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The description of the Zitterbewegung at a classical level indicates possible predictions of the electron
quantum properties even before quantization: this quivering motion is restricted to a plane, which leads us
to only two possible orientations of the corresponding angular momentum, even in the absence of a
quantized theory or external fields. Besides, the angular momentum associated with the Zitterbewegung
turns out to be proportional to ℏ. Namely, using a standard constraint analysis we have proven this last
result. Thus, assuming that this is an observable phenomenon, we recognize this oscillatory motion as a
classical signature of the spin of the electron. We also propose here an interpretation of the Zitterbewegung
based on geometrical grounds: it can be seen as the physical degrees of freedom of position variables
constrained to a sphere, which enforces the hypothesis of assuming an electron internal structure.
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I. INTRODUCTION

Two years after Dirac published his seminal paper that
established the basis of the electron quantum theory [1],
Schrödinger analyzed the time evolution of the position
operator which has appeared from the Dirac equation [2].
He found, besides the rectilinear movement with constant
velocity, an oscillatory one, denoted by Zitterbewegung
(ZB), which means trembling or quivering motion. It was
long associated with the electron structure, and it is seen as
being responsible for the electron spin. It was noticed for
the first time by Schrödinger as a consequence of the
noncommutative relation between the Hamiltonian and the
position operator. It was faced as a problem, since we could
expect no acceleration of the Dirac electron: the equation
was supposed to describe a free particle.
Some years later, the ZB problem was related to a

noncommutative Poisson bracket algebra like fX1;X2g¼ θ
[3]. It was demonstrated in Ref. [4] that Mathisson’s
classical electron [3] shows interesting analogies with
Schrödinger ZB. Solving Mathisson’s equation of motion,
we also obtain an oscillatory behavior, in the absence of an
external force, showing a noncommutative algebra con-
cerning the center of mass and the internal coordinates.
In technical terms, the ZB motion can be found

by solving the Heisenberg equations of motion for xðtÞ
(the position operator) using Dirac’s Hamiltonian given by

H ¼ mγ þ ~p · ~α;

which is the generator for time translations. Consider that
this coordinate operator has a term concerning the center of
mass such as

~XðtÞ ¼ H−1 ~ptþ ~a;

where ~a is a constant vector. This center of mass on
momentum eigenstates moves with a uniform velocity and
an oscillatory term that can be written as

~ξðtÞ ¼ i
2
½~αð0Þ −H−1 ~p�H−1e−2iHt;

which is known as Zitterbewegung. The position operator
can be written as

~xðtÞ ¼ ~XðtÞ þ ~ξðtÞ;
and it can be seen as the center of charge for the electron.
This last one oscillates quickly around the center of mass
XðtÞ, and ξðtÞ can be called the relative or the internal
position operator of the electron.
Since then, many efforts have been made to understand

this oscillatory motion in different experimental areas,
including, for example, spintronic systems [5], ultracold
atoms [6], and graphene [7], and also in a theoretical
manner [8]. Although recent advances claim that it should
be an unobservable phenomenon [9–11], a new experi-
mental setup advocates a direct observation of the ZB [12].
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Recently, the study of spinning particles was attacked in
Refs. [13,14], where the question of identifying the
appropriate position coordinates arises once again.
Besides, simulations with trapped ions also indicate that
the electron should experience ZB [15]. In order to
reproduce this scenario, we present in this work an
interpretation of the ZB predicted by a semiclassical1

Hamiltonian model that produces both Dirac’s equation
and gamma matrices in the path to canonical quantization
[16]. It uses both a variational principle and commuting
variables for its description. Our main objective here is to
discuss the classical counterpart of the model, which
predicts quantum properties for the electron, even before
quantization. In fact, the general solution of the classical
equations of motion shows ZB behavior.
Wewill show that the coordinates ~xi and Ji are analogous

to those of the center of mass and to the relative position of
a two-body system subjected to a central field. The Dirac
equation, which appears as a constraint of the model,
dictates the perpendicularity of the Ji coordinates (which
have trajectories that are ellipses) to the direction of the
center-of-mass motion. The angular momentum associated
with the ZB turns out to be proportional to ℏ. Besides, the
polarization induced by Dirac’s equation allows only two
possible orientations concerning the evolution of Ji. The
combination of both results reflect the well-known proper-
ties associated with the spin of the electron. A detailed
analysis of the oscillatory motion also shows that it can be
produced by a central potential of the form VðJÞ ∼ J2;
J ¼ jJij. The physical origin of this potential could be
traced back to a free particle constrained to a sphere.
Projection of its geodesic motion in the plane (where Ji

evolves) can be described by V ¼ VðJÞ. Hence, one is
naturally led to interpret the electron as having an internal
structure of a sphere with radius limited by its Compton
wavelength, which is a new result.

