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Einstein’s gravity has the exact Newtonian limit as we take the infinite-speed-of-light limit in the zero-
shear gauge and the uniform-expansion gauge. Although lacking proper Newtonian gravitational potential,
here we show that Newtonian hydrodynamics for density and velocity is also recovered in the comoving
gauge using the weak gravity and negligible pressure limits but without using the slow-motion and
subhorizon conditions. This curious correspondence, however, is available only for the irrotational fluid.
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I. INTRODUCTION

Einstein’s gravity is crucially demanded in many cos-
mological studies including the light propagation, early
Universe with radiation era, inflation era, the dark energy,
the evolution beyond horizon, etc. Newton’s gravity is
still very important in cosmology because of its relatively
simple mathematical structure compared with Einstein’s
gravity. In practice, Newton’s gravity is known to be quite
successful in the weakly nonlinear/fully relativistic (near
and beyond horizon) and the weakly realtivistic/fully
nonlinear (small-scale clustering) situations in the matter
dominated era with the cosmological constant as a dark
energy [1].
Einstein’s gravity has a proper Newtonian hydrodynam-

ics as the infinite-speed-of-light limit [2]. Expansions to the
next orders in the speed of light lead to the post-Newtonian
approximation [2,3]. This is known even in the context of
cosmological spacetime [4]. Although we need Einstein’s
gravity to handle the background world model [5], in the
nonlinear perturbation level Newtonian equations indeed
follow from Einstein’s gravity as the infinite-speed-of-light
limit (weak gravity, slow-motion, negligible pressure, and
subhorizon scale) in the zero-shear gauge and the uniform-
expansion gauge [6].
Meanwhile, despite its lacking proper Newtonian gravi-

tational potential, the comoving gauge [7] is known to have
striking Newtonian correspondence (in the density and
velocity perturbations), even to higher order perturbations
in all scales [1].
In this work, we study the Newtonian limit of Einstein’s

gravity in the comoving gauge condition. In this gauge we
also have proper Newtonian hydrodynamics for density and
velocity perturbations (modulo gravitational potential).
Compared with the case in the zero-shear and the uniform-
expansion gauges, the comoving gauge shows both
strength (slow-motion and subhorizon conditions not
demanded) and weakness (scalar-type perturbation only),

which will be expounded in the following. Our proof is
based on the fully nonlinear and exact perturbation theory
in Einstein’s gravity [8] summarized in Sec. II and the
Appendix.

II. NOTATIONS

We consider the scalar- and vector-type perturbations in
a flat Friedmann background with the metric

ds2 ¼ −a2ð1þ 2αÞdx0dx0 − 2aχidx0dxi

þ a2ð1þ 2φÞδijdxidxj; ð1Þ

where aðx0Þ is the cosmic scale factor, and α, φ, and χi are
functions of spacetime with arbitrary amplitudes; the index
of χi is raised and lowered by δij as the metric; here, x0 ¼ η
with adη≡ cdt. The spatial part of the metric is simple
because we have ignored the transverse-tracefree part and
already have taken the spatial gauge condition without
losing any generality to the fully nonlinear order [8,9].
We consider a fluid without anisotropic stress. The

energy-momentum tensor is given as

~Tab ¼ ~ϱc2 ~ua ~ub þ ~pð~gab þ ~ua ~ubÞ; ð2Þ

where tildes indicate the covariant quantities; ~ua is the
normalized fluid four-vector; and ~ϱ and ~p are the mass
density and pressure, respectively. We decompose the fluid
quantities into the background and perturbation as

~ϱ ¼ ϱþ δϱ; ~p ¼ pþ δp; ~ui ≡ a
vi
c
; ð3Þ

where ϱ and p are functions of x0 only, but the perturbed
parts have arbitrary amplitudes; the index of vi is raised and
lowered by δij as the metric. In the explicit presence of the
internal energy ~ϱ ~Π, ~ϱ should be replaced by ~ϱð1þ ~Π=c2Þ
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[2]; in the latter expression ~ϱ is the material density.
We introduce v̂i as

vi ≡ γ̂v̂i; γ̂ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v̂kv̂k

c2ð1þ2φÞ

q : ð4Þ

Notice that the Lorentz factor is affected by gravity (φ) as
well; in the Minkowski spacetime v̂i can be identified as
the velocity vector, but in the cosmological spacetime v̂i is
gauge dependent.
We can decompose χi and v̂i into the scalar- and vector-

type perturbations even to nonlinear order as

χi ¼ χ;i þ χðvÞi ; v̂i ≡ −v̂;i þ v̂ðvÞi ; ð5Þ

with χðvÞi;i ≡ 0≡ v̂ðvÞi;i.
The basic set of perturbation equations is made of seven

