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MS5-branes and Wilson surfaces in the AdS,/CFTg correspondence
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We study AdS;/CFT4 correspondence between M theory on AdS; x §* and the 6D A = (2,0)
superconformal field theory. In particular, we focus on Wilson surfaces. We use the conjecture that the (2,0)
theory compactified on S' is equivalent to the 5D maximal super-Yang-Mills (MSYM), and Wilson surfaces
wrapping this S' correspond to Wilson loops in 5D MSYM. The Wilson loops in 5D MSYM obtained
by the localization technique result in the Chern-Simons matrix model. We calculate the expectation values
of Wilson surfaces in large-rank symmetric representations and antisymmetric representations by using
this result. On the gravity side, the expectation values for probe MS5-branes wrapping submanifolds of
the background are computed. Consequently, we find new, nontrivial evidence for the AdS,/CFTg

correspondence that the results on the gravity side perfectly agree with those on the CFT side.
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I. INTRODUCTION AND SUMMARY

The AdS/CFT correspondence [1] provides a lot of new
insight into wide regions of physics, and it is significant to
reveal even more properties of this duality for under-
standing string theories and gauge theories. While many
attempts succeed in confirming it in lower dimensions, the
higher-dimensional versions of the correspondence are still
mysterious. The main reason is that there are few known
facts about conformal field theories in higher dimensions.
However, recently it was found that the supersymmetric
localization can be applied to 5D super-Yang-Mills theories
on curved geometries and their partition functions can be
derived exactly as mentioned below. We can utilize them to
verity the AdS,;/CFT, for d > 5. For example, there are a
few pieces of evidence of the AdSs/CFT5 [2,3].

The 5D N =1, super-Yang-Mills theories are con-
structed on several curved backgrounds. Their partition
functions and expectation values of Wilson loops have been
calculated by the localization technique [4—15]. The 5D
N = 1* theory on the round five-sphere with a radius r,
which contains a vector multiplet and an adjoint hyper-
multiplet, has N' = 2 supersymmetry if the mass for the
hypermultiplet takes a specific value. Then the partition
functions and Wilson loops reduce to the Chern-Simons
matrix model [7,16] first considered in [17]. Also, we can
produce the 5D maximal super-Yang-Mills (MSYM) on $3
from the (2,0) theory by the dimensional reduction with
the appropriate twist to keep the supersymmetry [7]. It is
argued in [18-20] that Kaluza-Klein modes in 6D can be
identified with instanton particles in 5D under
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where Rj is the radius of the compactified S', and gy, is
the five-dimensional gauge coupling constant. Following
their discussion, the 5D MSYM seems to contain all
degrees of freedom of the (2,0) theory. An observation
supporting this claim is that the free energy obtained by the
Chern-Simons matrix model reproduces N° behavior' of
the supergravity analysis on AdS; x §* [7,16,21,22].

In this paper, we focus on the expectation values of
Wilson surfaces for the AdS;/CFTg correspondence. The
Wilson surfaces in the (2,0) theory are a class of nonlocal
operators localized on surfaces in 6D [23]. Through the
above argument, Wilson surfaces extending to the compa-
tified direction are Wilson loops in the 5D theory.
Therefore, we compute the expectation values of them
by using the Chern-Simons matrix model. In particular,
we evaluate the expectation values of Wilson loops in
large-rank antisymmetric representations and symmetric
representations in the large N limit.

On the other hand, naively, a probe M2-brane ending on
multiple M5-branes is the M-theory description of the
Wilson surface [23]. The holographical description of a
spherical Wilson surface has been studied in [24,25].
Recently, it has been clarified in [11,16,26] that the
expectation value of the Wilson surface wrapping on
S' x S! in the fundamental representation matches that
of the M2-brane wrapping AdS;.

In this paper, we consider a probe M5-brane description
of the Wilson surface [27-31] instead of the M2-brane.
When the number of the overlapping and winding
M2-branes becomes large, they blow up and make an
M5-brane with world volume flux wrapping two types of
submanifolds of AdS; x $* due to the representation: one
is AdS; x §3 totally in AdS;, and the other is AdS; x S°

lHowever, the free energies for the Chern-Simons matrix
model and the supergravity do not completely coincide by an
overall constant [16,21].
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belonging to S*. This is the analogue of the D3-brane and
D5-brane description of the symmetric and antisymmetric
Wilson loops in AdSs/CFT, correspondence [32-36].
According to this analogy, we expect that an M5-brane
wrapping on AdS; x §* corresponds to the symmetric
representation, and one wrapping on AdS; X $3 corresponds
to the antisymmetric representation. We calculate the expect-
ation values of the Wilson surfaces by evaluating the on-shell
action of these MS5-branes. In the calculation for the
MS5-branes, we use the so-called Pasti-Sorokin-Tonin (PST)
action [37-39].

