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The Brownian motion of a test particle interacting with a quantum scalar field in the presence of a
perfectly reflecting boundary is studied in (1þ 1)-dimensional flat spacetime. Particularly, the expressions
for dispersions in velocity and position of the particle are explicitly derived and their behaviors examined.
The results are similar to those corresponding to an electric charge interacting with a quantum
electromagnetic field near a reflecting plane boundary, mainly regarding the divergent behavior of the
dispersions at the origin (where the boundary is placed), and at the time interval corresponding to a round
trip of a light pulse between the particle and the boundary. We close by addressing some effects of allowing
the position of the particle to fluctuate.
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I. INTRODUCTION

A small particle interacting with a stochastic field will be
driven through a random path. This effect is known as
Brownian motion and has been found in a variety of different
physical systems. The classical example is a particle
suspended in a liquid (or gas). Not long ago a simplified
model of an electric charge interacting with a vacuum state
showed that a quantum version of Brownian motion may
occur. In fact, the study of a charged test particle coupled to
electromagnetic vacuum fluctuations due to the presence of a
perfectly reflecting plane boundary reveals that the modified
vacuum induces a Brownian motion on the test particle
characterized by the following dispersions on its velocity [1]
at instant τ,
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and ðΔvzÞ2 ¼ ðΔvyÞ2. The test particle is taken to have mass
m, electric charge e, and it is placed at a distance x from
the boundary. We notice that the above vacuum fluctuations
can be negative for some values of x and τ, and that is a
consequence of implementing renormalization where the
corresponding Minkowski vacuum contributions are sub-
tracted. (Along the text units are such that ℏ ¼ c ¼ 1.)

In Eqs. (1) and (2), the divergences appearing at x ¼ 0
are usually associated with the over idealization of the
boundary condition [2] on the field. Another type of
divergence occurs when τ ¼ 2x, for any value of x, and
has also been suggested to be related [1] with the use of a
perfectly reflecting plane boundary. In the regime of τ → ∞
the fluctuations in the velocity of the particle in directions
parallel to the plane die off while the fluctuations in the
transverse direction reduce to a function that depends only
on the position of the particle, namely Δvx ∼ 1=x. These
investigations were extended to the case of two parallel
plane boundaries [3], and to the case where finite temper-
ature effects take place [4]. A model for “noncancellation
of vacuum fluctuations” was more recently proposed [5],
using the same setup of an electric charge near a plane
boundary.
As has been pointed out in Refs. [1,3], the calculations

leading to the results just described were done by assuming
that the effects of the vacuum fluctuations begin in a specific
instant of time (sudden switch). This aspect was considered
later [6] when a smooth switched on/off mechanism was
introduced into the model, leading to significant modifica-
tions of the quantum Brownian motion originally described
in Ref. [1]. Furthermore, it has been conjectured that by
associating a “wave packet” with the particle, smearing
effects might take place both in space and time directions.
Indeed, by considering a wave-packet distribution in time
direction, Ref. [7] has shown that, in the late-time regime,
electromagnetic quantum fluctuations yield a transverse
velocity dispersion given byΔvx ∼ 1=τ, which is suppressed
as τ → ∞. (Note that the smooth switched on/off mechanism
[6] also leads to this late-time behavior.) Clearly, in this case,
no stationary behavior remains in contrast to the results
obtained when the particle is treated “classically” as in
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Ref. [1]. It should be pointed out that in all cases the
divergences mentioned earlier survive.
In this paper we consider the simplified scenario (a toy

model) of a scalar charged test particle interacting with
a massless quantum scalar field in (1þ 1)-dimensional
spacetime, in the presence of a point-like reflecting
boundary. Brownian motion of the particle coupled to
the vacuum fluctuations of the quantum scalar field is
examined. As occurs in the case of an electric charge
interacting with a quantum electromagnetic field near a
reflecting plane boundary, the dispersion in the velocity of
the particle presents a divergent behavior at the origin
(where the boundary is placed), and at the time interval
corresponding to a round trip of a light pulse between the
particle and the boundary. We also examine the conse-
quences when the position of the particle is allowed to
fluctuate according to a Gaussian distribution.

