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The Higgs-Dilaton model is able to produce an early inflationary expansion followed by a dark energy
dominated era responsible for the late time acceleration of the Universe. At tree level, the model predicts
a small tensor-to-scalar ratio (0.0021 ≤ r ≤ 0.0034), a tiny negative running of the spectral tilt
(−0.00057 ≤ dns=d ln k ≤ −0.00034) and a nontrivial consistency relation between the spectral tilt of
scalar perturbations and the dark energy equation of state, which turns out to be close to a cosmological
constant (0 ≤ 1þ wDE ≤ 0.014). We reconsider the validity of these predictions in the vicinity of the
critical value of the Higgs self-coupling giving rise to an inflection point in the inflationary potential.
The value of the inflationary observables in this case strongly depends on the parameters of the model. The
tensor-to-scalar ratio can be large [r ∼Oð0.1Þ] and notably exceed its tree-level value. If that happens, the
running of the scalar tilt becomes positive and rather big [dns=d ln k ∼Oð0.01Þ] and the equation-of-state
parameter of dark energy can significantly differ from a cosmological constant [1þ wDE ∼Oð0.1Þ].
DOI: 10.1103/PhysRevD.90.027307 PACS numbers: 98.80.Cq, 98.80.-k, 95.36.+x, 14.80.Bn

I. INTRODUCTION

AB-modepolarizationmeasurement in the cosmicmicro-
wave background (CMB) has been recently reported by the
BICEP2 collaboration [1] and interpreted as the effect of
gravitational waves generated during inflation. Keeping in
mind the ongoing debate about this interpretation [2,3], if
confirmed, it would imply a rather large tensor to scalar ratio
r ∼ 0.2, inconflictwith the tree-levelpredictionsofoneof the
simplest and most economical inflationary scenarios: the
Higgs inflation model [4].
A way of reconciling the appealing Higgs inflation idea

with the BICEP2 result via quantum corrections has been
presented in Refs. [5,6] (see also Ref. [7]). Similar
approaches involving new physics beyond the standard
model can be found in Refs. [8–11].
In this paper, we reconsider the predictions of a scale-

invariant extensionofHiggs inflationknownasHiggs-Dilaton
cosmology [12–14] in light of the recent BICEP2 results. The
paper is organized as follows. In Sec. II we review the Higgs-
Dilaton model and its tree-level predictions. The effect of
quantum corrections is discussed in Sec. III, where we
introduce a critical regime that has not been previously
studied. Section IV is devoted to the detailed analysis of this
new regime. The conclusions are presented in Sec. V.

II. TREE-LEVEL PREDICTIONS

The Higgs-Dilaton model is a minimalistic scale-
invariant extension of Higgs inflation in which the vacuum
expectation value of the Higgs field is promoted into a
singlet scalar field, the dilaton χ, which, together with the
Higgs, is nonminimally coupled to gravity. The late time

accelerated expansion of the Universe is implemented
within the framework of unimodular gravity and the
standard model is assumed to be a complete theory all
the way up to the inflationary scale.
In unimodular gravity [15,16] the metric determinant g is

restricted to take a constant value, jgj ¼ 1. This constraint
gives rise to the appearance of an integration constant Λ0 at
the level of the equations of motion. The resulting theory is
phenomenologically indistinguishable from scale-invariant
gravity in the presence of a constant term Λ0 [17],

Lffiffiffiffiffiffi−gp ¼ fðχ;hÞ
2

R−
1

2
ð∂χÞ2−1

2
ð∂hÞ2−Uðχ;hÞ−Λ0: ð1Þ

This term should be however understood as an initial
condition rather than as a fundamental parameter in the
action. The prefactor of the Ricci scalar and the potential
are given respectively by fðχ; hÞ ¼ ξχχ

2 þ ξhh2 and

Uðχ; hÞ ¼ λ

4

�
h2 −

α

λ
χ2
�

2

; ð2Þ

with h denoting the radial component of the Higgs field
in the unitary gauge, λ its self-coupling and α ∼ v2=M2