fundamental equations presented in the Appendix. We
emphasize that these equations are exact equations derived
from Einstein equations based on our metric and energy-
momentum conventions in Eqs. (1)–(4). Although the
cosmic scale factor is introduced, we have not imposed
any condition on all the perturbation amplitudes. In fact, the
scale factors can be absorbed into the perturbation variables
[e.g., a2ð1þ 2αÞ≡ e2A, a2ð1þ 2φÞ≡ e2B, aχi ≡ Xi, and
av̂i ≡ V̂i where A, B, Xi, and V̂i are arbitrary spacetime
variables], but we have intentionally introduced the scale
factor in order to readily get the conventional background
and perturbation equations in the Friedmann world model.
Notice that in our basic equations we have not separated the
background and perturbation. If we take a perturbative
approach, we can separate the background and perturba-
tion, and this can be continued to any higher order
perturbation. In the present work we have not separated
the background and perturbation; thus, the results are based
on the fully nonlinear perturbation approach.

III. NEWTONIAN CORRESPONDENCE IN THE
COMOVING GAUGE

We take the comoving gauge, thus setting [8]

v̂≡ 0: ð6Þ
As the (temporal) comoving gauge together with our spatial
gauge condition already taken in Eq. (1) completely fixes
the gauge modes, all variables in this gauge condition have
the unique gauge-invariant combinations to the fully non-
linear orders [8].
As the nonrelativistic limit we consider

φ ≪ 1;
~p
~ϱc2

≪ 1; ð7Þ

which can be considered as the weak gravity and the
negligible pressure conditions, respectively. But we do not

assume both the slow-motion (jvj2=c2 ≪ 1) and small-
scale [ _a=ðkcÞ ≪ 1, the subhorizon] limits; k is the wave
number. The perturbed velocity v in the comoving gauge
will be identified later: see Eqs. (12) and (14).
The covariant momentum conservation equation gives

1

a

� ∂
∂tþ

1

a

�
N v̂ðvÞk þ c

a
χk
�
∇k

�
ðav̂ðvÞi Þ

þ c
a2

v̂ðvÞk∇iχk þ
c2

a
∇iN þ N

a~ϱ
∇i ~p ¼ 0: ð8Þ

To the linear order, we have ðav̂ðvÞi Þ· ¼ 0 andN ¼ constant
in space; thus, N ¼ 1 and α ¼ 0; an overdot indicates the
time derivative based on t. But, to the nonlinear order, the
equation is nontrivial; the meaning of vðvÞi in the temporal
comoving gauge condition is not clear; for example, the
comoving gauge condition is not allowed in the Minkowski
spacetime.
In the following we ignore the vector-type perturbation,

thus setting v̂ðvÞi ≡ 0 and χi ¼ χ;i. Thus, v̂i ¼ 0, γ̂ ¼ 1 and
Eq. (8) gives

N ;i

N
¼ −

~p;i

~ϱc2
: ð9Þ

For ~p=ð~ϱc2Þ ≪ 1 we have N ¼ 1. However, in the case in
which we have c2 multiplied as in the c2ΔN term in the
trace and tracefree parts of the Arnowitt-Deser-Misner
(ADM) propagation equation, we should keep the pressure
terms properly as

c2N ;i ¼ −
~p;i

~ϱ
: ð10Þ

The seven fundamental equations give the following.
Covariant momentum conservation:

N ¼ 1; or c2∇N ¼ −
∇ ~p
~ϱ

: ð11Þ

Here, we identify the perturbed velocity v≡∇v as

χ ≡ a
c
v: ð12Þ

ADM momentum constraint or the definition of κ:

κ ¼ −c
Δ
a2

χ: ð13Þ

Thus, we have

κ ¼ −
1

a
∇ · v ¼ −

Δ
a
v: ð14Þ

Covariant energy conservation:

_~ϱþ 3
_a
a
~ϱþ 1

a
∇ · ð~ϱvÞ ¼ 0: ð15Þ
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Trace of ADM propagation:

1

a
∇ ·

�
_v þ _a

a
v

�
þ 1

a2
∇ · ðv ·∇vÞ þ 4πGδϱ

þ 1

a2
∇ ·

�∇ ~p
~ϱ

�
¼ 0: ð16Þ

ADM energy constraint or tracefree ADM propagation
[using Eq. (16)]:

c2
Δ
a2

φ ¼ −4πGδϱþ _a
a
1

a
∇ · v

þ 1

4a2
½ð∇ · vÞ2 − v;ijv;ij�: ð17Þ

As we have used all the fundamental equations, the results
are consistent in the context of Einstein’s gravity.
Notice that Eqs. (15) and (16) provide a closed set of

equations for the fluid variables ~ϱ and v; ~p is provided
by the equation of state. Equation (17) can be regarded
as a relation determining φ from the fluid variables. By
identifying

