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We study AdS7=CFT6 correspondence between M theory on AdS7 × S4 and the 6D N ¼ ð2; 0Þ
superconformal field theory. In particular, we focus on Wilson surfaces. We use the conjecture that the (2,0)
theory compactified on S1 is equivalent to the 5D maximal super-Yang-Mills (MSYM), and Wilson surfaces
wrapping this S1 correspond to Wilson loops in 5D MSYM. The Wilson loops in 5D MSYM obtained
by the localization technique result in the Chern-Simons matrix model. We calculate the expectation values
of Wilson surfaces in large-rank symmetric representations and antisymmetric representations by using
this result. On the gravity side, the expectation values for probe M5-branes wrapping submanifolds of
the background are computed. Consequently, we find new, nontrivial evidence for the AdS7=CFT6

correspondence that the results on the gravity side perfectly agree with those on the CFT side.
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I. INTRODUCTION AND SUMMARY

The AdS/CFT correspondence [1] provides a lot of new
insight into wide regions of physics, and it is significant to
reveal even more properties of this duality for under-
standing string theories and gauge theories. While many
attempts succeed in confirming it in lower dimensions, the
higher-dimensional versions of the correspondence are still
mysterious. The main reason is that there are few known
facts about conformal field theories in higher dimensions.
However, recently it was found that the supersymmetric
localization can be applied to 5D super-Yang-Mills theories
on curved geometries and their partition functions can be
derived exactly as mentioned below. We can utilize them to
verify the AdSdþ1=CFTd for d ≥ 5. For example, there are a
few pieces of evidence of the AdS6=CFT5 [2,3].
The 5D N ¼ 1, super-Yang-Mills theories are con-

structed on several curved backgrounds. Their partition
functions and expectation values of Wilson loops have been
calculated by the localization technique [4–15]. The 5D
N ¼ 1� theory on the round five-sphere with a radius r,
which contains a vector multiplet and an adjoint hyper-
multiplet, has N ¼ 2 supersymmetry if the mass for the
hypermultiplet takes a specific value. Then the partition
functions and Wilson loops reduce to the Chern-Simons
matrix model [7,16] first considered in [17]. Also, we can
produce the 5D maximal super-Yang-Mills (MSYM) on S5

from the (2,0) theory by the dimensional reduction with
the appropriate twist to keep the supersymmetry [7]. It is
argued in [18–20] that Kaluza-Klein modes in 6D can be
identified with instanton particles in 5D under

R6 ¼
g2YM
8π2

; ð1:1Þ

where R6 is the radius of the compactified S1, and gYM is
the five-dimensional gauge coupling constant. Following
their discussion, the 5D MSYM seems to contain all
degrees of freedom of the (2,0) theory. An observation
supporting this claim is that the free energy obtained by the
Chern-Simons matrix model reproduces N3 behavior1 of
the supergravity analysis on AdS7 × S4 [7,16,21,22].
In this paper, we focus on the expectation values of

Wilson surfaces for the AdS7=CFT6 correspondence. The
Wilson surfaces in the (2,0) theory are a class of nonlocal
operators localized on surfaces in 6D [23]. Through the
above argument, Wilson surfaces extending to the compa-
tified direction are Wilson loops in the 5D theory.
Therefore, we compute the expectation values of them
by using the Chern-Simons matrix model. In particular,
we evaluate the expectation values of Wilson loops in
large-rank antisymmetric representations and symmetric
representations in the large N limit.
On the other hand, naively, a probe M2-brane ending on

multiple M5-branes is the M-theory description of the
Wilson surface [23]. The holographical description of a
spherical Wilson surface has been studied in [24,25].
Recently, it has been clarified in [11,16,26] that the
expectation value of the Wilson surface wrapping on
S1 × S1 in the fundamental representation matches that
of the M2-brane wrapping AdS3.
In this paper, we consider a probe M5-brane description

of the Wilson surface [27–31] instead of the M2-brane.
When the number of the overlapping and winding
M2-branes becomes large, they blow up and make an
M5-brane with world volume flux wrapping two types of
submanifolds of AdS7 × S4 due to the representation: one
is AdS3 × S3 totally in AdS7, and the other is AdS3 × ~S3
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1However, the free energies for the Chern-Simons matrix
model and the supergravity do not completely coincide by an
overall constant [16,21].
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belonging to S4. This is the analogue of the D3-brane and
D5-brane description of the symmetric and antisymmetric
Wilson loops in AdS5=CFT4 correspondence [32–36].
According to this analogy, we expect that an M5-brane
wrapping on AdS3 × S3 corresponds to the symmetric
representation, andonewrapping onAdS3 × ~S3 corresponds
to the antisymmetric representation.Wecalculate the expect-
ationvalues of theWilson surfaces by evaluating the on-shell
action of these M5-branes. In the calculation for the
M5-branes, we use the so-called Pasti-Sorokin-Tonin (PST)
action [37–39].
We compare the results on the CFT side and the gravity

