − pref

k0 Þ þ � � � ð11Þ

where Ôref
i ≡ ÔSM

i ðfpref
k0 gÞ, and the partial derivatives are

taken at pk0 ¼ pref
k0 (this will be implicitly assumed in the

following). Alternatively, define

δ̄SMÔiðfpk0gÞ≡ ÔSM
i ðfpk0 gÞ− Ôref

i

Ôref
i

; δ̄pk0 ≡pk0 −pref
k0

pref
k0

;

Gik0 ≡ pref
k0

Ôref
i

∂ÔSM
i

∂pk0
: ð12Þ

Then we have a more concise expression for Eq. (11):

δ̄SMÔi ¼
X
k0
Gik0 δ̄pk0 þ � � � ð13Þ

Here δ̄ means “fractional shift from the reference value,”
and the superscript on δ̄SMÔi indicates the shift comes from
shifts in SM parameters. Ignoring higher-order terms in the
expansion, the constantGik0 is the fractional change in Ô

SM
i

caused by the fractional change in pk0 , and hence character-
izes the sensitivity of the ith SM observable (as calculated
in the SM) to the k0th SM parameter.
In the presence of perturbative new physics contribu-

tions, let us define

δ̄Ôth
i ðfpk0g; pNPÞ≡ Ôth

i ðfpk0 g; pNPÞ − Ôref
i

Ôref
i

;

ξiðfpk0g; pNPÞ≡ δNPÔiðfpk0 g; pNPÞ
Ôref

i

: ð14Þ
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Then Eq. (9) can be expanded as, to first order,

δ̄Ôth
i ¼ δ̄SMÔi þ ξi ¼

X
k0
Gik0 δ̄pk0 þ ξi: ð15Þ

The calculation of Ôth
i and hence χ2 is then facilitated if we

have at hand the constants pref
k0 , Ô

ref
i and Gik0 .

B. Recasting observables in terms of observables

The approach above is indirect, in the sense that the input
of the analysis, the parameters fpk0g, are not directly
measurable—only fÔig are well-defined observables.
We can do better if we use Np very well-measured
observables fÔi0g as input. Note that primed indices,
which run from 1 to Np, are used for input observables.
Inverting the functions ÔSM

i0 ðfpk0gÞ, we can express other
observables as functions of these input observables. Then it
is immediately clear from Ôexpt

i0 and ΔÔexpt
i0 what reference

values for the input we should use, and by how much they
are allowed to vary. In our analysis, Np ¼ 6, and a
convenient choice for the six input observables is

fÔi0g ¼ fmZ;GF;Δα
ð5Þ
had; mt; αsðmZÞ; mHg: ð16Þ

The reference values for these input observables are taken
to be the central values experimentally measured; see
Table I. All other observables are output observables,
and their reference values Ôref

i are evaluated at Ôi0 ¼
Ôref

i0 with the help of ZFITTER. See Appendix A for technical
details.
We also show in Table I the “percent relative uncertain-

ties” P½Ôref
i �, defined as the maximum value of

100

���� Ô
SM
i ðfÔi0gÞ − Ôref

i

Ôref
i

���� ð17Þ

when all fÔi0g are varied in their 1σ range around fÔexpt
i0 g.

We do not distinguish between positive and negative
relative uncertainties because, as we have checked, the
asymmetry in the uncertainties for all observables consid-
ered here is very small.
To work out the expansion about the reference point,

we assume the input observables fÔi0 g are the first Np
observables in the list fÔig. Then we can simply invert the
first Np equations in Eq. (13). To first order,

δ̄SMÔi0 ¼
X
k0
Gi0k0 δ̄pk0 ¼

X
k0

~Gi0k0 δ̄pk0

⇒ δ̄pk0 ¼
X
i0
ð ~G−1Þk0i0 δ̄SMÔi0 : ð18Þ

Note that G is a NO × Np matrix, while ~G is the upper
Np × Np block of G. Then Eq. (13) suggests

δ̄SMÔi ¼
X
k0;i0

Gik0 ð ~G−1Þk0i0 δ̄SMÔi0 ≡
X
i0
cii0 δ̄SMÔi0 ; ð19Þ

where we have defined

cii0 ≡
X
k0
Gik0 ð ~G−1Þk0i0 ¼

Ôref
i0

Ôref
i

∂ÔSM
i

∂ÔSM
i0

: ð20Þ

Equation (19) expresses the shift in any observable in terms
of shifts in the input observables, as calculated in the SM.
Notably, the upperNp × Np block of theNO × Np matrix c
is the identity matrix, i.e. cj0i0 ¼ δj0i0 . For i > Np, i.e. the
output observables, the calculation of cii0 is nontrivial. We
present in Table II the results for these expansion coef-
ficients for the observables discussed in Sec. II, which we
calculate using ZFITTER. These coefficients are useful not
only because they facilitate the calculation of SM observ-
ables. They also give us information on the sensitivity of
the calculated observables to each input observable.
In the presence of new physics, Eq. (15) becomes

δ̄Ôth
i ¼

X
i0
cii0 δ̄SMÔi0 þ ξi ¼

X
i0
cii0 ðδ̄Ôth

i0 − ξi0 Þ þ ξi

¼
X
i0
cii0 δ̄Ô

th
i0 þ δ̄NPÔi; ð21Þ

where

δ̄NPÔi ≡ ξi −
X
i0
cii0ξi0

¼ ξi − ci;mZ
ξmZ

− ci;GF
ξGF

− ci;ΔαξΔα − ci;mt
ξmt

− ci;αsξαs − ci;mH
ξmH

: ð22Þ
Equation (21) expresses the shift in any observable in terms
of shifts in the input observables and new physics effects.
Note that for the input observables, since cj0i0 ¼ δj0i0 ,
Eq. (22) indicates δ̄NPÔi0 ¼ 0, and Eq. (21) trivially
becomes δ̄Ôth

i0 ¼ δ̄Ôth
i0 . This is forced to be true in our

formalism, where Ôth
i0 are inputs of the analysis, indepen-

dent of new physics. Of course, new physics does con-
tribute ξi0 to the calculation of Ôth

i0 , but as we decide to use
some particular values for the input Ôth

i0 to be consistent
with Ôexpt

i0 (which are extraordinarily well measured), we
find ourselves adjusting the SM parameters to compensate
for ξi0. This adjustment gets propagated into the shift in Ôth

i
due to new physics for i > Np. As a result, Eq. (22) shows
that for the output observables, δ̄NPÔi is not simply ξi, but is
related to ξi0 for all input observables.
To close this subsection we remark on the calculation

of ξi. In practice this is done at tree level or one-loop level,
if we are only interested in constraining a new physics
model at percentage level accuracy. Also, the definition of
ξi, Eq. (14), instructs us to calculate them in terms of
Lagrangian parameters, which can then be eliminated in

JAMES D. WELLS AND ZHENGKANG ZHANG PHYSICAL REVIEW D 90, 033006 (2014)

033006-4



favor of input observables using the tree-level relations
between the two. This does not conflict with the “preci-
sion” part of the analysis, since we are doing two different
perturbative expansions in the calculation: the expansion in
SM couplings, and the expansion in new physics effects.
Since new physics makes tiny contributions to Ôth

i , to
discern them we have to calculate the SM part as precisely
as possible, carrying out the expansion in SM couplings to
as high order as possible. On the other hand, in most cases
the new physics contributions ξi need not be calculated
beyond leading order, since they are already very small. We
will see explicitly how the reasoning above works out in
specific examples in Section IVA.

