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Here, we provide a simple Hubbard-like model of spin-1=2 fermions that gives rise to the SU(2)-
symmetric Thirring model that is equivalent, in the low-energy limit, to the Yang-Mills-Chern-Simons
model. First, we identify the regime that simulates the SU(2) Yang-Mills theory. Then, we suitably extend
this model so that it gives rise to the SU(2) Chern-Simons theory with level k ≥ 2 that can support non-
Abelian anyons. This is achieved by introducing multiple fermionic species and modifying the Thirring
interactions, while preserving the SU(2) symmetry. Our proposal provides the means to theoretically and
experimentally probe non-Abelian SU(2) level k topological phases.
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Interacting systems are in general too hard to track
analytically. An interesting approach is to employ low-
dimensional interacting relativistic quantum field theories
at zero temperature for which bosonization can be applied.
Some of these theories can be simultaneously analytically
tractable and amendable to experimental verification, e.g.
with cold atoms. The (2þ 1)-dimensional Thirring model
[1], that describes interacting Dirac fermions, provides such
an example. If the interaction term possesses U(1) sym-
metry then the model is equivalent through bosonization
to the Maxwell-Chern-Simons theory [2]. If the interaction
term is SU(2) symmetric then the model can be described
by Yang-Mills-Chern-Simons theory [3]. Unfortunately,
the anyons supported by this model are Abelian, namely
SU(2) level k ¼ 1 anyons.
The goal of this report is twofold. First, we present a

Hubbard-like model of spin-1=2 fermions that gives rise in
the continuum limit to the SU(2)-symmetric Thirring
model. In particular, we identify the coupling regime where
the Yang-Mills theory is predominant in the bosonized
version of the model. Hence, the model could serve as a
quantum simulator for demonstrating confinement in
2þ 1 dimensions, e.g. with current cold atom technology.
Although quantum simulators for lattice Yang-Mills theory
in cold atomic systems have been recently proposed in
[4–6], our model simulates a continuum non-Abelian gauge
theory. Second, we employ multiple species of fermions so
that the low energy of the model is described by the SU(2)
level k ≥ 2 Chern-Simons theory. This theory can support
non-Abelian anyons such as Ising or Fibonacci anyons.
Hence, its physical realization can serve for the imple-
mentation of topological quantum computation [7].
A finite temperature implementation of our work is also

possible. Indeed, the non-Abelian Chern-Simons theory
can be induced by fermions also at finite temperature [8,9].
This analysis goes beyond the scope of the paper and it will
be left to future work.
Our starting point is a tight-binding model with low-

energy behavior described by the SU(2)-symmetric
Thirring model in 2þ 1 dimensions. The Thirring model

comprises interacting relativistic Dirac fermions. To sim-
ulate it we employ tight-binding fermions in a honeycomb
lattice configuration, as shown in Fig. 1 (left). We introduce
the Hubbard-like Hamiltonian

H ¼ − t
X
hi;ji;s

ðb†s;iws;j þ w†
s;ibs;jÞ − μ

X
i;s

ðnbs;i − nws;iÞ

−
X

hhi;jii;s
χi;jt0ðb†s;ibs;j − w†

s;iws;jÞ

þ U

�X
i;s;s0

nbs;in
w
s0;i −

X
i;α

nα↑;in
α
↓;i

�
; ð1Þ

where nαs ¼ α†sαs is the population of particle α ¼ b; w,
distinguished by their position in the unit cell, with
spin s ¼ ↑;↓. The phase factor χi;j ¼ �i is defined in
Fig. 1 (left). The t term of the Hamiltonian corresponds to

t
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FIG. 1. (Left) The honeycomb lattice with its unit cell con-
sisting of two sites, b and w. Fermions at a certain site tunnel to
their neighboring and next-to-neighboring sites, with coupling t
and t0, respectively. The phase factor χi;j ¼ �i in Hamiltonian (1)
hasþ sign when the link hhi; jii points along the directions of n1,
n2 or n1 − n2 and − sign otherwise, where n1 ¼ ð3=2; ffiffiffi