II. VACUUM FLUCTUATIONS AND
BROWNIAN MOTION

We restrict ourselves to the case of a test particle of
mass m and charge g interacting with a scalar field ϕðx; tÞ
in (1þ 1) dimensions. A perfectly reflecting boundary is
assumed to be at x ¼ 0 where we impose the Dirichlet
boundary condition on the field, ϕðx ¼ 0; tÞ ¼ 0. In the
nonrelativistic limit the equation governing the motion of
the particle is given by

m
dv
dt

¼ −g
∂
∂xϕðx; tÞ: ð3Þ

We assume that the particle interacts with the scalar field
but that its contribution to the total field is negligible. This
means that the scalar field is solution of the equation
□ϕ ≈ 0, where □ is just the d’Alembertian in (1þ 1)
Minkowski spacetime written in Cartesian coordinates and
therefore dissipation effects due to backreaction are not
being considered in our analysis. It should be remarked that
in certain models dissipative effects become particularly
significant on the late-time regime. Our analysis will be
restricted to early-time regime only. In fact, the presence of
dissipation does not affect the kind of divergent behavior
we wish to study. There is still another assumption, namely,
we assume that the particle is at rest at t ¼ 0 and that its
position does not vary significantly over time. Thus, its
position x can approximately be considered constant.
At a given time τ, the velocity of the particle can be

obtained by integrating Eq. (3) as in

v ¼ −
1

m

Z
τ

0

g
∂
∂xϕðx; tÞdt; ð4Þ

which states that τ is the time interval along which the
particle has been under influence of the scalar field ϕðx; tÞ,
and for this reason τ is denoted as the measuring time.

Notice that in our approach a “sudden switching” was
assumed at t ¼ 0. This assumption can be relaxed by
introducing a “smooth switching” as in Ref. [6].
We are interested in studying the Brownian motion of the

test particle in the vacuum state of the quantum scalar field.
In this case ϕðx; tÞ is taken to be an operator acting on a
Hilbert space. In order to study the influence of the
quantum field over the motion of the particle, we may
use the following method. In Eq. (4) the force driven by
the quantum field [−gð∂ϕ=∂xÞ] will be considered as a
classical stochastic force. Thus, expectation values asso-
ciated to the velocity and the position of the particle can be
calculated by using the moments of the stochastic force,
which will be given in terms of the vacuum expectation
values of the quantum field [8,9].
In the case when ϕðx; tÞ is a pure quantum quantity,

it follows that its vacuum expectation value is zero,
hvi≐h0jvj0i ¼ 0, and the mean squared deviation of the
particle velocity ðΔvÞ2 coincides with the vacuum fluc-
tuation hv2i, i.e., ðΔvÞ2 ¼ hv2i − hvi2 ¼ hv2i. However,
even in the case when ϕðx; tÞ has classical contributions,
the mean squared deviation would result in a pure quantum
quantity. This can be understood in the following way.
Suppose the scalar field is expressed as a sum of a classical
ϕCðx; tÞ and a quantum ϕQðx; tÞ contributions. Thus, the
vacuum expectation value of the field is a classical quantity,
hϕðx; tÞi ¼ hϕCðx; tÞi þ hϕQðx; tÞi ¼ hϕCðx; tÞi ¼ ϕCðx; tÞ.
However the correlation function is a pure quantum quan-
tity, Cðx; t;x0; t0Þ≐hϕðx; tÞϕðx0; t0Þi− hϕðx; tÞihϕðx0; t0Þi ¼
hϕQðx; tÞϕQðx0; t0Þi, as the classical contribution to the field
exactly cancels in the above subtraction. Thus, without loss
of generality, we will proceed by considering ϕðx; tÞ as a
pure quantum field.
Using the above considerations, the mean squared

deviation of the particle velocity can be obtained as
ðΔvÞ2 ¼ hvðτÞvðτÞi, where

hvðt1Þvðt2Þi¼
g2

2m2
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and Gð1Þðx; t; x0; t0Þ ¼ hϕðx; tÞϕðx0; t0Þ þ ϕðx0; t0Þϕðx; tÞi is
the Hadamard two-point function. We can use the relation-
ship between the Hadamard function and the Feynman
propagator GFðx; t; x0; t0Þ to write the above expression in
the form,

