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Anti-de Sitter plane wave backgrounds are dual to conformal field theory excited states with energy
momentum density Tþþ ¼ Q. Building on previous work on entanglement entropy in these and
nonconformal brane plane wave backgrounds, we first describe a phenomenological scaling picture for
entanglement in terms of “entangling partons.”We then study aspects of holographic mutual information in
these backgrounds for two strip shaped subsystems, aligned parallel or orthogonal to the flux. We focus on
the wide (Qld ≫ 1) and narrow (Qld ≪ 1) strip regimes. In the wide strip regime, mutual information
exhibits growth with the individual strip sizes, and a disentangling transition as the separation between the
strips increases, for which the behavior is distinct from the ground and thermal states. In the narrow strip
case, our calculations have parallels with “entanglement thermodynamics” for these anti-de Sitter plane
wave deformations. We also discuss some numerical analyses.
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I. INTRODUCTION

Inspired by the area scaling of black hole entropy,Ryu and
Takayanagi [1,2,3] identified a simple geometric prescrip-
tion for entanglement entropy (EE) in field theories with
gravity duals: the EE for a subsystem in the d-dimensional
field theory is the area in Planck units of a minimal surface
bounding the subsystem, the bulk theory living in dþ 1
dimensions. This is a prescription in the large N classical
gravity limit. In recent times, entanglement entropy has been
explored widely, the holographic prescription giving a
calculable handle on what in field theory is a rather
complicated question. For nonstatic situations, the prescrip-
tion generalizes to finding the area of an appropriate bulk
extremal surface with minimal area [4].
We are interested in studying excited states of a certain

kind in this paper, building on previous work. Anti-de Sitter
(AdS) plane waves [5–7] are deformations of AdS which
are dual to conformal field theory (CFT) excited states with
constant energy-momentum flux Tþþ ∼Q turned on. Upon
xþ-dimensional reduction, these give rise to hyperscaling
violating spacetimes [8], some of which exhibit violations
[9–11] of the area law [12]. In Ref. [13], a systematic study
of entanglement entropy for strip subsystems was carried
out in AdS plane waves (with generalizations to non-
conformal brane plane waves in Ref. [14]). The EE depends
on the orientation of the subsystem, i.e., whether the strip is
parallel or orthogonal to the flux Tþþ. For the strip
subsystem along the flux, the EE grows logarithmically
with the subsystem width l for the AdS5 plane wave (the
corresponding hyperscaling violating spacetime lies in the
family giving log behavior). The AdS4 plane wave dual to
plane wave excited states in the M2-brane Chern–Simons
CFT exhibits an even stronger

ffiffi
l

p
growth. For the strip

orthogonal to the flux, we have a phase transition with the
EE saturating for l ≫ Q−1=d.

For two disjoint subsystems, an interesting information-
theoretic object is mutual information (MI), defined as

I½A;B� ¼ S½A� þ S½B� − S½A∪B�; ð1Þ
involving a linear combination of entanglement entropies.
It measures how much two disjoint subsystems are corre-
lated (both classical and quantum). The EE terms in I½A;B�
automatically cancel out the cutoff-dependent divergence,
thus making MI finite and positive semidefinite. A new
divergence comes up when the subsystems collide. The
term S½A∪B� in the above expression depends on the
separation between the subsystems A and B: in the holo-
graphic context, there are two extremal surfaces of key
interest. For large separation, the disconnected surface
S½A∪B� ¼ S½A� þ S½B� having lower area is the relevant
surface so that mutual information I½A;B� vanishes. For
nearby subsystems, however, the connected surface has
lower area. Thus, the Ryu–Takayanagi prescription auto-
matically implies a disentangling transition for mutual
information in this large N classical gravity approximation
[15], with a critical separation xc.
In this paper, we first discuss a phenomenological

scaling picture for entanglement for CFT ground and some
excited states, building on some renormalization-group-like
intuition described in Ref. [16] based on “entangling bits”
or “partons” (Sec. III). In Sec. IV we describe some
generalities on holographic mutual information and then
study mutual information in AdS plane waves for two
parallel disjoint strip subsystems of width l each (Sec. V),
first discussing the wide strip regime Qld ≫ 1, exhibiting
again a disentangling transition. Then we study the per-
turbative regime Qld ≪ 1 and calculate the changes in the
turning point and the entanglement area functional toOðQÞ
treating the AdS plane wave as a perturbation to pure AdS,
for the strip subsystem both parallel and orthogonal to the
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energy-momentum flux. This perturbative analysis has
parallels with “entanglement thermodynamics” [17–20].
Finally, we perform some numerical analysis to gain some
insights whenQld isOð1Þ. We discuss some similarities and
key differences of our investigations with the study of mutual
information for thermal excited states [21], which are
somewhat different from these pure excited AdS plane wave
states. Section II contains a review of AdS plane waves and
entanglement entropy.