3
p

=2Þ
and n2 ¼ ð3=2;− ffiffiffi

3
p

=2Þ. (Right) The energy dispersion relation
along py where both Fermi points, P�, reside for generic values
of the couplings. The corresponding energy gaps, ΔE�, can be
independently tuned.
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tunneling along the honeycomb lattice. In the continuum
limit it gives rise to two massless Dirac fermions corre-
sponding to the Fermi points P� ¼ ð0;�4π=ð3 ffiffiffi

3
p ÞÞ in

Cartesian coordinates. The chemical potential μ term and
the next-to-nearest tunneling t0 term give rise to energy
gaps at the two Fermi points of the form

ΔE� ¼ 2j − μ�
ffiffiffi
3

p
t0j: ð2Þ

For ΔEþ ≪ ΔE−, as shown in Fig. 1 (right), we can
adiabatically eliminate the P− Fermi point from the low-
energy dynamics of the system [10]. Hence, we can isolate
the dynamics of the single Fermi point Pþ. An alternative
approach to the adiabatic elimination is to consider three-
dimensional topological insulator with an isolated Dirac
cone at its boundary [11]. Introducing suitable boundary
fields generates an energy gap, so the surface state can be
effectively described by a massive Dirac fermion.
By introducing the spinor ψ ¼ ðψ↑;ψ↓ÞT ¼ ðb↑; w↑;

b↓; w↓ÞT with ψ s ¼ ðbs; wsÞT and s ¼ ↑;↓, we can write
the interaction U term of Hamiltonian (1) in the form
2
3
Uðψ̄TaγμψÞðψ̄TaγμψÞ that acts locally within the unit

cell. Here ψ̄ ¼ ψ†γz, γμ ¼ σμ ⊗ I2 for μ ¼ x; y; z are
4 × 4 Euclidean Dirac matrices written in terms of the
Pauli matrices, where I2 acts on the spin subspace, and
Ta ¼ σa=2, for a ¼ x; y; z, are the generators of SU(2).
The arrangement of the tight-binding interactions that
give rise to the self-interaction of the Dirac fermion is
shown in Fig. 2 (left).
In the low-energy limit the behavior of the model around

Pþ is given by the Hamiltonian

H ¼
Z

d3x

�
ψ†ðvγzγ · pþ γzMv2Þψ þ g2

2
jaμjaμ

�
; ð3Þ

where jaμ ¼ ψ̄Taγμψ , v¼ 3
2
t, Mv2 ¼ −μþ ffiffiffi

3
p

t0, g2 ¼ 4
3
U.

For simplicity we take from now on v ¼ 1. Hamiltonian (3)

corresponds to the (2þ 1)-dimensional Thirring model
with SU(2) symmetry. This non-Abelian symmetry is
manifested by the invariance of the Hamiltonian under
transformations of the spinor ψV

s ¼ Vss0ψ s0, for V ∈ SUð2Þ.
Note that this symmetry of the interacting term is also exact
in the discrete model.
It is known that in 2þ 1 or higher dimensions even the

Abelian Thirring model is perturbatively nonrenormaliz-
able. Nevertheless, it has been shown to become renorma-
lizable in the nonperturbative large-N limit [12,13]. In our
case we are only interested in the low-energy sector of
the tight-binding model and, consequently, in the infrared
limit of the corresponding SU(2) Thirring model. In the
following we show how this model maps to a renormaliz-
able gauge theory to leading order in 1=M [3]. This mass
fixes the valid energy range of our effective theory.
We show now the connection between the SU(2)-

symmetric Thirring model and the Yang-Mills-Chern-
Simons theory [3]. To proceed we employ the path integral
formalism with Euclidean signature. The non-Abelian
Thirring action that corresponds to Hamiltonian (3) is
given by