We compare the results on the CFT side and the gravity
side, and we find new evidence supporting the AdS,/CFT
correspondence; the MS5-brane wrapping AdS; x $3 and
wrapping AdS; x $3 perfectly agree with the Wilson sur-
face in symmetric representation and in antisymmetric
representation, respectively. We note that the authors of
[16] have suggested that the relation (1.1) be modified at
strong coupling such that the constant coefficient becomes
dependent on the square of the mass for the adjoint
hypermultiplet. One can find that our results are truly
consistent with their argument.

One of the interesting future directions is to study the
relation between the bubbling geometry and Wilson surfaces
in larger representations. A class of bubbling solutions in
the 11-dimensional supergravity as the gravity dual of the
Wilson surfaces is obtained in [27,31,40,4 1] along the line of
the bubbling geometry for local operators [42] and Wilson
loops [40,43,44]. In these solutions, the eigenvalue distri-
bution of the matrix model is suggested as the following
form: the real line of the eigenvalue space is divided into
black and white segments, and the density is a positive
constant on the black segments and zero on the white
segments. The unit length of a black segment is twice that
of a white segment. Actually, the eigenvalue distribution of
the Chern-Simons matrix model obtained in [45] is consis-
tent with the bubbling solutions. This observation is other
evidence of the correspondence. It will be an interesting
future work to calculate the expectation values of Wilson
surfaces by using the bubbling solutions and compare them
to the calculation in the Chern-Simons matrix model.

The rest of the paper is organized as follows: In Sec. II,
we use the Chern-Simons matrix model and evaluate the
expectation values of Wilson surfaces in antisymmetric
representation and symmetric representation. In Sec. III, we
use probe M5-branes on the gravity side and calculate the
expectation values of the Wilson surfaces.

II. WILSON SURFACES IN CHERN-SIMONS
MATRIX MODEL

A. Chern-Simons matrix model in large N

We consider 6D Ay_; type (2,0) theory on S' x $° and a
Wilson surface in this theory. This Wilson surface is
wrapping on S' x ! where the first S is orthogonal to
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S and the second S' is a great circle of S°. This Wilson
surface can be treated as a Wilson loop wrapping a great
circle in 5D SU(N) MSYM on S if the boundary condition
in the ' direction is twisted appropriately [7,11].

The expectation values of Wilson loops wrapping on
the great circle on S° with a radius r are calculated by using
the localization technique [4-7,11]. In particular, the
expectation value of the Wilson loop in the representation
R in MSYM with a coupling constant gy,, reduces to the
Chern-Simons matrix model

N
sinhE (vi—v;)

/Hdu,

X exp [_%z

i=1

L. 0#]

1/,2] Trze™” (2.1)

where f = gzy M Z is the partition function given by

/Hdz/ H sth( 2

VR

o[- 320
(2.2)

We evaluate these integrals in the limit N — oo while
is kept finite in order to compare them to the gravity
calculation. Notice that this limit is different from the
’t Hooft limit. For the ’t Hooft limit, the expectation values
of the Wilson loops are computed in [46].

Let us first consider the eigenvalue distribution of the
partition function before calculating the Wilson loop. When
we take N — oo with fixed f, the hyperbolic sine factor is
simplified and we obtain

/deexp{__zw Dy-y} 3)

iJi#]

In the limit, both terms in the exponential are O(N?), and,
therefore, this integral can be evaluated by saddle points.
It yields to the saddle point equations for v;

2N? :
0= —71/,» + NZSlgn(y,- —-vj). (2.4)
JA#]
We can easily find the following solutions under the
assumption v; > v; for i < j:

=L (v -2,

= (2.5)

In other words, the eigenvalue density is given by
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1 <
W=l for [v| <5,
0 for |v| > g

We note that instanton factors do not appear in our
computation. The full partition function of the N' = 1 SYM
on S’ including instantons is derived in [11] as

(2.6)

Z(p.m.e.€)

