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p-deformation on a slanted torus and deformed pp wave
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We discuss the -deformation of AdSs x S° which incorporates the SL(2, R) symmetry of the type IIB
theory. The axion-dilaton is identified with a two-torus from an 11-dimensional viewpoint. We consider the
null geodesic with equal component angular momenta to take the Penrose limit of the deformed AdSs x S°.
We study the bosonic part of the string sigma model and the spectrum of the string in the pp-wave

background.
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I. INTRODUCTION

The marginal deformation of N' = 4 super Yang-Mills
theory introduces phases in the superpotential, preserving a
U(1) x U(1) non-R-symmetry. The deformation reduces
the supersymmetry ' =4 to N' = 1. The phases in the
superpotential can be complexified' [1]. In the gravity
side, the U(1) x U(1) symmetry maps to a two-torus. An
SL(2,R) transformation acting on a type IIB supergravity
solution compactified on the two-torus produces the
gravity dual of the y-deformation. The gravity dual of
the f-deformation is an SL(3,R) transformation, which
consists of the SL(2,R) transformation and an S-duality
transformation SL(2, R),* [2].

The charges of the chiral superfields under U(1) x U(1)
in the gauge theory correspond to the angular momenta
along the two-torus. In the marginally deformed
AdSs x §°, the SO(6) isometry is broken to U(1)x
U(1) x U(1). The angle coordinates (¢y,¢,,p3) of
the S§° are linear combinations of the coordinates
of the U(1)x U(1)x U(1). The Bogomol'nyi-Prasad-
Sommerfield geodesics are chosen with angular momenta

(1.1)

For undeformed AdSs x S°, the geodesics can be trans-
formed to one another by SO(6), which is the isometry of
the S°. Therefore the Penrose limits for the geodesics
produce one pp wave. For deformed AdSs x S°, which has
a U(1)xU(1) x U(1) symmetry, the geodesics are not
isometrically equivalent. The first three geodesics and the
fourth geodesic are two distinct geodesics. The Penrose
limit for the first three cases is studied in [2,3]. The Penrose
limit for the fourth case is studied in [4] where it is also
shown that the spectrum of the string in this pp-wave
limit is independent of the parameter y. The p p-wave limits
of marginally deformed geometries which include the

(g T gy d ) ~(J.0.0).(0,4.0).(0.0.7).(J.J.J).
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We use y for the real parameter and S for the complex
parameter.
*We use o for the S-duality transformation.
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o-deformation are discussed in [5]. Giant gravitons on
the deformed pp waves are investigated in [5,6].

The SL(3,R) transformation for the pf-deformation
can be generalized by incorporating the SL(2,R) sym-
metry of type IIB theory, which is also the symmetry of the
toroidal compactification [7]. In [8], torus deformation is
considered for the generalization. In this work, we apply
the generalized p-deformation to AdSs x S3 and take the
Penrose limit of the deformed AdSs x S° along the (J,J,J)
geodesic. We study the spectrum of the string in the
deformed pp-wave background.

In Sec. II, we review the generalization of the
p-deformation and present the deformed AdSs x S°
geometry. In Sec. III, we study the pp-wave limit of the
p-deformed AdSs x S with the axion-dilaton, which is
identified with the torus modulus of the rectangular torus
before the torus deformation. We present the bosonic part
of the string sigma model and compute the spectrum.
In Sec. IV, we summarize our results.

II. GENERALIZATION OF THE
BS-DEFORMED GEOMETRY

The p-deformation [2] acting on a type IIB supergravity
solution which has a two-torus symmetry is derived from
an SL(3,R) transformation acting on an 11-dimensional
supergravity solution which has a three-torus symmetry.
The coordinates of the three-torus are (¢, @,, @3). The
type IIB supergravity solution is obtained by a dimensional
reduction along ¢ and a T-duality transformation along ¢ .
The SL(3,R) matrix for the f-deformation is

1 00
AMNy=1|r 1 o (2.1)
0 0 1

The type IIB supergravity solution can be generalized by an
SL(3,R) transformation

Ly 0 Ly
L — 0 1 0 N L11L33 —L13L31 - 1 (22)
L3y 0 Lsj
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This corresponds to the SL(2, R) symmetry of the type I1IB
theory, which is also the symmetry of the toroidal
compactification [7]. The axion-dilaton 7 =17+ i,
transforms as

o L]|T+L3|
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The SL(3,R) transformation LA}, therefore, produces
the f-deformed geometry incorporating the SL(2, R) sym-
metry of the type IIB supergravity. By applying Lunin
and Maldacena’s solution generating technique with the
SL(3,R) matrix LA}, to the type IIB supergravity solution