ΔU ≡ c2Δφ − _a∇ · v −
1

4
½ð∇ · vÞ2 − v;ijv;ij�; ð18Þ

we recover the Poisson’s equation

Δ
a2

U ¼ −4πGδϱ; ð19Þ

where U can be identified as the Newtonian gravitational
potential; notice that U is an ad hoc combination of
fundamental variables in the comoving gauge. Here, we
have no intention to suggest that the Newtonian gravita-
tional potential is properly recovered in the comoving
gauge even in the Newtonian limit. Equation (16) can be
written as

1

a
∇ ·

�
_v þ _a

a
v þ 1

a
v ·∇v −

1

a
∇U þ 1

a
∇ ~p
~ϱ

�
¼ 0; ð20Þ

which is the divergence of the momentum conservation
equation in Newtonian context.
With Eqs. (15), (20), and (19) we have recovered the

well-known Newtonian hydrodynamic equations [10]: the
mass conservation, (divergence of) momentum conserva-
tion, and Poisson’s equations, respectively. Equation (17)
can be regarded as a relation determining φ (the spatial
curvature perturbation in the comoving gauge) from hydro-
dynamic quantities (δϱ and v). The curvature perturbation φ
in the comoving gauge is a well-known conserved quantity
(in super-sound-horizon scale) in the linear perturbation
theory [11]. From Eqs. (15)–(17) we can show _φ ¼ 0 to the
linear order.

IV. DISCUSSION

Considering our previous works on the relativistic/
Newtonian correspondence in the comoving gauge [1],
our similar conclusion in this work may not be an
unexpected one. However, in this work we have probed
different aspects of the correspondence: here, we probe the
case in the Newtonian limit but in a fully nonlinear context,
whereas previous ones were based on general relativistic
nonlinear perturbation theory. One byproduct is that to
get the correspondence to fully nonlinear order in the
Newtonian limit we do not need to assume slow-motion
and subhorizon limit. Compared with the proper Newtonian
limit available in the zero-shear (and the uniform-
expansion) gauge as the infinite-speed-of-light limit, the
situation in the comoving gauge shows both a weak point
and strong point as we explain below.
In order to show the relativistic/Newtonian correspon-

dence in the comoving gauge we have considered the
weak gravity (φ ≪ 1) and negligible relativistic pressure
[ ~p=ð~ϱc2Þ ≪ 1] conditions, and have ignored the vector-
type (rotational) perturbation. However, it is remarkable
that we have not assumed both the small-scale
[ _a=ðkcÞ ≪ 1, thus subhorizon] and the slow-motion
(jvj2=c2 ≪ 1) conditions. Therefore, in the comoving
gauge no pure Einstein’s gravity correction appears for
general peculiar velocity in all scales as long as we take the
weak gravity and negligible relativistic pressure and ignore
the rotational perturbations. This is consistent with the
striking relativistic/Newtonian correspondence in the non-
linear perturbation theory available in the comoving gauge
[1], whereas our results in this work are fully nonlinear.
This situation in the comoving gauge can be compared

with the case in the other gauges. In the zero-shear gauge
and the uniform-expansion gauge we have Newtonian
hydrodynamic equations together with the Poisson’s equa-
tion exactly recovered in the infinite-speed-of-light (weak
gravity, negligible relativistic pressure, subhorizon, and
slow-motion) limit [6], whereas in the comoving gauge we
have recovered the Newtonian hydrodynamic equations for
irrotational fluid without the proper gravitational potential
identified as a fundamental variable, but without assuming
the subhorizon and the slow-motion limits.
In the zero-shear gauge we also have properly extended

the equations to include the relativistic pressure [i.e., without
assuming ~p=ð~ϱc2Þ ≪ 1] [12], whereas at the moment such a
luxury looks not feasible in the comoving gauge. The
variables in all the gauge conditions mentioned in this work
are free from the gauge mode and can be regarded as gauge-
invariant ones to the fully nonlinear order [8].
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APPENDIX: FULLY NONLINEAR
PERTURBATION EQUATIONS

Here, we present the complete set of fully nonlinear
perturbation equations without taking the temporal
gauge [6,8].
Definition of κ:

κ ≡ 3
_a
a

�
1 −

1

N

�
−

1

N ð1þ 2φÞ
�
3 _φþ c

a2

�
χk;k þ

χkφ;k

1þ 2φ

��
: ðA1Þ

ADM energy constraint:

−
3

2

�
_a2

a2
−
8πG
3

~ϱ −
Λc2

3

�
þ _a
a
κ þ c2Δφ

a2ð1þ 2φÞ2

¼ 1

6
κ2 − 4πG

�
~ϱþ ~p

c2

�
ðγ̂2 − 1Þ þ 3

2

c2φ;iφ;i

a2ð1þ 2φÞ3 −
c2

4
K̄i

jK̄
j
i : ðA2Þ

ADM momentum constraint:

2

3
κ;i þ

c
2a2N ð1þ 2φÞ

�
Δχi þ

1

3
χk;ik

�
þ 8πG

�
~ϱþ ~p

c2

�
aγ̂2

v̂i
c2

¼ c
a2N ð1þ 2φÞ

��
N ;j

N
−

φ;j

1þ 2φ

��
1

2
ðχj;i þ χi

;jÞ − 1

3
δjiχ

k
;k

�

−
φ;j

ð1þ 2φÞ2
�
χiφ;j þ

1

3
χjφ;i

�
þ N
1þ 2φ

∇j

�
1

N

�
χjφ;i þ χiφ

;j −
2

3
δjiχ

kφ;k

���
: ðA3Þ

Trace of ADM propagation:

− 3
1

N

�
_a
a

�
·
− 3

_a2

a2
− 4πG

�
~ϱþ 3

~p
c2

�
þ Λc2 þ 1

N
_κ þ 2

_a
a
κ þ c2ΔN

a2N ð1þ 2φÞ

¼ 1

3
κ2 þ 8πG

�
~ϱþ ~p

c2

�
ðγ̂2 − 1Þ − c

a2N ð1þ 2φÞ
�
χiκ;i þ c

φ;iN ;i

1þ 2φ

�
þ c2K̄i

jK̄
j
i : ðA4Þ

Tracefree ADM propagation:

�
1

N
∂
∂tþ 3

_a
a
− κ þ cχk

a2N ð1þ 2φÞ∇k

��
c

a2N ð1þ 2φÞ

×

�
1

2
ðχi;j þ χj

;iÞ − 1

3
δijχ

k
;k −

1

1þ 2φ

�
χiφ;j þ χjφ

;i −
2

3
δijχ

kφ;k

���

−
c2

a2ð1þ 2φÞ
�

1

1þ 2φ

�
∇i∇j −

1

3
δijΔ

�
φþ 1

N

�
∇i∇j −

1

3
δijΔ

�
N
�

¼ 8πG

�
~ϱþ ~p

c2

��
γ̂2v̂iv̂j

c2ð1þ 2φÞ −
1

3
δijðγ̂2 − 1Þ

�
þ c2

a4N 2ð1þ 2φÞ2
�
1

2
ðχi;kχj;k − χk;jχ

k;iÞ

þ 1

1þ 2φ
ðχk;iχkφ;j − χi;kχjφ;k þ χk;jχ

kφ;i − χj;kχ
iφ;kÞ þ 2

ð1þ 2φÞ2 ðχ
iχjφ

;kφ;k − χkχkφ
;iφ;jÞ

�

−
c2

a2ð1þ 2φÞ2
�

3

1þ 2φ

�
φ;iφ;j −

1

3
δijφ

;kφ;k

�
þ 1

N

�
φ;iN ;j þ φ;jN ;i −

2

3
δijφ

;kN ;k

��
: ðA5Þ
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Covariant energy conservation:� ∂
∂tþ

1

að1þ 2φÞ
�
N v̂k þ c

a
χk
�
∇k

�
~ϱþ

�
~ϱþ ~p

c2

��
N
�
3
_a
a
− κ

�

þ ðN v̂kÞ;k
að1þ 2φÞ þ

N v̂kφ;k

að1þ 2φÞ2 þ
1

γ̂

� ∂
∂tþ

1

að1þ 2φÞ
�
N v̂k þ c

a
χk
�
∇k

�
γ̂

�
¼ 0: ðA6Þ

Covariant momentum conservation:

1

aγ̂

� ∂
∂tþ

1

að1þ 2φÞ
�
N v̂k þ c

a
χk
�
∇k

�
ðaγ̂v̂iÞ þ v̂k∇i

�
cχk

a2ð1þ 2φÞ
�
−
�
1 −

1

γ̂2

�
c2Nφ;i

að1þ 2φÞ

þ c2

a
N ;i þ

1

~ϱþ ~p
c2

�
N
aγ̂2

~p;i þ
v̂i
c2

� ∂
∂tþ

1

að1þ 2φÞ
�
N v̂k þ c

a
χk
�
∇k

�
~p

�
¼ 0: ðA7Þ

We have

N ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2αþ χkχk

a2ð1þ 2φÞ

s
; K̄i

jK̄
j
i ¼

1

a4N 2ð1þ 2φÞ2
�
1

2
χi;jðχi;j þ χj;iÞ −

1

3
χi;iχ

j
;j

−
4

1þ 2φ

�
1

2
χiφ;jðχi;j þ χj;iÞ −

1

3
χi;iχ

jφ;j

�
þ 2

ð1þ 2φÞ2
�
χiχiφ

;jφ;j þ
1

3
χiχjφ;iφ;j

��
: ðA8Þ
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