C. Beyond first order

The above perturbative expansion carried out to first
order is expected to be sufficient for the purpose of
precision electroweak analysis, since we have chosen a
very well-measured set of input observables, so that the

expansion parameters δ̄Ôth
i0 are tiny. The impact of higher-

order terms in the expansion can be seen from the
sensitivity of the expansion coefficients cii0 to the choice
of reference values for the input observables Ôref

i0 . In
Table III we show the percent relative uncertainties for
cii0 , defined similarly to Eq. (17).
Alternatively, without varying Ôref

i0 , we can explicitly
write down the next order terms in the expansion:

δ̄SMÔi ¼
X
i0
cii0 δ̄SMÔi0 þ

1

2!

X
i0j0

cii0j0 δ̄SMÔi0 δ̄
SMÔj0 þ � � �

≡X
i0
ðcii0 þ Δcii0 Þδ̄SMÔi0 þ � � � ð23Þ

where

cii0j0 ≡ Ôref
i0 Ô

ref
j

Ôref
i

∂2ÔSM
i

∂ÔSM
i0 ∂ÔSM

j0
: ð24Þ

TABLE II. Expansion coefficients, as defined in Eq. (20), calculated in the basis of input observables containing Δαð5Þhad. These encode
the dependence of the output observables on each input observable, and can be used to easily calculate the deviation of the theory
prediction of the observables from their reference values via Eq. (21), including new physics contributions.

Ôi ci;mZ
ci;GF

ci;Δα ci;mt
ci;αs ci;mH

mZ 1 0 0 0 0 0
GF 0 1 0 0 0 0
Δαð5Þhad 0 0 1 0 0 0
mt 0 0 0 1 0 0
αsðmZÞ 0 0 0 0 1 0
mH 0 0 0 0 0 1
αðmZÞ 4.796 × 10−3 0 0.02946 1.541 × 10−4 −1.007 × 10−5 0
mW 1.427 0.2201 −6.345 × 10−3 0.01322 −9.599 × 10−4 −7.704 × 10−4

Γe 3.377 1.198 −5.655 × 10−3 0.01883 −1.253 × 10−3 −7.924 × 10−4

Γμ 3.377 1.198 −5.655 × 10−3 0.01883 −1.253 × 10−3 −7.924 × 10−4

Γτ 3.383 1.198 −5.668 × 10−3 0.01884 −1.254 × 10−3 −7.931 × 10−4

Γb 3.844 1.411 −0.01227 −0.01267 0.03672 −1.057 × 10−3

Γc 4.151 1.590 −0.01721 0.02751 0.05046 −1.394 × 10−3

Γinv 2.996 1.006 5.635 × 10−5 0.01567 −9.967 × 10−4 −4.873 × 10−4

Γhad 3.938 1.476 −0.01393 0.01578 0.03690 −1.204 × 10−3

ΓZ 3.692 1.353 −0.01028 0.01607 0.02543 −1.019 × 10−3

σhad −2.069 −0.03281 9.806 × 10−4 2.476e-3 −0.01522 4.057 × 10−5

Re 0.5608 0.2780 −8.272 × 10−3 −3.045 × 10−3 0.03815 −4.120 × 10−4

Rμ 0.5608 0.2780 −8.272 × 10−3 −3.045 × 10−3 0.03815 −4.120 × 10−4

Rτ 0.5554 0.2776 −8.259 × 10−3 −3.053 × 10−3 0.03816 −4.113 × 10−4

Rb −0.09434 −0.06530 1.652 × 10−3 −0.02845 −1.782 × 10−4 1.477 × 10−4

Rc 0.2133 0.1135 −3.284 × 10−3 0.01173 0.01356 −1.898 × 10−4

sin2θeeff −2.818 −1.423 0.04203 −0.02330 1.796 × 10−3 2.195 × 10−3

sin2θbeff −2.823 −1.417 0.04204 −6.914 × 10−3 1.201 × 10−3 2.116 × 10−3

sin2θceff −2.819 −1.423 0.04202 −0.02331 1.795 × 10−3 2.194 × 10−3

Ae 35.13 17.74 −0.5239 0.2905 −0.02239 −0.02737
Ab 0.4525 0.2271 −6.737 × 10−3 1.108 × 10−3 −1.924 × 10−4 −3.390 × 10−4

Ac 3.386 1.710 −0.05048 0.02800 −2.156 × 10−3 −2.636 × 10−3

Ae
FB 70.27 35.48 −1.048 0.5810 −0.04479 −0.05473

Ab
FB 35.59 17.97 −0.5306 0.2916 −0.02259 −0.02771

Ac
FB 38.52 19.45 −0.5744 0.3185 −0.02455 −0.03000
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Then the size of second-order terms in Eq. (23) compared
with the first-order term is characterized by the ratio

����Δcii0cii0

���� ¼
����
P

j0cii0j0 δ̄
SMÔj0

2cii0

���� ≤
P

j0 jcii0j0 jjδ̄SMÔj0 j
2jcii0 j

≡ 0.01rii0 :

ð25Þ

We show in Table IV the rii0 calculated with
δ̄SMÔj0 ¼ ΔÔexpt

j0 =Ôref
j0 . The results follow a similar pattern

as in Table III.
Tables III and IV both show that the uncertainties on the

observables calculations are negligible due to uncertainty in
the first-order expansion coefficient cii0’s. Most entries
manifestly demonstrate this with values of less than 1%
corrections to the first-order coefficients that are already
governing less than 1% shifts in the observables due to the
small uncertainties of the input observables to the calcu-
lation (see Table I). Only in a couple of places does the
uncertainty reach more than 1%, but the final uncertainty
on the observables themselves is of course significantly
lower than that. To illustrate this, let us consider the largest
P½cii0 � in Table III, P½cRb;αs �, which is the uncertainty in the
expansion coefficient of αs − αrefs in the computation for
Rb. It yields an uncertainty on Rb of

ΔRb ≃ Rref
b j22% × cRb;αs × δ̄αsj

≃ 0.216ð0.22 × 0.0002 × 0.005Þ≃ 5 × 10−8; ð26Þ

which is much smaller than the experimental uncertainty of
7 × 10−4. Therefore, in practice this 22% uncertainty does
not concern us, and we can be confident that the first-order
expansion expressions are sufficient for any precision electro-
weak analysis given the current uncertainties in observables.
However, this large uncertainty in cRb;αs , plus the

intuitively unexpected large difference in cΓq;αs among
different quarks (see Table VIII in Appendix B), inspire
us to examine closely the calculation of the QCD correc-
tions to Z decay. We will address this issue and explain
these features in Appendix B.

