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Until recently precision electroweak computations were fundamentally uncertain due to lack of
knowledge about the existence of the Standard Model Higgs boson and its mass. For this reason
substantial calculational machinery had to be carried along for each calculation that changed the Higgs
boson mass and other parameters of the Standard Model. Now that the Higgs boson is discovered and its
mass is known to within a percent, we are able to compute reliable semianalytic expansions of electroweak
observables. We present results of those computations in the form of expansion formulas. In addition to the
convenience of having these expressions, we show how the approach makes investigating new physics
contributions to precision electroweak observables much easier.
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I. INTRODUCTION

Precision electroweak analysis has played an important
role in testing the Standard Model (SM) and constraining
new physics. Now this program has entered a new era with
the discovery of the Higgs boson [1,2]. On one hand, the
subpercentage-level determination of the Higgs boson mass
[1-3] constitutes the last piece of a complete set of input
observables. Electroweak observables can now be calcu-
lated to unprecedented accuracy, leading to unprecedented
sensitivity to new physics beyond the SM. On the other
hand, measurements of the Higgs observables, such as its
decay widths and branching ratios, will push our under-
standing of elementary particle physics to more stringent
tests. In this paper we focus on the former aspect. For the
latter aspect, see e.g. [4].

The standard approach of precision electroweak analysis
is to perform a y? analysis, which involves varying the model
parameters, or equivalently, a set of input observables to
minimize the y? function. In practice, this can be facilitated
by an expansion about some reference values of the input,
since we have a set of well-measured input observables that
allows little variation. We present such an expansion
formalism, and apply it to deriving constraints on new
physics models. Most of the numerical results in this paper
reflect state-of-the-art calculations of the electroweak
observables, as implemented in the ZFITTER package [5,6].

Our paper is organized as follows. We first review the
definition of the electroweak observables under consider-
ation in Sec. II. Then in Sec. III we present the expansion
formalism for calculating the SM and new physics con-
tributions to the observables. The result will be that given
the values of six input observables, and the new physics
model, all observables can be easily calculated. The tools
needed in this calculation, including the reference values of
all observables, and the expansion coefficients, are pre-
sented. Next, we illustrate how to use the formalism by
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working out some new physics examples in Sec. I'V. Finally,
in Sec. V we summarize.

II. STANDARD MODEL PARAMETERS
AND OBSERVABLES

The parameters of the SM include the gauge couplings
93> 92> 91> the Yukawa couplings y,, flavor angles, the
Higgs vacuum expectation value v and self-coupling 1. For
the purpose of precision electroweak analysis, with incon-
sequential errors we can treat all Yukawa couplings except
that for the top quark as constants, and correspondingly set
the lepton and light quark masses to their default values in
ZFITTER (see [5]). Then there are six parameters1 in the
theory:

{93.92. 91,y v, 2}, (1)

There are an infinite number of SM observables that can
be defined. They correspond to well-defined quantities
that are measured in experiments. The SM predicts each
observable as a function of the parameters in Eq. (1). The
success of the SM relies on the fact that the predictions for
all observables agree with precision measurements, with
suitable choices of the parameters. If some new physics
beyond the SM were to exist, it could potentially destroy
the agreement. Thus, precision analysis enables us to put
stringent constraints on new physics models. In this paper
we focus on the following list of observables, mostly
relevant to precision tests of the electroweak theory.

(i) Pole mass of the particles: m,, my, m;, mg.

(i) Observables associated with the strengths of the

strong, weak, and electromagnetic interactions:

'"We do not include flavor Cabibbo-Kobayashi-Maskawa
angles in our calculations since all standard precision electroweak
observables do not substantively depend on these angles.
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as(my), Gp, and a(my). The Fermi constant G is
defined via the muon lifetime [7]. a(m) is related to
the fine structure constant a, defined in the Thom-
son limit via

Qo

1 - Aay — Aa, — Aal)

(2)

a(mz) =

We treat ap = 1/137.035999074(44) [7,8] as a
constant, since it is extraordinarily well measured.
The contribution from leptons Aa, and the top quark
Aaq, are perturbatively calculable and known very
accurately, so the uncertainty in a(my) essentially

comes from the incalculable light hadron contribu-
tion Aa}%, which is extracted from low energy
ete™ — hadrons data via dispersion relations [7].
For simplicity, we will occasionally (especially in
subscripts) drop the scale “(my)” in a,(my) and
a(mz), and write Aoc}(lsaz1 as Aa in the following.
(iii) Z boson decay observables: total width I';, and
partial widths into fermions I'y =T'(Z — ff). Also
we define and use the invisible and hadronic partial

widths?:

l—‘inv = 31—‘1,,

I =0(Z - hadrons) =T, + Ty + .+ T +T.

(3)

The ratios of partial widths are defined and also
included in our observables list:
_ Dhaa Ty

R, = , R, =——,
T, 47 Thag

4)

where ¢ and ¢ denote any one of the lepton and
quark species, respectively.
(iv) eTe” — hadrons cross section at the Z pole:
l—‘el—‘had
mzl7

(5)

Ohad — 1272'

(v) Forward-backward asymmetries for ete™ — ff at
the Z pole:

f _ Orp—O0gB
AFB =

3

UF+GB

The asymmetry parameters A, are related to the
definition of the effective electroweak mixing angle
sin%¢/; by

T is Ot quite the sum of all I, as there are O(a3)
corrections that cannot be attributed to any r, [9]. However, these
corrections are small, and are neglected in ZFITTER. We will come
back to this in Appendix B.
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_2( _4|Qf|5in29£ff)
1+ (1- 4|Q,f|5in26£ff)2’

(7)

f

where Q is the electric charge of fermion f.

The experimental results for these observables are listed in
Table 1. For all the Z pole observables, we use the numbers
presented in [10], which are combinations of various
experimental results at LEP and SLC. Among these
observables, lepton universality is assumed only for
sin*0%;. For sin*0%;, we also list the PDG combination
[7] of DO [11] and CDF [12] results (the second number).
my, from [13] is the average of LEP2 [14] and Tevatron
[13] results. my is the PDG average [7] of ATLAS [1] and
CMS [3] results.

TABLE 1. The list of observables, their experimental and
reference values, and percent relative uncertainties. We set Oﬁ?f =
OS5 for the input observables, and calculate O for the other
observables. The percent relative uncertainty P[OF'] is the
maximum deviation of Oi from O,‘-ef in units of percentage when
the input observables are varied within experimental errors; see

Eq. (17) (e.g. my deviates from [my]™" by at most 0.01%).