II. REVIEW: ADS PLANE WAVES AND
ENTANGLEMENT ENTROPY

AdS plane waves [5,6,7] are rather simple deformations
of AdS/CFT, dual to anisotropic excited states in the CFT
with uniform constant energy-momentum density Tþþ
turned on (with all other energy-momentum components
vanishing),

ds2 ¼ R2

r2
ð−2dxþdx− þ dx2i þ dr2Þ þ R2Qrd−2ðdxþÞ2

þ R2dΩ2; ð2Þ

with d the boundary spacetime dimension and R4 ∼
g2YMNα02 (AdS5 plane wave), R6 ∼ Nl6P (AdS4 plane wave).
These are normalizable deformations of AdSdþ1 × S that
arise in the near horizon limits of various conformal branes
in string/M theory. Structurally they are similar to the AdS
null deformations [22,23] that give rise to gauge/string
realizations of z ¼ 2 Lifshitz spacetimes [24,25], except
that these AdS plane waves are normalizable null defor-
mations. Reducing on the sphere, these are solutions in a
dþ 1-dimensional effective gravity theory with negative
cosmological constant and no other matter, i.e., satisfying
RMN ¼ − d

R2 gMN . The parameter Q > 0 gives rise to a
holographic energy-momentum density Tþþ ∝ Q in the
boundary CFT. Dimensionally reducing Eq. (2) on the xþ-
dimension (and relabeling x− ≡ t) gives a hyperscaling

violating metric ds2 ¼ r
2θ
dið− dt2

r2z þ
P

2

i¼1
dx2iþdr2

r2 Þ, with expo-
nents z ¼ d−2

2
þ 2, θ ¼ d−2

2
, and di is the boundary spatial

dimension. These are conformal to Lifshitz space times and
appear in various discussions of nonrelativistic holography,
arising in various effective Einstein–Maxwell-scalar theo-
ries, e.g., Ref. [8]; see Ref. [11] for various aspects of
holography with hyperscaling violation. It is known that
these spacetimes for the special family “θ ¼ di − 1” exhibit
a logarithmic violation of the area law [12] of entanglement
entropy, suggesting that these are signatures of hidden
Fermi surfaces [9,10]. For the special case of the AdS5
plane wave, we have θ ¼ 1, di ¼ 2, lying in this θ ¼ di − 1
family.
This spacetime (2) can be obtained [6] as a “zero

temperature,” highly boosted, double-scaling limit of
boosted black branes, using Ref. [26]. For instance,

AdS5 Schwarzschild black brane spacetimes, with metric
ds2¼R2

r2 ½−ð1−r40r4Þdt2þdx23þ
P

2
i¼1dx

2
i �þR2 dr2

r2ð1−r4
0
r4Þ, can

be recast in boundary light cone coordinates x� with
t¼xþþx−ffiffi

2
p , x3¼xþ−x−ffiffi

2
p . After boosting by λ as x� → λ�1x�,

we obtain ds2 ¼ R2

r2 ½−2dxþdx− þ r4
0
r4

2
ðλdxþ þ λ−1dx−Þ2þP

2
i¼1 dx

2
i � þ R2 dr2

r2ð1−r4
0
r4Þ. Now in the double scaling limit

r0 → 0, λ → ∞, with Q ¼ r4
0
λ2

2
fixed, this becomes Eq. (2).