II. SEMICLASSICAL SPIN MODELS

The true understanding of the electron spin was achieved
by the Dirac equation

ðp̂μΓμ þmcÞΨðxμÞ ¼ 0; ð1Þ

where p̂μ ¼ −iℏ∂μ. Spin degrees of freedom are described
by gamma matrices Γμ and Γμν ≡ i

2
½Γμ;Γν�; see [17].

Recently, it has been proposed that different semiclassical
Hamiltonian models produce both the Dirac equation and
gamma matrices in the path to quantization [16,18]. One of
its specific features is to assume a variational problem. So,
we can analyze the time evolution of the configuration
variables even before quantization. Let us aim our attention

to the model introduced in Ref. [16]. Classically, it
is parameterized by phase-space coordinates xμ and pμ

ðμ; ν;… ¼ 0; 1; 2; 3Þ, with standard interpretations,
together with JAB variables, where A, B ¼ ðμ; 5Þ, which
will be called spin variables since they produce gamma
matrices during quantization. The Dirac equation is
obtained by imposing the constraint

T ¼ pμJ5μ þmcℏ ¼ 0 ð2Þ

over the state vector also in the process of quantization,
according to the rules

pμ → p̂μ ¼ −iℏ∂μ; ð3Þ

J5μ → Ĵ5μ ¼ ℏΓμ: ð4Þ

Let us now discuss the general solution of the equations of
motion [16]. They are given by

xiðtÞ ¼ Xi þ c
pi

p0
tþ 1

2jpj ðA
i sinðωtÞ − Bi cosðωtÞÞ; ð5Þ

J0i ¼ p0

jpj ðA
i sinðωtÞ − Bi cosðωtÞÞ; ð6Þ

J5iðtÞ ¼ mcℏ
jpj2 p

i þ Ai cosðωtÞ þ Bi sinðωtÞ; ð7Þ

JijðtÞ ¼ jpj
mcℏ

B½iAj� þ 1

jpjp
½iAj� sinðωtÞ− 1

jpjp
½iBj� cosðωtÞ;

ð8Þ

J50ðtÞ ¼ mcℏp0

jpj2 ; ð9Þ

where Xi, Ai, and Bi are integration constants, pμ is a

constant four vector, jpj≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−pμpμ

p
and ω ¼ 2jpj3

mℏp0, and m,

c, and ℏ have standard meanings. As usual, Latin letters
(i; j) run the values 1,2,3. The expressions above make
explicit that both position and spin variables show ZB
behavior. In a theory of constrained systems, one can
introduce the constraints into the equations of motion
before solving them. Or, equivalently, it is also possible
to find a general solution, and after that, one obtains which
conditions over the integration constants can be imposed by
the constraints. Using the solutions (7) and (9) of the
equations of motion in the constraint (2), wewill obtain two
special features that will be crucial for later discussions.
One possible solution is that

piAi ¼ piBi ¼ 0; ð10Þ

which means that the ZB oscillations take place in a plane
perpendicular to the rectilinear movement with direction

1The term “semiclassical” in this context means that ℏ is
present in the model before canonical quantization.
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pi. Notice the first two terms in xi ¼ xiðtÞ. This is exactly
the classical Dirac equation (2) that leads to this
“polarization” condition. Besides, the vectors Ai and Bi

are bounded such as

jAij < mcℏ
jpj ; jBij < mcℏ

jpj : ð11Þ

This condition is related to the causal motion of the
spinning particle described by the model. The details can be
found in Ref. [19].

III. SPACE-TIME INTERPRETATION OF
CONFIGURATION AND SPIN VARIABLES

In order to fathom the evolution of xi and JAB, we
recombine both as

~xiðtÞ ¼ xi −
J0i

2p0
; ~pi ¼ pi

p0
; ð12Þ

Ji ¼ J0i

2p0
; Vi ¼ J5i

J50
−
pi

p0
: ð13Þ

The spatial coordinates obey the equations

d~xi

dt
¼ c ~pi;

dJi

dt
¼ cVi; ð14Þ

and, by taking into account Eqs. (5)–(9), the general
solutions of the equations in (14) are

~xiðtÞ ¼ Xi þ c
pi

p0
t; ð15Þ

JiðtÞ ¼ 1

2jpj ðA
i sinωt − Bi cosωtÞ; ð16Þ

where (15) and (16) are analogous to the center-of-mass
coordinates and the relative position of a two-body problem
subjected to a central field. It is possible to show that Ji ¼
JiðtÞ is described by the potential of an isotropic harmonic
oscillator [20]:

VðJÞ ¼ 1

2
mω2J2; ð17Þ

where J ≡ jJij. On the other hand, the time evolution
followed by Ji ¼ JiðtÞ, whose trajectory is an ellipse [19],
can be described by the physical degrees of freedom
of a particle constrained by a sphere. Actually, both
descriptions turn out to be equivalent, and one can show
that the force constant k ¼ mω2 is proportional to the scalar
curvature of the surface, where the model can be found in
Ref. [20] and the proportionality is a characteristic particle
energy

k ¼ mω2 ¼ 2

a2
E; ð18Þ

where 2=a2 is the curvature of a sphere of radius a and E is
the energy of the particle to be calculated. Then we are led
to see the electron as a sphere. Let us compute its radius.
We will consider the solutions where pμpμ ¼ −m2c2, since
it is valid for all massive particles. For a slowly moving
center of mass, p0 ≈mc, and using the expression forω, we
have

2

a2
E ¼ mω2 ⇒

E
a2

¼ mc2�
ℏffiffi
2

p
mc

�
2
: ð19Þ

Hence, as we expect, E turns out to be the rest energy of the
electron E ¼ mc2, while its radius is limited by the
corresponding Compton wavelength a ¼ ℏffiffi

2
p

mc
. Taking into

account the bounds (11), we conclude that the Compton
wavelength is just a superior bound for the radius a of the
electron. We finally realize that this interpretation provides
a natural origin for the ZB as physical configuration
variables are constrained to a sphere. A different approach
for the ZB that claims an internal structure for the electron
can be found in Ref. [21]. The idea of a composed electron
lead us to the work in Ref. [22], where Dirac has treated it
as an extensible particle. We can also be driven to his
seminal paper upon the unitary irreducible particle repre-
sentations of the anti—de Sitter group [23].

IV. CONNECTION BETWEEN THE ANGULAR
MOMENTUM AND THE ELECTRON

SPIN USING ZB

Let us show now that the angular momentum associated
with the ZB is connected to some specific characteristics of
the electron spin, even though this last one is a quantum
property of matter. Let us consider the angular momentum
related to the coordinates Ji ¼ JiðtÞ:

Li ¼ mεijkJj _Jk ¼ mω

4jpj2 ε
ijkAjBk: ð20Þ

First we can stress that Li has only two possible
orientations. In fact, Ji ¼ JiðtÞ is restricted to a plane
perpendicular to the direction of pi. So, it evolves clock- or
counterclockwise, and in this case Li has the same or the
opposite direction of pi. To obtain an approximate value for
jLij, we will use again the approximation for a slow particle
p0 ≈mc, and taking into account the superior bound for
jAij and jBij in (11), one obtains the surprising result

jLij ¼ 2mjpj3
4jpj2mℏp0

�
mcℏ
jpj2

�
2

¼ ℏ
2
: ð21Þ
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The two observations above lead us to see the angular
momentum Li as the classic analogue to the quantum spin
of the electron. This is a direct demonstration that the ZB
motion leads us to the electron spin. In his work [2],
Schrödinger suggested the electron spin to be the result of a
local circulatory motion, constituting the ZB motion. It
would be also a result from the interference between
negative and positive energy solutions of Dirac’s equation,
he has stressed.
This is a surprising demonstration, since we know that

the Dirac particle orbital angular momentum is not a
constant of motion given by Lμν ¼ xμpν − xνpμ, but we

also know _Lμν ¼ vμpν − vνvμ ¼ − _Sμν, and hence the sum
Jμν ¼ Lμν þ Sμν is a constant of motion, where Sμν is the
spin variables and Jμν is the total angular momentum. So,
_Jμν ¼ 0 for a free particle with the internal variables being
the coordinates oscillating with the ZB frequency 2m [24].
The result in (21) does not modify the _Jμν ¼ 0 one but is a
consequence of the solutions of (14) for the spatial
coordinates.
Since then, of course, there have been other ways to

associate ZB with spin, and the issue attracts interest until
now [25]. However, what is new here is the constraint
analysis that has begun with Eq. (2).

V. CONCLUDING REMARKS

We have analyzed in this paper the classical counterpart
of a model whose quantization has led to the Dirac quantum
theory of the electron. A general solution of the equations
of motion presents the so-called Zitterbewegung. A geo-
metrical interpretation of the time evolution of configura-
tion variables leads us to consider the geometry of the
electron as a sphere of radius bounded by its Compton
wavelength. This picture has provided us with a simple
origin of the ZB as physical position variables constrained
to a sphere. The transversal evolution of the Ji oscillating
variables caused by Dirac’s equation provided only two
possible orientations of the angular momentum Li asso-
ciated with the ZB, even in the absence of a quantized
theory or external magnetic fields. Besides, jLij is restricted
by ℏ=2. Thus we interpret Li as the classical analogue to the
spin of the electron, a quantum feature. In this case, the
Zitterbewegung can be seen as a classical signature of
the spin.
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