0 0" o P[OF']
my [GeV] 91.1876(21) [10] 91.1876
Gy [GeV~2] 1.1663787(6)x 1075 [7] 1.1663787x 1075
Aal) 0.02772(10) [7] 0.02772
m, [GeV] 173.20(87) [15] 173.20
a,(my) 0.1185(6) [7] 0.1185
my [GeV] 125.9(4) [7] 125.9
a(my) 7.81592(86)x 1073 [7] 7.75611x1073  0.01
my [GeV] 80.385(15) [13] 80.3614 0.01
I, [MeV] 83.92(12) [10] 83.9818 0.02
T, [MeV] 83.99(18) [10] 83.9812 0.02
T, [MeV] 84.08(22) [10] 83.7916 0.02
I, [MeV] 377.6(1.3) [10] 375.918 0.04
T, [MeV] 300.5(5.3) [10] 299.969 0.06
Iy [GeV] 0.4974(25) [10]  0.501627 0.02
Thaa [GeV] 1.7458(27) [10] 1.74169 0.04
I, [GeV] 2.4952(23) [10] 2.49507 0.03
Opaa (1D) 41.541(37) [10] 41.4784 0.01
R, 20.804(50) [10] 20.7389 0.03
R, 20.785(33) [10] 20.7391 0.03
R, 20.764(45) [10] 20.7860 0.03
R, 0.21629(66) [10]  0.215835 0.02
R, 0.1721(30) [10]  0.172229 0.01
sin?6°,; 0.23153(16) [10] 0231620 0.04
0.23200(76) [7]
sin®6%; 0.281(16) [10]  0.232958 0.03
sin?6° 0.2355(59) [10]  0.231514 0.04
A, 0.1514(19) [10]  0.146249 0.44
A, 0.923(20) [10]  0.934602 0.00
A, 0.67027) [10]  0.667530 0.04
A%y 0.0145(25) [10]  0.0160415 0.88
Aby 0.0992(16) [10]  0.102513 0.44
Al 0.0707(35) [10]  0.0732191 0.48
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Table I also contains the reference theory values around
which we expand, and their percent relative uncertainties.
These theory quantities will be introduced and discussed in
detail in Sec. III B.

III. THE FORMALISM

A. Expansion about reference point

Let us denote the set of SM parameters by { py }, and the
set of SM observables by {0, }. The theoretical prediction
for each observable can be calculated in the SM as a
function of all parameters:

O = 0M({pr}). (8)

The notation here is that primed roman indices run from
1 to N, the number of SM parameters, while unprimed
ones run from 1 to N, the number of observables under
consideration. Note that N, is finite, while N, can
presumably be infinite (we must at least have Ny > N,
in order to test any theory). The analysis in this paper is
done with N, =6 and N, =31, with {py} given in
Eq. (1) and {O;} listed in Table I.

Next, suppose we want to study some new physics model
beyond the SM, which contains a set of new parameters
collectively denoted as p™* (“NP” for “new physics”).
Then at least some Oﬁh will receive new contribution. We
expect such new contribution to be small, in the light of
apparently good agreement between SM predictions and
precision electroweak data. We can thus write

of = OM({pe}) + 8 0,({pe}. P).  (9)

We wish to decide whether the new physics model is
compatible with precision electroweak data, i.e. whether
the O}h predicted by Eq. (9) are compatible with the
experimentally measured values O,

One common misconception in such analysis is that a new

physics model would be ruled out if, for some very precisely
measured observables, e.g. G3" = 1.1663787(6) x
1075 GeV~2, the new physics contribution sN°0; exceeds
the experimental error. The point is that the SM parameters
{pw} are not directly measured experimentally. Rather, in
testing the SM, we adjust { p } and see that for some choice
of all parameters { p's'}, all OF™ agree well with O*"". In the
presence of new physics, we should do the same thing, and
will typically arrive at a different choice of { pi¢' }, and hence

different O,»SM, which may allow the new physics model to
survive (in some regions of parameter space spanned by
PNP) despite a large SNPO,.

The statements above are made more precise by the >
analysis, which is the standard way of doing precision
electroweak analysis. With correlations among the observ-
ables ignored, and experimental errors assumed larger than
theoretical errors, the y> function is defined by
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~\expty 2
Oi

Ath NPy _
){2({pk’}’ pNP) = Z |:0i ({pk/i’bpt?xpt) . (10

where AO™ are the experimental uncertainties of the
observables. To decide whether some p™' in the new
physics model parameter space survives precision tests,
we vary {py} to minimize the y? function to find the best
fit to experimental data, and see if this minimum y? is small
enough. A good discussion of how to interpret the statistics
of the y? distribution can be found in [7].

In principle, one can calculate O each time a different
{pw} is chosen in this minimization procedure. But in
practice, we can do it once and for all by carrying out an
expansion about some reference point in the SM parameter
space { p;:,’f}. Such an expansion is useful because precision
data do not allow much variation in each parameter. Thus,
let us choose some {pf/f} that lead to good agreement

n ~exot )
between OSM and O™, and write

oM
opy Pr = PE) o (D)

OM({pe}) = OF + Z
kl

where OF = O™ ({p'sf}), and the partial derivatives are
taken at pp = pf,’f (this will be implicitly assumed in the

following). Alternatively, define

R OzSM pt)— Ogef _ Py — pr&;f
SMO({pr}) = u Akrgf) . Ope=T
O; Dy
ref 9 /AASM
_py 00;

Then we have a more concise expression for Eq. (11):

SSMOI' = ZGik’Spk’ + e (13)
k/

Here 5 means “fractional shift from the reference value,”
and the superscript on 5™ 0); indicates the shift comes from
shifts in SM parameters. Ignoring higher-order terms in the
expansion, the constant G, is the fractional change in OI-SM
caused by the fractional change in p;, and hence character-
izes the sensitivity of the ith SM observable (as calculated
in the SM) to the kK'th SM parameter.

In the presence of perturbative new physics contribu-
tions, let us define

o' ({pr}.PN") - OFF
Oljef
5NPOi({pk'}7 pNP)
Ofef .

S0P ({pv}. P?) =

9’

55({Pk’}’PNp) = (14)
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Then Eq. (9) can be expanded as, to first order,

5ON =5MO, +& =) Gudpy +&. (1)
k/

The calculation of Oﬁh and hence y? is then facilitated if we
have at hand the constants pfj‘f, O™ and Gp.

B. Recasting observables in terms of observables

The approach above is indirect, in the sense that the input
of the analysis, the parameters {py}, are not directly
measurable—only {O;} are well-defined observables.
We can do better if we use N, very well-measured
observables {0} as input. Note that primed indices,
which run from 1 to N, are used for input observables.
Inverting the functions OSM({py}), we can express other
observables as functions of these input observables. Then it
is immediately clear from O and AOS™ what reference
values for the input we should use, and by how much they
are allowed to vary. In our analysis, N, =6, and a
convenient choice for the six input observables is

{Oi’} = {mz. Gp, Aa}(fazi’mnas(mz)va}- (16)

The reference values for these input observables are taken
to be the central values experimentally measured; see
Table I. All other observables are output observables,
and their reference values O are evaluated at 0, =
@;f’f with the help of ZFITTER. See Appendix A for technical
details.

We also show in Table I the “percent relative uncertain-
ties” P[O™'], defined as the maximum value of

oM({0:}) - OF

Aref
Oi

100

(17)

when all {0y} are varied in their 16 range around {O9"'}.
We do not distinguish between positive and negative
relative uncertainties because, as we have checked, the
asymmetry in the uncertainties for all observables consid-
ered here is very small.