/11 SOETD)
~ dv; exp {— ’/12}
i=1 ﬁ(1+a)(1+b)(l+c) i=1
3
X H Z[()lggtzfr?si’
A=1

where Zl(m)t is an instanton one-loop determinant (see [11]

for details). For the maximally supersymmetric case
obtained by taking appropriate limits of each parameter,

the perturbative part ZE,LLZg)nZSL reduces to (2.2) and

(2.7)

2

1) ~(2) ~(3 N2 T _8z2n\ =N 822
Zi(ngtzi(ns)tzi(ns)t —ev H (1 —e ’ ) =n(e” ).
(2.8)

n=1

Thus, the instanton factor in MSYM is just a constant
independent of the integration valuables and does not affect
the expectation value because this should be canceled by
the normalization factor in (2.1).

|
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B. Symmetric representation

Let us consider symmetric representation S, where the
rank k is O(N). The trace in S is expressed as

K
Trg e = Z exp [NZ 1/,-[] .
I=1

1<i)<-<iy <N
Although (2.9) includes various contributions in the sum-
mation, the largest one comes with vy =v; =--- =v; .
Therefore, the leading contribution to the expectation value

is given by

W) / de exp {——Zﬂ S -

i,Ji#]

(2.9)

+Nku1] .
(2.10)

We again acquire v, by the saddle point equation

0:——1/1+NZ (+1) 4 Nk. (2.11)
Hence,
v = ’ (N +k). (2.12)
2N

We put it back into (2.10), then the leading one depending
on k becomes

F AR
(Ws,) ~exp |— ﬁ v+ 221,1# uj|+Nku1] |
- saddle point
A2
~ exp —71/1 + NZ lvy —v;| + Nkv, + (terms independent of k)
- j=2 saddle point
7 ‘
~ “Nk|14+—]|. 2.13
P12 TN (2.13)
Here we use the fact that (Wg)=1 when k=0.
This expression (2.13) reproduces the result of Try e = z €xp [N zui,:|‘ (2.14)
I=1

the fundamental case when k=1 [11,16]. The same
result as (2.13) is also obtained by substituting
n=1m=k in (A8) or (A10). This result (2.13) is
compared to the result on the gravity side in the next
section.

C. Antisymmetric representation
We turn to calculating the expectation value of the
Wilson loop in antisymmetric representation A; with
k = O(N) boxes in the Young diagram. The trace in this
representation is written as

1<ij<--<iy<N

The largest contribution in the large N limit is in the case of
i; = [ because of our ordering vy > v, > --- > vy, namely,

the leading one in (2.1) is

N
Wy) N/Hdviexp[—%zZy%
i=1

i=1

Kk
+= Z|v, I/]|+NZI/1:|.

l]l;é/ =1

(2.15)
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Since this insertion does not change the eigenvalue
distribution, we can find with (2.5),

i ~esn 5]

saddle point

(2.16)

The expression is invariant under the exchange of k and
(N —k) as expected and reproduces the result of the
fundamental case when k=1 [11,16]. The same result
as (2.16) is also obtained by substituting n = k,m = 1
in (A8) or (A10). This result (2.16) is compared to the result
on the gravity side in the next section.

III. PROBE MS5-BRANES IN
11D SUPERGRAVITY

Let us now turn to the holographic description of the
Wilson surfaces. An M2-brane wrapping AdS; is the
gravity dual to the Wilson surface in fundamental repre-
sentation [11,16,24-26]. On the other hand, probe
M5-branes are better descriptions for the Wilson loops
in large-rank symmetric or antisymmetric representations
[27-31], and we employ this probe M5-brane description
in this paper.

A. Supergravity background

We take the following forms for the AdS radius L and the
MS5-brane tension 7’5 as well as in [1]

I 1
L =2(aN)3tp, Ts=—"F—. 3.1
(zN)tp 5 (27)5¢8 (3.1)
where £p is the 11-dimensional Planck length. The metric
of Euclidean AdS; x §* is written in terms of the global
coordinates

LZ
ds® = L*(cosh?pdz* + dp* + sinh’pdQ2) + Idﬂﬁ,
dQ2 = di? + sin’nd¢? + cos’ndQ3,
dQ2 = do?* + sin20dQ33,

pz20, 0<¢<2z, 0<5<

T
2 ’

where dQ3 and dQ3 are metrics of units $° and §°,
respectively. In order to make the boundary S' x §°, we
compactify the 7z direction (see Fig. 1) as

27Z'R6
T~T+ .
r

(3.3)
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FIG. 1. The boundary of AdS; in the global coordinates. The

radii of S' and S° on the boundary are R¢ and r, respectively.