side, and we find new evidence supporting the AdS7=CFT6

correspondence; the M5-brane wrapping AdS3 × S3 and
wrapping AdS3 × ~S3 perfectly agree with the Wilson sur-
face in symmetric representation and in antisymmetric
representation, respectively. We note that the authors of
[16] have suggested that the relation (1.1) be modified at
strong coupling such that the constant coefficient becomes
dependent on the square of the mass for the adjoint
hypermultiplet. One can find that our results are truly
consistent with their argument.
One of the interesting future directions is to study the

relation between the bubbling geometry andWilson surfaces
in larger representations. A class of bubbling solutions in
the 11-dimensional supergravity as the gravity dual of the
Wilson surfaces is obtained in [27,31,40,41] along the line of
the bubbling geometry for local operators [42] and Wilson
loops [40,43,44]. In these solutions, the eigenvalue distri-
bution of the matrix model is suggested as the following
form: the real line of the eigenvalue space is divided into
black and white segments, and the density is a positive
constant on the black segments and zero on the white
segments. The unit length of a black segment is twice that
of a white segment. Actually, the eigenvalue distribution of
the Chern-Simons matrix model obtained in [45] is consis-
tent with the bubbling solutions. This observation is other
evidence of the correspondence. It will be an interesting
future work to calculate the expectation values of Wilson
surfaces by using the bubbling solutions and compare them
to the calculation in the Chern-Simons matrix model.
The rest of the paper is organized as follows: In Sec. II,

we use the Chern-Simons matrix model and evaluate the
expectation values of Wilson surfaces in antisymmetric
representation and symmetric representation. In Sec. III, we
use probe M5-branes on the gravity side and calculate the
expectation values of the Wilson surfaces.

II. WILSON SURFACES IN CHERN-SIMONS
MATRIX MODEL

A. Chern-Simons matrix model in large N

We consider 6D AN−1 type (2,0) theory on S1 × S5 and a
Wilson surface in this theory. This Wilson surface is
wrapping on S1 × S1 where the first S1 is orthogonal to

S5 and the second S1 is a great circle of S5. This Wilson
surface can be treated as a Wilson loop wrapping a great
circle in 5D SUðNÞMSYM on S5 if the boundary condition
in the S1 direction is twisted appropriately [7,11].
The expectation values of Wilson loops wrapping on

the great circle on S5 with a radius r are calculated by using
the localization technique [4–7,11]. In particular, the
expectation value of the Wilson loop in the representation
R in MSYM with a coupling constant gYM reduces to the
Chern-Simons matrix model

hWRi ¼
1

Z

Z YN
i¼1

dνi
Y
i;j;i≠j

���� sinhN2 ðνi − νjÞ
����

× exp

�
−
N2

β

XN
i¼1

ν2i

�
TrReNν; ð2:1Þ

where β ¼ g2YM
2πr. Z is the partition function given by

Z ≔
Z YN

i¼1

dνi
Y
i;j;i≠j

���� sinhN2 ðνi − νjÞ
���� exp

�
−
N2

β

XN
i¼1

ν2i

�
:

ð2:2Þ

We evaluate these integrals in the limit N → ∞ while β
is kept finite in order to compare them to the gravity
calculation. Notice that this limit is different from the
’t Hooft limit. For the ’t Hooft limit, the expectation values
of the Wilson loops are computed in [46].
Let us first consider the eigenvalue distribution of the

partition function before calculating the Wilson loop. When
we take N → ∞ with fixed β, the hyperbolic sine factor is
simplified and we obtain

Z ∼
Z YN

i¼1

dνi exp

�
−
N2

β

XN
i¼1

ν2i þ
N
2

X
i;j;i≠j

jνi − νjj
�
: ð2:3Þ

In the limit, both terms in the exponential are OðN3Þ, and,
therefore, this integral can be evaluated by saddle points.
It yields to the saddle point equations for νi

0 ¼ −
2N2

β
νi þ N

X
j;i≠j

signðνi − νjÞ: ð2:4Þ

We can easily find the following solutions under the
assumption νi > νj for i < j:

νi ¼
β

2N
ðN − 2iÞ: ð2:5Þ

In other words, the eigenvalue density is given by
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ρðνÞ ¼
(

1
β for jνj ≤ β

2
;

0 for jνj > β
2
:

ð2:6Þ

We note that instanton factors do not appear in our
computation. The full partition function of theN ¼ 1 SYM
on S5 including instantons is derived in [11] as