To work out the expansion about the reference point,
we assume the input observables {O;} are the first N,
observables in the list {O;}. Then we can simply invert the
first N, equations in Eq. (13). To first order,

= ZGi’k’Spk’ = Zéi’k’spk’
K K

= opp = Z(G_1>k’i’SSMOi’- (18)

MO,

Note that G is a Ny x N, matrix, while G is the upper
N, x N, block of G. Then Eq. (13) suggests

PHYSICAL REVIEW D 90, 033006 (2014)

BN, = Y G (G )30 = Y eud™0y. (19)
k/,i/ l'/

where we have defined

Ciit = ZGik’(G_l)k’i’ =
k/

Equation (19) expresses the shift in any observable in terms
of shifts in the input observables, as calculated in the SM.
Notably, the upper N, x N, block of the Ny x N, matrix ¢
is the identity matrix, i.e. ¢y = ;. For i > N i.e. the
output observables, the calculatlon of ¢;p is nontr1v1a1. We
present in Table II the results for these expansion coef-
ficients for the observables discussed in Sec. II, which we
calculate using zZFITTER. These coefficients are useful not
only because they facilitate the calculation of SM observ-
ables. They also give us information on the sensitivity of
the calculated observables to each input observable.

In the presence of new physics, Eq. (15) becomes

Sbgh = Z%"SSMO[’ +&i= ZQ’:"(SO?’] =&+ 6
7 7

o5t oo™

osoop

= ZCWSO?/] + SNPO[, (21)
where
SNP@;’ =¢ - Zciﬂfﬂ
=& - Ci.mzfmz - Ci.focF = Cinadbra — Ci,m,ém,
- Ci.al\fa.\ - Ci,memH' (22)

Equation (21) expresses the shift in any observable in terms
of shifts in the input observables and new physics effects.
Note that for the input observables, since c;y = 6;y,
Eq. (22) indicates 6"?O, =0, and Eq. (21) trivially
becomes 50 = 50'. This is forced to be true in our
formalism, where O?‘ are inputs of the analysis, indepen-
dent of new physics. Of course, new physics does con-
tribute £, to the calculation of O?ﬂ, but as we decide to use
some particular values for the input O?‘ to be consistent
with O?,Xpt (which are extraordinarily well measured), we
find ourselves adjusting the SM parameters to compensate
for £,. This adjustment gets propagated into the shift in @}h
due to new physics for i > N,. As aresult, Eq. (22) shows

that for the output observables, SN° 0, is not simply &, but is
related to &y for all input observables.

To close this subsection we remark on the calculation
of &;. In practice this is done at tree level or one-loop level,
if we are only interested in constraining a new physics
model at percentage level accuracy. Also, the definition of
&, Eq. (14), instructs us to calculate them in terms of
Lagrangian parameters, which can then be eliminated in

033006-4



PRECISION ELECTROWEAK ANALYSIS AFTER THE ...
TABLE II.
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5)

Expansion coefficients, as defined in Eq. (20), calculated in the basis of input observables containing Aa,,, ;. These encode

the dependence of the output observables on each input observable, and can be used to easily calculate the deviation of the theory
prediction of the observables from their reference values via Eq. (21), including new physics contributions.

A

o Cimy, CiGp Ci Aa Cim, Cia, Cimy
my 1 0 0 0 0 0
F 0 1 0 0 0 0
Aal) 0 0 1 0 0 0
m, 0 0 0 1 0 0
a,(my) 0 0 0 0 1 0
my 0 0 0 0 0 1
a(my) 4.796 x 1073 0 0.02946 1.541 x 10~ —1.007 x 1073 0
my 1.427 0.2201 —6.345 x 1073 0.01322 -9.599 x 10~ ~7.704 x 1074
T, 3.377 1.198 —5.655 x 1073 0.01883 —-1.253 x 1073 ~7.924 x 1074
r, 3.377 1.198 —5.655 x 1073 0.01883 —-1.253 x 1073 ~7.924 x 1074
I, 3.383 1.198 ~5.668 x 1073 0.01884 —-1.254 x 1073 -7.931 x 1074
r, 3.844 1.411 -0.01227 -0.01267 0.03672 —1.057 x 1073
T, 4.151 1.590 -0.01721 0.02751 0.05046 ~1.394 x 1073
Tiny 2.996 1.006 5.635 x 1073 0.01567 -9.967 x 10~ —4.873 x 1074
Thad 3.938 1.476 -0.01393 0.01578 0.03690 ~1.204 x 1073
r, 3.692 1353 -0.01028 0.01607 0.02543 —-1.019 x 1073
Ohad ~2.069 -0.03281 9.806 x 107 2.476e-3 -0.01522 4.057 x 1075
. 0.5608 0.2780 -8.272 x 1073 -3.045 x 1073 0.03815 —4.120 x 1074
R, 0.5608 0.2780 -8.272 x 1073 -3.045x 1073 0.03815 —4.120 x 107*
R, 0.5554 0.2776 -8.259 x 1073 -3.053 x 1073 0.03816 —4.113 x 1074
R, —0.09434 -0.06530 1.652 x 1073 -0.02845 ~1.782 x 107 1.477 x 10~
R, 0.2133 0.1135 —3.284 x 1073 0.01173 0.01356 —1.898 x 1074
sin?0; -2.818 -1.423 0.04203 -0.02330 1.796 x 1073 2.195 x 1073
Sin*0% —2.823 -1.417 0.04204 -6.914 x 1073 1.201 x 1073 2.116 x 1073
sin®0%; -2.819 —1.423 0.04202 -0.02331 1.795 x 1073 2.194 x 1073
35.13 17.74 -0.5239 0.2905 -0.02239 -0.02737
A, 0.4525 0.2271 —6.737 x 1073 1.108 x 1073 —1.924 x 1074 —3.390 x 107*
A, 3.386 1.710 -0.05048 0.02800 ~2.156 x 1073 ~2.636 x 1073
Ay 70.27 35.48 -1.048 0.5810 -0.04479 -0.05473
ALy 35.59 17.97 -0.5306 0.2916 -0.02259 -0.02771
Ay 38.52 19.45 -0.5744 0.3185 -0.02455 —0.03000

favor of input observables using the tree-level relations
between the two. This does not conflict with the “preci-
sion” part of the analysis, since we are doing two different
perturbative expansions in the calculation: the expansion in
SM couplings, and the expansion in new physics effects.
Since new physics makes tiny contributions to O}h, to
discern them we have to calculate the SM part as precisely
as possible, carrying out the expansion in SM couplings to
as high order as possible. On the other hand, in most cases
the new physics contributions &; need not be calculated
beyond leading order, since they are already very small. We
will see explicitly how the reasoning above works out in
specific examples in Section IV A.

C. Beyond first order

The above perturbative expansion carried out to first
order is expected to be sufficient for the purpose of
precision electroweak analysis, since we have chosen a
very well-measured set of input observables, so that the

expansion parameters 5@}5‘ are tiny. The impact of higher-
order terms in the expansion can be seen from the
sensitivity of the expansion coefficients c;; to the choice
of reference values for the input observables O'. In
Table III we show the percent relative uncertainties for
¢y, defined similarly to Eq. (17).

