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The hypothesis that the Majorana mass of ordinary neutrinos dominates the rate of neutrinoless double
beta decay is investigated. Predictions from neutrino oscillations are updated. Nuclear uncertainties are
discussed, evaluating the impact of the quenching of the axial vector coupling constant in the nuclear
medium, recently pointed out by Iachello et al. [Phys. Rev. C 87, 014315 (2013)]. Also, the sensitivity
of present and future experiments is assessed, and possible implications of the knowledge on neutrino
masses from cosmology are studied. The predictions from neutrino oscillations are compared with the
results from cosmology and from neutrinoless double beta decay searches, emphasizing the important role
of the measurement errors. The obstacles to an experimental determination of the Majorana phases are
pointed out.
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I. INTRODUCTION

The search for neutrinoless double beta decay (0νββ)
probes lepton number conservation and allows us to
investigate the nature of the neutrino mass eigenstates.
In this work, we perform an updated and in-depth study of
the conservative assumption that this transition is due to the
exchange of the three known neutrinos, endowed with
Majorana mass. We emphasize the role of the uncertainties
due to the quenching of the axial vector coupling constant
in the nuclear medium, recently pointed out by Iachello
et al. [1].
First, we update the predictions from oscillations

(Sec. II). We compare these predictions with the recent
experimental results on 0νββ in Sec. III. The sensitivity of
future experiments, defined by taking into account the
uncertainties, is discussed in Sec. IV. In Sec. V, we analyze
the implication of recent bounds and hints for the neutrino
mass obtained in cosmology. Finally, in Sec. VI, we discuss
whether it could be possible to measure the Majorana
phases and/or discriminate the two neutrino mass hierar-
chies while quantifying the role of the errors of
measurement.

II. UPDATED PREDICTIONS FROM
OSCILLATIONS

Assuming that the 0νββ transition is caused by the
exchange of ordinary neutrinos, the key parameter that
regulates its rate is the Majorana effective mass, namely,

mββ ≡ jeiα1 jU2
eijm1 þ eiα2 jU2

e2jm2 þ jU2
e3jm3j: ð1Þ

It represents the absolute value of the ee entry of the
neutrino mass matrix. Here, mi are the masses of the
individual neutrinos νi, α1;2 are the Majorana phases, and
Uei are the elements of the mixing matrix that define the
composition of the electron neutrino: jνei ¼

P
3
i¼1U

�
eijνii.

The present information on three-flavor neutrino oscil-
lations is compatible with two different neutrino mass
spectra: normal hierarchy (NH) and inverted hierarchy
(IH). In the former case the mass-squared difference
between the two heavier states is much larger than the
one between the two lighter states. In the latter case, the
opposite is true.
Thanks to the knowledge of the oscillation parameters, it

is possible to constrain the parameter mββ. However, since
the complex phases α1;2 in Eq. (1) cannot be probed by
oscillations and are unknown, the allowed region for mββ is
obtained by letting them vary freely. The expressions for
the resulting extremes are [2]

mmax
ββ ¼

X3
i¼1

jU2
eijmi ð2Þ

mmin
ββ ¼ maxf2jU2

eijmi −mmax
ββ ; 0g i ¼ 1; 2; 3: ð3Þ

We adopt the graphical representation of mββ introduced in
[2] and refined in [3,4]. It consists in plotting mββ in
bilogarithmic scale as a function of the mass of the lightest
neutrino, both for the cases of NH and of IH. The
resulting plot, according to the new values of the oscillation
parameters in [5], is shown in the left panel of Fig. 1. The
uncertainties on the various parameters entering Eqs. (2)
and (3) are propagated using the procedures described in
the Appendix [Eq. (A3)]. This results in a wider allowed
region, which corresponds to the shaded parts in the
picture.
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It is also useful to express the parametermββ as a function
of a directly observable parameter, rather than as a function
of the lightest neutrino mass. A natural choice is the
cosmological mass Σ, defined as the sum of the three active
neutrino masses (Σ≡m1 þm2 þm3). The close connec-
tion between the neutrino masses’measurements obtained in
the laboratory and those probed by cosmological observa-
tions was outlined long ago [6]. Furthermore, the measure-
ments of Σ have recently reached important sensitivities, as
discussed below. For these reasons, we also update the plot
of the dependence of the Majorana effective massmββ on the
cosmological mass Σ, using the representation originally
introduced in [7].
From the definition of Σ, we can write