Zðβ; m; ϵ1; ϵ2Þ

∼
Z YN

i¼1

dνi exp

�
−

N2

βð1þ aÞð1þ bÞð1þ cÞ
XN
i¼1

ν2i

�

×
Y3
A¼1

ZðAÞ
pertZ

ðAÞ
inst; ð2:7Þ

where ZðAÞ
inst is an instanton one-loop determinant (see [11]

for details). For the maximally supersymmetric case
obtained by taking appropriate limits of each parameter,

the perturbative part Zð1Þ
pertZ

ð2Þ
pertZ

ð3Þ
pert reduces to (2.2) and

Zð1Þ
instZ

ð2Þ
instZ

ð3Þ
inst → e

Nπ2

3β

Y∞
n¼1

�
1 − e−

8π2n
β

�−N ¼ ηðe−8π2

β Þ−N:
ð2:8Þ

Thus, the instanton factor in MSYM is just a constant
independent of the integration valuables and does not affect
the expectation value because this should be canceled by
the normalization factor in (2.1).

B. Symmetric representation

Let us consider symmetric representation Sk where the
rank k is OðNÞ. The trace in Sk is expressed as

TrSke
Nν ¼

X
1≤i1≤���≤ik≤N

exp

�
N
Xk
l¼1

νil

�
: ð2:9Þ

Although (2.9) includes various contributions in the sum-
mation, the largest one comes with ν1 ¼ νi1 ¼ � � � ¼ νik .
Therefore, the leading contribution to the expectation value
is given by

hWSki∼
Z YN

i¼1

dνiexp

�
−
N2

β

XN
i¼1

ν2i þ
N
2

X
i;j;i≠j

jνi−νjjþNkν1

�
:

ð2:10Þ
We again acquire ν1 by the saddle point equation

0 ¼ −
2N2

β
ν1 þ N

XN
j¼2

ðþ1Þ þ Nk: ð2:11Þ

Hence,

ν1 ¼
β

2N
ðN þ kÞ: ð2:12Þ

We put it back into (2.10), then the leading one depending
on k becomes

hWSki ∼ exp

�
−
N2

β

XN
i¼1

ν2i þ
N
2

X
i;j;i≠jjνi − νjj þ Nkν1

�����
saddle point

∼ exp

�
−
N2

β
ν21 þ N

XN
j¼2

jν1 − νjj þ Nkν1 þ ðterms independent of kÞ
�����

saddle point

∼ exp

�
β

2
Nk

�
1þ k

2N

��
: ð2:13Þ

Here we use the fact that hWSki ¼ 1 when k ¼ 0.
This expression (2.13) reproduces the result of
the fundamental case when k ¼ 1 [11,16]. The same
result as (2.13) is also obtained by substituting
n ¼ 1; m ¼ k in (A8) or (A10). This result (2.13) is
compared to the result on the gravity side in the next
section.

C. Antisymmetric representation

We turn to calculating the expectation value of the

Wilson loop in antisymmetric representation Ak with

k ¼ OðNÞ boxes in the Young diagram. The trace in this

representation is written as

TrAk
eNν ¼

X
1≤i1<���<ik≤N

exp

�
N
Xk
l¼1

νil

�
: ð2:14Þ

The largest contribution in the large N limit is in the case of

il ¼ l because of our ordering ν1 > ν2 > � � � > νN , namely,

the leading one in (2.1) is

hWAk
i ∼

Z YN
i¼1

dνi exp

�
−
N2

β

XN
i¼1

ν2i

þ N
2

X
i;j;i≠j

jνi − νjj þ N
Xk
l¼1

νl

�
: ð2:15Þ
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Since this insertion does not change the eigenvalue
distribution, we can find with (2.5),

hWAk
i ∼ exp

�
N
Xk
l¼1

νl

�����
saddle point

∼ exp

�
β

2
Nk

�
1 −

k
N

��
: ð2:16Þ

The expression is invariant under the exchange of k and
ðN − kÞ as expected and reproduces the result of the
fundamental case when k ¼ 1 [11,16]. The same result
as (2.16) is also obtained by substituting n ¼ k;m ¼ 1

in (A8) or (A10). This result (2.16) is compared to the result
on the gravity side in the next section.

III. PROBE M5-BRANES IN
11D SUPERGRAVITY

Let us now turn to the holographic description of the
Wilson surfaces. An M2-brane wrapping AdS3 is the
gravity dual to the Wilson surface in fundamental repre-
sentation [11,16,24–26]. On the other hand, probe
M5-branes are better descriptions for the Wilson loops
in large-rank symmetric or antisymmetric representations
[27–31], and we employ this probe M5-brane description
in this paper.