Alternatively, without varying Of, we can explicitly
write down the next order terms in the expansion:

o A g A 1 ot A —ang A
5SM0i — Z/Cii/(ssMOi’ + EZciilj/6SM0i/5SM0j' + o
i i

= Z(Cii/ + Acii/)SSMOi/ + .- (23)
where
OO O™
Covyp =—— L (24)

i’ = A 3 ~ ~ .
/ o aoﬁMaoj.,M
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TABLE III. Percent relative uncertainties for the expansion
coefficients c;7, with all input observables varied in their lo
range.

PHYSICAL REVIEW D 90, 033006 (2014)

TABLE 1V. The r;s’s defined in Eq. (25), characterizing the
ratios of second-order vs first-order terms in the expansion (in
units of percentage).

0, Plcim,] Plcig,) Plcinal Plcim] Plcia] PlCim,] 0, Timy TiGp T'iAa Tim, Tia, Timy
a(my) 0.05 0.00 0.37 1.19 1.64 0.00 a(my) 0.03 0.00 0.01 0.85 0.66 0.00
my 0.02 0.05 0.44 0.87 1.20 0.23 my 0.01 0.03 0.03 0.18 0.35 0.18
I, 0.04 0.07 0.42 1.09 1.53 0.60 r, 0.03 0.04 0.20 0.30 0.52 0.18
I 0.04 0.07 0.42 1.09 1.53 0.60 I 0.03 0.04 0.20 0.30 0.52 0.18

T, 004 007 042 109 153 060
r, 001 002 043 096 041 027
r 001 001 039 088 064 033
Tin 000 001 063 104 151 074
Thaa 001 001 041 110 050 035
r, 000 001 039 107 052 039
Ghad 006 208 241 131 050 281
R, 031 032 069 140 047 036
R, 031 032 069 140 047 036
R, 032 033 069 140 047 036
R, 013 028 041 092 2206 0.88
R, 012 014 041 087 126 035

sin®0%;  0.02 0.01 0.39 0.97 126 0.12
sin?@%,  0.02 0.02 0.39 0.75 1.16  0.05

sin6S, 002 001 039 097 126 012
051 050 088 110 142 046

A; 0.09 0.09 0.46 0.80 1.21 0.11
A, 0.14 0.14 0.52 1.00 1.30  0.16
Afg 0.51 0.50 0.88 1.10 142 046
Aby 0.50 0.49 0.88 1.10 142 046
Afg 0.48 0.47 0.85 1.09 1.41 0.43

Then the size of second-order terms in Eq. (23) compared
with the first-order term is characterized by the ratio

A

Acii’ Zj/cii/j!(_sSMOjf Zj"cii’j’HSSMOj" o
== < =0.01 rii.
Ciit 2¢iy 2leqi
(25)
We show in Table IV the r;; calculated with

MO = AO? Pty Off. The results follow a similar pattern
as in Table III.

Tables IIT and IV both show that the uncertainties on the
observables calculations are negligible due to uncertainty in
the first-order expansion coefficient c;7’s. Most entries
manifestly demonstrate this with values of less than 1%
corrections to the first-order coefficients that are already
governing less than 1% shifts in the observables due to the
small uncertainties of the input observables to the calcu-
lation (see Table I). Only in a couple of places does the
uncertainty reach more than 1%, but the final uncertainty
on the observables themselves is of course significantly
lower than that. To illustrate this, let us consider the largest
P[c;y] in Table III, P[cg, , |, which is the uncertainty in the
expansion coefficient of a; — ™ in the computation for
R,. It yields an uncertainty on R, of

T, 003 004 020 030 052 018
r, 002 002 004 024 010 007
r 002 003 002 021 009  0.16
Ciny 00l 001 012 027 051 021
Cha 002 002 002 029 004 014
r, 002 002 002 029 005 013
Ohad 003 104 102 039 002 149
R, 017 017 017 046 002 03I
R, 017 017 017 046 002 03I
R, 0.17 017 017 046 002 031
R, 005 013 005 020 1069 059

0.06 0.07 0.05 0.19 0.38 0.31
sin0%; 0.03 0.02 0.03 0.24 0.38 0.19

sin?@%; 0.03 0.02 0.03 0.13 0.34 0.17

sin?0<; 0.03 0.02 0.03 0.24 0.38 0.19
0.04 0.03 0.04 0.24 0.38 0.20

A, 0.04 0.04 0.05 0.14 0.35 0.18
A, 0.05 0.05 0.06 0.24 0.39 0.20
Afg 0.18 0.19 0.18 0.42 0.55 0.37
Aby 0.03 0.03 0.04 0.24 0.38 0.19
Afp 0.00 0.01 0.01 0.23 0.37 0.19

ARy, = R¥|22% x ¢, o % ba
=0.216(0.22 x 0.0002 x 0.005) =5 x 1078, (26)

which is much smaller than the experimental uncertainty of
7 x 107, Therefore, in practice this 22% uncertainty does
not concern us, and we can be confident that the first-order
expansion expressions are sufficient for any precision electro-
weak analysis given the current uncertainties in observables.

However, this large uncertainty in cg,,, plus the
intuitively unexpected large difference in cr, , among
different quarks (see Table VIII in Appendix B), inspire
us to examine closely the calculation of the QCD correc-
tions to Z decay. We will address this issue and explain
these features in Appendix B.

D. Change of basis

Our choice of input observables as in Eq. (16) is
convenient for the calculation of expansion coefficients in
ZFITTER. In principle, any set of N, =6 independent
observables can serve as input, though we should better
choose those most precisely measured observables to
minimize the uncertainty due to higher-order terms in the
expansion. In this respect, an equally good choice as Eq. (16)
could be
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{Oi’} = {mz,Gp,a(mz), m,;, a,(mz), my}, (27)

since essentially all the uncertainty in a(m;) comes from

Aaﬁzzj. This basis may be preferable in practice, since it is
often more convenient to do calculations with a(m), rather
than Aagzj, as input. In this subsection we derive the rules for
translating the expansion coefficients c;;, which are calcu-
lated in the basis Eq. (16), into those for the basis Eq. (27). To
avoid confusion, denote the latter by d;;. Also, superscripts
“SM” will be dropped for simplicity in this subsection.
First, consider d; ,. We need to determine the shift in 0,
caused by da(my), with the other five input observables
held fixed. If we work in the basis Eq. (16), this shift in

a(my) is an outcome of the following shift in Aa}% (with

PHYSICAL REVIEW D 90, 033006 (2014)
And the shift in O; is
. s L
50; = ¢;.0a0Ay = CiaalCand 'Sa(mz).  (29)

Thus,

= ci.Aa[Ca,Aa]_l . (30)

Next, consider d;; for i’ # a(my). Take d;, as an
example. We need to shift m; while keeping other
observables in Eq. (27), including a(m;), fixed, and find
the resulting shift in O;. Working in the basis Eq. (16), we
can do this in two steps. First, shift m, by ém.. As a result,

other input observables fixed):

Bayy =

[Cana) " 0(my).