Σ ¼ ml þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ a2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ b2
q

; ð4Þ

whereml is the mass of the lightest neutrino and a and b are
different constants depending on the neutrino mass hier-
archy. Through Eq. (4) one can establish a direct relation
between Σ andml and thus, it is straightforward to plotmββ

as a function of Σ. Concerning the treatment of the
uncertainties, we use again the assumption of Gaussian
fluctuations and the prescription reported in the Appendix.
The result of the plotting in this case is shown in the right
panel of Fig. 1.

III. COMPARISON WITH THE
EXPERIMENTAL RESULTS

A. Experimental bounds

Recently, several experiments have obtained bounds on
t1=2ðexpÞ above 1025 yr. The results are summarized in the
upper part of Table I. They were achieved thanks to the
study of two nuclei: 76Ge and 136Xe. The 90% C.L. bound
from 76Ge, obtained by combining GERDA-I, Heidelberg-
Moscow, and IGEX via the recipe of Eq. (A1), 3.2 · 1025 yr,

is almost identical to the one quoted by the GERDA
Collaboration, 3.0 · 1025 yr [11]. By combining the first
KamLAND-Zen results on 0νββ (namely, KamLAND-
Zen-I [12]), and the new ones obtained after the scintillator
purification (KamLAND-Zen-II [13]), the same procedure
gives2.3 · 1025 yr,whichdiffers a little bit from the combined
limit quoted by the Collaboration [13], 2.6 · 1025 yr. When
we combine the two results of KamLAND-Zen and the one
fromEXO-200 using again the procedure of Eq. (A1), we get
2.6 · 1025 yr, which is equal to the KamLAND-Zen limit
alone. In view of the above discussion and in order to
be as conservative as possible, we will adopt as combined
90% C.L. bounds the following values:

t1=2Ge > 3.0 · 1025 yr and t1=2Xe > 2.6 · 1025 yr: ð5Þ

More experiments are also expected to produce important
new results in the coming years. A few selected ones are also
reported in the lower part of Table I.

B. Nuclear physics and 0νββ

Assuming that the transition is dominated by the
exchange of ordinary neutrinos with Majorana mass, the
theoretical expression of the half-life in an ith experiment
based on a certain nucleus is

t1=2i ðthÞ ¼ m2
e

G0ν;iM2
i m

2
ββ

; ð6Þ

where me is the electron mass, G0ν;i the phase space factor
(usually given in inverse years), andMi the nuclear matrix
element, an adimensional quantity of enormous impor-
tance. In recent works, this last term is written emphasizing
the axial coupling gA:

Mi ¼ g2A ·M0ν;i: ð7Þ
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FIG. 1 (color online). Updated predictions on mββ from oscillations as a function of the lightest neutrino mass (left) and of the
cosmological mass (right) in the two cases of NH and IH. The shaded areas correspond to the 3σ regions due to error propagation of
the uncertainties on the oscillation parameters.
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M0ν;i depends mildly on gA and can be evaluated by
theoretically modeling the nucleus. This is independent on
gA if the same quenching is assumed both for the vector and
axial coupling constants, as we do here for definiteness,
following [1] (as discussed in the reference, some residual
dependence upon gA could be attributed to a different
renormalization of the two coupling constants). On the
contrary, G0ν;i is a constant parameter, independent on gA,
and it is reasonably well known. Its value can be found,
e.g., in [8] for all the candidate 0νββ emitters.
As a consequence, an experimental limit on the half-life

translates into a limit on the mass parameter:

mββ ≤
me

Mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ν;it

1=2
i ðexp:Þ

q : ð8Þ

The main sources of uncertainties in the inference are
the nuclear matrix elements. The first calculations ofM0ν;i
that also estimated the errors, based on the “QRPA”
description of the nucleus, assessed a relatively small
intrinsic error of ∼20% [18,19]. The validity of these
conclusions has been recently supported by a completely
independent calculation based on the “IBM2” description
of the nucleus [1,8].
However, the same papers have also emphasized a more

important role of the axial coupling gA than originally
thought. In other words, the real theoretical issue concerns
Mi. Indeed, it is commonly expected that the value gA ≃
1.269 measured in the weak interactions and decays of
nucleons is modified (or, renormalized) in the nuclear
medium toward the value appropriate for quarks [18–20];
the plausibility of further modification (reduction) has been
argued in [1], based on the knowledge on the double beta
decay with neutrinos (2νββ). In light of this discussion, a

conservative treatment of the uncertainties should consider
at least three cases:

gA ¼

8>><
>>:

gnucleon ¼ 1.269

gquark ¼ 1

gphen ¼ 1.269 · A−0.18:

ð9Þ

We will refer to the last formula with the name maximal
quenching. It includes phenomenologically the effect of the
atomic number A. The gphen. parametrization as a function
of A comes directly from the comparison between the
theoretical half-life for 2νββ and its observation in different
nuclei [1].
Needless to say, the validity of the assumption that the

quenching is the same both for the 2νββ and the 0νββ cases
is still an open issue. We stress that this is just a phenom-
enological description of the quenching, since the specific
behavior is different in each nucleus and it somewhat differs
from this parametrization [1]. Nonetheless, the assumption
described in Eq. (9) seems a reasonable one and deserves
discussion in the present context. In fact, the question of
which is the true value of gA introduces a considerable
uncertainty in the inferences concerning massive neutrinos.

C. Sensitivity of present experiments

Once the experimental limits on the half-lives are known,
by using the phase space of [8] and the matrix elements of
[1], it is possible to find the lower bounds onmββ according
to Eq. (8). Table I shows the results for the experiments
considered in Sec. II. In order to obtain the combined
bounds, the procedure shown in the Appendix was used.
The different values of mββ correspond to the three
quenching scenarios considered in Sec. III B. The 1σ errors

TABLE I. Lower bounds achievable for mββ by some 0νββ experiments, depending on their reached sensitivities (upper group) or
sensitivity goals (lower group). The different results correspond to the different quenching of gA, according to the definitions in Eq. (9).
The 1σ uncertainties on mββ are calculated by assuming uncertainties both on the matrix elements and phase space factors, according to
[1] and [8], respectively.

Experiment Isotope t1=2ð90% C:L:Þð1025 yrÞ
Lower bound for mββðeVÞ

gnucleon gquark gphen.

IGEX [9] 76Ge 1.57 0.31� 0.03 0.49� 0.05 1.44� 0.16
HEIDELBERG-MOSCOW [10] 76Ge 1.9 0.28� 0.03 0.44� 0.05 1.31� 0.14
GERDA-I [11] 76Ge 2.1 0.26� 0.03 0.42� 0.05 1.25� 0.14
KamLAND-Zen-I [12] 136Xe 1.9 0.18� 0.02 0.29� 0.03 1.06� 0.12
KamLAND-Zen-II [13] 136Xe 1.3 0.22� 0.02 0.35� 0.04 1.28� 0.14
EXO-200 [14] 136Xe 1.1 0.24� 0.03 0.38� 0.04 1.39� 0.15
Combined Ge [11] 76Ge 3.0 0.22� 0.02 0.35� 0.04 1.05� 0.11
Combined Xe 136Xe 2.6 0.15� 0.02 0.25� 0.03 0.91� 0.10
Combined Geþ Xe 76Ge=136Xe 0.15� 0.01 0.24� 0.02 0.81� 0.07