A. Supergravity background

We take the following forms for the AdS radius L and the
M5-brane tension T5 as well as in [1]

L ¼ 2ðπNÞ13lP; T5 ¼
1

ð2πÞ5l6
P

; ð3:1Þ

where lP is the 11-dimensional Planck length. The metric
of Euclidean AdS7 × S4 is written in terms of the global
coordinates

ds2 ¼ L2ðcosh2ρdτ2 þ dρ2 þ sinh2ρdΩ2
5Þ þ

L2

4
dΩ2

4;

dΩ2
5 ¼ dη2 þ sin2ηdϕ2 þ cos2ηdΩ2

3;

dΩ2
4 ¼ dθ2 þ sin2θd ~Ω2

3;

ρ ≥ 0; 0 ≤ ϕ < 2π; 0 ≤ η ≤
π

2
; 0 ≤ θ ≤ π;

ð3:2Þ
where dΩ2

3 and d ~Ω2
3 are metrics of units S3 and ~S3,

respectively. In order to make the boundary S1 × S5, we
compactify the τ direction (see Fig. 1) as

τ ∼ τ þ 2πR6

r
: ð3:3Þ

To be precise, the identification (3.3) is accompanied by the
rotation of the isometry in the ~S3 direction in order to
compare the result from 5D MSYM [7,11].
Another convenient set of coordinates is the AdS3 × S3

foliation. In these coordinates, the metric is expressed as

ds2 ¼ L2ðcosh2udΩ
̬
2
3 þ du2 þ sinh2udΩ2

3Þ þ
L2

4
dΩ2

4;

dΩ
̬
2
3 ¼ cosh2wdτ2 þ dw2 þ sinh2wdϕ2; ð3:4Þ

where ðu; wÞ are related to ðρ; ηÞ as

sinh u ¼ sinh ρ cos η; ð3:5Þ

tanhw ¼ tanh ρ sin η: ð3:6Þ

We denote the vielbein for the spacetime by Ea, then divide
each component such as ðE0; E1; E2Þ for AdS3, E3 ¼ Ldu,
ðE4; E5; E6Þ for S3 belonging to AdS7, E7 ¼ Ldθ, and
ðE8; E9; E♮Þ (♮ ¼ 10) for ~S3 in S4.
The supergravity in 11 dimensions contains the 4-form

field strength B4 as a bosonic field besides the metric.
When the background geometry is AdS7 × S4, 4-form field
strength B4 is given by

B4 ¼
6

L
E789♮; ð3:7Þ

where we abbreviated Ea1∧ � � �∧Eap as Ea1���ap . In the
following sections, all indices of field variables represent
the ones in the local Lorentz frame.

B. M5-brane wrapping AdS3 × S3

Here we consider an M5-brane wrapping AdS3 × S3. In
this calculation, we should carefully introduce the boun-
dary term of the M5-brane action. Let us first consider
the boundary term in the plane Wilson surface in R6

for simplicity. It is convenient to introduce the Poincaré
coordinates

FIG. 1. The boundary of AdS7 in the global coordinates. The
radii of S1 and S5 on the boundary are R6 and r, respectively.

HIRONORI MORI AND SATOSHI YAMAGUCHI PHYSICAL REVIEW D 90, 026005 (2014)

026005-4



ds2 ¼ L2

y2
ðdy2 þ dr21 þ r21dϕ

2 þ dr22 þ r22dΩ2
3Þ þ

L2

4
dΩ2

4;

y > 0; r1; r2 ≥ 0: ð3:8Þ

The plane Wilson surface is located at r2 ¼ 0; y → 0.
We denote one of the world volume coordinates on the
M5-brane by λ, and take the ansatz

r2 ¼ κy; y ¼ yðλÞ; ð3:9Þ

where κ is a constant. The induced metric is given by

ds2ind ¼
L2

y2
½ð1þ κ2Þy02dλ2 þ dr21 þ r21dϕ

2 þ ðκyÞ2dΩ2
3�;

ffiffiffiffiffiffiffi
gind

p ¼ κ3L6

y3
jy0jr1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p ffiffiffiffiffiffi
gS3

p
; ð3:10Þ

where y0 ≔ dy=dλ, and gS3 is the determinant of the metric
of unit S3.
Since the submanifold totally belongs to AdS7, we take

account of the 7-form field strength B7 which is the Hodge
dual to B4,

B7 ¼ �B4

¼ 6

L
E0123456

¼ 6L6

y7
r1r32dy∧dr1∧dϕ∧dr2∧ω3; ð3:11Þ

where ω3 is the volume form of unit S3. B7 can be written
as the following form with background gauge fields C3 and
C6 to satisfy the equation of motion for B4:

B7 ¼ dC6 þ
1

2
C3∧dC3: ð3:12Þ

Since C3∧dC3 ¼ 0, we choose the gauge in which C6 is
given by

C6 ¼ −
L6

y6
r1r32dr1∧dϕ∧dr2∧ω3

¼ κ4L6

y3
r1y0dr1∧dϕ∧ω3∧dλ: ð3:13Þ

There is the 2-form gauge field A2 on the M5-brane and let
us define F3 ¼ dA2 andH3 ¼ F3 − C3. Notice that C3 ¼ 0
on this M5-brane world volume. The flux quantization
condition (B4) implies