For the near extremal AdS plane wave, from Ref. [26], we
see that we have other energy-momentum components also

turned on, Tþþ ∼ λ2r40 ∼Q, T−− ∼ r4
0

λ2
∼ r8

0

Q, Tþ− ∼ r40,

Tij ∼ r40δij. Turning on a small r0 about Eq. (2), this means
Tþþ is dominant while the other components are small. In
some sense, this is like a large left-moving chiral wave
with Tþþ ∼Q, with a small amount of right-moving stuff
turned on. Thus, the near-extremal case (with small r0)
serves to regulate the AdS plane wave in the deep
interior.
We now review certain aspects of holographic entan-

glement entropy in these AdS plane wave geometries
[13]. First, it is worth recalling that the entanglement
entropy for ground states (Q ¼ 0) in the d-dimensional
CFTs arising on the various conformal branes with strip-
shaped subsystems has the form (up to numerical
coefficients)

SA ∼
Rd−1

Gdþ1

�
Vd−2

ϵd−2
− cd

Vd−2

ld−2

�
;

R3

G5

∼ N2ð4dCFTÞ; R
2

G4

∼ N3=2ð3dCFTÞ; ð3Þ

where cd > 0 is some constant, l the strip width, Vd−2
the longitudinal size, and ϵ the ultraviolet cutoff. (We
have used the relations R4

D3 ∼ gsNl4s , R6
M2 ∼ Nl6P, and

those for the Newton constants G10 ∼G5R5
D3,

G11 ∼G4R7
M2, where gs is the string coupling, and ls,

lP the string and Planck lengths.) The first term
exhibiting the leading divergence represents the area
law, while the second term is a finite cutoff-independent
part encoding a size-dependent measure of the entan-
glement [1,2,27]. With Q ≠ 0, we have an energy flux
in a certain direction: these are nonstatic spacetimes,
and we therefore use the covariant formulation of
holographic entanglement entropy [4] working in the
higher-dimensional theory (with xþ noncompact), the
strip geometry corresponding to a spacelike subsystem
on the boundary. Consider the strip to be along the flux
direction, i.e., with width along some xi direction [13].
Then the leading divergent term is the same as for
ground states. The width scales as l ∼ r�, where r� is
the turning point of the bulk extremal surface, and the
finite cutoff-independent piece in these excited states is
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�
ffiffiffiffi
Q

p
Vd−2l2−

d
2
Rd−1

Gdþ1

½þ∶d < 4; −∶d > 4�;
ffiffiffiffi
Q

p
V2N2 logðlQ1=4ÞðD3Þ;

ffiffiffiffi
Q

p
L

ffiffi
l

p
N3=2ðM2Þ: ð4Þ

Note that the logarithmic behavior for the 4-dimen-
sional CFT is of the same form as for a Fermi surface,
if the energy scale Q1=4 is identified with the Fermi
momentum kF. Both 4- and 3-dimensional CFTs in
these excited states thus exhibit a finite entanglement
which grows with subsystem size l. In particular, for a
fixed cutoff, this finite part is larger than the leading
divergence. Recalling that the finite entanglement for
the thermal state (i.e., the AdS black hole) is extensive,
of the form Vd−2Td−1l, we see that these are states with
subthermal entanglement. These are pure states in the
large N gravity approximation since the entropy density
vanishes.
It is worth noting that we regard the AdS plane wave

spacetimes as a low-temperature highly boosted limit of
the AdS black brane; the scale Q ¼ λ2r40 ≫ r40 implies a
large separation of scales between the flux in the AdS
plane wave and the temperature of the black brane, with
Q dominating the physics in the plane wave regime.
The above estimates (4) for the finite part of entangle-
ment arise if the bulk extremal surface dips deep
enough in the radial direction to experience substantial
deviation from the AdS geometry due to the plane
wave, while still away from the regulating black brane
horizon in the deep interior, i.e., the length scales
satisfy Q−1=d ≪ l ≪ 1

r0
.

With the strip orthogonal to the flux direction, a phase
transition was noted [13]: for large width l, there is no
connected surface corresponding to a spacelike subsystem,
only disconnected ones.
This analysis can be extended [14] to the various

nonconformal Dp-brane systems [28]. These have a
ground state entanglement [2,29] (after converting to
field theory parameters) SA¼NeffðϵÞVd−2