(28)

00; = Ci.mzfstv

Second, shift Aa}a

sa(myz) = Cqpm,0my. (31)

TABLE V. Expansion coefficients calculated in the basis of input observables containing a(m), which are derived from the numbers
in Table II by a change of basis described in Sec. III D. These encode the dependence of the output observables on each input observable,
and can be used to easily calculate the deviation of the theory prediction of the observables from their reference values via Eq. (38),
including new physics contributions.

0,

d

dig,

S
]

S
]

imy 5 i, Qs i1y
my 1 0 0 0 0 0
Gr 0 1 0 0 0 0
Aal) 0 0 1 0 0 0
m, 0 0 0 1 0 0
a;(myz) 0 0 0 0 1 0
my 0 0 0 0 0 1
Aad), —0.1628 0 33.94 —5.232 x 1073 3.417 x 1074 0
my 1.428 0.2201 ~0.2154 0.01325 ~9.621 x 10~ ~7.704 x 10~
r, 3378 1.198 ~0.1920 0.01886 ~1.255 x 1073 ~7.924 x 10~
r, 3378 1.198 ~0.1920 0.01886 ~1.255 x 1073 ~7.924 x 10~
T, 3.384 1.198 ~0.1924 0.01887 ~1.256 x 1073 ~7.931 x 10~
r, 3.846 1411 ~0.4166 ~0.01260 0.03672 ~1.057 x 1073
r, 4.154 1.590 ~0.5842 0.02760 0.05045 ~1.394 x 1073
iy 2.996 1.006 1.913 x 1073 0.01567 ~9.967 x 10~ ~4.873 x 107
Thad 3.940 1.476 ~0.4727 0.01586 0.03690 ~1.204 x 1073
r, 3.694 1.353 ~0.3490 0.01612 0.02543 ~1.019 x 1073
Ohad -2.070 ~0.03281 0.03328 2471 x 1073 -0.01522 4.057 x 1075
R, 0.5622 0.2780 ~0.2807 ~3.002 x 1073 0.03815 ~4.120 x 10~
R, 0.5622 0.2780 ~0.2807 ~3.002 x 1073 0.03815 ~4.120 x 107
R, 0.5568 0.2776 ~0.2803 ~3.009 x 1073 0.03815 —4.113 x 107
R, ~0.09461 ~0.06530 0.05608 ~0.02846 ~1.777 x 107 1.477 x 10~
R, 02138 0.1135 ~0.1115 0.01174 0.01356 ~1.898 x 10~
sin?6%; —-2.825 -1.423 1.426 -0.02352 1.811 x 1073 2.195x 1073
sin26%; -2.830 ~1.417 1.427 ~7.134 x 1073 1.215 x 1073 2.116 x 1072
s -2.826 ~1.423 1.426 ~0.02353 1.809 x 1073 2.194 x 1073
A, 35.22 17.74 ~17.78 0.2932 ~0.02257 ~0.02737
Ay 0.4536 0.2271 ~0.2287 1.143 x 107 —1.947 x 107 ~3.390 x 10~
A, 3.395 1.710 ~1.713 0.02827 ~2.174 x 1073 ~2.636 x 1073
Ay 70.44 35.48 ~35.56 0.5865 ~0.04515 ~0.05473
Abg 35.67 17.97 ~18.01 0.2944 ~0.02277 ~0.02771
Al 38.61 19.45 ~19.50 03215 ~0.02475 ~0.03000
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5)

SAaﬁad = —[cand " Cam,Omz. (32)

As a result,
301‘ = c,»,AaSAaﬁiL = _Ci,Aa[Ca,Aa]_lca,mzst’ (33)
da(my) = ca’MSAagz = —Cym, 0. (34)

The effect of both steps is to hold all observables in Eq. (27)
other than m, in particular a(m;), fixed. And we get the
desired result

==z = ci,mz - ci,Aa[ca,Aa}_lca,mz' (35)

As a special case, Egs. (30) and (35) also hold for
i= Aa&:

dAa,a = [Ca,Aa]_l ’ (36)

dAa.mZ = _[Ca.Aa}_lca,mzv (37)
where we have used cpqaq = 1, Cagm, = 0.

In the basis Eq. (27), the theory predictions for the
observables (with respect to the reference values) are
calculated from

30N = "diy50% + 80, (38)
where
SNPOi =¢ - Zdii’fi’
= gi - di,ngmz - di,Gngp - di,aéa - di.m,&m,

- di,aséax - di,mHémH' (39)

We list the expansion coefficients d;;, as calculated from
Egs. (30) and (35), in Table V.

IV. NEW PHYSICS EXAMPLES

In this section we present some examples of calculating
new physics contributions to electroweak observables,
using the formalism developed in Sec. III. We work in
the basis Eq. (27), with a(my) as an input observable.

A. Dimension-6 effective operators

The SM, when viewed as an effective field theory below
some cutoff scale A, can be supplemented by higher dimen-
sional operators suppressed by powers of A [16,17], which
presumably come from new physics at or above A. Two
examples at dimension 6 are

PHYSICAL REVIEW D 90, 033006 (2014)

1

DL:E

(Ly,o“L)*, O H'D,HP, (40)

A%

where L and H are the lepton and Higgs SU(2), doublets,
respectively, and ¢ (a = 1, 2, 3) are the Pauli matrices. In
this subsection we consider these two operators separately,
and illustrate how to use the formalism developed in this
paper to work out the precision electroweak constraints on
AL’ AH'

First consider ;. At tree level the only nonzero &; at
(’)(ﬁ) is

v? 1
¢, =

=—=———(tree level). 41

This computation should not be compared with the exper-
imental uncertainty in G measurement to get limits on AZ.
Rather, we should calculate

A 246 GeV ) 2
5NP01 =& - di,GF§GF =& - di,GF (T) (42)
L

for all observables using the d, s, listed in Table V, and
perform a y” analysis. Indeed, Eq. (42) gives "°G = 0,
which is an essential check to the formalism since G is an
input observable that is by definition set to whatever value
we wish it to have. In other words, if new physics does
appear to want to shift G, the parameters in the theory
adjust themselves such that the total shift is zero. That is the
nature of being a fixed input observable to precision
electroweak computations.

Because of the rearrangement of SM parameters due to
accommodating the contribution to Gy from new physics,
every output observable will feel a shift. For example,

_ 246 GeV) 2
5NPmW o~ _de’GF <[XL>
246 GeV) 2

» 43)

= —0.220<

- 24 V) 2
SNP A ~ —dy G, <%>
L

24 2
=177 <—6 GCV) : (44)
Ap

Similar expressions exist for all SM precision electroweak
observables. To find limits on A; a global ¥ analysis must
be performed, or at least a semiglobal y? analysis using
the most sensitive observables, such as I',, my and
sin?6¢; [18].
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Next consider Op. In the unitary gauge,

1=2(oin)
_\/§ v+ h
vr [1 ) h\?2

1 h\*4
+5 (B + )22 (1 i Z) ] )

:>DH:

Noting that m, = 3+/g5 + giv at tree level, we have

3 1+<1+ ”2>1/2 v

2A% 4A%°
2\ -1/2 2
Em, = —1 + <1 +m) = —m (tree level).