H3 ¼
k
2N

L3ω3 ¼
k
2N

y3

r32
E456

⇒ H456 ¼
k

2Nκ3
: ð3:14Þ

We use the gauge symmetry (C9) and set

H012 ¼ 0: ð3:15Þ

Actually, the final result is independent of this gauge choice
as far as we use the Legendre transformation prescription
for the 2-form gauge field as in [33,47]. In order to
determine the field strength ~H3 dual to H3, we must fix
an auxiliary field a which makes the action covariant
(see Appendix C). Through the rest of this paper, we use

a ¼ ϕ; ð3:16Þ

then

v2 ¼ 1: ð3:17Þ

The component of ~Hab left under the fixing (3.16) is

~H01 ¼ H456: ð3:18Þ

Since the PST action (C1) is originally defined in the
Lorentzian background, we make the Wick rotation
~Ht1 ¼ i ~Hτ1. Accordingly, the PST action (C1) with non-
zero C6 becomes

SM5 ¼ T5

Z
d6ζ

ffiffiffiffiffiffiffi
gind

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδmn þ i ~Hm

nÞ
q

þ T5

Z
C6

¼ K
Z

λ0

λmin

dλ
jy0j
y3

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ2Þ

�
κ6 þ

�
k
2N

�
2
�s
− κ4

#
;

ð3:19Þ

where

K ≔ 2π2T5L6

Z
2π

0

dϕ
Z

∞

0

dr1r1: ð3:20Þ

We assume y0 < 0 and introduce the cutoff denoted by λ0
and the lower bound λmin. The equation of motion for κ is

0 ¼ d
dκ

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ2Þ

�
κ6 þ

�
k
2N

�
2
�s
− κ4

#

¼ ð k
2NÞ2κ þ 3κ5 þ 4κ7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ2Þðκ6 þ ð k

2NÞ2Þ
q − 4κ3; ð3:21Þ

hence, κ is related to k by

κ ¼
ffiffiffiffiffiffiffi
k
2N

r
: ð3:22Þ

We can rewrite the action with this relation as
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SM5 ¼ K
k
2N

Z
λ0

λmin

dλ
jy0j
y3

: ð3:23Þ

Furthermore, we replace the bulk direction y with z
such that

z ¼ 1

y2
: ð3:24Þ

Because zðλminÞ ¼ 0 in the new coordinate, the PST action
is given by

SM5 ¼
k
4N

K
Z

λ0

λmin

dλz0≕
Z

λ0

λmin

dλL

¼ k
4N

Kz0; ð3:25Þ

where a new cutoff is defined as z0 ≔ zðλ0Þ. Along the
procedure of the Legendre transformation, we should
impose the boundary condition on the conjugate momen-
tum Pz for z.

2 We would like to set the condition where the
variation of Pz is zero on the boundary,

δPzjbdy ¼ 0: ð3:26Þ

The conjugate momentum is given by

Pz ¼
∂L
∂z0 ¼

k
4N

K; ð3:27Þ

and the boundary term can be written as

Sbdy ¼ −Pzz0: ð3:28Þ

We bring it and the original action together. Then the
regularized action SregM5 becomes

SregM5 ¼ SM5 þ Sbdy ¼ 0: ð3:29Þ

Thus, the expectation value for the M5-brane is 1. This
result is expected since the plane Wilson surface preserves
a part of the Poincaré supersymmetry. The boundary term
(3.28) is proportional to the volume of the boundary
including the finite contribution. Thus, we conclude that
the boundary counterterm is proportional to the volume of
the boundary with the gauge choice (3.13) and (3.15).
Let us move to the Wilson surface wrapping on S1 × S1.

It is convenient to use the AdS3 × S3 foliation coordinates
(3.4) with identification (3.3). They are related by the
coordinate transformation:

y ¼ eτ

cosh u coshw
;

r1 ¼ eτ tanhw;

r2 ¼
eτ tanhu
coshw

: ð3:30Þ

The M5-brane is wrapping AdS3 × S3 expressed by
u ¼ uk ¼ ðconstantÞ. From (3.30), κ is related to uk as

κ ¼ sinh uk: ð3:31Þ

Similarly, C6 on the world volume is given by

C6 ¼−L6 cosh2uk sinh4 uk cosh w sinh wdτ∧dw∧dϕ∧ω3:

ð3:32Þ

In addition, we must use the flux quantization condition in
this coordinate, namely, H3 is given by