D. Change of basis

Our choice of input observables as in Eq. (16) is
convenient for the calculation of expansion coefficients in
ZFITTER. In principle, any set of Np ¼ 6 independent
observables can serve as input, though we should better
choose those most precisely measured observables to
minimize the uncertainty due to higher-order terms in the
expansion. In this respect, an equally good choice as Eq. (16)
could be

TABLE III. Percent relative uncertainties for the expansion
coefficients cii0 , with all input observables varied in their 1σ
range.

Ôi P½ci;mZ
� P½ci;GF

� P½ci;Δα� P½ci;mt
� P½ci;αs � P½ci;mH

�
αðmZÞ 0.05 0.00 0.37 1.19 1.64 0.00
mW 0.02 0.05 0.44 0.87 1.20 0.23
Γe 0.04 0.07 0.42 1.09 1.53 0.60
Γμ 0.04 0.07 0.42 1.09 1.53 0.60
Γτ 0.04 0.07 0.42 1.09 1.53 0.60
Γb 0.01 0.02 0.43 0.96 0.41 0.27
Γc 0.01 0.01 0.39 0.88 0.64 0.33
Γinv 0.00 0.01 0.63 1.04 1.51 0.74
Γhad 0.01 0.01 0.41 1.10 0.50 0.35
ΓZ 0.00 0.01 0.39 1.07 0.52 0.39
σhad 0.06 2.08 2.41 1.31 0.50 2.81
Re 0.31 0.32 0.69 1.40 0.47 0.36
Rμ 0.31 0.32 0.69 1.40 0.47 0.36
Rτ 0.32 0.33 0.69 1.40 0.47 0.36
Rb 0.13 0.28 0.41 0.92 22.06 0.88
Rc 0.12 0.14 0.41 0.87 1.26 0.35
sin2θeeff 0.02 0.01 0.39 0.97 1.26 0.12

sin2θbeff 0.02 0.02 0.39 0.75 1.16 0.05

sin2θceff 0.02 0.01 0.39 0.97 1.26 0.12
Ae 0.51 0.50 0.88 1.10 1.42 0.46
Ab 0.09 0.09 0.46 0.80 1.21 0.11
Ac 0.14 0.14 0.52 1.00 1.30 0.16
Ae
FB 0.51 0.50 0.88 1.10 1.42 0.46

Ab
FB 0.50 0.49 0.88 1.10 1.42 0.46

Ac
FB 0.48 0.47 0.85 1.09 1.41 0.43

TABLE IV. The rii0 ’s defined in Eq. (25), characterizing the
ratios of second-order vs first-order terms in the expansion (in
units of percentage).

Ôi ri;mZ
ri;GF

ri;Δα ri;mt
ri;αs ri;mH

αðmZÞ 0.03 0.00 0.01 0.85 0.66 0.00
mW 0.01 0.03 0.03 0.18 0.35 0.18
Γe 0.03 0.04 0.20 0.30 0.52 0.18
Γμ 0.03 0.04 0.20 0.30 0.52 0.18
Γτ 0.03 0.04 0.20 0.30 0.52 0.18
Γb 0.02 0.02 0.04 0.24 0.10 0.07
Γc 0.02 0.03 0.02 0.21 0.09 0.16
Γinv 0.01 0.01 0.12 0.27 0.51 0.21
Γhad 0.02 0.02 0.02 0.29 0.04 0.14
ΓZ 0.02 0.02 0.02 0.29 0.05 0.13
σhad 0.03 1.04 1.02 0.39 0.02 1.49
Re 0.17 0.17 0.17 0.46 0.02 0.31
Rμ 0.17 0.17 0.17 0.46 0.02 0.31
Rτ 0.17 0.17 0.17 0.46 0.02 0.31
Rb 0.05 0.13 0.05 0.20 10.69 0.59
Rc 0.06 0.07 0.05 0.19 0.38 0.31
sin2θeeff 0.03 0.02 0.03 0.24 0.38 0.19

sin2θbeff 0.03 0.02 0.03 0.13 0.34 0.17

sin2θceff 0.03 0.02 0.03 0.24 0.38 0.19
Ae 0.04 0.03 0.04 0.24 0.38 0.20
Ab 0.04 0.04 0.05 0.14 0.35 0.18
Ac 0.05 0.05 0.06 0.24 0.39 0.20
Ae
FB 0.18 0.19 0.18 0.42 0.55 0.37

Ab
FB 0.03 0.03 0.04 0.24 0.38 0.19

Ac
FB 0.00 0.01 0.01 0.23 0.37 0.19
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fÔi0 g ¼ fmZ;GF;αðmZÞ; mt; αsðmZÞ; mHg; ð27Þ

since essentially all the uncertainty in αðmZÞ comes from

Δαð5Þhad. This basis may be preferable in practice, since it is
often more convenient to do calculations with αðmZÞ, rather
thanΔαð5Þhad, as input. In this subsectionwe derive the rules for
translating the expansion coefficients cii0 , which are calcu-
lated in the basis Eq. (16), into those for the basis Eq. (27). To
avoid confusion, denote the latter by dii0. Also, superscripts
“SM” will be dropped for simplicity in this subsection.
First, consider di;α. We need to determine the shift in Ôi

caused by δ̄αðmZÞ, with the other five input observables
held fixed. If we work in the basis Eq. (16), this shift in

αðmZÞ is an outcome of the following shift in Δαð5Þhad (with
other input observables fixed):

δ̄Δαð5Þhad ¼ ½cα;Δα�−1δ̄αðmZÞ: ð28Þ

And the shift in Ôi is

δ̄Ôi ¼ ci;Δαδ̄Δα
ð5Þ
had ¼ ci;Δα½cα;Δα�−1δ̄αðmZÞ: ð29Þ

Thus,

di;α ¼
δ̄Ôi

δ̄αðmZÞ
¼ ci;Δα½cα;Δα�−1: ð30Þ

Next, consider dii0 for i0 ≠ αðmZÞ. Take di;mZ
as an

example. We need to shift mZ while keeping other
observables in Eq. (27), including αðmZÞ, fixed, and find
the resulting shift in Ôi. Working in the basis Eq. (16), we
can do this in two steps. First, shift mZ by δ̄mZ. As a result,

δ̄Ôi ¼ ci;mZ
δ̄mZ; δ̄αðmZÞ ¼ cα;mZ

δ̄mZ: ð31Þ

Second, shift Δαð5Þhad by

TABLE V. Expansion coefficients calculated in the basis of input observables containing αðmZÞ, which are derived from the numbers
in Table II by a change of basis described in Sec. III D. These encode the dependence of the output observables on each input observable,
and can be used to easily calculate the deviation of the theory prediction of the observables from their reference values via Eq. (38),
including new physics contributions.