ϵd−2
−cdNeffðlÞVd−2

ld−2
,

with a scale-dependent number of degrees of freedom

NeffðlÞ ¼ N2ðg2YMNlp−3 Þ
p−3
5−p involving the dimensionless gauge

coupling at scale l. For nonconformal Dp-brane plane
waves, it turns out to be natural to redefine the energy
density as Q → QNeffðlÞ (i.e., Q in the conformal cases
above is the energy density per non-Abelian degree of
freedom), and then the finite part of entanglement takes

the form SfiniteA ∼
ffiffiffiffiffiffiffiffiffiffi
NeffðlÞ

p
3−p

Vp−1
ffiffiffi
Q

p
lðp−3Þ=2 involving a dimensionless

ratio of the energy density and the strip width/lengths and
NeffðlÞ (the leading divergence is as for the ground state).
This finite part is similar in structure to that for the
conformal plane waves above but is scale dependent;
analyzing the UV-IR Dp-brane phase diagram [28] shows
the finite part to be consistent with renormalization group
flow [14].

III. PHENOMENOLOGICAL SCALING PICTURE
FOR ENTANGLEMENT

This is a generalization of a renormalization group
(RG)-like scaling picture in Ref. [16] for ground states.
We assume a renormalization-group-type scaling behavior
with a notion of “entanglement per scale” as an organizing
principle: i.e., in a CFT of spacetime dimension d, there
are “entangling bits” or “partons” of all sizes s.
Equivalently at scale s, we think of space as latticelike
with cell size s. In the ground state, each cell roughly
contains one entangling parton. Entanglement arises from
degrees of freedom straddling the boundary between the
subsystem and the environment, in other words from
partons partially within the subsystem and partly outside.
Entanglement entropy arises from the fact that we trace
over the environment and thus lose some information
about the straddling partons. The scaling picture below is
admittedly quite phenomenological and is only meant as
an attempt at an intuitive picture that fits the holographic
entanglement calculations.
We want to estimate the rough number of degrees of

freedom contributing to entanglement at the interface
between the subsystem and the environment which has
area Vd−2 ≡ Ld−2. At scale s, the rough number of cells of
linear size s at the boundary is ðLsÞd−2 ¼ Vd−2

sd−2 . For a CFT
with non-Abelian N × N matrix degrees of freedom, there
are N2 degrees of freedom per cell (we use N2 with a super
Yang-Mills CFT in mind, but this can be easily generalized
to N3=2 for the M2-brane CFT). We then integrate this over
all scales greater than the UV cutoff ϵ with the logarithmic
measure ds

s , and also we expect the IR cutoff is set by the
subsystem size l. This gives (assuming d > 2)

S ∼
Z

l

ϵ

ds
s
Vd−2

sd−2
N2 ∼

N2Vd−2

d − 2

�
1

ϵd−2
−

1

ld−2

�
: ð5Þ

This shows the leading area law divergence and the
subleading cutoff-independent finite part. For d ¼ 2, we
obtain S ∼

R
l
ϵ
ds
s N

2 ∼ N2 log l
ϵ, which is the logarithmic

behavior characteristic of a 2-dimensional CFT; this can
be used as a check that the logarithmic measure ds

s is
appropriate. This is a quantum entanglement, with con-
tributions from various scales s.
Thus, we see that there is a diverging number Vd−2

ss−2 of
ultrasmall partons at short distances s → 0, which essen-
tially gives rise to the area law divergence [12]. For excited
states, the energy-momentum density does not change the
short-distance behavior but implies an enhanced number of
partons at length scales much larger than the scale set by the
energy momentum, changing the IR behavior of entangle-
ment as we will see below.
Similar arguments can be made for the various non-

conformal gauge theories arising on the various noncon-
formal Dp-branes. Now the gauge coupling is dimensionful
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and the number of non-Abelian degrees of freedom at
scale s is

NeffðsÞ ¼ N2

�
g2YMN
sp−3

�p−3
5−p
: ð6Þ

For the ground state, the entanglement at the boundary of
the subsystem is obtained as before by integrating over all
scales the number N effðsÞ of entangling bits or partons at
scale s,

S ∼
Z

l

ϵ

ds
s
Vd−2

sd−2
NeffðsÞ ∼ ð5 − pÞNeffðϵÞ

Vd−2

ϵd−2

− ð5 − pÞNeffðlÞ
Vd−2

ld−2
; ð7Þ

in agreement with the known holographic result for the
ground state entanglement for the nonconformal brane
theories, up to numerical factors. We see that the entangle-
ment expression above breaks down for p ¼ 5; these are
nonlocal theories (e.g., little string theories for NS5-branes).
For the CFTd at finite temperature T, the entanglement

entropy has a finite cutoff-independent piece which is
extensive and dominant in the IR limit of large strip width
l; this is the thermal entropy, essentially a classical
observable,