H3 ¼
k

2Nsinh3uk
E456

⇒ H456 ¼
k

2Nsinh3uk
: ð3:33Þ

On the other hand, (3.18) remains intact. Putting it all
together, we can compute the PST action in these
coordinates,

SM5 ¼ T5

Z
L6ω6 cosh3 uk sinh3uk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðH456Þ2

q

− T5L6

Z
cosh2 uk sinh4 uk cosh w

× sinh wdτ∧dw∧dϕ∧ω3

¼ 2πR6

r
kð2N þ kÞ sinh2 w0; ð3:34Þ

where ω6 is the volume form of unit AdS3 × S3 and w0 is a
cutoff. Since the boundary term is proportional to the
volume of the boundary and cancels the divergence, it is
given by

Sbdy ¼ −
2πR6

r
kð2N þ kÞ sinh w0 cosh w0: ð3:35Þ

The regularized PST action SregM5 is obtained in the limit
w0 → ∞ as

SregM5 ¼ SM5 þ Sbdy

¼ −
πR6

r
kð2N þ kÞ

¼ −
β

2
Nk

�
1þ k

2N

�
: ð3:36Þ

2The coordinate z is identified, up to a constant factor, with the
radial coordinate of the asymptotically flat supergravity solution
of M5-branes before taking the near horizon limit. Thus, this
Legendre transformation is the analogue of the case of the Wilson
loop case [33,47].
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Finally, the expectation value of the Wilson surface for the
M5-brane wrapping AdS3 × S3 is given by

exp ½−SregM5� ¼ exp

�
β

2
Nk

�
1þ k

2N

��
: ð3:37Þ

This result completely matches the value of the Wilson
surface in symmetric representation (2.13). As a result, we
could obtain nontrivial support for the AdS7=CFT6.

C. M5-brane wrapping AdS3 × ~S3

In this section we consider a probe M5-brane wrapping
AdS3 × ~S3. Here AdS3 is a minimal surface in AdS7, while
~S3 is included in S4. It is convenient to use the global
coordinates (3.2). We take the ansatz

η ¼ π=2; θ ¼ θk ¼ ðconstantÞ: ð3:38Þ

The induced metric on the M5-brane is given by

ds2ind ¼ L2ðcosh2ρdτ2 þ dρ2 þ sinh2ρdϕ2Þ

þ L2

4
sin2θkd ~Ω2

3;

ffiffiffiffiffiffiffi
gind

p ¼ L6

8
cosh ρ sinh ρ sin3θk

ffiffiffiffiffiffi
g ~S3

p
; ð3:39Þ

where constant θk is associated with integer k parametriz-
ing the flux quantization condition (see Appendix B).
B4 also can be written as the derivative of C3; thus, for

the global coordinates we have

B4 ¼ dC3 ¼
6

L
E789♮

¼ 3

8
L3sin3θdθ∧ ~ω3; ð3:40Þ

where ~ω3 is the volume form of unit ~S3. By integrating this
over θ, C3 can be obtained by

C3 ¼ −
L3

8
ð3 cos θ − cos3θ − 2Þ ~ω3 ð3:41Þ

≕− L3fðθÞ ~ω3: ð3:42Þ

We choose the gauge in which C3 ¼ 0 at θ ¼ 0 because ~S3

shrinks at that point. Combining it with the flux quantiza-
tion condition (B4), the 3-form field strength H3 is

H3 ¼ F3 − C3

¼
�

k
2N

þ fðθkÞ
�
L3 ~ω3

¼
�

k
2N

þ fðθkÞ
�

8

sin3θk
E89♮

⇒ H89♮ ¼
�

k
2N

þ fðθkÞ
�

8

sin3θk
: ð3:43Þ

The component of ~Hab is

~H01 ¼ H89♮: ð3:44Þ

We choose the gauge H012 ¼ 0 again. Moreover, we
have C6 ¼ 0 on the world volume and C3∧H3 ¼ 0 because
both are proportional to the volume form of ~S3. Thus, the
remaining part of the action is

SM5 ¼ T5

Z
d6ζ

ffiffiffiffiffiffiffi
gind

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδmnþ i ~Hm

nÞ
q

¼ T5

Z
d6ζ

L6

8
cosh ρ sinh ρsin3θk

ffiffiffiffiffiffi
g ~S3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðH89♮Þ2

q

¼ T5

π2L6

4

Z
d3ζ cosh ρ sinh ρ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin6θkþ 64

�
k
2N

þfðθkÞ
�

2

s
: ð3:45Þ

Next we solve the equation of motion for θk to acquire the
on-shell value. It is equivalent to