P a
dimensionless parameter reproducing the hierarchy
between the electroweak v ¼ 250 GeV and the Planck
scale MP ¼ ð8πGÞ−1=2 ¼ 2.44 × 1018 GeV.
The phenomenological consequences of the model can

be easily analyzed by performing a conformal transforma-
tion ~gμν ¼ κ2fðχ; hÞgμν to the so-called Einstein frame,
together with a rather involved field redefinition which, in
the limit ξχ ≪ ξh, reads [14]

tanh ½aκðϕ0 − jϕjÞ� ¼
ffiffiffiffiffiffiffiffiffiffi
1 − ς

p
cos θ; ð3Þ
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eγκρ ¼ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 6ξχÞχ2 þ ð1þ 6ξhÞh2

q
: ð4Þ

The constant κ in the previous expressions is the inverse of
the reduced Planck mass MP and we have defined

ς≡ ð1þ 6ξhÞξχ
ð1þ 6ξχÞξh

; a≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξχð1− ςÞ

ς

s
; γ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξχ

1þ 6ξχ

s
;

tanθ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ξh
1þ 6ξχ

s
h
χ
; tan ½aκϕ0�≡

ffiffiffiffiffiffiffiffiffiffi
1− ς

p
:

In terms of the new field variables ðρ;ϕÞ, the Lagrangian
density takes the very simple form [14]

~Lffiffiffiffiffiffi
−~g

p ¼ M2
P

2
~R −

e2bðϕÞ

2
ð∂ρÞ2 − 1

2
ð∂ϕÞ2 − ~Vðρ;ϕÞ; ð5Þ

with e2bðϕÞ ≡ ς cosh2 ½aκðϕ0 − jϕjÞ�. The potential ~V is
the sum of two pieces, associated respectively to the
scale-invariant Higgs potential (2)

~UðϕÞ ¼ λM4
P

4ξ2hð1 − ςÞ2 ð1 − e2bðϕÞÞ2; ð6Þ

and to the unimodular integration constant Λ0,

~UΛðρ;ϕÞ ¼
Λ0

γ4
e4bðϕÞe−4γκρ: ð7Þ

In the absence of the Λ0 term, the field ρ is massless, as
corresponds to the Goldstone boson associated to the
spontaneous breaking of scale invariance. Motivated by
this, we will refer to ρ and ϕ as the dilaton and the Higgs
field respectively.
An important property of ~UðϕÞ is its flatness at suffi-

ciently large values of ϕ. This behavior allows for an
inflationary expansion of the Universe in which the scale-
breaking potential (7) does not play a significant role [14].
Denoting by N the number of e-folds of inflation, the
inflationary observables associated to ~UðϕÞ read [14]

As ≃ λsinh2ð4ξχNÞ
1152π2ξ2χξ

2
h

; ð8Þ

ns ≃ 1 − 8ξχ coth ð4ξχNÞ; ð9Þ

αs≃ − 32ξ2χsinh−2ð4ξχNÞ; ð10Þ

r≃ 192ξ2χsinh−2ð4ξχNÞ; ð11Þ

at leading order in the nonminimal couplings ξχ and 1=ξh.
Note that, while the amplitude of the scalar perturbations As
depends on both ξh and ξχ , the spectral tilt ns, the running

αs ≡ dns=d ln k and the tensor-to-scalar ratio r are func-
tions of ξχ only.
At the end of inflation, the Higgs field oscillates around

the minimum of (6), releasing its energy into the standard
model particles through a rather complicated combined
preheating mechanism [18,19] in which no dilaton par-
ticles are produced [20] (see also Refs. [21,22]). The Higgs
field settles eventually down to the minimum of the
inflationary potential (6) and we are left with a single
degree of freedom, the dilaton field ρ. At the end of
preheating, the potential (7) takes the form of a dark-energy
(DE) quintessence potential

~UΛðρÞ≃ Λ0

γ4
e−4γκρ: ð12Þ

Like the inflationary observables (9)–(11), this potential
depends only on the nonminimal coupling ξχ . This fact allows
us to derive a full set of consistency relations between the
early and late Universe observables, and in particular between
the DE equation-of state parameter associated to (12),

1þ wDE ≃ 8

3

ξχ
1þ 6ξχ

; ð13Þ

and the spectral tilt of inflationary perturbations (9). This
relation reads [14]

ns ≃ 1 −
12ð1þ wDEÞ
5þ 9wDE

coth
6Nð1þ wDEÞ
5þ 9wDE

: ð14Þ

The comparison of the tree-level results (8) and (9) with the
PlanckþWPþ highLþ BAO 2σ bounds [23],

109As ¼ 2.20� 0.11; ns ¼ 0.9608� 0.0108; ð15Þ
puts important constraints on the two nonminimal couplings
of the scalar fields to gravity,