Ôi di;mZ
di;GF

di;α di;mt
di;αs di;mH

mZ 1 0 0 0 0 0
GF 0 1 0 0 0 0
Δαð5Þhad 0 0 1 0 0 0
mt 0 0 0 1 0 0
αsðmZÞ 0 0 0 0 1 0
mH 0 0 0 0 0 1
Δαð5Þhad −0.1628 0 33.94 −5.232 × 10−3 3.417 × 10−4 0
mW 1.428 0.2201 −0.2154 0.01325 −9.621 × 10−4 −7.704 × 10−4

Γe 3.378 1.198 −0.1920 0.01886 −1.255 × 10−3 −7.924 × 10−4

Γμ 3.378 1.198 −0.1920 0.01886 −1.255 × 10−3 −7.924 × 10−4

Γτ 3.384 1.198 −0.1924 0.01887 −1.256 × 10−3 −7.931 × 10−4

Γb 3.846 1.411 −0.4166 −0.01260 0.03672 −1.057 × 10−3

Γc 4.154 1.590 −0.5842 0.02760 0.05045 −1.394 × 10−3

Γinv 2.996 1.006 1.913 × 10−3 0.01567 −9.967 × 10−4 −4.873 × 10−4

Γhad 3.940 1.476 −0.4727 0.01586 0.03690 −1.204 × 10−3

ΓZ 3.694 1.353 −0.3490 0.01612 0.02543 −1.019 × 10−3

σhad −2.070 −0.03281 0.03328 2.471 × 10−3 −0.01522 4.057 × 10−5

Re 0.5622 0.2780 −0.2807 −3.002 × 10−3 0.03815 −4.120 × 10−4

Rμ 0.5622 0.2780 −0.2807 −3.002 × 10−3 0.03815 −4.120 × 10−4

Rτ 0.5568 0.2776 −0.2803 −3.009 × 10−3 0.03815 −4.113 × 10−4

Rb −0.09461 −0.06530 0.05608 −0.02846 −1.777 × 10−4 1.477 × 10−4

Rc 0.2138 0.1135 −0.1115 0.01174 0.01356 −1.898 × 10−4

sin2θeeff −2.825 −1.423 1.426 −0.02352 1.811 × 10−3 2.195 × 10−3

sin2θbeff −2.830 −1.417 1.427 −7.134 × 10−3 1.215 × 10−3 2.116 × 10−3

sin2θceff −2.826 −1.423 1.426 −0.02353 1.809 × 10−3 2.194 × 10−3

Ae 35.22 17.74 −17.78 0.2932 −0.02257 −0.02737
Ab 0.4536 0.2271 −0.2287 1.143 × 10−4 −1.947 × 10−4 −3.390 × 10−4

Ac 3.395 1.710 −1.713 0.02827 −2.174 × 10−3 −2.636 × 10−3

Ae
FB 70.44 35.48 −35.56 0.5865 −0.04515 −0.05473

Ab
FB 35.67 17.97 −18.01 0.2944 −0.02277 −0.02771

Ac
FB 38.61 19.45 −19.50 0.3215 −0.02475 −0.03000
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δ̄Δαð5Þhad ¼ −½cα;Δα�−1cα;mZ
δ̄mZ: ð32Þ

As a result,

δ̄Ôi ¼ ci;Δαδ̄Δα
ð5Þ
had ¼ −ci;Δα½cα;Δα�−1cα;mZ

δ̄mZ; ð33Þ

δ̄αðmZÞ ¼ cα;Δαδ̄Δα
ð5Þ
had ¼ −cα;mZ

δ̄mZ: ð34Þ

The effect of both steps is to hold all observables in Eq. (27)
other than mZ, in particular αðmZÞ, fixed. And we get the
desired result

di;mZ
¼ δ̄Ôi

δ̄mZ
¼ ci;mZ

− ci;Δα½cα;Δα�−1cα;mZ
: ð35Þ

As a special case, Eqs. (30) and (35) also hold for
i ¼ Δαð5Þhad:

dΔα;α ¼ ½cα;Δα�−1; ð36Þ

dΔα;mZ
¼ −½cα;Δα�−1cα;mZ

; ð37Þ

where we have used cΔα;Δα ¼ 1, cΔα;mZ
¼ 0.

In the basis Eq. (27), the theory predictions for the
observables (with respect to the reference values) are
calculated from

δ̄Ôth
i ¼

X
i0
dii0 δ̄Ô

th
i0 þ δ̄NPÔi; ð38Þ

where

δ̄NPÔi ≡ ξi −
X
i0
dii0ξi0

¼ ξi − di;mZ
ξmZ

− di;GF
ξGF

− di;αξα − di;mt
ξmt

− di;αsξαs − di;mH
ξmH

: ð39Þ

We list the expansion coefficients dii0 , as calculated from
Eqs. (30) and (35), in Table V.

IV. NEW PHYSICS EXAMPLES

In this section we present some examples of calculating
new physics contributions to electroweak observables,
using the formalism developed in Sec. III. We work in
the basis Eq. (27), with αðmZÞ as an input observable.

A. Dimension-6 effective operators

The SM, when viewed as an effective field theory below
some cutoff scale Λ, can be supplemented by higher dimen-
sional operators suppressed by powers of Λ [16,17], which
presumably come from new physics at or above Λ. Two
examples at dimension 6 are

OL ¼ 1

2Λ2
L
ðL̄γμσaLÞ2; OH ¼ 1

Λ2
H
jH†DμHj2; ð40Þ

where L and H are the lepton and Higgs SUð2ÞL doublets,
respectively, and σa (a ¼ 1, 2, 3) are the Pauli matrices. In
this subsection we consider these two operators separately,
and illustrate how to use the formalism developed in this
paper to work out the precision electroweak constraints on
ΛL, ΛH.
First consider OL. At tree level the only nonzero ξi at

Oð 1
Λ2
L
Þ is

ξGF
¼ v2

Λ2
L
¼ 1ffiffiffi

2
p

GFΛ2
L

ðtree levelÞ: ð41Þ

This computation should not be compared with the exper-
imental uncertainty in GF measurement to get limits on Λ2