To be precise, the identification (3.3) is accompanied by the
rotation of the isometry in the §3 direction in order to
compare the result from 5D MSYM [7,11].

Another convenient set of coordinates is the AdS; x $°
foliation. In these coordinates, the metric is expressed as

. L2
ds* = L2(cosh?udSy; + di + sinh?udQ?) + 49,

dS; = cosh?wdz?® + dw? + sinh®wdd?, (3.4)
where (u,w) are related to (p,n) as
sinh u = sinh p cos, (3.5)
tanh w = tanh p sin 7. (3.6)

We denote the vielbein for the spacetime by E“, then divide
each component such as (E°, E', E?) for AdS;, E° = Ldu,
(E*,E5,E®) for $* belonging to AdS;, E” = Ld, and
(ES, E°, E") (1 = 10) for §° in S*.

The supergravity in 11 dimensions contains the 4-form
field strength B, as a bosonic field besides the metric.
When the background geometry is AdS; x S*, 4-form field
strength B, is given by

6

B, = — E’3% 3.7
i=7 (3.7)

where we abbreviated E“'A--- AE% as E“ %, In the
following sections, all indices of field variables represent
the ones in the local Lorentz frame.

B. M5-brane wrapping AdS; x $*

Here we consider an M5-brane wrapping AdS; x S3. In
this calculation, we should carefully introduce the boun-
dary term of the M5-brane action. Let us first consider
the boundary term in the plane Wilson surface in R®
for simplicity. It is convenient to introduce the Poincaré
coordinates
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L? L?
ds> = 7 (dy?* +dr? + ridg? + dr} + r3dQ3) + ngz,

y >0, ry,r, > 0. (3.8)
The plane Wilson surface is located at r, =0,y — 0.
We denote one of the world volume coordinates on the
MS5-brane by 4, and take the ansatz

y =y(4), (3.9)

ry =Ky,
where « is a constant. The induced metric is given by

L2
g = 3 (141022 + dr + rdg? + (v) €],

K3LO
Vi =5+ Y vV1+x/gg, (3.10)

where y' := dy/dA, and gg is the determinant of the metric
of unit $3.

Since the submanifold totally belongs to AdS,, we take
account of the 7-form field strength B; which is the Hodge
dual to By,

B7 = *B4

— E E0123456

L
6

6L
= — rnindyAdrAdpAdrnos,  (3.11)
y

where w; is the volume form of unit S°. B, can be written
as the following form with background gauge fields C; and
Cy to satisfy the equation of motion for By:

1
B7 :dC6 +§C3/\dC3. (312)

Since C3AdC; = 0, we choose the gauge in which Cg is
given by

L6
C6 = - 3 ry r%drl/\d(ﬁ/\er/\c%
y

416

ry'driAdpAawyNdA. (3.13)

y3

There is the 2-form gauge field A, on the M5-brane and let
us define F3; = dA, and H; = F; — C;. Notice that C; = 0
on this M5-brane world volume. The flux quantization
condition (B4) implies

k k y?
H+: = _L3 — __E456
3TN TN
= H k (3.14)
456 2NK'3 .
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We use the gauge symmetry (C9) and set

H012 - 0 (315)
Actually, the final result is independent of this gauge choice
as far as we use the Legendre transformation prescription
for the 2-form gauge field as in [33,47]. In order to
determine the field strength H; dual to H;, we must fix
an auxiliary field a which makes the action covariant
(see Appendix C). Through the rest of this paper, we use

a= ¢, (3.16)

then
vy = 1. (3.17)
The component of H left under the fixing (3.16) is
H"' = H,s. (3.18)
Since the PST action (Cl) is originally defined in the
Lorentzian background, we make the Wick rotation

H, = iH,. Accordingly, the PST action (C1) with non-
zero Cg becomes

Sms =T’ / dﬁé‘\/gind\/det (8" + iH,") + Ts / Cs

:lC//loalﬁy—/| (1+x%)( &%+ L3 ’ —x*
lmin y3 2N '

(3.19)
where

27 o
IC = 2T[2T5L6 / d¢/ dr1 ry. (320)
0 0

We assume y’ < 0 and introduce the cutoff denoted by 4,
and the lower bound 4,,;,. The equation of motion for « is