0≲ ξχ ≲ 0.0054; 48300≲ ξhffiffiffi
λ

p ≲ 68000: ð16Þ

These bounds translate, throughEqs. (10), (11) and (13), into a
tree-level prediction for the tensor-to-scalar ratio, the running
of the spectral tilt, and the DE equation-of-state parameter

0.0021 ≤ r ≤ 0.0034; ð17Þ

−0.00057 ≤ αs ≤ −0.00034; ð18Þ
0 ≤ 1þ wDE ≤ 0.014: ð19Þ

Note that the value of wDE turns out to be very close to that
associated to a cosmological constant (wCC ¼ −1) and it is
well within the present PlanckþWPþ BAO 2σ observatio-
nal bound [23],

−0.38 ≤ 1þ wobs ≤ 0.11: ð20Þ

BRIEF REPORTS PHYSICAL REVIEW D 90, 027307 (2014)

027307-2



III. QUANTUM CORRECTIONS

The predictions and consistency relations derived in the
previous section are subject to changes in the presence of
quantum corrections. A regularization procedure respecting
the symmetries of the classical action (1) together with
the approximate shift symmetry of the dilaton field in the
Einstein frame was presented in Ref. [24] (see also
Refs. [25–27]). In that prescription, the constant ’t Hooft-
Veltman parameter of dimensional regularization is replaced
by a combination of the scalar fields h and χ with the
appropriate dimension, μ2 → μ2ðχ; hÞ. The quantity μ2ðχ; hÞ
is defined in the original frame (1) and its precise form
cannot be completely determined in the absence of an
ultraviolet completion of gravity. The quantization of the
Higgs-Dilaton model requires the choice of a classical action
together with a choice of subtraction rules, which should be
understood as the remnant of a given ultraviolet completion.
The simplest possibility (albeit nonunique, cf. Refs. [28–30])
is to take μ2 ∝ ξχχ

2 þ ξhh2 or equivalently ~μ ∝ M2
P in the

Einstein frame [24].
The renormalization group enhanced potential in the

Einstein frame reads

~UðϕÞ ¼ λð ~μÞM4
P

4ξ2hð1 − ςÞ2 ð1 − e2bðϕÞÞ2; ð21Þ

with the effective self-coupling λð~μÞ given by

λð~μÞ ¼ λ0 þ blog2
�
κ ~μ

qeff

�
: ð22Þ

Here b≃ 2.3 × 10−5 and λ0 is some function of the top
quark pole mass, the Higgs mass and the strong coupling
constant at the inflationary scale [31], whose precise form
will not be relevant for the present discussion [5]. The scale

~μ2 ¼ M2
Pð1 − e2bðϕÞÞ
ð1 − ςÞ ð23Þ

is proportional to the top quark mass in the Einstein frame.
The proportionality constants, together with some func-
tional dependence on the top quark pole mass, the Higgs
mass and the strong coupling constant at the inflationary
scale [5], have been incorporated in the definition of qeff .
The inspection of the renormalization group enhanced

potential (21) reveals the existenceof threedifferent regimes:
(i) Universality regime.—For λ0 ≫ b=16, the form of

the potential is almost independent of the precise
values of the parameters ξχ , ξh and qeff appearing
within the logarithmic correction in (22). As in the
tree-level case, the potential effectively depends on
two parameters (

ffiffiffi
λ

p
=ξh and ξχ), which can be fixed

with the two observational bounds in (15).
(ii) Critical regime.—If λ0 ¼ b=16, both the first

and the second derivative of the potential are equal

to zero at some field value along the inflationary
slow-roll evolution.

(iii) Forbidden regime.—If λ0 ≲ b=16, the potential
develops a wiggle and inflation is no longer pos-
sible. Smaller values of λ0 make the electroweak
vacuum unstable [32–34].