(46)

The shift in my comes from rescaling the field / such that
its kinetic term is canonically normalized, as necessitated
by the first term in Eq. (45). To derive constraints on Ay, a
Ve analysis has to be done, which can be facilitated by the
expansion

SNpoi =& - di,mzfmz - d,-,memH

123 GeV) 2
= éi - (di,mz - di,mH) <A—H> . (47)

Among the output observables in Table I, only those related
to Z boson decay have nonzero &; at tree level due to the
shift in m:

1)2

ér, =¢r, =fr=¢r,=%m, =72 4B)
T, T, Thad T 42,
2
by = 2, = =35 (49)
Thus, for example,
- 123 GeV) 2
SN, = (1 - dr, m, +dr, m,) <7e>
B s AH
12 V 2
=-2.70 <ﬁ> , (50)
Ay
- 123 GeV) 2
5NPRb = _(de,mZ - demH) <T>
H
123 GeV) 2
= 0.0948 (7e> . (51)
H

For both operators considered above, the new physics
contribution is on the order /”\—27 If we were to calculate SN O i
to higher order, we would have

PHYSICAL REVIEW D 90, 033006 (2014)

v0~0(2)[1+o(Z)|[1+o(2)] @

Neglecting these higher-order corrections will result in
errors in the derived constraints on A, typically at the
percentage level. However, much effort has been devoted to
calculating observables within the SM to a much higher
accuracy, and such accuracy is reflected in O™ and d;;
presented in this paper. There is no contradiction here,
because [recall Eq. (38)]

O = 0% (14 50%) = O§°f<1 Y 4500 + SNPOi).
(53)

. . . . 2
To discern new physics contributions of order 45, we must

A23
calculate O™' and d,; to a better accuracy, hence the need for
higher loop—order calculations. The higher-order calcula-
tion of &;, on the other hand, usually does not contribute as
much to O, because 5N O, is (’)(X—z) anyway. In a word, if
we only calculate &; (and hence BNPO,») at tree level, we will
constrain new physics models with a few percent uncer-
tainty; but if we did not calculate O'" and d;; to multiloop
level, we would not be able to constrain them at all.

B. Shifts in Zbb couplings

Suppose some new physics model shifts the Z boson
couplings to left- and right-handed b quarks [19]

cf = ci(l+ep), cg = cg(l +eg). (54)

None of the input observables is affected at tree level.
Thus, the impact of the shifts of these couplings can be
calculated straightforwardly from observables that directly
depend on ¢ and c%. The set of observables directly
affected include I'y, Ty, Re s Re s T'zs Ohads Ap, Ay, and
sinzeé’ff. Their shifts from this new physics contribution can
be expressed as

ngbi - fi. (55)

Let us begin by computing the shift in I',. At tree level,
[}, o [(c?)? + (c%)?], which when expanded leads to the
shift SNPI, = &r,, where

: 2(ch)? L 2Acky

= I

D) (R
= 1.94¢; + 0.0645¢p. (56)

Knowing this shift in I, enables us to simply compute the
shift of other observables that depend on I';, in terms of &, :
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MNP ,g = ONPR, = 8NPR, = SNPR, = —NFR,
= Rbgrb = 0.21651"1), (57)

SNPRb = SNPFh - (_SNPFhad = (1 - Rb)érb = O784€rb s (58)

NPT, = Byér, = 0.151¢r, (59)

3NPO’had = 5Nprhad - 23NPFZ = (Rb - 2Bb)§r,,
= —0.0855§l—b, (60)

where B, =T',/T", is the branching ratio of Z — bb.
The asymmetry observables are also affected due to the
shift in A,. At tree level,

by = (ch)?

which leads to a shift "* A, = £, , where

4 cz 2 c,% 2
Sa, = ﬁ (ep —eg) = 0.134(e;, —€g). (62)

We can then straightforwardly compute 6NPAf, and
SNPsin?0%, in terms of & :

NPALy =4, (63)
and

-1

sin?0%.  OA, ¢
A,

A, Osin’0%;

_ (1 _%Sinzgé’ff)[l + (1 —5sin*0% )]
- % sin®6l[1 — (1 - % sin®6y)°]

~ —6.24¢,,. (64)

SNPi2gb  _
0 s1n9eff—[

$a,

Thus, 5NFO ; for all observables are expressed in terms of
&r, or & 4,, which are simply related to ¢;, g via Egs. (56)
and (62).

C. Shifts in vector boson self-energies

In many new physics scenarios, there exist exotic states
that do not couple directly to SM fermions but have charges
under the SM gauge groups. These states affect electroweak
observables via shifts in vector boson self-energies [20]. At
one-loop level, the dependence of various observables on
vector boson self-energies is as follows [21]:

my = [mz]O(1 + x,). (65)
miy = [mi] 0 (1 + 7). (66)
Gr = [G#] (1 = 2. (67)

PHYSICAL REVIEW D 90, 033006 (2014)

a(mz) = [a(mz)]©(1 + =), (68)
sin26/,, = 5 <1 - znﬂ>, (69)

1
I, = [Ff](()) (1 + 7l + 57 + afnﬂ), (70)

where superscripts “(0)” denote tree-level values, and

— 91 _ 92
s = c= . We have also defined
Vatd VAt

II 2
T, = M ’ (71)
myz
II 2 —-1I 2
7, = 2limz zz(qg gz(mz)’ (72)
q=—my q - mZ
I, (m7)
- Vm% 2 (73)
IT 2)—11,,(0
7, = lim n4) _ n(0) (74)
q*=0 q
IT
ww — WW(sz) s (75)
m
w
11
9vw= WV‘;(O) (76)
m
w

The ay in Eq. (70) can be derived from

1+ (1- 4|Qf|Sin2€£ff)2

I, =[]0+ 7
f [f] ( +”zz+7[zz) 1+(1—4|Qf|52)2

(77)
and Eq. (69). The result is

"y 8sc|Q|(1 —4]Qf|s?)
7 4 (1 - 4]Qys7)?

With s? = sin?0¢; = 0.231620, which is good at tree level,
we have

= dsclQ/[[4,]0.  (78)

a, = 02468, a, =0.7505, a, = 0.5262.

(79)
With Egs. (65)—(70), it is straightforward to calculate

contributions from new physics. Denote the shifts in vector
boson self-energies by SNFr.., etc.; i.e.

a,=0,

220
n, >, +8MNr,,, et. (80)

Note the absence of “bar” on &, since this is the
absolute shift, not the fractional shift. Then for the input
observables,
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1
§mz = EéNpﬂzv

gm, = gax = me =0.