_d 2\ [ 6 k\? 4
O_dK \/(1+K)<K +<2N>> K
_k \2 3 5 4 7
i SR (3.21)
VI + R + (5)7)
hence, « is related to k by
| k

=1/ 22
K N (3.22)

We can rewrite the action with this relation as
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ko fHo Y
Sms = K— di—.
e 2N Amin y3

Furthermore, we replace the bulk direction y with z
such that

(3.23)

y

Because z(4;,) = 0 in the new coordinate, the PST action
is given by

(3.25)

where a new cutoff is defined as zj = z(4g). Along the
procedure of the Legendre transformation, we should
impose the boundary condition on the conjugate momen-
tum P, for 2.2 We would like to set the condition where the
variation of P, is zero on the boundary,

5Pz|bdy - O (326)
The conjugate momentum is given by
oL k
== 27
© 07 4N K, (3:27)
and the boundary term can be written as
dey = _PZZO' (328)

We bring it and the original action together. Then the
regularized action Sy becomes
Sll;igs — SMS + de)’ — O (329)

Thus, the expectation value for the M5-brane is 1. This
result is expected since the plane Wilson surface preserves
a part of the Poincaré supersymmetry. The boundary term
(3.28) is proportional to the volume of the boundary
including the finite contribution. Thus, we conclude that
the boundary counterterm is proportional to the volume of
the boundary with the gauge choice (3.13) and (3.15).

Let us move to the Wilson surface wrapping on S' x S'.
It is convenient to use the AdS; x S* foliation coordinates
(3.4) with identification (3.3). They are related by the
coordinate transformation:

The coordinate z is identified, up to a constant factor, with the
radial coordinate of the asymptotically flat supergravity solution
of M5-branes before taking the near horizon limit. Thus, this
Legendre transformation is the analogue of the case of the Wilson
loop case [33,47].
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T

e
Y = coshucoshw’
ry = e’ tanhw,
e tanh u
= 3.30
2 coshw ( )

The MS5-brane is wrapping AdS; x S3 expressed by
u = u;, = (constant). From (3.30), « is related to u; as

k = sinh uy. (3.31)

Similarly, Cy on the world volume is given by

Ce = —L° cosh?uy sinh* u;, cosh w sinh wdrtAdwAdpAws.

(3.32)

In addition, we must use the flux quantization condition in
this coordinate, namely, H3 is given by

k
Hy = — 456
2Nsinh”u,
k
Hyse = ———5—. 3.33
= 1456 = SN sinbdug (3.33)

On the other hand, (3.18) remains intact. Putting it all
together, we can compute the PST action in these
coordinates,

SM5 = TS / L6CU6 COSh3 125% Sinh3uk 1 + (H456)2

—TsL® / cosh? u; sinh* u; cosh w

x sinh wdtAdwAdpAws
- 27Z'R6
or

k(2N + k) sinh? wy, (3.34)
where @y is the volume form of unit AdS; x S and wy is a
cutoff. Since the boundary term is proportional to the
volume of the boundary and cancels the divergence, it is
given by

2ﬂ'R6

Shay = —Tk(2N + k) sinh wqy cosh wy. (3.35)

The regularized PST action Sy is obtained in the limit

Wy — 00 as
Sﬁgs = SMS + dey
R
= -T2 kaN + k)
.

__P k
= —ENk<1 +ﬁ>. (3.36)
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Finally, the expectation value of the Wilson surface for the
M5-brane wrapping AdS; x S° is given by

exp [—Sys] = exp [gNk(l - %\[ﬂ (3.37)

This result completely matches the value of the Wilson
surface in symmetric representation (2.13). As a result, we
could obtain nontrivial support for the AdS,;/CFT.

C. M5-brane wrapping AdS; x s3

In this section we consider a probe M5-brane wrapping
AdS; x S3. Here AdS; is a minimal surface in AdS;, while
$3 is included in §*. It is convenient to use the global
coordinates (3.2). We take the ansatz

n=rnr/2, 0 = 0, = (constant). (3.38)
The induced metric on the M5-brane is given by
ds?, = L*(cosh’pdt® + dp* + sinh?pdgp?*)
L? ~
+ sin0,dQ3,
L6
VGind = §cosh p sinh psin’6, /g, (3.39)

where constant 8, is associated with integer k parametriz-
ing the flux quantization condition (see Appendix B).