L.
Rather, we should calculate

δ̄NPÔi ¼ ξi − di;GF
ξGF

≃ ξi − di;GF

�
246 GeV

ΛL

�
2

ð42Þ

for all observables using the di;GF
listed in Table V, and

perform a χ2 analysis. Indeed, Eq. (42) gives δ̄NPGF ¼ 0,
which is an essential check to the formalism since GF is an
input observable that is by definition set to whatever value
we wish it to have. In other words, if new physics does
appear to want to shift GF, the parameters in the theory
adjust themselves such that the total shift is zero. That is the
nature of being a fixed input observable to precision
electroweak computations.
Because of the rearrangement of SM parameters due to

accommodating the contribution to GF from new physics,
every output observable will feel a shift. For example,

δ̄NPmW ≃ −dmW;GF

�
246 GeV

ΛL

�
2

≃ −0.220
�
246 GeV

ΛL

�
2

; ð43Þ

δ̄NPAe ≃ −dAe;GF

�
246 GeV

ΛL

�
2

≃ −17.7
�
246 GeV

ΛL

�
2

: ð44Þ

Similar expressions exist for all SM precision electroweak
observables. To find limits on ΛL a global χ2 analysis must
be performed, or at least a semiglobal χ2 analysis using
the most sensitive observables, such as Γe, mW and
sin2θeeff [18].
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Next consider OH. In the unitary gauge,

H ¼ 1ffiffiffi
2

p
�

0

vþ h

�

⇒ OH ¼ v2

2Λ2
H

�
1

2
ð∂μhÞ2

�
1þ h

v

�
2

þ 1

4
ðg22 þ g21Þv2ZμZμ

�
1þ h

v

�
4
�
: ð45Þ

Noting that mZ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22 þ g21

p
v at tree level, we have

ξmZ
¼ −1þ

�
1þ v2

2Λ2
H

�
1=2 ≃ v2

4Λ2
H
;

ξmH
¼ −1þ

�
1þ v2

2Λ2
H

�
−1=2 ≃ −

v2

4Λ2
H

ðtree levelÞ:

ð46Þ

The shift in mH comes from rescaling the field h such that
its kinetic term is canonically normalized, as necessitated
by the first term in Eq. (45). To derive constraints on ΛH, a
χ2 analysis has to be done, which can be facilitated by the
expansion

δ̄NPÔi ¼ ξi − di;mZ
ξmZ

− di;mH
ξmH

≃ ξi − ðdi;mZ
− di;mH

Þ
�
123 GeV

ΛH

�
2

: ð47Þ

Among the output observables in Table I, only those related
to Z boson decay have nonzero ξi at tree level due to the
shift in mZ:

ξΓf
¼ ξΓinv

¼ ξΓhad
¼ ξΓZ

¼ ξmZ
¼ v2

4Λ2
H
; ð48Þ

ξσhad ¼ −2ξmZ
¼ −

v2

2Λ2
H
: ð49Þ

Thus, for example,

δ̄NPΓZ ≃ ð1 − dΓZ;mZ
þ dΓZ;mH

Þ
�
123 GeV

ΛH

�
2

≃ −2.70
�
123 GeV

ΛH

�
2

; ð50Þ

δ̄NPRb ≃ −ðdRb;mZ
− dRb;mH

Þ
�
123 GeV

ΛH

�
2

≃ 0.0948

�
123 GeV

ΛH

�
2

: ð51Þ

For both operators considered above, the new physics
contribution is on the order v2

Λ2. If wewere to calculate δ̄NPÔi

to higher order, we would have

δ̄NPÔi ∼O
�
v2

Λ2

��
1þO

�
v2

Λ2

���
1þO

�
αs
4π

��
: ð52Þ

Neglecting these higher-order corrections will result in
errors in the derived constraints on Λ, typically at the
percentage level. However, much effort has been devoted to
calculating observables within the SM to a much higher
accuracy, and such accuracy is reflected in Ôref

i and dii0
presented in this paper. There is no contradiction here,
because [recall Eq. (38)]

Ôth
i ¼ Ôref

i ð1þ δ̄Ôth
i Þ ¼ Ôref

i

�
1þ

X
i0
dii0 δ̄Ô

th
i0 þ δ̄NPÔi

�
:

ð53Þ

To discern new physics contributions of order v2

Λ2, we must

calculate Ôref
i and dii0 to a better accuracy, hence the need for

higher loop–order calculations. The higher-order calcula-
tion of ξi, on the other hand, usually does not contribute as
much to Ôth

i , because δ̄NPÔi is Oðv2Λ2Þ anyway. In a word, if

we only calculate ξi (and hence δ̄NPÔi) at tree level, we will
constrain new physics models with a few percent uncer-
tainty; but if we did not calculate Ôref

i and dii0 to multiloop
level, we would not be able to constrain them at all.

B. Shifts in Zbb̄ couplings

Suppose some new physics model shifts the Z boson
couplings to left- and right-handed b quarks [19]

cbL → cbLð1þ εLÞ; cbR → cbRð1þ εRÞ: ð54Þ

None of the input observables is affected at tree level.
Thus, the impact of the shifts of these couplings can be
calculated straightforwardly from observables that directly
depend on cbL and cbR. The set of observables directly
affected include Γb, Γhad, Re;μ;τ, Rc;b, ΓZ, σhad,Ab, Ab

FB, and
sin2θbeff . Their shifts from this new physics contribution can
be expressed as

δ̄NPÔi ¼ ξi: ð55Þ

Let us begin by computing the shift in Γb. At tree level,
Γb ∝ ½ðcbLÞ2 þ ðcbRÞ2�, which when expanded leads to the
shift δ̄NPΓb ¼ ξΓb

, where

ξΓb
¼ 2ðcbLÞ2

ðcbLÞ2 þ ðcbRÞ2
εL þ 2ðcbRÞ2

ðcbLÞ2 þ ðcbRÞ2
εR

≃ 1.94εL þ 0.0645εR: ð56Þ

Knowing this shift in Γb enables us to simply compute the
shift of other observables that depend on Γb in terms of ξΓb

:
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δ̄NPΓhad ¼ δ̄NPRe ¼ δ̄NPRμ ¼ δ̄NPRτ ¼ −δ̄NPRc

¼ RbξΓb
≃ 0.216ξΓb

; ð57Þ

δ̄NPRb ¼ δ̄NPΓb− δ̄NPΓhad¼ð1−RbÞξΓb
≃0.784ξΓb

; ð58Þ

δ̄NPΓZ ¼ BbξΓb
≃ 0.151ξΓb

; ð59Þ

δ̄NPσhad ¼ δ̄NPΓhad − 2δ̄NPΓZ ¼ ðRb − 2BbÞξΓb

≃ −0.0855ξΓb
; ð60Þ

where Bb ¼ Γb=ΓZ is the branching ratio of Z → bb̄.
The asymmetry observables are also affected due to the

shift in Ab. At tree level,

Ab ¼
ðcbLÞ2 − ðcbRÞ2
ðcbLÞ2 þ ðcbRÞ2

; ð61Þ

which leads to a shift δ̄NPAb ¼ ξAb
, where

ξAb
¼ 4ðcbLÞ2ðcbRÞ2

ðcbLÞ4 − ðcbRÞ4
ðεL − εRÞ≃ 0.134ðεL − εRÞ: ð62Þ

We can then straightforwardly compute δ̄NPAb
FB and

δ̄NPsin2θbeff in terms of ξAb
:

δ̄NPAb
FB ¼ ξAb

; ð63Þ

and

δ̄NPsin2θbeff ¼
�
sin2θbeff
Ab

∂Ab

∂sin2θbeff
�−1

ξAb

¼ ð1 − 4
3
sin2θbeffÞ½1þ ð1 − 4

3
sin2θbeffÞ2�

− 4
3
sin2θbeff ½1 − ð1 − 4

3
sin2θbeffÞ2�

ξAb

≃ −6.24ξAb
: ð64Þ

Thus, δ̄NPÔi for all observables are expressed in terms of
ξΓb

or ξAb
, which are simply related to εL, εR via Eqs. (56)

and (62).

C. Shifts in vector boson self-energies

In many new physics scenarios, there exist exotic states
that do not couple directly to SM fermions but have charges
under the SM gauge groups. These states affect electroweak
observables via shifts in vector boson self-energies [20]. At
one-loop level, the dependence of various observables on
vector boson self-energies is as follows [21]:

m2
Z ¼ ½m2

Z�ð0Þð1þ πzzÞ; ð65Þ
m2

W ¼ ½m2
W �ð0Þð1þ πwwÞ; ð66Þ

GF ¼ ½GF�ð0Þð1 − π0wwÞ; ð67Þ

αðmZÞ ¼ ½αðmZÞ�ð0Þð1þ π0γγÞ; ð68Þ

sin2θfeff ¼ s2
�
1 −

c
s
πγz

�
; ð69Þ

Γf ¼ ½Γf�ð0Þ
�
1þ π0zz þ

1

2
πzz þ afπγz

�
; ð70Þ

where superscripts “(0)” denote tree-level values, and
s ¼ g1ffiffiffiffiffiffiffiffiffi

g2
1
þg2

2

p , c ¼ g2ffiffiffiffiffiffiffiffiffi
g2
1
þg2

2

p . We have also defined

πzz ≡ ΠZZðm2
ZÞ

m2
Z

; ð71Þ

π0zz ≡ lim
q2→m2

Z

ΠZZðq2Þ − ΠZZðm2
ZÞ

q2 −m2
Z

; ð72Þ

πγz ≡ ΠγZðm2
ZÞ

m2
Z

; ð73Þ

π0γγ ≡ lim
q2→0

Πγγðq2Þ − Πγγð0Þ
q2

; ð74Þ

πww ≡ ΠWWðm2
WÞ

m2
W

; ð75Þ

π0ww ≡ ΠWWð0Þ
m2

W
: ð76Þ

The af in Eq. (70) can be derived from

Γf ¼ ½Γf�ð0Þð1þ π0zz þ πzzÞ
1þ ð1 − 4jQfjsin2θfeffÞ2

1þ ð1 − 4jQfjs2Þ2
ð77Þ

and Eq. (69). The result is

af ¼ 8scjQfjð1 − 4jQfjs2Þ
1þ ð1 − 4jQfjs2Þ2

¼ 4scjQfj½Af�ð0Þ: ð78Þ

With s2 ≃ sin2θeeff ¼ 0.231620, which is good at tree level,
we have

aν ¼ 0; al ¼ 0.2468; au ¼ 0.7505; ad ¼ 0.5262:

ð79Þ
With Eqs. (65)–(70), it is straightforward to calculate

contributions from new physics. Denote the shifts in vector
boson self-energies by δNPπzz, etc.; i.e.

πzz → πzz þ δNPπzz; etc: ð80Þ

Note the absence of “bar” on δ, since this is the
absolute shift, not the fractional shift. Then for the input
observables,
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ξmZ
¼ 1

2
δNPπzz; ξGF

¼ −δNPπ0ww; ξα ¼ δNPπ0γγ;

ξmt
¼ ξαs ¼ ξmH

¼ 0: ð81Þ

These shifts propagate into shifts in the output observables,
while leaving the input observables unchanged due to new
physics (i.e. δ̄NPÔi0 ¼ 0). The new physics contribution to
the output observables can be conveniently expressed as

δ̄NPÔi ¼ ξi−
X
i0
dii0ξi0

≡bi;zzδNPπzzþb0i;zzδ
NPπ0zzþbi;γzδNPπγzþb0i;γγδ

NPπ0γγ

þbi;wwδNPπwwþb0i;wwδ
NPπ0ww: ð82Þ

In the following we discuss the calculation of these b
coefficients.

(i) b0i;zz, bi;ww are the simplest, since they vanish for
most of the observables. In particular, b0i;zz, which
comes from wave function renormalization, is non-
zero only for Z boson decay widths:

b0Γf;zz
¼ b0Γinv;zz

¼ b0Γhad;zz
¼ b0ΓZ;zz

¼ 1: ð83Þ

Note that wave function renormalization cancels out
in σhad, and ratios of decay widths. bi;ww is related to
the shift in theW boson mass, so is nonzero only for

bmW;ww ¼ 1

2
: ð84Þ

(ii) bi;zz, b0i;γγ , b
0
i;ww are simply related to di;mZ

, di;α,
di;GF

, respectively. Since π0γγ , π0ww only enter αðmZÞ,
GF, respectively, we have

b0i;γγ ¼ −di;α; b0i;ww ¼ di;GF
ð85Þ

for all Ôi. Similarly,

bi;zz ¼ −
1

2
di;mZ

ð86Þ

except for those observables having direct depend-
ence on the Z boson mass:

bi;zz ¼
1

2
ð1 − di;mZ

Þ for i ¼ Γf;Γinv;Γhad;ΓZ;ð87Þ

bσhad;zz ¼ −
1

2
ð2þ di;mZ

Þ: ð88Þ

(iii) Finally, bi;γz should be derived from the dependence
on sin2θfeff . For the Z partial widths, it can be read off
from Eq. (70):

TABLE VI. The b coefficients defined in Eq. (82), characterizing the shift in the output observables due to new physics that shifts
vector boson self-energies.