__ sNP_/
5(1 - 6 ”}’]/9

(81)

These shifts propagate into shifts in the output observables,
while leaving the input observables unchanged due to new
physics (i.e. 8° 0, = 0). The new physics contribution to
the output observables can be conveniently expressed as

— NP 0
§GF == Tyws

N0 =&= dity
=b;.."'n, +b; ., +b;,. 8, +b;, 6,
+ bi,wwéNPﬂww + bgWW5NP7t9VW. (82)

In the following we discuss the calculation of these b
coefficients.
() bi_., b;,, are the simplest, since they vanish for
most of the observables. In particular, bj»’zz, which
comes from wave function renormalization, is non-

zero only for Z boson decay widths:

bi"f,zz = b{“ = bi"md,zz = b{*Z.ZZ =1. (83)

inv»Z%
Note that wave function renormalization cancels out
in oy,,4, and ratios of decay widths. b, ,,,, is related to
the shift in the W boson mass, so is nonzero only for

(i)

(iii)

PHYSICAL REVIEW D 90, 033006 (2014)
1
b (84)

my ww — 5

bi..o b, bY,, are simply related to d;,,. d;q

d; g, respectively. Since 7}, ), only enter a(my),
G, respectively, we have

b?,}/;’ = _di,a7 b?,ww = di,GF (85)

for all O;. Similarly,

1
bi,zz = - Edi,mz (86)

except for those observables having direct depend-
ence on the Z boson mass:

b =

i,22

(1- di,mz) for i = Ffvrinv7rhader’(87)

N[ =

b (88)

Ohad 2%

1
=——(2+d;,).
2( + l,mz)

Finally, b; . should be derived from the dependence
on sin29£ff. For the Z partial widths, it can be read off
from Eq. (70):

TABLE VI. The b coefficients defined in Eq. (82), characterizing the shift in the output observables due to new physics that shifts
vector boson self-energies.
0; bi.zz ;zz bt};’z b;’,yy bi,ww b?,ww
My —0.7140 0 0 0.2154 0.5 0.2201
I, —1.189 1 0.2468 0.1920 0 1.198
r, —1.189 1 0.2468 0.1920 0 1.198
I, -1.192 1 0.2468 0.1924 0 1.198
I, —1.423 1 0.5262 0.4166 0 1.411
r. —1.577 1 0.7505 0.5842 0 1.590
Tiny —0.9982 1 0 -1.913 x 1073 0 1.006
Thaa —1.470 1 0.6027 0.4727 0 1.476
Iy —1.347 1 0.4420 0.3490 0 1.353
Ohad 0.03475 0 —0.03460 —0.03328 0 —0.03281
R, -0.2811 0 0.3559 0.2807 0 0.2780
R, —0.2811 0 0.3559 0.2807 0 0.2780
R, -0.2784 0 0.3559 0.2803 0 0.2776
R, 0.04731 0 —0.07647 —0.05608 0 —0.06530
R, —0.1069 0 0.1479 0.1115 0 0.1135
sin0%; 1.413 0 —1.821 —1.426 0 —1.423
sin0%; 1.415 0 —1.821 —1.427 0 —1.417
sin0%; 1.413 0 —1.821 —1.426 0 —1.423
. —17.61 0 22.71 17.78 0 17.74
A, —0.2268 0 0.2876 0.2287 0 0.2271
A. -1.697 0 2.192 1.713 0 1.710
Afg -35.22 0 45.41 35.56 0 35.48
Aby —17.84 0 22.99 18.01 0 17.97
Afp -19.31 0 24.90 19.50 0 19.45
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br,,. = ay. br. ,.=3a,=0, (89)

with a; given in Egs. (78) and (79). For i = ['pyg, I'z,

b;,. is a weighted sum. At leading order,

I
thdJ’Z = Z —f br‘ )
ad >/ < fre
fehadrhad

_ > renaall + (1= 41Q¢[s*)]br, .
> fehaall + (1= 4104057

(90)

Uy, U (U= 40y157)br
bFZ vz T zf:r—zbf,«,}'z - Zf[l n (1 _4|Qf|S2)2]
(1)

For the ratios of partial widths, and the Z-pole cross

section,
mez = thad,yz - bFN’Z’ quJ/Z = qu,rz - thad-VZ’

Doz = br, ye Fbryye = 2br, 4 (92)

For the asymmetry observables, we can read off
from Eq. (69):

c
bsinzgefff,yz = — (93)
And hence, at leading order,
b o S2 6[./4f]<0) »
Apre = [-Af] (0) 8(S2) singp.r2

A Qg|sc[l = (1 —4|Qy[s%)?]
=40, -+ 4o Y

bAéB'VZ - b‘Af‘yZ + bAf-?’Z' (95)

The numerical values for these b coefficients are listed in
Table VI. The calculation is done with s* = 0.231620, and
the sign conventions for the gauge couplings are g; > 0,
g>» > 0 (hence s > 0).

V. CONCLUSION

In this paper we presented an expansion formalism that
facilitates precision electroweak analysis. By recasting all
observables in terms of six very well-measured input
observables, we can calculate each of them easily by
expanding about the reference values of the input observ-
ables, chosen in accord with experimental measurements.
Also, the formalism developed here can be applied in a
simple manner to calculate new physics corrections to
electroweak observables and derive constraints on new

PHYSICAL REVIEW D 90, 033006 (2014)

physics models. Some examples were worked out for
illustration.

For numerical results we calculated the reference values
and expansion coefficients using the ZFITTER package.
Most, though not all, of these results reflect state-of-the-
art calculations in the literature. Various higher-order
calculations of electroweak observables have been done
since the release of ZFITTER 6.42 in 2005, but their impact
on precision analysis is not significant at present because
the power of the precision program is limited by exper-
imental errors. However, improvements of our results to
better accuracy with the inclusion of these and future
calculations may be necessary in the future, if experimental
priorities of next-generation facilities involve Giga-Z or
Tera-Z options [22,23]. With 10° or 10'> Z bosons
produced at a future collider, unprecedented levels of
reliable theoretical calculations will be needed to meet
the unprecedented levels of experimental accuracy. We
hope that the formalism presented here, with improving
numerical results, will continue to be helpful for efficient
and reliable calculations of SM results and beyond the SM
corrections in the precision electroweak program.

ACKNOWLEDGMENTS

This work was supported in part by the Department of
Energy. We wish to thank T. Riemann for helpful commu-
nications regarding ZFITTER, and A. Freitas for pointing out
a mistake in our implementation of higher-order QCD
corrections in an earlier version.

APPENDIX A: TECHNICAL DETAILS OF ZFITTER

We rely on ZFITTER 6.42 for all numerical calculations of
observables, and obtain the expansion coefficients ¢;y, ¢;y j
by numerical differentiation. Some calculational details are
presented in this appendix.

We use the DIZET package in ZFITTER, modified slightly
to allow for G as input. The flags are set to default listed in
[6], with the following exceptions:

(i) NPAR(7) = IALEM = 2 (default = 3) to allow for

Aaqy,; as input.