B, also can be written as the derivative of Cy; thus, for
the global coordinates we have

6
B4 — dC3 — ZE789H

3
= S Lisin’0d0na. (3.40)

where @5 is the volume form of unit §°. By integrating this
over #, C3 can be obtained by

3

L
Cy = —§(3 cos 0 — cos’0 — 2) s (3.41)

= — L3f(0) (3.42)

We choose the gauge in which C; = 0 at = 0 because 3
shrinks at that point. Combining it with the flux quantiza-
tion condition (B4), the 3-form field strength H; is

PHYSICAL REVIEW D 90, 026005 (2014)

H3 - F3 - C3
k 3~
N T f(6r) | Lwy
=5 +f(9k) i
2N sin®0,
= Hypy = (24 £(00) ) — (3.43)
9 2N Y ) sind0, '
The component of H is
H = Hyy,. (3.44)

We choose the gauge Hj;, = 0 again. Moreover, we
have Cs = 0 on the world volume and C3AH; = 0 because
both are proportional to the volume form of S3. Thus, the
remaining part of the action is

Sms = TS/d6z:\/gind det(5,," +i1:1mn>

L6
=Ts / d(’(:?cosh p sinh psin®6; \/gzi\/ 1 + (Hgoy)*

a2

=T

/d3éj cosh p sinh p

X \/sin69k + 64 (%—I—f(@k)) 2.

Next we solve the equation of motion for 6, to acquire the
on-shell value. It is equivalent to

(3.45)

0= d sin®0;, + 64 k+f(6’) ’
T N Tk

4k
= 8sin’0, {—2 cos 0 — ~+ 2] , (3.46)

then we have the relation between 6, and k as

2k
cosl, =1—-——.

N (3.47)

Substituting this into the action, we obtain
m? L 4k
S 1 -— d
Ms = I's—— 4 N ( ) / P /

X / d¢ cosh p sinh p
0

- 47[R6 k

2;:R6

(N — k) sinh?py, (3.48)

where p, is a cutoff. The boundary term Sp4, is again
proportional to the volume of the boundary and given by
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Soay = _4TRe L (N — k) sinh pg cosh py. (3.49)
We take the limit py, — oo, and obtain
Syis = Sms + Sbay
_ _2ﬂR6k(N_k)
r
k
:—gNk<1 _N)' (3.50)

The expectatlon value for the MS-brane wrapping
AdS; x $3 results in

exp [—Syss] = exp [’gNk(l —%)}

It perfectly agrees with the Wilson surface in antisymmetric
representation (2.16); hence, this strongly stands for
the AdS7/CFT6

(3.51)
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APPENDIX A: CALCULATION OF THE
WILSON SURFACE IN A RECTANGULAR
YOUNG DIAGRAM

Here we calculate the expectation value of the Wilson
surface in a rectangular Young diagram following the
formulation of Halmagyi and Okuda [45]. Let the height
of the rectangular Young diagram be n and the width m.
Then it has been found that the Wilson loop expectation
value in the Chern-Simons matrix model is expressed as®

(A1)

(Wrhy Z/HdvA exp F,

where Z is the appropriate normalization and F is given by

2

smh (vi—v;)

i,j,i<j
N N 2
_—N2 Z V2 + <_—n>N Z v, + Z In sinhz(ua—ub)
a=n+1 a=n+1 a,b,a<b
—I—Z len smh V)| (A2)
i a=n—+

We would like to evaluate this integral in the limit N, n, m — oo while n/N, m/N are kept finite. In this limit, we can use the

saddle point approximation. Equation (A2) is simplified as

]::—Eszv +<m+ -

1=

——N2 Z V2 +

gor

n>NZu +N Y |y -y

1.j,i<j

Z l/a+N Z |ya_yb|

a=n+1 a=n+1 a,b,a<b
) Z Z Vi = Val- (A3)
i=1 a=n+1
The saddle point equations are derived from Eq. (A3) as
The notation of the integration variables here is related to [45] by ul(l) =Ny, (i=1,...,n) and ui,z_)n =Ny, (a=n+1,...,N).
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2 1 N
—-=N%,; + (m +=(N - n))N—I—NZsign(vi -vj)+=(N—-n)=0, i=1,..,n,
p 2 JTF 2
2, 1 .
e\ z/a——nN—i—Nngn(va—vb)——n:O, a=n+1,...,N. (A4)
ﬂ 2 b,b#a 2
If we assume the order
Uy > Up, it A< B, (A,B=1,...,N), (AS)
the solution is given by
v»zﬁ(m—i—N—Zi), (i=1,...,n),
" 2N
p
=—(N-2 = 1,...,N). A
Vo=5n(N=2a),  (a=n+1..N) (A6)
In other words, the eigenvalue density is expressed as
Lo (=b<py<L(N-2n), L(N+m—-2n)<v<L(N+m)),
/)(1/) _ B 2 2N 2N 2N (A7)
0 (others).