7= . (2.3) in the form given by (A.7) in [2], the generalized
Lzt + Liss p-deformation is obtained in [§] as’
|
j2) |1 2 2 e/ v
ds” =F ﬁ (D@ — CD@,)* + VA(Dp,)?| + Wgﬂudx”dx )

F' =FGVH,  ¢¥ =+/GHz;',

By = GF?(yf — 6h)Dg, A Do, + gaﬂydx” A dx?,

¥ =H(h+yor3F?),

C, = GF?*(yh— 69)Dgp, A D@, + %Elﬂydx” A dx”,

F = Fs + xFs, (2.4)
where
G~ ' =1+ (y*f = 2yoh + 6°g)F?,
H = f + 16’ F?, (2.5)
f=(Ls3 + Liz7y)* + Ly3°73,
9= (Lai + Lyy7))* + Ly, *53,
h = (L3 + Li371)(La; + Lyy71) + Ly Lyz7s; (2.6)
Fs in (2.4) has no indices along the torus (@1, @>). The star is taken with the new metric.
We consider AdSs x S° defined by
3 3
ds® = R*|—di’cosh®p + dp? + sinh>pdQ3 + ) " du? + > ﬂqusg] ,
i=1 =
e =1,, Xo =T1, B, =0, c, =0,
Cy = 4Ry (wy + @) A dpy A dipy A dip),
Fs = 4Rty (wpgs, + g3,
Wpds;, = doy, wgs = dwy A dpy A dpy A deps,
dw, = cos asin’a cos 0sin Oda A d6, (2.7)
with
1, = cosa, 1y = sinacos 0, Uy = sinasin 6. (2.8)

R is the radius of AdSs and the radius of S°. We apply the transformation (2.4) to (2.7). The angle coordinates (¢, ¢», ¢3)
are related to the coordinates (¢, ¢,) of the two-torus and the U(1) R-symmetry direction y as

d1 =y — @y, b=y + @1 + @, b3 =y — . (2.9)

The deformed AdSs x S° geometry with parameters 7 = yR? and 6 = oR? is

3We follow the formulas and the conventions of [2]. It is assumed that only the metric, the complex field y, + ie™® =

and d,, are excited and the other fields are zero.

T=1+Iin,
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ds”? = R*H'/? {—dtzcosth + dp? + sinh?pdQ3

i=1
e = \/EHrgl,
¥ =H"(h+13764),

3 2 ’
+ 2 (du? + Guidd) + G(7°f =276 h+ g uiwiu (Z d¢f) } ’

i=1

3
By = R*G(7f — 6h)w; — 4R*ty600y A Y _ ey,
i=1

3
Cy = R*G(7h — 69)w, — 4R?Ty50, A Y deb;,
=1

Cél- = 4R4Tza)4 + 4R472G[1 — (]78”1 - 8zg)g0]a)l AN d¢l A d¢2 A d¢3,

F/S = 4R472(wAdS5 + GCUSS),

where
G =1+ (P*f=276h+8%9)g,
H=f —|—T%&2 90
o = HTH5 + 33 + 3K,
Wy = pipddy A dy + p5piddy A deps + pipides A depy.
(2.11)
f, g and h are the same as (2.6).
The transformation (2.2) can be related to torus defor-

mation from an 1I1-dimensional viewpoint. The torus
parameters considered in [8] are

L“:l, L13:QCOS€, L31:O, L33:l,
R,

(2.12)

where R;(i =1,3) are the radii of the torus before the

deformation and r; = S%g is the radius of the third direction

after the deformation. £ is the intersection angle between
the direction along the first coordinate and the direction
along the third coordinate of the slanted torus deformed
by (2.2) with the components (2.12). We consider a simpler
case in which the axion-dilaton is identified with the
torus modulus of the rectangular torus before the
deformation [8] as

Ry .

T=1+it, =1i— =il

R (2.13)

The axion-dilaton (2.13) transforms under (2.3) with the
components (2.12) as

R, .
v =—"Leit = [(sin&cos & + isin?E).

(2.14)
r3

(2.10)

This is the torus moduli of the deformed torus. By
substituting (2.13) into (2.10) we find the A-deformed
AdSs x $3 on the slanted torus

ds* = R?H'/? [—dtzcosth + dp? + sinh’pdQ3

3
+ > (du? + Guddd?) + 9GPutiduddy? |,
i=1

e® = \/EI:II_I,
¥ = H ' (Icoté+76Pgp),
B, = R*GQw, — 12R*6lw, A dy,
C) = R*GT w, — 12R*}lw, A dy,
' = 4R*w, + ARYG(1 — Ugy)wy A dpy A dipy A deps,

Fy = 4R (wpgs, + Gaorgs). (2.15)
where
é_l =1+ Pgo,

H = csc?é + 621y,

P = jPesc?éE =276 1cot & + 6212,

Q = jesc?E — bl cot &,

T = jlcoté — 612,

U=95lcoté - 6P (2.16)

This geometry contains four parameters. The parameters 7
and ¢ arise from the marginal deformation. The parameters
[ and ¢& arise from the axion-dilaton.