ðΔvÞ2 ¼ i
g2

m2

� ∂
∂x

∂
∂x0

Z
τ

0

dt
Z

τ

0

dt0GFðx; t; x0; t0Þ
�
x0¼x

ð5Þ

where the real part of GF was discarded as it vanishes
identically when the coincidence limit is taken.
The Feymann propagator for a massless scalar field

near a perfectly reflecting boundary is solution of
□ðx;tÞGFðx; t; x0; t0Þ ¼ −δðt − t0Þδðx − x0Þ. The eigenfunc-
tions of the operator □ðx;tÞ, which satisfy the Dirichlet
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boundary condition at x ¼ 0, are given by ψω;kðx; tÞ ¼
ð2π2Þ−1=2e−iωt sinðkxÞ, where ω and k are real numbers.
The corresponding eigenvalues are λω;k ¼ k2 − ω2. Finally,
GFðx; t; x0; t0Þ can be obtained by means of [10]

GFðx; t; x0; t0Þ

¼ −i
Z

∞

0

dη
Z

∞

−∞
dk

Z
∞

−∞
dωe−iληψω;kðx; tÞψ�

ω;kðx0; t0Þ:

Performing the above integrals and renormalizing the result
with respect to the Minkowski spacetime, we obtain the
renormalized Feynman propagator

GR
Fðx; t; x0; t0Þ ¼ −

i
4π

ln ½ðxþ x0Þ2 − ðt − t0Þ2�: ð6Þ

In the above result we have discarded an infinite constant
term, which corresponds to the usual infrared divergence
occurring in two-dimensional spacetime quantum field
theory for massless fields [11]. It is emphasized that such
a divergent term would in any case disappear when the
derivatives in Eq. (5) were taken over the propagator.
By putting Eq. (6) into Eq. (5), operating with the

derivatives, and using the identity
R
τ
0 dz

R
τ
0 dyfðjz − yjÞ ¼

2
R
τ
0 ðτ − ηÞfðηÞdη, we obtain

ðΔvÞ2 ¼ −
g2

4πm2
ln

�
4x2

τ2 − 4x2

�
2

: ð7Þ

As we can see, there are two divergences in this result
which appear also in the electromagnetic case [1]. One at
x ¼ 0, and another when τ ¼ 2x for any value of x. The
former is the well-known divergence in quantum field
theory when the Dirichlet boundary condition is used. The
latter is more subtle and corresponds to the travel time a
light signal takes to a round trip between the particle and
the plane boundary. In the electromagnetic case [1] it was
suggested that this divergence also appears because of the
assumption of a rigid perfectly reflecting boundary. As
anticipated, we will not be interested in the late-time
behavior of ðΔvÞ2, for it would be beyond the domain
of applicability of the model here considered. This aspect
will be better addressed later. The behavior of ðΔvÞ2 as a
function of τ=x is depicted in Fig. 1. Notice that subvacuum
effects (hv2i < 0) [12] take place when τ2 < 8x2. In spite
of the fact that hv2i is the vacuum expectation value of a
positive definite operator, we should recall that, formally,
hv2i ¼ hv2iBoundary − hv2iMinkowski. Thus, a negative result
is interpreted as a reduction due to the presence of the
boundary. The origin of the divergence occurring at x ¼ 0
relies on the boundary condition imposed over the scalar
field and it can be understood as follows [2]. In the
renormalization process, the divergences appearing in the
propagator derived in the presence of the plane boundary
are exactly cancelled out by the corresponding divergences

appearing in the Minkowski propagator. However, at x ¼ 0
we have set ϕðx ¼ 0; tÞ ¼ 0 (Dirichlet boundary condi-
tion). Thus, at this point we are subtracting a finite quantity
from an infinity quantity and the renormalization fails.
Integrationofv ¼ dx=dt allowsus toobtain themeanvalues

hxi¼x, as hvi ¼ 0, and hx2i¼x2þR
τ
0 dt1

R
τ
0 dt2hvðt1Þvðt2Þi.