This is a special case of the eigenvalue distribution obtained
in [45].4 The expectation value (Al) is evaluated as

<WR>U(N) ~ exp F|uqdie point

~ exp EmnN(l —%—F%)} (AB)

This equation reproduces the result of the symmetric
representation (2.13) when n = 1, m = k, and the antisym-
metric representation (2.16) when n = k,m = 1.

The result (A8) is not invariant under the exchange of n
and (N — n) because this is the expectation value in the
U(N) theory. It is related to the SU(N) theory by

IR

Wr)uw) = €™ (Wr)suw)» (A9)
where |R| is the number of boxes in the Young diagram R.
We obtain the expectation value in the SU(N) theory by
making use of this relation as

(-5)05)} o

This is invariant under the exchange of n and (N —n) as
expected. This expectation value also reproduces the results
(2.13) and (2.16).

s
(Wr)su(w) ~ exp {5 mnN

“The results are the same although they first take the ’t Hooft
limit and then take the strong coupling limit in [45].

APPENDIX B: FLUX QUANTIZATION
CONDITION

We explain the flux quantization for the coupling
of a probe M5-brane involving $3 to an open M2-brane
electrically following [48]. We denote the world volume
manifold of the M2-brane by X; whose boundary 9%5 is
part of the world volume of the M5-brane. For simplicity,
0% is the boundary of a disk D* embedded into the M5-
brane. Moreover, X, represents the four-manifold with
boundaries X5 and D3. If we consider the coupling of the
MS5-brane and the M2-brane, the interaction term is
written as

Si[Z4. DY) = T, / (B1)

B, + Tz/ H,
%, D3

1

(2n)*63

In general, the action itself depends on the choice of
(D3,%,), though the weight with it in the path integral
should be independent of such choice. Let (D¥, X)) be
another choice and we require that

where T, = is the tension of the M2-brane.

eiSin([Z4sD3] — eiSinL[ZL'Dy]‘ (B2)

This gives us the quantization condition for the flux
through §* wrapped by the MS5-brane. The condition
(B2) can be written as
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Zﬂk = Sint [24, D3] - Sint [ZA, Dy}

= T2/ B4 + T2/ H3
2,-3, D3-D¥

=T2/ dC3+T2/ (F3—Cs5)
B §

- T2/ F3,
S3

where k € Z, F3 =dA,, and A, is the world volume
2-form gauge field. Since F3 is proportional to the volume
form w; of the unit S, we obtain the flux quantization
condition

(B3)

k k
F3 = —F— W3 = —L3a)3.

B4
ﬂTz 2N ( )

APPENDIX C: PST ACTION

The PST action proposed by [37-39] is the covariant
action on a single M5-brane. Let {"(m = 0, 1, ..., 5) be the
world volume coordinates. The bosonic fields contain a
scalar field a and a 2-form gauge field A, = %Amn dg¢made"
as well as the spacetime coordinates. The bosonic part of
the action with the Wess-Zumino term is given by

1.
Sms = Ts/d6§\/—gind |:£+ZHmnHmn:|
1
+T5/<C6_§C3/\H3>,

(C1)

where

L= \/det (8, +iH,"), (C2)

PHYSICAL REVIEW D 90, 026005 (2014)

F3 = dA,, (C3)

Hy =F;—-Cs, (C4)

Hmn = Hm”pvp’ (CS)

H™ = (xgH)"Pyp,, (Co)
0

v, = rd (C7)

P \/=d™0,,a0,a

The indices are raised or lowered by the induced metric.
The Hodge star ¢ is defined with the induced metric on the
M5-brane. In addition, the action is invariant under the
gauge transformation &,

and the following local transformations 6, and §,,:
é,a =0,
{ ! 1 (C9)
5(/)Amn = Ea[ma¢n](§)’
L _ (C10)
51//Amn - ZW (Hmn an)?

where ¢,,({) and y({) are infinitesimal parameters for each
transformation, and

y g Ok

: Cl1
ST (C11)
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