0 ¼ d
dθk

�
sin6θk þ 64

�
k
2N

þ fðθkÞ
�

2
�

¼ 8sin3θk

�
−2 cos θk −

4k
N

þ 2

�
; ð3:46Þ

then we have the relation between θk and k as

cos θk ¼ 1 −
2k
N

: ð3:47Þ

Substituting this into the action, we obtain

SM5 ¼ T5

π2L6

4

4k
N

�
1 −

k
N

�Z
ρ0

0

dρ
Z 2πR6

r

0

dτ

×
Z

2π

0

dϕ cosh ρ sinh ρ

¼ 4πR6

r
kðN − kÞ sinh2ρ0; ð3:48Þ

where ρ0 is a cutoff. The boundary term Sbdy is again
proportional to the volume of the boundary and given by
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Sbdy ¼ −
4πR6

r
kðN − kÞ sinh ρ0 cosh ρ0: ð3:49Þ

We take the limit ρ0 → ∞, and obtain

SregM5 ¼ SM5 þ Sbdy

¼ −
2πR6

r
kðN − kÞ

¼ −
β

2
Nk

�
1 −

k
N

�
: ð3:50Þ

The expectation value for the M5-brane wrapping
AdS3 × ~S3 results in

exp ½−SregM5� ¼ exp

�
β

2
Nk

�
1 −

k
N

��
: ð3:51Þ

It perfectly agrees with the Wilson surface in antisymmetric
representation (2.16); hence, this strongly stands for
the AdS7=CFT6.
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APPENDIX A: CALCULATION OF THE
WILSON SURFACE IN A RECTANGULAR

YOUNG DIAGRAM

Here we calculate the expectation value of the Wilson
surface in a rectangular Young diagram following the
formulation of Halmagyi and Okuda [45]. Let the height
of the rectangular Young diagram be n and the width m.
Then it has been found that the Wilson loop expectation
value in the Chern-Simons matrix model is expressed as3

hWRiUðNÞ ¼
1

Z

Z YN
A¼1

dνA expF ; ðA1Þ

where Z is the appropriate normalization and F is given by

F ≔−
1

β
N2

Xn
i¼1

ν2i þ
�
mþ 1

2
ðN − nÞ

�
N
Xn
i¼1

νi þ
X
i;j;i<j

ln

���� sinhN2 ðνi − νjÞ
����2

−
1

β
N2

XN
a¼nþ1

ν2a þ
�
−
1

2
n

�
N

XN
a¼nþ1

νa þ
X

a;b;a<b

ln

���� sinhN2 ðνa − νbÞ
����2

þ
Xn
i¼1

XN
a¼nþ1

ln

���� sinhN2 ðνi − νaÞ
����: ðA2Þ

Wewould like to evaluate this integral in the limitN; n;m → ∞while n=N;m=N are kept finite. In this limit, we can use the
saddle point approximation. Equation (A2) is simplified as

F ¼ −
1

β
N2

Xn
i¼1

ν2i þ
�
mþ 1

2
ðN − nÞ

�
N
Xn
i¼1

νi þ N
X
i;j;i<j

jνi − νjj

− 1

β
N2

XN
a¼nþ1

ν2a þ
�
−
1

2
n

�
N

XN
a¼nþ1

νa þ N
X

a;b;a<b

jνa − νbj

þ N
2

Xn
i¼1

XN
a¼nþ1

jνi − νaj: ðA3Þ

The saddle point equations are derived from Eq. (A3) as

3The notation of the integration variables here is related to [45] by uð1Þi ¼ Nνi; ði ¼ 1;…; nÞ and uð2Þa−n ¼ Nνa; ða ¼ nþ 1;…; NÞ.

HIRONORI MORI AND SATOSHI YAMAGUCHI PHYSICAL REVIEW D 90, 026005 (2014)

026005-8



−
2

β
N2νi þ

�
mþ 1

2
ðN − nÞ

�
N þ N

X
j;j≠i

signðνi − νjÞ þ
N
2
ðN − nÞ ¼ 0; i ¼ 1;…; n;

−
2

β
N2νa −

1

2
nN þ N

X
b;b≠a

signðνa − νbÞ −
N
2
n ¼ 0; a ¼ nþ 1;…; N: ðA4Þ

If we assume the order

νA > νB; if A < B; ðA; B ¼ 1;…; NÞ; ðA5Þ

the solution is given by

νi ¼
β

2N
ðmþ N − 2iÞ; ði ¼ 1;…; nÞ;

νa ¼
β

2N
ðN − 2aÞ; ða ¼ nþ 1;…; NÞ: ðA6Þ

In other words, the eigenvalue density is expressed as

ρðνÞ ¼
(

1
β ; ð− β

2
< ν < β

2N ðN − 2nÞ; β
2N ðN þm − 2nÞ < ν < β

2N ðN þmÞÞ;
0 ðothersÞ:

ðA7Þ

This is a special case of the eigenvalue distribution obtained
in [45].4 The expectation value (A1) is evaluated as

hWRiUðNÞ ∼ expF jsaddle point

∼ exp

�
β

2
mnN

�
1 −

n
N
þ m
2N

��
: ðA8Þ

This equation reproduces the result of the symmetric
representation (2.13) when n ¼ 1; m ¼ k, and the antisym-
metric representation (2.16) when n ¼ k;m ¼ 1.
The result (A8) is not invariant under the exchange of n

and ðN − nÞ because this is the expectation value in the
UðNÞ theory. It is related to the SUðNÞ theory by

hWRiUðNÞ ¼ e
βjRj2
4N hWRiSUðNÞ; ðA9Þ

where jRj is the number of boxes in the Young diagram R.
We obtain the expectation value in the SUðNÞ theory by
making use of this relation as

hWRiSUðNÞ ∼ exp
�
β

2
mnN

�
1 −

n
N

��
1þ m

2N

��
: ðA10Þ

This is invariant under the exchange of n and ðN − nÞ as
expected. This expectation value also reproduces the results
(2.13) and (2.16).

APPENDIX B: FLUX QUANTIZATION
CONDITION

We explain the flux quantization for the coupling
of a probe M5-brane involving S3 to an open M2-brane
electrically following [48]. We denote the world volume
manifold of the M2-brane by Σ3 whose boundary ∂Σ3 is
part of the world volume of the M5-brane. For simplicity,
∂Σ3 is the boundary of a disk D3 embedded into the M5-
brane. Moreover, Σ4 represents the four-manifold with
boundaries Σ3 and D3. If we consider the coupling of the
M5-brane and the M2-brane, the interaction term is
written as

Sint½Σ4; D3� ¼ T2

Z
Σ4

B4 þ T2

Z
D3

H3; ðB1Þ

where T2 ¼ 1
ð2πÞ2l3P

is the tension of the M2-brane.

In general, the action itself depends on the choice of
ðD3;Σ4Þ, though the weight with it in the path integral
should be independent of such choice. Let ðD30;Σ0

4Þ be
another choice and we require that

eiSint½Σ4;D3� ¼ eiSint½Σ0
4
;D30�: ðB2Þ

This gives us the quantization condition for the flux
through S3 wrapped by the M5-brane. The condition
(B2) can be written as

4The results are the same although they first take the ’t Hooft
limit and then take the strong coupling limit in [45].
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2πk ¼ Sint½Σ4; D3� − Sint½Σ0
4; D

30�

¼ T2

Z
Σ4−Σ0

4

B4 þ T2

Z
D3−D30

H3

¼ T2

Z
B4

dC3 þ T2

Z
S3
ðF3 − C3Þ

¼ T2

Z
S3
F3; ðB3Þ

where k ∈ Z, F3 ¼ dA2, and A2 is the world volume
2-form gauge field. Since F3 is proportional to the volume
form ω3 of the unit S3, we obtain the flux quantization
condition

F3 ¼
k

πT2

ω3 ¼
k
2N

L3ω3: ðB4Þ

APPENDIX C: PST ACTION

The PST action proposed by [37–39] is the covariant
action on a single M5-brane. Let ζmðm ¼ 0; 1;…; 5Þ be the
world volume coordinates. The bosonic fields contain a
scalar field a and a 2-form gauge field A2 ¼ 1

2
Amndζm∧dζn

as well as the spacetime coordinates. The bosonic part of
the action with the Wess-Zumino term is given by

SM5 ¼ T5

Z
d6ζ

ffiffiffiffiffiffiffiffiffiffi
−gind

p �
Lþ 1

4
~HmnHmn

�

þ T5

Z �
C6 −

1

2
C3∧H3

�
; ðC1Þ

where

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδmn þ i ~Hm

nÞ
q

; ðC2Þ

F3 ¼ dA2; ðC3Þ

H3 ¼ F3 − C3; ðC4Þ

Hmn ¼ Hmnpvp; ðC5Þ

~Hmn ¼ ð�6HÞmnpvp; ðC6Þ

vp ¼ ∂paffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gmn∂ma∂na

p : ðC7Þ

The indices are raised or lowered by the induced metric.
The Hodge star �6 is defined with the induced metric on the
M5-brane. In addition, the action is invariant under the
gauge transformation δg

δgAmn ¼ ∂ ½mϕn�ðζÞ; ðC8Þ

and the following local transformations δφ and δψ :

	 δφa ¼ 0;

δφAmn ¼ 1
2
∂ ½maφn�ðζÞ;

ðC9Þ

8<
:

δψa ¼ ψðζÞ;
δψAmn ¼ − ψðζÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gpq∂pa∂qa

p ðHmn − VmnÞ; ðC10Þ

where φmðζÞ and ψðζÞ are infinitesimal parameters for each
transformation, and

Vmn ≔ −2
δL

δ ~Hmn : ðC11Þ
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