STh ¼
Z

d3x
�
ψ̄ð∂ −MÞψ −

g2

2
jaμjaμ

�
; ð4Þ

and the corresponding partition function is defined as
ZTh ¼

R
Dψ̄Dψe−STh . To treat the interaction term that is

quartic in the fermionic operators we employ the Hubbard-
Stratonovich transformation

exp

�Z
d3x

g2

2
jaμjaμ

�

¼
Z

Daμ exp

�
−
Z

d3xtr

�
1

2
aμaμ þ gjμaμ

��
; ð5Þ

which introduces the vector field aμ ¼ aaμTa. At this point
we can integrate out the fermions that now appear quad-
ratically. The resulting effective action is given by [14,15]

Seff ½a� ¼ − ln det ð∂ −M þ gaÞ

¼ i
8π

M
jMj

Z
d3xLCS½a� þO

� ∂
M

�
; ð6Þ

where

LCS½a� ¼ g2ϵλμνtr

�
aλ∂μaν þ

2

3
gaλaμaν

�
: ð7Þ

The term Oð ∂MÞ has a negligible contribution to the low-
energy behavior that we are interested in. Note that the
action Seff ½a� is not gauge invariant for large gauge trans-
formations [15]. It is possible to cure this global gauge
anomaly by introducing a gauge-invariant regularization

nb

nb

nw

nw

U U
U

U

U U

n1
b

n1
b

n1
w

n1
w

=1

= 2

n2
b

n2
b

n2
w

n2
w

FIG. 2. The fermionic interactions, given by grey lines, within a
single unit cell that includes one black and one white site (see
Fig. 1). (Left) The interactions for the single fermionic species
model between populations nαs ¼ α†sαs with α ¼ b; w, s ¼ ↑;↓
and strength �U. (Right) The interactions for the two fermionic
species model. We can consider this as a bilayered system with the
interactions between the populations nαβs ¼ α†βsαβs with α ¼ b; w,
s ¼ ↑;↓ and β ¼ 1; 2 given explicitly by Hamiltonian (14).
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such as the Pauli-Villars one [11,15]. In this scheme the
regularized action SReff ½a� ¼ Seff ½a� − limM2

0
→∞Seff ½a�ðM0Þ

is given by

SReff ½a� ¼ lim
M2

0
→∞

1

2

�
M
jMj −

M0

jM0j
�

i
4π

Z
d3xLCS½a�: ð8Þ

When signðM0Þ ¼ −signðMÞ, we obtain the standard non-
Abelian Chern-Simons action with level k ¼ 1 [16,17]. It is
worth noticing that changing the value of the coefficient g
in (7) does not change the value of the level of the non-
Abelian theory [16,17]. To simplify the next calculations
we rescale aμ → aμ=g and take M positive.
Still the total action is not gauge invariant due to theR
d3xtrðaμaμÞ term in (5). It is possible to recast the total

action in terms of a gauge invariant and renormalizable
theory by introducing the interpolating action [18,19]

SI½a; A� ¼
Z

d3x

�
1

2g2
traμaμþ

i
2π

ϵμνλtraμ½FνλðAÞ þ Aνaλ�

þ i
4π

ϵλμνtr

�
Aλ∂μAν þ

2

3
AλAμAν

��
: ð9Þ

If we shift the vector potential Aμ ¼ Aa
μTa as Aμ ¼ Āμ − aμ

and then integrate over Āμ, we find that the corresponding
partition function becomes ZI ≈ ZTh, where the approxi-
mation is due to neglecting the Oð ∂MÞ term. If, on the other
hand, we directly perform the aμ integration in ZI we obtain
the following partition function:

ZPYMCS ¼
Z

DAμ exp

�
−
Z

d3x
g2

2π2
trð�FμSμν�FνÞ−

−
i
4π

Z
d3xϵλμνtr

�
Aλ∂μAν þ

2

3
AλAμAν

��
; ð10Þ

where Sμν ¼ ðδμν þ ig2

π ϵμνλAλÞ−1 and �Fμ ¼ 1
2
ϵμνλFνλ. The

first term of this action is a non-Abelian gauge theory that
does not admit direct interpretation. The second term is the
SU(2) Chern-Simons theory at level k ¼ 1 that gives mass
to the gauge field and a finite correlation length ξ.
As a result the large distance behavior compared to ξ is
dominated by the Chern-Simons term with the contribution
of the first term decaying exponentially fast away from the
sources.
The partition function (10) describes our model for any

value of g. Consider now the limit g2 ≪ 1, where Sμν ∼ δμν

[3]. In this limit the short-distance behavior compared to ξ
of the Pseudo-Yang-Mills-Chern-Simons (PYMCS) theory
is described by the SU(2) Yang-Mills action

SYM½A� ¼
g2

8π2

Z
d3xtrFμνFμν ð11Þ

and (10) defines a topologically massive gauge theory
[16,20]. Thus the original field theory, after the

interpolating procedure, becomes the gauge-invariant
Yang-Mills-Chern-Simons theory in the limit g2 ≪ 1
and large mass M. In particular the (2þ 1)-dimensional
Yang-Mills theory supports confinement, one of the most
intriguing challenges in high-energy physics. Confinement
can explain why free quarks cannot be experimentally
detected. Nevertheless, this behavior is analytically intrac-
table to prove in 3þ 1 dimensions [21]. To probe this
property of (11) we introduce the Wilson loop operator.
It is given by

WðKÞ ¼ trPei
H
K
dxμAμ ; ð12Þ

where P denotes the path ordering necessary for non-
Abelian theories; the trace is taken in the representation of
the SU(2) algebra (taken here to be the fundamental) and K
is a given loop. Confinement is manifested by the area-law
behavior,

hWðKÞi ≈ e−σAK ; ð13Þ

where AK is the area enclosed by the loop K and the
constant σ is the string tension. An analytic expression for
the string tension σ has been derived for the (2þ 1)-
dimensional SU(2) Yang-Mills theory, given by σ ∼ g−4

[22]. Loops K that can probe this short-distance regime are
shown in Fig. 3 (left). It is important to remark that there
exists just a single quantum phase with different long- and
short-range behaviors. Indeed the behavior of the Wilson
loop changes drastically when we consider distances where
the Chern-Simons term becomes relevant. This is achieved
when we consider loops K with geometric characteristics
that are large compared to the correlation length ξ of the
system, as shown in Fig. 3 (right). In this large-distance/

FIG. 3. Examples of a rectangular loops K with area AK ¼
L1L2. (Left) When L1 is small, of the order of the correlation
length ξ, then the short-distance behavior of our model is given by
(11). Then, confinement is manifested by the area law of the
Wilson loop observable, hWðKÞi ≈ e−σAK , with string tension
σ ∼ g−4 [22]. (Right) When both L1 and L2 are large compared to
the correlation length ξ ∼ g2 of the theory then the long distance
behavior is given by (16). Then hWðKÞi ¼ VKðqÞ, where VKðqÞ
is the Jones polynomial of the loop K with variable q. For the
simple loop considered here it is VKðqÞ ¼ 1. This is in stark
contrast to the confining regime where hWðKÞi tends to zero as
AK increases.
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small-energies regime we can ignore the Yang-Mills term
and consider exclusively the Chern-Simons term that gives
rise to a topological behavior. This is the regime that we
consider next.
We now extend Hamiltonian (1) in order to obtain

theories with general integer k that can support non-
Abelian anyons. This is possible by introducing more than
one species of spin-1=2 fermions. To illustrate that we start
by considering N copies of the model and parameterizing
the fermionic species by the index β ¼ 1;…; N. Then we
modify the interaction term to obtain the SU(2) Thirring
model with N fermion species, namely