S ∼ N2VTd−1 ¼ N2
V

ð1=TÞd−1 ; and ρ≡ E
V
∼ N2Td;

ð8Þ

with ρ the energy density and where we have used 1
T ¼ ∂S

∂E.
The energy density per non-Abelian particle is ρ

N2 ¼ Td ¼
T

ð1=TÞd−1, which suggests that the characteristic size of the

typical particle is 1
T with energy T. The CFT physics below

this length scale 1
T, in particular that of entanglement, will

be indistinguishable from the ground state. Above this
length scale, the presence of the energy density implies a
larger number of entangling bits or partons and so a
correspondingly larger entanglement. Thus, the number
of entangling partons N ðsÞ for cell sizes s ≫ 1

T is the
number of partons of individual volume ð1=TÞd−1 in the
total cell volume sd−1, i.e., N ðsÞjs≫T−1 ∼ N2 sd−1

ð1=TÞd−1; thus,
N ðsÞ is extensive for length scales larger than the inverse
temperature. This implies a total entanglement

S ∼
Z

l

ϵ

ds
s
Vd−2

sd−2
N ðsÞ ∼ 1

d − 1

N2Vd−2

ϵd−2

þ N2

Z
ds
s
Vd−2

sd−2
sd−1

ð1=TÞd−1
����
l

∼
1

d − 2

N2Vd−2

ϵd−2
þ N2Td−1Vd−2l: ð9Þ

The energy enhancement factor sd−1

ð1=TÞd−1 changes the IR

behavior as expected. The finite part of entanglement
entropy is dominant for sufficiently large l and is essen-
tially the thermal entropy in this regime. The linear growth
with l of the entropy which is extensive is equivalent to the
number of partons N ðsÞ being extensive.
For the nonconformal theory in d ¼ pþ 1 dimensions at

finite temperature T, with ρ ¼ E
V being the energy density,

the thermal entropy Sðρ; VÞ and temperature 1
T ¼ ∂S

∂E are [28]

S ∼ Vgðp−3Þ=ð5−pÞYM

ffiffiffiffi
N

p
ρð9−pÞ=ð2ð7−pÞÞ;

ρ ∼ g2ðp−3Þ=ð5−pÞYM Nð7−pÞ=ð5−pÞT2ð7−pÞ=ð5−pÞ: ð10Þ

These can be recast as [29]

S ∼ Neffð1=TÞVTp; ρ ∼ Neffð1=TÞTpþ1;

Neffð1=TÞ ¼ N2ðg2YMNTp−3Þp−35−p: ð11Þ

Along the lines earlier, we could obtain the total entangle-
ment by integrating the number of entangling partons over
length scales longer than that set by the temperature; this
gives (d ¼ pþ 1)

Sfinite ∼
Z

ds
s
Vd−2

sd−2
Neffð1=TÞ

�
s

ð1=TÞ
�

d−1

∼ Vd−2lTd−1Neffð1=TÞ: ð12Þ

It is important to note that the thermal entropy is essentially
classical, with contributions from partons of size predomi-
nantly 1

T so that we do not integrate NeffðsÞ over all scales s,
i.e., Neff ¼ Neffð1=TÞ above. In fact integrating the number
of non-Abelian degrees of freedom NeffðsÞ over scales ϵ <
s < l in the above thermal context does not yield sensible
results (e.g., giving logarithmic growth for the thermal
entropy for p ¼ 1, 4), in contrast with the ground state.
Now we want to interpret entanglement entropy for the