CUORE [15] 130Te 9.5 0.07� 0.01 0.11� 0.01 0.39� 0.04
GERDA-II [16] 76Ge 15 0.10� 0.01 0.16� 0.02 0.47� 0.05
SuperNEMO [17] 82Se 10 0.07� 0.01 0.12� 0.01 0.36� 0.04

NEW EXPECTATIONS AND UNCERTAINTIES ON … PHYSICAL REVIEW D 90, 033005 (2014)

033005-3



of Table I were computed according to Eq. (A3), assuming
both uncertainties on the matrix elements and phase
space factors, as reported in [1] and [8], respectively.
Nonetheless, the former error gives the main contribution.
The importance of the gA quenching is evident from the

table: the sensitivity for the same experiment in the two
cases of gnucleon and gphen. differs by a factor ∼5. This is
graphically shown in Fig. 2, where the present best limit on
mββ coming from the combination Geþ Xe (obtained as
described in the Appendix) is plotted in correspondence of
the considered values of gA.

IV. SENSITIVITY OF FUTURE EXPERIMENTS

Now we consider a next generation experiment (call it a
mega experiment) and a next-to-next generation one (an
ultimate experiment) with enhanced sensitivity. First of all,
we should clarify which is the physics goal that we would
like to achieve.
Plausibly, the most honest way to talk of the sensitivity is

in terms of exposure or of half-life time that can be probed.
From the point of view of the physical interest, however,
besides the hope of discovering the 0νββ, the most exciting
investigation that can be imagined at present is the
exclusion of the IH case. This is the goal that most of
the experimentalists are trying to reach with 0νββ experi-
ments, working in the above assumptions and supposing
that 0νββ will not be found. For this reason, we require a
sensitivity:

mββ ¼ 8 meV:

The mega experiment is the one that satisfies this require-
ment in the most favorable case, namely, when the
quenching of gA is absent. Instead, the ultimate experiment
assumes that gA is maximally quenched. We chose the

8 meV value because, even taking into account the residual
uncertainties on the nuclear matrix elements, the overlap
with the allowed band for mββ in the IH is excluded. In
fact, the uncertainties on Ge and Xe nuclei amount to
∼20%, as discussed above. Notice that we are assuming
that at some point the issue of the quenching will be sorted
out. Through Eq. (8), we obtain the corresponding value of
t1=2 and thus, we calculate the needed exposure to accom-
plish the task.
The law of radioactive decay prescribes that

t1=2 ¼ ln 2 · T · ε ·
x · η · NA ·M
MA · NS

; ð10Þ

where T is the measuring time, ε is the detection efficiency,
x is the stoichiometric multiplicity of the element contain-
ing the ββ candidate, η is the ββ candidate isotopic
abundance, NA is the Avogadro number, MA is the
compound molar mass, and NS is the number of observed
decays in the region of interest. Let us focus on the optimal
experimental condition, when the contribution of the
background counts is negligible (zero background con-
dition). This means that we require

M · T · B · Δ≲ 1; ð11Þ

whereM is the detector mass; B is the background level per
unit mass, energy, and time; and Δ is the full width half
maximum (FWHM) energy resolution. Now, if we suppose
ε≃ 1 (detector efficiency of 100% and no fiducial volume
cuts), x≃ η≃ 1 (all the mass is given by the candidate
nuclei), and we assume one observed event (i.e.,NS ¼ 1) in
the region of interest, Eq. (10) simplifies to

M · T ¼ MA · t1=2

ln 2 · NA
: ð12Þ

This is the equation we used to estimate the product M · T
(exposure), and thus to assess the sensitivity of the mega
and ultimate scenarios. The key input is, of course, the
theoretical expression of t1=2. The calculated values of the
exposure are shown in Table II for the three considered
nuclei: 76Ge, 130Te, and 136Xe. The last column of the table
gives the maximum allowed value of the product B · Δ that
satisfies Eq. (11).
Finally, Fig. 2 shows the present knowledge on 0νββ

according to the best combined limit of Geþ Xe of Table I
compared to the mega/ultimate scenarios. We report
the three possible predictions on the bounds on mββ

according to the three quenching scenarios considered.
The presence of 1σ bands instead of single lines is due to
the propagation of the residual uncertainties on the nuclear
matrix elements. The mega/ultimate scenarios are presented
as the gray band.