(ii) NPAR(20) = IGFER = 3 (default = 2) to allow
for G as input. Note that the only available options
for this flag in ZFITTER are 0, 1, 2, and none of them
allows us to treat G as input (since it is extraor-
dinarily well measured), but we added a new option
3 to be consistent with the modification of the codes
mentioned above.

In principle, alternative choices for the flags are possible.
But to be consistent with our formalism, the following flags
should not be changed from default:

(i) NPAR(2) = IAMT4 (default = 4): 4 is the only

option consistent with treating G as input.

(ii) NPAR(4) = IMOMS (default = 1): 1 treats my as
input and my as output, not otherwise.
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TABLE VII. The h chosen for each input observable in
numerical differentiation. See Eq. (A1).

A (mZ) my

h 107¢ 1073 1074 1074 1074 1074

5
A(Jcl(mg1 m,

>

mz Gr

The derivatives appearing in c; [Eq. (20)] are carried out
numerically via [24]

ASM M
% |(1+h)(”);7f - | 1=h)0*

2h 05?"

HOM
0™

, (A1)

where 4 is chosen differently for different input observ-
ables; see Table VII. The choices are made empirically, and
are expected to be optimal in reducing the combination of
truncation and roundoff errors.” We found that the numeri-
cal errors typically occur at the seventh or eighth digit, and
thus do not affect the digits presented in the tables earlier in
this paper.

For calculating ¢;7;y [Eq. (24)], on the other hand, we
make use of the fact that

OSM dciy

Cii'j aO}S[M . (A2)

+Cll/C/ 5i/j/ciil:| . o
0,=0%"

and evaluate the derivatives with the same /4 men-
tioned above.

APPENDIX B: QCD CORRECTIONS
TO Z DECAY

In this appendix we discuss the calculation of I';. As was
mentioned in Sec. III C, this discussion is motivated by two
features in our numerical results. First, the uncertainty in
CR,q 18 much larger than that in all other expansion
coefficients. Second, cr, a0 which characterize the sensi-
tivity of Z — qg partial widths to the strong coupling
constant, are very different for different quarks (see
Table VIII), though at leading order QCD corrections
are flavor universal. This second feature led us to inves-
tigate and confirm the reliability of our numerical calcu-
lation. Both features are related to O(a?) corrections, as we
will explain in the following.

Following the notations in ZFITTER [5], we write the
formula that calculates the partial width of the Z boson to
qq as follows:

*We calculated the derivatives with A varied within a wide
range, and recognized the regime where the results fluctuate
(roundoff error dominates) and the regime where the results vary
monotonically (truncation error dominates). The optimal % is in
between these two regimes. In principle, the optimal 4 can be
determined from the machine precision and the algorithm for
evaluating the functions. But in practice, this is difficult due to the
complexity of calculations in ZFITTER, so we took this empirical
approach.
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TABLE VIII. Numerical values of Cr, a, and cr, 4. The
difference among these numbers is explained in the text. Note
thatI', , ; are not in our observables list, since they are practically
unmeasurable.

q u c d s b had
cr,q, 0.04892 0.05046 0.02697 0.02697 0.03672 0.03690

Ty = 3Tolod|(192PRY + RY) + Agwjoen.  (BI)
where
G 3
Ty = —E7Z — 83 MeV. (B2)
2421

pd and g% are effective couplings that incorporate electro-
weak loop corrections to the Z decay; in particular, g is the
ratio of effective vector and axial couplings. RY, and RY are
vector and axial radiator functions, which deal with final
state QCD and QED radiation. There is also an additive
mixed EW/QCD correction term Agy/qcp that does not
factorize.

The radiator functions RY, and RY actually depend on the
energy scale. In Eq. (Bl) it is implicit that they are
evaluated at the Z mass. Explicitly, the vector radiator
function is given by

R3:1+ Q2a+i_7Q2aa
nr

m> ag\? AR
el e @
m; b3 n

+0(@). 0(e). O(ns). (B3)
where
Cin =50 = 1L + |15 4560 mpe - (B4)
Cy(x) = (64745—1; x>+(9(x2), (BS)
Con = o~ To6(2) -2 e 3) +2245)
-2+ 24‘2&)7«5)}1
151 19
153~ 1560 50| (B6)

 is the Riemann zeta function. At the Z pole the number of
light quark flavors n, = 5.

To the order shown in Eq. (B3) Rz receives additional
contributions at O(a?) and O(a3):
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2 2 2 3
R — RY o™ | (MZ) (%" Lo (M2 (%
A v q m2 )\ = + m? )\
+ O(a?), O(a3), O(m3), (B7)
(3)

where T’ = +% (- %) for up (down) type quarks, and
37 7 9
@(x) = === 2 2 3
1% (x) 12+lnx+81x+6000x + O(x°), (B8)
5075 23 67 23
I8 (x) = ———4+==¢(2 —1 “In?
(x) 216+6C<)+C(3)+18nx+12nx
+ O(x). (B9)

These terms are called singlet axial corrections. I®) was
first calculated in [25,26]. There the focus was on the total
hadronic width, and the singlet axial corrections (approx-
imately) cancel among the “light” quarks u,d,c,s.
However, these terms are visible in each partial width,
and are numerically comparable to the O(a;) terms. Being
negative, they make cr ,, cr,, larger than cr , ., cr 4 -

We might expect cr, , to be close to cr,, , cr, 4, butin
Table VIII it is seen to be larger. This is due to a positive
contribution from the O(m7) terms, which are significant
only for the b quark. To be precise, m, in these terms
should be taken as the running masses at the Z pole,
obtained by solving renormalization group (RG) equations.
For the b quark, the dependence of these RG equations on

2
. m .
ay is strong enough to overcome the —% suppression, and the
mz
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contribution to cr, , turns out to be positive. Similarly,
cr, o, also receives a positive contribution, which explains
the small difference from cr, g .

Now that we have understood the difference among
Cr, a and are confident about their numerical values, we
can calculate cr,  , by a weighted average, and the result
is, by accident, very close to cr, , (see Table VIII). As a
result, cg, o = Cr, a4, = Cr,.q, 1S Much smaller than either
of cr, 45 €1, .a,» and can thus have large uncertainty though
the uncertainties in the latter are small.

Finally, a few comments are in order regarding future
improvements of the Z decay calculation. Recent develop-
ments, including the complete O(a?) QCD corrections
[27,28] and fermionic electroweak two-loop corrections
[29] will be implemented in future versions of ZFITTER [30],
which will certainly help improve the accuracy of our
results. Meanwhile, we note two other aspects of the
ZFITTER calculation that could be improved. First, the
Agw/qcp termin Eq. (B1) is implemented as fixed numbers
in ZFITTER, so the dependence on input observables is lost,
which is especially relevant in the expansion formalism.
Second, the O(a}) difference between I'j,q and 2ol
mentioned in a footnote in Sec. II, though calculated
and stored in ZPAR(29) = QCDCOR(13), is not included
in the calculation of I'},4 or the total width I",. The size of
this term is only on the order of 107I'},4 [9], but the error
might be magnified when the expansion coefficients are
calculated.
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