pure CFTexcited states dual to AdS plane waves within this
scaling picture. The energy density Tþþ ¼ Q sets a
characteristic length scale Q−1=d; then the typical size of
the partons is Q−1=d. Thus, for cells of size s much smaller
than Q−1=d, the parton distribution is similar to that in the
ground state, while for cells of size s much larger than
Q−1=d, there is an enhancement in the number of entangling
partons per cell. The anisotropy induced by the flux which
is along one of the spatial directions implies that the
entangling partons have energy momentum in that direction
but can be regarded as essentially static in the other
directions, as in the ground state. Consider first the case
when the strip is along the flux direction; then as the strip
width increases, the number of partons straddling the
boundary increases since the partons move along the
boundary. On the other hand, when the strip is orthogonal
to the flux, the parton motion is orthogonal to the boundary;
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thus, when the strip width is much larger than the character-
istic size Q−1=d of the partons, the number of partons
straddling the boundary is essentially constant since most
of the partons enter the strip at one boundary and then
shortly do not straddle the boundary but are completely
encompassed within the strip. This reflects in the entan-
glement saturating for large width, with the strip orthogonal
to the energy flux.
Now we consider the case of the strip along the flux in

more detail. We again define the number of entangling bits or
partons N ðsÞ at scale s, with N ðsÞjs≪Q−1=d ∼ N2 for length
scales much smaller than the characteristic length Q−1=d;
above this scale, we expect some nontrivial scaling of N ðsÞ
which will be a function of Qsd on dimensional grounds.
The precise functional form of N ðsÞ for these AdS plane
wave states is not straightforward to explain, however: the
known results for holographic entanglement entropy (4)
suggest N ðsÞ ∼ N2

ffiffiffiffiffiffiffiffi
Qsd

p
. Although the AdS plane wave

CFT states are simply the thermal CFT state in a low-
temperature large boost limit, this scaling of N ðsÞ is not a
simple boosted version of those for the thermal state
(discussed below) but somewhat nontrivial. It would be
interesting to explain this scaling of the AdS plane wave
CFT states, perhaps keeping in mind the infinite momentum
frame and matrix theory. In this regard, we note that these
AdS plane wave states preserve boost invariance;
i.e., x� → λ�1x�, Q → λ−2Q is a symmetry of the bulk
backgrounds. For the strip along the flux, the longitudinal
size scales as Vd−2 → λVd−2, and the number of entangling
partons is some function fðQsdÞ. Boost invariance then fixes
Vd−2fðQsdÞ ¼ Vd−2

ffiffiffiffiffiffiffiffi
Qsd

p
. Alternatively, imagine the col-

lision of two identical plane wave states, moving in opposite
directions. Assuming the resulting state has a number of
partons N LðsÞN RðsÞ ∝ Qsd proportional to the energy-
momentum density, we can estimate that either individual
wave has N LðsÞ ∼N RðsÞ ∼

ffiffiffiffiffiffiffiffi
Qsd

p
. However, this is a bit

tricky since this makes N LðsÞ, N RðsÞ reminiscent of
partition functions; a number of partons might instead be
expected to be additive, as N LðsÞ þN RðsÞ.
Taking the number of entangling partons N ðsÞ at the

boundary at scale s ≫ Q−1=d as N2 Vd−2
sd−2

ffiffiffiffiffiffiffiffi
Qsd

p
¼

N2 Vd−2
sd−2 ð s

Q−1=dÞd=2, while for s ≪ Q−1=d keeping N2 Vd−2
sd−2 as

in the ground state, gives rise to an entanglement scaling as

S ∼
Z

l

ϵ

ds
s
Vd−2

sd−2
N ðsÞ ∼ 1

d − 2

N2Vd−2

ϵd−2

þ N2Vd−2

Z
ds
s

ffiffiffiffiffiffiffiffi
Qsd

p
sd−2

����
l

∼
1

d − 2

N2Vd−2

ϵd−2
þ N2

4 − d

ffiffiffiffi
Q

p
Vd−2l2−

d
2 ½d ≠ 4�;

∼
1

d − 2

N2Vd−2

ϵd−2
þ N2

ffiffiffiffi
Q

p
V2 logðlQ1=4Þ ½d ¼ 4�: ð13Þ

For d ¼ 4, the logarithmic growth in the finite part arises by
integrating from scales longer thanQ−1=4 up to the IR scale

l. Thus, we see that the phenomenological scaling
ffiffiffiffiffiffiffiffi
Qsd

p
is

consistent with the holographic results. It would be
interesting to understand this scaling better. Likewise for
the nonconformal plane wave excited states (as in the
conformal case), which we think of as chiral subsectors, the
number of entangling partons at length scales s longer than

that set by the energy density Q is proportional to
ffiffiffiffiffiffiffiffi
Qsd

p
,

and the total finite part of entanglement for a strip
subsystem of width l becomes

Sfinite ∼
Z

ds
s
Vd−2

sd−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NeffðsÞ

p ffiffiffiffiffiffiffiffi
Qsd

p
jl

∼
5 − p
3 − p

Vd−2

ld−2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NeffðlÞ

p ffiffiffiffiffiffiffiffi
Qld

p
; ð14Þ

recovering the holographic results [14].
It would be interesting to put the phenomenological

discussions in this section on firmer footing with a view to
gaining deeper insight into entanglement in field theory
excited states.