Xe Ge gnucleonXe Ge gnucleonXe Ge gnucleon

Xe Ge gquarkXe Ge gquark

Xe Ge gphenXe Ge gphen

Mega UltimateMega Ultimate
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FIG. 2 (color online). Present sensitivity onmββ, according to the
Geþ Xe combined limit, in the three quenching scenarios. The
upper (1σ) bands come from the uncertainties on the nuclear matrix
elements. The darker band at mββ ¼ ð8� 1.6Þ meV concerns the
ultimate and mega experiments, discussed in the text.
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V. IMPLICATIONS OF COSMOLOGY

Here we discuss the possibility of taking advantage
of the knowledge about the neutrino cosmological mass
to make inferences on some 0νββ experiment results
(or expected ones). We consider only the optimistic
assumption that gA is unquenched. The changes induced
by the quenching can be easily understood by considering,
e.g., its impact in Fig. 2. Evidently, this weakens the reach
of each experiment, rescaling the possible bounds or
measurements toward larger values.

A. Information from cosmology

The new experimental limit provided by the Planck
experiment on Σ is 0.23 eVat 95% C.L. [21]. Interestingly,
several studies have emphasized some tension between the
data of Planck and those from galaxy counts and lensing.
Their combination suggests a nonzero best fit value of the
mass, in the range (0.3–0.4) eV and with an error of about
30% [22,23]. Taking into account these data, we will
consider two scenarios for the subsequent discussion:

Σ < 0.19 eVð90% C:L:Þ ðconservativeÞ; ½21�
Σ ¼ ð0.320� 0.081Þ eV ðaggressiveÞ; ½23�: ð13Þ

We consider these two cases since, at present, the evidence
for nonzero neutrino masses is not strong and the pos-
sibility of unexpected systematics cannot be excluded.
The results on Σ can provide us precious information on

0νββ in the assumption that this transition is dominated by
the light neutrinos exchange. For example, by looking at
Fig. 1 and in the conservative limit in Eq. (13), it seems
useless to look for 0νββ with an experiment with a
sensitivity on mββ of 100 meV or more. If, instead, the
claim of measurement in the equation is correct, and as
soon as 0νββ experiments probe the transition rate, we will
obtain information on the quenching factor. A successful
measurement in the next generation of experiments, for
example, would mean that the quenching is reduced or
absent.

B. Combination of cosmology and 0νββ results

We study two different situations. In the former case
(Sec. V B 1), we assume that no effect of mass is observed,
and we have upper bounds both on Σ and mββ. We use the
conservative limit on Σ reported from Planck in Eq. (13).
As regards mββ, we take the current best limit coming from
the Geþ Xe combination (Table I), and the one corre-
sponding to the expected CUORE sensitivity (here,
CUORE is chosen just as an example of a next generation
experiment). In the latter case (Sec. V B 2), we assume that
the claim for neutrino mass from cosmology is correct and
that 0νββ is measured with a half-life corresponding to the
lowest bound of mββ coming from the Geþ Xe combina-
tion or from the expected CUORE sensitivity. The values of
mββ for these two cases are again those in Table I.

1. First scenario: Upper bounds

Let us suppose Gaussian distributions centered in zero
both for Σ and mββ, with a standard deviation coming
directly from the experimental upper limit; namely, we put
Σmeas ¼ mmeas

ββ ¼ 0 in Eq. (A5). By requiring a 90% C.L.,
we obtain the elliptic allowed regions in the left panel of
Fig. 3. This picture shows that even in the CUORE case,
there is no chance of ruling out the IH, unless there will be
a great improvement on the knowledge of Σ. However, the
combination of the two parameters allows us to improve
significantly the exclusion region.