Ôi bi;zz b0i;zz bi;γz b0i;γγ bi;ww b0i;ww

mW −0.7140 0 0 0.2154 0.5 0.2201
Γe −1.189 1 0.2468 0.1920 0 1.198
Γμ −1.189 1 0.2468 0.1920 0 1.198
Γτ −1.192 1 0.2468 0.1924 0 1.198
Γb −1.423 1 0.5262 0.4166 0 1.411
Γc −1.577 1 0.7505 0.5842 0 1.590
Γinv −0.9982 1 0 −1.913 × 10−3 0 1.006
Γhad −1.470 1 0.6027 0.4727 0 1.476
ΓZ −1.347 1 0.4420 0.3490 0 1.353
σhad 0.03475 0 −0.03460 −0.03328 0 −0.03281
Re −0.2811 0 0.3559 0.2807 0 0.2780
Rμ −0.2811 0 0.3559 0.2807 0 0.2780
Rτ −0.2784 0 0.3559 0.2803 0 0.2776
Rb 0.04731 0 −0.07647 −0.05608 0 −0.06530
Rc −0.1069 0 0.1479 0.1115 0 0.1135
sin2θeeff 1.413 0 −1.821 −1.426 0 −1.423
sin2θbeff 1.415 0 −1.821 −1.427 0 −1.417
sin2θceff 1.413 0 −1.821 −1.426 0 −1.423
Ae −17.61 0 22.71 17.78 0 17.74
Ab −0.2268 0 0.2876 0.2287 0 0.2271
Ac −1.697 0 2.192 1.713 0 1.710
Ae
FB −35.22 0 45.41 35.56 0 35.48

Ab
FB −17.84 0 22.99 18.01 0 17.97

Ac
FB −19.31 0 24.90 19.50 0 19.45
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bΓf;γz ¼ af; bΓinv;γz ¼ 3aν ¼ 0; ð89Þ

with af given in Eqs. (78) and (79). For i ¼ Γhad, ΓZ,
bi;γz is a weighted sum. At leading order,

bΓhad;γz ¼
X
f∈had

Γf

Γhad
bΓf;γz

¼
P

f∈had½1þ ð1 − 4jQfjs2Þ2�bΓf;γzP
f∈had½1þ ð1 − 4jQfjs2Þ2�

; ð90Þ

bΓZ;γz¼
X
f

Γf

ΓZ
bΓf;γz¼

P
f½1þð1−4jQfjs2Þ2�bΓf;γzP

f½1þð1−4jQfjs2Þ2�
:

ð91Þ
For the ratios of partial widths, and the Z-pole cross
section,

bRl;γz¼ bΓhad;γz−bΓl;γz; bRq;γz¼ bΓq;γz−bΓhad;γz;

bσhad;γz¼ bΓe;γzþbΓhad;γz−2bΓZ;γz: ð92Þ

For the asymmetry observables, we can read off
from Eq. (69):

bsin2θfeff ;γz
¼ −

c
s
: ð93Þ

And hence, at leading order,

bAf;γz ¼
s2

½Af�ð0Þ
∂½Af�ð0Þ
∂ðs2Þ bsin2θfeff ;γz

¼ 4jQfjsc½1 − ð1 − 4jQfjs2Þ2�
ð1 − 4jQfjs2Þ½1 − ð1þ 4jQfjs2Þ2�

; ð94Þ

bAf
FB;γz

¼ bAe;γz þ bAf;γz: ð95Þ

The numerical values for these b coefficients are listed in
Table VI. The calculation is done with s2 ¼ 0.231620, and
the sign conventions for the gauge couplings are g1 > 0,
g2 > 0 (hence s > 0).

V. CONCLUSION

In this paper we presented an expansion formalism that
facilitates precision electroweak analysis. By recasting all
observables in terms of six very well-measured input
observables, we can calculate each of them easily by
expanding about the reference values of the input observ-
ables, chosen in accord with experimental measurements.
Also, the formalism developed here can be applied in a
simple manner to calculate new physics corrections to
electroweak observables and derive constraints on new

physics models. Some examples were worked out for
illustration.
For numerical results we calculated the reference values

and expansion coefficients using the ZFITTER package.
Most, though not all, of these results reflect state-of-the-
art calculations in the literature. Various higher-order
calculations of electroweak observables have been done
since the release of ZFITTER 6.42 in 2005, but their impact
on precision analysis is not significant at present because
the power of the precision program is limited by exper-
imental errors. However, improvements of our results to
better accuracy with the inclusion of these and future
calculations may be necessary in the future, if experimental
priorities of next-generation facilities involve Giga-Z or
Tera-Z options [22,23]. With 109 or 1012 Z bosons
produced at a future collider, unprecedented levels of
reliable theoretical calculations will be needed to meet
the unprecedented levels of experimental accuracy. We
hope that the formalism presented here, with improving
numerical results, will continue to be helpful for efficient
and reliable calculations of SM results and beyond the SM
corrections in the precision electroweak program.
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APPENDIX A: TECHNICAL DETAILS OF ZFITTER

We rely on ZFITTER 6.42 for all numerical calculations of
observables, and obtain the expansion coefficients cii0 , cii0j0
by numerical differentiation. Some calculational details are
presented in this appendix.
We use the DIZET package in ZFITTER, modified slightly

to allow forGF as input. The flags are set to default listed in
[6], with the following exceptions:

(i) NPARð7Þ ¼ IALEM ¼ 2 (default ¼ 3) to allow for
Δαð5Þhad as input.

(ii) NPARð20Þ ¼ IGFER ¼ 3 (default ¼ 2) to allow
for GF as input. Note that the only available options
for this flag in ZFITTER are 0, 1, 2, and none of them
allows us to treat GF as input (since it is extraor-
dinarily well measured), but we added a new option
3 to be consistent with the modification of the codes
mentioned above.

In principle, alternative choices for the flags are possible.
But to be consistent with our formalism, the following flags
should not be changed from default:

(i) NPARð2Þ ¼ IAMT4 (default ¼ 4): 4 is the only
option consistent with treating GF as input.

(ii) NPARð4Þ ¼ IMOMS (default ¼ 1): 1 treats mZ as
input and mW as output, not otherwise.
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The derivatives appearing in cii0 [Eq. (20)] are carried out
numerically via [24]

∂ÔSM
i

∂ÔSM
i0

≃
ÔSM

i jð1þhÞÔref
i0
− ÔSM

i jð1−hÞÔref
i0

2hÔref
i0

; ðA1Þ

where h is chosen differently for different input observ-
ables; see Table VII. The choices are made empirically, and
are expected to be optimal in reducing the combination of
truncation and roundoff errors.3 We found that the numeri-
cal errors typically occur at the seventh or eighth digit, and
thus do not affect the digits presented in the tables earlier in
this paper.
For calculating cii0j0 [Eq. (24)], on the other hand, we

make use of the fact that

cii0j0 ¼
�
ÔSM

j0
∂cii0
∂ÔSM

j0
þ cii0cij0 − δi0j0cii0

�����
Ôi0¼Ôref

i0

; ðA2Þ

and evaluate the derivatives with the same h men-
tioned above.