IV. THE CRITICAL REGIME

A detailed analysis of the universality regime in the
Higgs-Dilaton model was performed in Ref. [24]. As
expected, the values of the inflationary observables were
shown to be stable and to coincide with the tree-level
estimates (8)–(11). The consistency relation (14) and the
bounds (17)–(19) became in this case solid predictions,
valid even in the presence of quantum corrections.
The situation in the vicinity of the critical point

λ0 ¼ b=16 is rather different. The dependence of the
running function λð~μÞ on the parameters λ0, ξχ , ξh and
qeff is now essential and the shape of the inflationary
potential strongly differs from the tree-level case
(cf. Fig. 1). The slow-roll parameter ϵ becomes nonmono-
tonic, opening the possibility of getting a sizable tensor-to-
scalar ratio [35,36]. To illustrate this point, we will use the
COBE normalization to fix the value of λ0 and will reduce
the space of parameters by setting qeff ¼ 1.05 [37]. The
nonminimal coupling ξh will be taken to be a free parameter
and the range of variation of ξχ will be restricted to the
range dictated by the low-energy observational bound (20),
the theoretical requirement ξχ > 0 and the relation (13),
namely 0 ≤ ξχ ≲ 0.06.
Numerical results for the tensor-to-scalar ratio r, the

running of the spectral tilt αs ≡ d ln ns=d ln k and the
running of the running βs ≡ d2 ln ns=d ln k2 as a function
of the spectral tilt ns are displayed in Fig. 2 for varying
values of the nonminimal couplings ξχ and ξh. As shown in
the upper panel, it is possible to obtain any value of r and ns
by properly choosing the values of qeff and the nonminimal
couplings ξh and ξχ . For the sizable values of r suggested
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FIG. 1 (color online). The shape of the renormalization group
enhanced potential in the critical regime in which λ0 − b=16≃ 0.
The subfigure shows the nonmonotonic behavior of the slow-roll
parameter ϵ for such a potential.
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by the BICEP2 collaboration [1], the runnings αs and βs
(2nd and 3rd panel respectively) turn out to be positive and
rather large [38]. The tree-level consistency condition (14)
does no longer apply and the equation-of-state parameter
of dark energy [cf. Eq. (13)] can significantly differ
from a cosmological constant [1þ wDE ∼Oð0.1Þ] without
spoiling inflation [42].
The value of the nonminimal coupling ξh in the critical

case can be rather small, ξh ∼Oð10Þ, which has interesting
consequences for the range of validity of the theory. As

shown in Ref. [24], perturbation theory, when performed
around the constant electroweak vacuum v, breaks down at
a scale ΛG ∼MP=ξ, where an ultraviolet completion of the
model or a self-healing mechanism should be expected.
The small value of ξh in the critical region delays the onset
of this strong coupling regime and avoids the introduction
of an ultraviolet completion at energy scales significantly
below the Planck scale.
The self-consistency of the model is also guaranteed

when perturbations are computed around inflationary
Higgs field values [43]. As shown in Fig. 3, the typical
energy of the scalar perturbations produced during critical
inflation, H ∼Oð ffiffiffi

λ
p

MP=ξhÞ is well below the cutoff of the
theory at those energies, ΛG ∼OðMP=

ffiffiffiffiffi
ξh

p Þ [48].

V. CONCLUSIONS

We have clarified the effect of quantum corrections on
the predictions of the Higgs-Dilaton model. Away from the
critical point, the inflationary and dark energy observables
are effectively controlled by the nonminimal coupling of
the dilaton field to gravity. The consistency of the model
requires a small tensor to scalar ratio, a tiny negative
running of the spectral tilt and a dark energy equation of
state close to a cosmological constant.
In the vicinity of the critical point, the inflationary

observables strongly depend on the nonminimal couplings
of the Higgs and the dilaton field to gravity and on the
inflationary Higgs and top quark masses encoded in the
value of qeff . The model does not require the inclusion of
any cutoff scale below the Planck scale and can give rise to
sizable values of the tensor-to-scalar ratio. For those values,
the running of the scalar tilt (and the running of the
running) becomes positive and rather large. Suitable
choices of the nonminimal coupling ξχ allow for a late
time evolution of the Universe that can significantly differ
from a de Sitter expansion. A proper comparison of our
results with observations would require a complete fit of
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FIG. 2 (color online). Dependence of the inflationary observ-
ables on the nonminimal couplings ξh and ξχ for qeff ¼ 1.05.
Different lines are associated to particular values of ξχ . The value
of ξh along these lines varies within the interval f9; 50g.
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FIG. 3 (color online). Ratio between the typical momenta k ∼H
of the scalar perturbations produced during inflation and the gauge
cutoff ΛG as a function of the Higgs field ϕ. Different colors
correspond to different values of ξχ . Shaded areas account for
changes ofξh leading to a spectral tilt in the rangens ∈ f0.95; 0.97g.
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the inflationary spectra to the CMB data along the lines
presented in Refs. [39–41]. That analysis is beyond the
scope of this paper.
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