IV. HOLOGRAPHIC MUTUAL INFORMATION:
GENERALITIES

Mutual information is defined for two disjoint subsys-
tems A and B as

I½A;B� ¼ S½A� þ S½B� − S½A∪B�: ð15Þ
It is a measure of the correlation (both classical and
quantum) between the degrees of freedom of two disjoint
subsystems A and B. Mutual information is finite, positive
semidefinite, and proportional to entanglement entropy
when B≡ Ac [in that case, SðA∪AcÞ ¼ 0]. This linear
combination of entanglement entropies ensures that the
short-distance area law divergence cancels between the
various individual terms rendering the mutual information
finite. There is a new cutoff-independent divergence,
however, that arises when the two subsystems approach
each other and collide, as we will see below.
The holographic prescription of Ryu–Takayanagi

implies in a simple geometric way that mutual information
vanishes when the two subsystems are widely separated;
thus, as discussed in Ref. [15], mutual information under-
goes a disentangling phase transition as the separation
between the two striplike subsystems A and B increases.
Recall that we choose that extremal surface which has
minimal area, given the boundary conditions defined by the
subsystem in question. In the case of the subsystem A∪B
defined by two disjoint strips, there are two candidate
extremal surfaces as in Fig. 1. When the two subsystems are
widely separated, the relevant extremal surface with lower
area is simply the union of the two disconnected surfaces so
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that S½A∪B� ¼ S½A� þ S½B�. However, for nearby subsys-
tems, the connected surface has lower area. For simplicity,
we consider two disjoint parallel strip subsystems with
longitudinal size Vd−2, and of the same width l each, with
separation x. For fixed width l, we can vary the separation
x. Then as we vary x

l, which is a dimensionless parameter,
the behavior of the extremal surface and its area S½A∪B�
change; the extremal surface is

ðiÞ the disconnected surface : area

S½A∪B� ¼ SðAÞ þ SðBÞ ¼ 2SðlÞ; for large
x
l
;

ðiiÞ the connected surface : area

S½A∪B� ¼ Sð2lþ xÞ þ SðxÞ; for small
x
l
: ð16Þ

The Ryu–Takayanagi prescription of choosing the extremal
surface of minimal area then leads to a change in the
entangling surface for the combined subsystem A∪B.
Correspondingly the mutual information changes as

I½A; B� > 0;
x
l
<

xc
l
;¼ 0;

x
l
>

xc
l
: ð17Þ

The critical value xc
l is a dimensionless number and depends

on the field theory in question as well on the CFT state, as
we discuss below. This critical value xc

l is thus the location
of a sharp disentangling transition in the classical gravity
approximation, since the mutual information vanishes for
larger separations, implying the subsystems are uncorre-
lated, especially in light of an interesting relation between
the mutual information and correlation functions. It is
known [30] that I½A;B� sets an upper bound for two-point
correlation functions of operators, with one insertion at a
point in region A and the other in B,

I½A;B� ≥ ðhOAOBi − hOAihOBiÞ2
2jOAj2jOBj2

: ð18Þ

This inequality implies that beyond the disentangling
transition point all two-point correlation functions also

vanish (with one point in A and the other in B), since the
mutual information vanishes. It is important to note that
entanglement entropy and mutual information via the
Ryu–Takayanagi prescription are OðN2Þ observables in
the classical gravity approximation. However, the two-point
correlators are normalized as Oð1Þ. One might imagine the
mutual information decays as I½A;B� ∼P cΔ

r4ΔA;B
, and indeed

the quantum Oð1Þ contributions effectively give a long-
distance expansion for mutual information [31] (see also
Refs. [10,15,32,33]). However the coefficients cΔ at the
classical level OðN2Þ vanish: this shows up in the large N
approximation as the sharp disentangling transition in
mutual information.
We now discuss this for large N conformal field theories

in the ground and excited states. For the ground state, the
mutual information for two strip-shaped subsystems of
width l parallel to each other and with separation x is