APPENDIX B: QCD CORRECTIONS
TO Z DECAY

In this appendix we discuss the calculation of Γq. As was
mentioned in Sec. III C, this discussion is motivated by two
features in our numerical results. First, the uncertainty in
cRb;αs is much larger than that in all other expansion
coefficients. Second, cΓq;αs , which characterize the sensi-
tivity of Z → qq̄ partial widths to the strong coupling
constant, are very different for different quarks (see
Table VIII), though at leading order QCD corrections
are flavor universal. This second feature led us to inves-
tigate and confirm the reliability of our numerical calcu-
lation. Both features are related toOðα2sÞ corrections, as we
will explain in the following.
Following the notations in ZFITTER [5], we write the

formula that calculates the partial width of the Z boson to
qq̄ as follows:

Γq ¼ 3Γ0jρqZjðjgqZj2Rq
V þ Rq

AÞ þ ΔEW=QCD; ðB1Þ

where

Γ0 ¼
GFm3

Z

24
ffiffiffi
2

p
π
≃ 83 MeV: ðB2Þ

ρqZ and gqZ are effective couplings that incorporate electro-
weak loop corrections to the Z decay; in particular, gqZ is the
ratio of effective vector and axial couplings. Rq

V and Rq
A are

vector and axial radiator functions, which deal with final
state QCD and QED radiation. There is also an additive
mixed EW/QCD correction term ΔEW=QCD that does not
factorize.
The radiator functions Rq

V and Rq
A actually depend on the

energy scale. In Eq. (B1) it is implicit that they are
evaluated at the Z mass. Explicitly, the vector radiator
function is given by

Rq
V ¼ 1þ 3

4
Q2

q
α

π
þ αs

π
−
1

4
Q2

q
α

π

αs
π

þ
�
C02 þ Ct

2

�
m2

Z

m2
t

���
αs
π

�
2

þ C03

�
αs
π

�
3

þOðα2Þ;Oðα4sÞ;Oðm2
qÞ; ðB3Þ

where

C02 ¼
365

24
− 11ζð3Þ þ

�
−
11

12
þ 2

3
ζð3Þ

�
nq; ðB4Þ

Ct
2ðxÞ ¼ x

�
44

675
−

2

135
ln x

�
þOðx2Þ; ðB5Þ

C03 ¼
87029

288
−
121

8
ζð2Þ − 1103

4
ζð3Þ þ 275

6
ζð5Þ

þ
�
−
7847

216
þ 11

6
ζð2Þ þ 262

9
ζð3Þ − 25

9
ζð5Þ

�
nq

þ
�
151

162
−

1

18
ζð2Þ − 19

27
ζð3Þ

�
n2q: ðB6Þ

ζ is the Riemann zeta function. At the Z pole the number of
light quark flavors nq ¼ 5.
To the order shown in Eq. (B3), Rq

A receives additional
contributions at Oðα2sÞ and Oðα3sÞ:

TABLE VII. The h chosen for each input observable in
numerical differentiation. See Eq. (A1).

Ôi0 mZ GF Δαð5Þhad mt αsðmZÞ mH

h 10−6 10−5 10−4 10−4 10−4 10−4

TABLE VIII. Numerical values of cΓq;αs and cΓhad;αs . The
difference among these numbers is explained in the text. Note
that Γu;d;s are not in our observables list, since they are practically
unmeasurable.

q u c d s b had

cΓq;αs 0.04892 0.05046 0.02697 0.02697 0.03672 0.03690

3We calculated the derivatives with h varied within a wide
range, and recognized the regime where the results fluctuate
(roundoff error dominates) and the regime where the results vary
monotonically (truncation error dominates). The optimal h is in
between these two regimes. In principle, the optimal h can be
determined from the machine precision and the algorithm for
evaluating the functions. But in practice, this is difficult due to the
complexity of calculations in ZFITTER, so we took this empirical
approach.
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Rq
A ¼ Rq

V − 2Tð3Þ
q

�
Ið2Þ

�
m2

Z

m2
t

��
αs
π

�
2

þ Ið3Þ
�
m2

Z

m2
t

��
αs
π

�
3
�

þOðα2Þ;Oðα4sÞ;Oðm2
qÞ; ðB7Þ

where Tð3Þ
q ¼ þ 1

2
(− 1

2
) for up (down) type quarks, and

Ið2ÞðxÞ ¼ −
37

12
þ ln xþ 7

81
xþ 79

6000
x2 þOðx3Þ; ðB8Þ

Ið3ÞðxÞ ¼ −
5075

216
þ 23

6
ζð2Þ þ ζð3Þ þ 67

18
ln xþ 23

12
ln2x

þOðxÞ: ðB9Þ

These terms are called singlet axial corrections. Ið2Þ was
first calculated in [25,26]. There the focus was on the total
hadronic width, and the singlet axial corrections (approx-
imately) cancel among the “light” quarks u; d; c; s.
However, these terms are visible in each partial width,
and are numerically comparable to the OðαsÞ terms. Being
negative, they make cΓu;αs , cΓc;αs larger than cΓd;αs , cΓs;αs .
We might expect cΓb;αs to be close to cΓd;αs , cΓs;αs , but in

Table VIII it is seen to be larger. This is due to a positive
contribution from the Oðm2

qÞ terms, which are significant
only for the b quark. To be precise, mq in these terms
should be taken as the running masses at the Z pole,
obtained by solving renormalization group (RG) equations.
For the b quark, the dependence of these RG equations on

αs is strong enough to overcome the
m2

b

m2
Z
suppression, and the

contribution to cΓb;αs turns out to be positive. Similarly,
cΓc;αs also receives a positive contribution, which explains
the small difference from cΓu;αs .
Now that we have understood the difference among

cΓq;αs and are confident about their numerical values, we
can calculate cΓhad;αs by a weighted average, and the result
is, by accident, very close to cΓb;αs (see Table VIII). As a
result, cRb;αs ¼ cΓb;αs − cΓhad;αs is much smaller than either
of cΓb;αs , cΓhad;αs , and can thus have large uncertainty though
the uncertainties in the latter are small.
Finally, a few comments are in order regarding future

improvements of the Z decay calculation. Recent develop-
ments, including the complete Oðα4sÞ QCD corrections
[27,28] and fermionic electroweak two-loop corrections
[29] will be implemented in future versions of ZFITTER [30],
which will certainly help improve the accuracy of our
results. Meanwhile, we note two other aspects of the
ZFITTER calculation that could be improved. First, the
ΔEW=QCD term in Eq. (B1) is implemented as fixed numbers
in ZFITTER, so the dependence on input observables is lost,
which is especially relevant in the expansion formalism.
Second, the Oðα3sÞ difference between Γhad and

P
qΓq

mentioned in a footnote in Sec. II, though calculated
and stored in ZPARð29Þ ¼ QCDCORð13Þ, is not included
in the calculation of Γhad or the total width ΓZ. The size of
this term is only on the order of 10−5Γhad [9], but the error
might be magnified when the expansion coefficients are
calculated.
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