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In a recent paper, Schutz proposed an analytical approximation for simplifying the treatment of the
polarization angle and conveniently evaluating relative detection rates of compact binary inspirals for various
networks of ground-based interferometers.We derive relative event rates by strictly handling the polarization
angle, and we quantitatively examine the validity of Schutz’s approximation. The associated error of the
approximation is rigorously shown to be less than 1.02%, irrespective of the details of the detector networks.
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Currently, second-generation gravitational-wave (GW)
interferometers are being installed, and constructed around
the world. Their most promising targets are inspirals of
compact binaries, and various scientific prospects have
been actively discussed for the binaries.
One of the primary measures for such studies is the

detection rate of the binaries. While the overall rate is
highly uncertain, due to limitations of our astronomical
knowledge, the relative detection rates depend mainly on
the geometry of the source-network configuration (see, e.g.,
[1,2]) for a spatially homogeneous distribution of sources.
The relative rates play critical roles in examining the
performance of potential detector networks. The arguments
related to the detection rates include the dependence on
duty cycles of constituent detectors, the impact of an
additional detector (e.g., LIGO-India), and designing
appropriate strategies for counterpart searches with electro-
magnetic wave telescopes (see, e.g., [1,3,4]).
However, the signal-to-noise ratios (SNRs) of individual

binaries depend not only on their sky positions, but also
strongly on their orientations, which are specified by the
inclination I and polarization angle ψ (explained below)
[1,2]. In order to make solid estimations of the relative rates,
we have traditionally applied cumbersomemethods, such as
MonteCarlo calculations, to incorporate binary orientations.
To conveniently evaluate the relative event rates, Schutz

recently proposed an analytical approximation of taking a
certain average for the polarization angle ψ [1] (see, e.g.,
[5] for its application); only a two-dimensional integral
with respect to the sky position is then actually required for
the relative event rates. However, in Schutz’s paper, the
accuracy of this approximation was left unexamined, with a
comment that it can be tested by comparing it with
Monte Carlo studies.
In this paper, we analytically evaluate the relative rates,

with strict handling of the dependence on the polarization
angle. After deriving our final expression given in Eq. (8),
we show how Schutz’s approximation can be understood in
our formulation, and we rigorously clarify its accuracy.

We assume a coherent analysis of GWs with L-shaped
interferometers labeled by i ¼ 1;…; m (m is the total
number of detectors). Because of the spin-two nature of
GWs, we can generally express the responses of a detector i
to the incoming two polarization modes þ and × as [1,2]

ciþðn;ψÞ ¼ aiðnÞ cos 2ψ þ biðnÞ sin 2ψ ; ð1Þ

ci×ðn;ψÞ ¼ −aiðnÞ sin 2ψ þ biðnÞ cos 2ψ ; ð2Þ

with the polarization angle ψ and the source direction n.
For GWsources, we consider inspirals of circular binaries

that are assumed to have random positions and orientations,
and that emit two polarization modes proportional to

dþðIÞ ¼
I2 þ 1

2
; d×ðIÞ ¼ I ð3Þ

with the inclination I ≡ cos i (i is the inclination angle). In
Eqs. (1) and (2), the polarization angle ψ fixes the azimuthal
directionof theorbital angularmomentumofbinaries around
the sky direction n.
Then, neglecting the precession of the orbital plane, the

coherent SNR depends on the direction n and orientation
ðI;ψÞ of a binary as

SNR2 ∝
Xm
i¼1

½ðciþdþÞ2 þ ðci×d×Þ2�≡ fðn; I;ψÞ: ð4Þ

Here, applying trigonometric identities, the function f can
be expressed as

fðn;ψ ; IÞ¼ σðnÞ½ðd2þþd2×Þþ ϵðnÞðd2þ−d2×Þcos4ψ 0� ð5Þ

with a shifted polarization angle ψ 0 ¼ ψ þ δðnÞ, and the
two parameters σðnÞ and ϵðnÞ that depend only on n for a
given detector network as