027704-3



BRIEF REPORTS
1L (J.J.J) GEODESIC

We investigate the Penrose limit of the geometry (2.15)
along the geodesic with equal component angular
momenta. This corresponds to (u3,u3,43) = (1/3,1/3,
1/3) in (2.8). In the vicinity of the geodesic with aq =
arccos(1/+/3) and 6, = /4, we set

1

a=Qay— 2

=R
3 1
0=20,+ \/;:lmel,
1
=
_ PP (s L
P = D) El/4R \/§ P
2B34+P) 1,
n =TS
1 _
t=x" +7(51/4R)2x s
— 1 -
y=—x +(:1/4R)2x ’
1
= = csc?é —1—56212, (3.1)

and take the R — oo limit of the geometry keeping 7 and
¢ fixed. We also shift the coordinate x~ as x~ — x +

V3 2.4
e (x'x* + x2x*) to transform the resulting metric to a

homogeneous pp wave [9-11].
The bosonic part of the string sigma model is

S:

drdo[\/r_m“bgwaaX” 0, X"
v704

+ €’B,,0,X"0,X"], (3.2)
where o = 1/27,0 < ¢ < 7 and the world sheet metric 7
is fixed as /7y = diagonal(—1,1) with 7 = |detn,,|.
We impose the light cone gauge condition x* = 7.
The Lagrangian density of the action (3.2) becomes

1< . 8
L= —2x;—§{2[—(x’,)2+ X2+ (x)?
i i=5

i 1\2 2\2
P 4 ()
\/§ [—x3x1 — x4+ xlxd + 2]
2Q —1/2[ —xlxd]

- 1261=71/2 [Z_,’x2x1 (3.3)

g
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where xi = 0x'/0t, xi = Ox'/0o. £ is a gauge parameter,
which arises from w; in (2.8). The { terms cancel out in the
equations of motion. We need to solve the equations of
motion for x' (i = 1, ...,4) which belong to the deformed
S°. The equations of motion are

Pxt 0*x! Ox/ Ox/
W_a 5 flj—+hl]6—+klxl_0 (34)
with nonzero coefficients
2V3
13 _ _ 431 _ (24 _ _pd2 _ _
f =7 f 3P
4
hlZ — _h21 — ——615_1/2,
V3
h14 — _h41 — _h23 — h32 2Q’_‘_l/2
VeES-H
4P

We solve the differential equations by the mode expansion
xX(z,0) = 30 o X (2)€", xj, = (xL,)" with a harmonic
oscillator frequency ansatz x! ( )~ u'(w,)e'®* [4]. From
the condition for the existence of nontrivial solutions, we
obtain the equation

@® + ce® + cu* + cr* + ¢y =0, (3.6)
with coefficients
ce = —8 — 1612,
32 5212
cy = 16—|—? <6——>n +96n*,
128 6212 2A212
o —1BEL 5 og oL\t —256n,
3 = 3 =
2566414 5126212
o=t =220 n0 1 256n", (3.7)
9 = 3 =
The solutions are
4nol
w=1+ 1+a2+——% (38
v 3csc?é + 6212

The spectrum does not depend on the deformation param-
eter 7 while the spectrum depends on the deformation
parameter 6. When 6 # 0, the axion-dilaton parameters [
and & contribute to the spectrum. When 6 = 0, we recover
the result of [4].

IV. DISCUSSION

We have applied the f-deformation, which incorpo-
rates the SL(2,R) symmetry of the type IIB theory, to
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AdSs x $°. The SL(2,R) parameters can be related to
torus parameters from an 11-dimensional viewpoint. The
p-deformation becomes simpler when the axion-dilaton
is identified with the torus modulus of the rectangular
torus before the torus deformation. We have chosen the
geodesic with equal component angular momenta to take
the Penrose limit of the p-deformed AdSs x S°, which

PHYSICAL REVIEW D 90, 027704 (2014)

contains four parameters arising from the marginal
deformation and the axion-dilaton. We have presented
the string sigma model and obtained the spectrum of the
string in the deformed p p-wave limit. The spectrum does
not depend on 7 while the spectrum depends on 6. The
axion-dilaton parameters contribute to the spectrum
when 6 # 0.
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