Thus, calculations similar to those leading to Eq. (7) unveil
the following squared mean value ðΔxÞ2 ¼ hx2i − hxi2 of
the position of the particle,

ðΔxÞ2 ¼ g2

8πm2

�
ðτ2 − 4x2Þ ln

�
τ2 − 4x2

4x2

�
2

− 2τ2
�
:

For an arbitrary position x ≠ 0 of the particle, ðΔxÞ2 is a
regular function of τ, as depicted in Fig. 2. Particularly, at
τ ¼ 2xwe obtain ðΔxÞ2 ¼ −ðg2=πm2Þx2, which is a regular
function of x. We notice that this regular behavior also
occurs in the case of an electric charge near a reflecting
plane boundary, but only in the direction perpendicular
to the plane.
In deriving the above results we have assumed that the

particle does not change much its position over time. This
assumption can be stated as jðΔxÞ2=x2j ≪ 1, which implies
in the condition

g2

8πm2

����
�
τ2

x2
− 4

�
ln

�
τ2 − 4x2

4x2

�
2

− 2
τ2

x2

���� ≪ 1: ð8Þ

Particularly, at τ ¼ 2x,

g2

πm2
≪ 1; ð9Þ

which should hold for any values of x e τ.
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FIG. 1 (color online). The mean squared deviation of the
particle velocity as a function of the measuring time τ for
x ≠ 0. Besides the divergence at x ¼ 0, not shown in this figure,
this function diverges at τ ¼ 2x as discussed in the text. In the
case of a pure quantum scalar field, ðΔvÞ2 ≡ hv2i, and subvac-
uum effects takes place when 0 < τ < 2

ffiffiffi
2

p
x.
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We stress that the inequality stated by Eq. (8) imposes a
natural limit of validity over our results. For instance,
setting g=m ¼ 0.1, which obeys Eq. (9), we obtain that
τ ≈ 10x appears as an upper limit of validity for the
obtained dispersions, as in this case jðΔxÞ2j=x2 ≈ 0.16.
Taking g=m ¼ 0.01 we obtain that when τ ≈ 50x it results
jðΔxÞ2j=x2 ≈ 0.11. To summarize, the smaller g=m the
greater the range of validity of our results. This conclusion
can be understood by analyzing the behavior of the relative
dispersion ðΔx=xÞ2 in Fig. 2.

III. FINAL REMARKS

In this work the scalar field was considered as a quantum
field while particle and boundary were treated at fixed
positions. A more realistic description of the system should
consider the quantum nature of all its components. We
could simulate this aspect by allowing the position of the
particle to fluctuate around x. For instance, let x → xþ ϵ,
where the parameter ϵ is the random variable in the
Gaussian distribution fðϵÞ ¼ ð1= ffiffiffiffiffiffi

2π
p

σÞ expð−ϵ2=2σ2Þ
with width σ. Hence the mean value over ϵ of velocity
dispersion ðΔvÞ2 can be obtained by means of
ðΔvÞ2 ¼ R

∞
−∞ðΔvÞ2fðϵÞdϵ. Straightforward calculations

[using Eq. (7)] show that the above integration can be
solved in terms of the generalized hypergeometric function

2F2ð1; 1; 32 ; 2; zÞ [13] and results in a regular function of x
and τ, as depicted in Fig. 3. Notice that the smaller σ the

more ðΔvÞ2 approaches the case without position fluc-
tuation depicted in Fig. 1. Particularly, for a given distance
x from the boundary, we obtain

ðΔvÞ2 ≈ g2

4πm2
ln
2σ2

x2
; fτ ¼ 2x; σ → 0g;

showing that the depth of the well in Fig. 3 sharpens as
ln σ=x when σ → 0.
It is to be seen if such a “position fluctuation” is enough

to regularize velocity dispersions in all directions when
higher dimensional models are considered, and if indeed it
corresponds to genuine quantum motion of the test particle.
These are points that require further analysis.
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