2. Second scenario: Measurements

Now we assume that both Σ and mββ are measured with
nonzero values. While the error on the former parameter
comes directly from Eq. (13), the one on the latter one
requires further discussion.
The error on mββ has at least two different contributions:

one is statistical and comes from the Poisson fluctuations
on the observed number of events, while the other one
comes from the uncertainties on the nuclear matrix ele-
ments and the phase space factors. We will refer to this last
as the theoretical contribution to the total uncertainty. If we

TABLE II. Sensitivity and exposure necessary to discriminate between NH and IH: the goal is mββ ¼ 8 meV.
The two cases refer to the unquenched value of gA ¼ gnucleon (mega) and gA ¼ gphen. (ultimate). The calculations are
performed assuming zero background experiments with 100% detection efficiency and no fiducial volume cuts. The
last column shows the maximum value of the product B · Δ in order to actually comply with the zero background
condition.

Experiment Isotope t1=2ðyrÞ
Exposure (estimate)

M · T ðton · yrÞ B · Δðzero bkgÞðcounts=kg=yrÞ
Mega Te 130Te 6.8 × 1027 2.1 4.7 × 10−4

Mega Ge 76Ge 2.3 × 1028 4.1 2.4 × 10−4

Mega Xe 136Xe 9.7 × 1027 3.2 3.2 × 10−4

Ultimate Te 130Te 2.3 × 1029 71 1.4 × 10−5

Ultimate Ge 76Ge 5.1 × 1029 93 1.1 × 10−5

Ultimate Xe 136Xe 3.3 × 1029 109 9.2 × 10−6
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assume to know exactly the detector features (i.e., the
number of decaying nuclei, the efficiency, and the time of
measurement), the uncertainty on t1=2 is only due to the
statistical fluctuations of the counts:

δt1=2

t1=2
¼ δNS

NS
: ð14Þ

The statistical contribution to the determination of the
parameters is in general large and cannot be neglected. By
emphasizing this simple but important point in the dis-
cussion, we consider a case closer to the actual exper-
imental situation, improving on the more idealized case that
has been treated by previous investigators [24].
The statistical contribution to the total error is dominant

up to about 20 signal events. The theoretical error becomes
the main contribution only if many events (more than a few
tens) are detected. Note that a much greater contribution
would come by taking into account the error on gA. We
assume here that this problem will be solved in some
manner in the future, and concentrate on the discussion of
the role of the statistical error.
Using the procedure described in Eq. (A3) for the Geþ

Xe case, we find an uncertainty onmββ of about 31 meV for
5 observed events, which reduces to 24 meV for 10 events.
If we neglect the statistical uncertainty, e.g., we put
Nevents > 150, the uncertainty becomes 14 meV. This
means that the Poisson fluctuations’ effect is absolutely
not negligible. Similarly, repeating the same calculation for
CUORE, we obtain an uncertainty of 17 meV for 5 events,
13 meV for 10 events, and 8 meV for Nevents > 150.
Therefore, referring to Table I, we consider the following
cases:

mββ ¼ ð0.15� 0.01theo� 0.03ð1ÞstatÞ eV ðGe-XeÞ
mββ ¼ ð0.07� 0.01theo� 0.02ð1ÞstatÞ eV ðCUOREÞ; ð15Þ

where the statistical uncertainty is considered in the case of
5 (20) observed events and we computed the total error by
adding the two contributions in quadrature. As for Σ, we
assume the aggressive value of Eq. (13). The results are
shown in the right panel of Fig. 3. The implication of these
errors is further discussed in the next section.