σðnÞ≡Xm
i¼1

½a2i þ b2i �; ð6Þ
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ϵðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Pm

i¼1ða2i − b2i Þ�2 þ 4ðPm
i¼1 aibiÞ2

p
σðnÞ : ð7Þ

The latter represents the asymmetry of the network sensi-
tivities to the two polarization modes. Using the Cauchy-
Schwarz inequality, we can show 0 ≤ ϵðnÞ ≤ 1 with the
identity ϵðnÞ ¼ 1 for a single detector network. Note that
the expression (5) can be also found in [2].
For binaries with precessing orbital planes, the orienta-

tion angles ðI;ψÞ change over time. Thus, in Eq. (5), they
should be regarded as appropriately averaged angles. This
complicates the problem mathematically. However, our
simple treatment above would be a reasonable approxima-
tion, at least for double neutron stars [2].
Next, let us discuss the effective volume detectable

with the detector network by the coherent signal analysis.
With respect to a fixed detection threshold for the
coherent SNR, the maximum detectable distance rmax
scales as rmax ∝ fðn;ψ ; IÞ1=2 for given angular parame-
ters ðn;ψ ; IÞ. Thus, the effective volume associated with
a parameter space dndψdI is simply proportional
to fðn;ψ ; IÞ3=2dndψdI.
By integrating out the source orientation angles ðψ ; IÞ,

the effective volume (equivalently, the relative detection
rate) for a given solid angle dn is proportional to

σðnÞ3=2gðϵðnÞÞdn; ð8Þ
where the new function gðϵÞ is defined by

gðϵÞ≡ 1

25=2π

Z
π

0

dψ
Z

1

−1
dI½ðd2þ þ d2×Þ

þ ϵðd2þ − d2×Þ cos 4ψ �3=2 ð9Þ

with the normalization factor 25=2π given for the double
integrals with dþð1Þ ¼ d×ð1Þ ¼ 1 (corresponding to face-
on binaries).
The function gðϵÞ monotonically increases in the

relevant range 0 ≤ ϵ ≤ 1 with

gð0Þ ¼ 0.290451;

gð1Þ ¼ 0.293401 ¼ 1.010125 × gð0Þ:
ð10Þ

The numerical value gð0Þ is identical to that given in [1]. By
perturbatively expanding Eq. (9), we also have

gexpðϵÞ ¼ 0.290451ð1þ 0.00978ϵ2 þ 0.00026ϵ4 þOðϵ6ÞÞ
ð11Þ

with an accuracy of jgexpðϵÞ=gðϵÞ − 1j < 10−4 [dropping
the oðe4Þ terms] in the range 0 ≤ ϵ ≤ 1. We can anticipate
the observed weak dependence on ϵ, considering that (i) the
integral (9) becomes constant at the power index 1 close
the original index of 3=2, and (ii) we have g0ð0Þ ¼ 0 due to
the symmetry of the integrand.
Now we discuss Schutz’s approximation. In our formu-

lation, this corresponds to taking an average of ψ at the
Eq. (5) stage, before the nonlinear operation ½� � ��3=2 in
Eq. (9). This is equivalent to putting ϵðnÞ ¼ 0 in Eq. (9); the
resultant expression is identical to

σðnÞ3=2gð0Þdn; ð12Þ
in contrast to Eq. (8) obtained in our strict derivation.
However, our results (10) and (11) show that, for

evaluating the relative detection rates, disregarding the ϵ
dependence [thus only using the leading term in Eq. (11)] is
an excellent approximation, with an error less than 1.02%.
Because the integrands in Eqs. (8) and (12) are non-
negative, the quoted accuracy is also valid for the final
results after the sky average. If necessary, we can readily
include the ϵ dependence (11) for gðϵÞ.
Within the guaranteed accuracy of 1.02%, we can now

justify evaluating the relative detection rate in the solid
angle dn simply by σðnÞ3=2dn; or the total rate by

Z
4π
σðnÞ3=2dn; ð13Þ

without resorting to cumbersome Monte Carlo calculations
to handle the orientations of the binaries.
If thedetectors i ¼ 1;…; mhavedifferent sensitivities (or,

equivalently, horizon distances), we can straightforwardly
apply our results by introducing appropriate weights to the
response functions ðai; biÞ. Furthermore, the form (5) can be
derived even in the presence of certain correlated noises
between detectors with the corresponding functions σðnÞ
and ϵðnÞ [2]; our results are unchanged in such cases as well.
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