H ¼
Z

d3x

�XN
β¼1

ψ†
βðγzγ · pþ γzMÞψβ þ

g2

2
JaμJaμ

�
; ð14Þ

where ψβ ¼ ðψβ↑;ψβ↓ÞT ¼ ðbβ↑; wβ↑; bβ↓; wβ↓ÞT , Jaμ ¼P
N
β¼1 j

aμ
β and jaμβ ¼ ψ̄ βTaγμψβ. This new interaction can

be directly given in terms of the tight-binding fermions, bβs
and wβs, for β ¼ 1;…; N and s ¼ ↑;↓. It represents a spin-
nonpreserving interaction because it mixes the different
fermionic species, as shown in Fig. 2 (right). By performing
the same bosonization procedure as in the case of single
species we obtain the effective action

e−Seff ½a� ¼
Z

Dψ̄βDψβ exp

�
−
Z

d3xψ̄βð∂ −M þ aÞψβ

�

¼ ½det ð∂ −M þ aÞ�N; ð15Þ

where now the Nth power of the determinant arises. We can
introduce an interpolating action, similar to (10), to obtain
the corresponding dual model. The small distance proper-
ties of this model, for g2 ≪ 1, is described by the Yang-
Mills term (11) multiplied now by N2. The large distance
behavior of (15) is given by

SCS½A� ¼
Ni
4π

Z
d3xϵλμνtr

�
Aλ∂μAν þ

2

3
AλAμAν

�
; ð16Þ

which is the SU(2) level k ¼ N Chern-Simons theory.
For N ¼ 2 it supports non-Abelian Ising anyons [23],
which behave similarly to Majorana fermions. For N ¼ 3
Fibonacci anyons are supported, which are universal for
quantum computation [24].
Witten showed that for the non-Abelian Chern-Simons

theory the expectation value of the Wilson loop operator is
given in terms of the Jones polynomial [25]

hWðKÞi ¼ VKðqÞ: ð17Þ

This relation holds for any link K with many strands.
The Jones polynomial VKðqÞ has variable q ¼ expð2πi=
ðkþ 2ÞÞ, where k is the level of Chern-Simons theory. It is
a topological invariant of the link K, i.e. it does not depend
on its geometrical characteristics, but only on its knottiness.
For the case where K is a single unknotted loop we have
VKðqÞ ¼ 1. In other words the expectation value of the
corresponding Wilson loop is a constant, independent on
the size of K. This statement is exact for large enough K
compared to the correlation length of the microscopic
model, as shown in Fig. 3 (right). This is in stark contrast
to the short-distance behavior of the model. The condition
hWðKÞi ¼ 1 for loops K of any size and position is a
witness of the model’s topological order, provided its
ground state is not a trivial product state [10].
It is worth noting that we do not have a direct way to

measure the Wilson loop in terms of fermionic observables
as we did in the Abelian case [10]. Nevertheless, it is
possible to probe the topological order of the model
through its behavior at the boundary. For large character-
istic geometries of the boundary, so that short-range
correlations do not get involved, the topological properties
of the model can be isolated. It was shown in [25,26] that
the SU(2) level k Chern-Simons bulk theory induces at its
edge the SU(2) Wess-Zumino-Witten model, which is a
conformal field theory [27]. To probe the Wess-Zumino-
Witten model it is possible to measure the thermal currents
at the boundary. For this model the thermal conductance
KQ of the edge modes is given by [28,29]

KQ ¼ ∂JQ
∂T ¼ π

6
ck2BT; ð18Þ

which holds in the low temperature limit T → 0. Here JQ is
the thermal current carried by the edge modes, kB is the
Boltzmann constant and c ¼ 3k

kþ2
is the corresponding

central charge. By employing (18) we can evaluate the
level k of the theory and thus determine the particular
species of anyons present in our model [7]. The physical
realization of our model could be performed with cold atom
methods proposed in [30–37], while a possible method to
detect the chiral edge states is given in [38].
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