VI. IS IT POSSIBLE TO PROBE
MAJORANA PHASES?

Now we assume the optimistic scenario of Sec. V B 2
and consider the question of whether it is possible to
measure Majorana phases. More precisely, we discuss the
possibility of distinguishing the maximum and the mini-
mum values of mββ, Eqs. (2) and (3). In the case of
quasidegenerate neutrinos that can be explored by present
experiments, this possibility is closely connected with the
chance to measure one Majorana phase.
Let us consider the allowed regions of parameters of the

right panel of Fig. 3. This picture shows that if CUORE
observes five events (larger ellipse, continuous line), we
will not be able to reach any firm conclusion either on the
mass hierarchy or on the Majorana phases. Interestingly, if
0νββ were instead discovered with a mββ a little bit below
the current best limit on Geþ Xe, this could allow us to
make some inference on the Majorana phases. But it is
important to repeat that, in order to state anything precise
aboutmββ and the Majorana phases, the present uncertainty
on the quenching of the axial vector coupling constant has
to be dramatically decreased.
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FIG. 3 (color online). Allowed regions formββ as a function of the neutrino cosmological mass Σ. The colored bands correspond to the
3σ regions for the extremal values of mββ as a function of the neutrino cosmological mass Σ. On the left, the two ellipses represent
the 90% C.L. allowed regions for the couple ðΣ ; mββÞ according to the experimental limits quoted in the text (Sec. V B 1). On the right,
the two big (small) ellipses show the 90% C.L. regions in which a positive observation of 0νββ could be contained, according to the
experimental uncertainties and 5 (20) actually observed events. In particular, they refer to two different cases: the observation of 0νββ
with amββ corresponding either to the Geþ Xe limit or to the CUORE expected sensitivity [Eq. (15)]. See Sec. V B 2 for a more detailed
discussion.
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When we repeat the same exercise assuming an observed
number of 20 events, we obtain the smaller ellipses in the
right plot of Fig. 3 (dashed lines). In this case, a hypo-
thetical observation coming from the combined limit of
Geþ Xe would lead to an even more precise inference on
the Majorana phases whereas, in the CUORE case, we
would be closer to knowing something useful on the
Majorana phases, even if nothing could be said about
the hierarchy.

VII. SUMMARY AND DISCUSSION

We explored the hypotheses that the ordinary neutrinos
are Majorana particles and that their exchange dominates
the 0νββ transition rate. In particular, we updated the
predictions from neutrino oscillations, and we discussed the
primary role played by considerations of nuclear physics
and, more specifically, by the axial vector coupling con-
stant of the charged-current interactions of the nucleons.
We stressed the importance of better understanding the

quenching of gA in a nuclear medium. If this turns out to be
negligible, it will be possible to probe the IH region with
the next generation experiments. Conversely, if this cou-
pling is maximally quenched, it will be unlikely to be able
to reach the minimum sensitivity required to probe the IH
region within the next 20 years. Even in the optimistic
scenario that the 0νββ will be discovered, it will be difficult
to extract information on the process from the measure-
ment, if this uncertainty persists.
We argued that a measurement or a bound from

cosmology could have an important impact on the expect-
ations on mββ. Indeed, cosmology could be precious to
understand (and possibly quantify) the actual quenching of
gA. For example, if the claim from cosmology of [23] were
correct and if the future experiments measured the 0νββ, we
would conclude that the quenching effect is small or absent.
We critically discussed the chances of measuring the

Majorana phases, by quantifying the obstacles and by
assessing the role of realistic experimental uncertainties.
We showed that, at present, such a measurement is really
challenging, even in the most optimistic assumption on the
quenching of the axial vector coupling constant.
From the above discussion, further theoretical improve-

ments and dedicated plans of measurements seem to be
necessary to clarify the expectations and decrease the
uncertainties from nuclear physics.
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APPENDIX: STATISTICAL PROCEDURES

1. Combination of measurements

Let us consider the case of different neutrinoless double
beta decay experiments using the same nucleus and quoting
the bounds on the half-life t1=2 > t1=2i ðexp:Þ at the same
confidence level, where i ¼ 1; 2; 3;…. A simple way to
combine them is to suppose that the corresponding rates
Γ < Γi ≡ ln 2 · ℏ=t1=2i are Gaussian distributed in all the
detectors, namely, the probability of observing a rate within
the interval ½Γ;Γþ dΓ� is dPi ∝ exp½−Γ2=2Γ2

i �dΓ. This is
the same as saying that the number of signal events is zero
up to Gaussian fluctuations. In this case, the combined
Gaussian bound is Γ−2

gaus ¼
P

iΓ−2
i . Therefore, we get the

combined bound for the half-life simply as

t1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðt1=2i ðexp:ÞÞ2
r

: ðA1Þ

The described procedure has the advantage of being simple
and generally conservative, although we remind the reader
that it should be validated in actual situations.
The combination of results from different nuclei is more

delicate and depends on the uncertain matrix elements. An
elaborate procedure is discussed in [25]. Our main goal is
to outline the biggest factor of uncertainty, namely, the
dependence of the results upon gA. Thus, working in the
same hypotheses mentioned above, and assuming that
the (relative) matrix elements are known precisely, we
immediately obtain the bound on the mass relevant to the
double beta decay:

1

mββ
¼

" X
i¼Ge;Te;…

�
t1=2i ðexpÞG0ν;iM2

i

m2
e

�2
#
1=4

: ðA2Þ

This is consistent with the theoretical expression of the
half-life in the ith experiment, as given in Eq. (6), and
coincides with Eq. (A1) for the same nuclear species.

2. Error propagation

For any choice of the Majorana phases, the massive
parameter that regulates the 0νββ can be thought as
Mðm; xÞ. It is a function of a mass m and of certain other
parameters x that are determined by oscillation experiments
up to their experimental errors: xi � Δxi.
Whenever we used maximal or systematic uncertainties

from the literature, we decided to interpret them as the
semiwidths of flat distributions in order to propagate their
effects in our calculations. Then, we considered the
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corresponding standard deviations as Gaussian fluctuations
of the parameters around the given values.
For any fixed value of m and for the other parameters

set to their best fit values xi, we can attach the following
error to M:

ΔMjm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

�∂M
∂xi

�
2

Δx2i

s
: ðA3Þ

If we want to consider the prediction and the error for
a fixed value of another massive parameter Σðm; xÞ,
we have to vary also m, keeping δΣ ¼ ∂Σ=∂mδmþ
∂Σ=∂xiδxi ¼ 0. Therefore, in this case we find

ΔMjΣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

�∂M
∂xi −

∂Σ=∂xi
∂Σ=∂m

∂M
∂m

�
2

Δx2i

s
: ðA4Þ

Of course, we calculate m by inverting the equation
Σðm; xÞ ¼ Σ. (Here, the symbol Σ denotes the function
and also its value. However, this abuse of notation is
harmless in practice.)

3. Confidence intervals

The likelihood L for the simultaneous observation
of Σ and mββ, Gaussian distributed variables with

uncertainties σðΣmeasÞ and σðmmeas
ββ Þ, respectively, is pro-

portional to

exp

"
−
ðΣ − ΣmeasÞ2
2σðΣmeasÞ2

#
exp

"
−
ðmββ −mmeas

ββ Þ2
2σðmmeas

ββ Þ2
#
: ðA5Þ

This corresponds to the usual χ2:

χ2 ¼ ðΣ − ΣmeasÞ2
σðΣmeasÞ2 þ ðmββ −mmeas

ββ Þ2
σðmmeas

ββ Þ2 : ðA6Þ

The definition of the confidence intervals has to take into
account the presence of 2 degrees of freedom. Indicating
with C.L. the desired confidence level, we have

C:L: ¼
Z Z

χ2<χ2
0

LðΣ; mββÞdΣdmββ: ðA7Þ

Thus, rescaling the variables of integration and integrating
the angular coordinate, we have

χ20 ¼ −2 lnð1 − C:L:Þ; ðA8Þ

which defines the value for χ2 corresponding to the
assigned confidence level C.L.
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