I½A; B� ¼ −cVd−2

�
2

ld−2
−

1

ð2lþ xÞd−2 −
1

xd−2

�

¼ −c
Vd−2

ld−2

�
2 −

1

ð2þ x
lÞd−2

−
1

ðxlÞd−2
�
: ð19Þ

This arises from the cutoff-independent parts of entangle-
ment, the divergent terms cancelling. We see that for small
separation x, the mutual information I½A; B� grows as
I½A;B� ∼ Vd−2

xd−2
and exhibits a divergence as x → 0, i.e.,

when the subsystems collide with each other. As x
l

increases, I½A;B� decreases and then vanishes at a critical
value of x

l. Beyond this critical separation, the expression
(19) for I½A; B� as it stands is negative and is meaningless:
this simply reflects the fact that the correct extremal surface
for A∪B is in fact the disconnected surface, i.e., the
subsystems disentangle, and mutual information actually
vanishes beyond the disentangling point. This disentan-
gling transition can be identified as the zero of I½A;B�
above, giving xc

l ≃ 0.732½d ¼ 4� and 0.62½d ¼ 3� and so on.
Such a disentangling transition also happens at finite

temperature, but the phase diagram is more complicated
and has nontrivial dependence on the length scale 1

T set by
the temperature T. For l, x ≪ 1

T, i.e., subsystem widths and
separation small relative to the temperature scale, we only
expect small corrections to the ground state behavior above.
Thus, the disentangling transition point occurs at values
which are “near” those for the ground state. However, for
large width l, the entanglement is well approximated by the
extensive (linear) thermal entropy; thus,

I½A;B� ∼ Td−1Vd−2ð2l − ð2lþ xÞ − SfinðxÞÞ
¼ Td−1Vd−2ð−SfinðxÞ − xÞ: ð20Þ

Thus, we see that as the separation x increases, −SfinðxÞ >
0 decreases and I½A; B� decreases and eventually vanishes
at a critical xc, which turns out to be smaller in value than

B

l l

x

l lx

A B

x

ll

BA

A

FIG. 1. Two parallel disjoint strip subsystems of width l and
separation x (and longitudinal size Vd−2) (left), with the dis-
connected extremal surface (top right) and the connected
extremal surface (bottom right).
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for the ground state. When the thermal entropy dominates
the entanglement or equivalently the subsystem widths and
separation are both large relative to the temperature scale,
we see that

I½A; B� ∼ Td−1Vd−2ð2l − ð2lþ xÞ − xÞ ¼ −2Td−1Vd−2x;

ð21Þ
which is negative. This is a reflection of the fact that the two
subsystems in fact are completely disentangled for any
separation x larger than 1

T. In some sense, the temperature
“disorders” the system, and the subsystems disentangle
faster at finite temperature than in the ground state.
In what follows, we analyze holographic mutual infor-

mation for AdS plane waves. We will see some similarities
with the finite temperature case, but with nontrivial phase
structure depending on the scaleQ−1=d. There are, however,
some key differences as we will see below.

V. MUTUAL INFORMATION IN ADS
PLANE WAVES

AdS plane waves exhibit anisotropy due to the energy
flux in one direction. We are considering parallel disjoint
strip subsystems that are either both along the flux or both
orthogonal to the flux. We can analyze mutual information
in two extreme regimes, where the strip widths l are large or
small compared to the length scale set by the energy density
flux Q. Eventually we will carry out some numerical
analysis in intermediate regimes as well.

A. Wide strips: lQ1=d ≫ 1

Consider first the strip along the energy flux direction,
with width direction along, say, x1 (we assume d ≥ 3).
Then the spacelike strip subsystem A lying on a constant
time slice has 0 ≤ x1 ≤ l; ðxþ; x−Þ ¼ ðαy;−βyÞ ¼ ðy;−yÞ;
−∞ < y; x2; x3;…; xd−2 < ∞. The extremal surface γA is
specified by the function x1 ¼ xðrÞ. Vd−2 denotes the
volume in the y and (x2;…; xd−2) direction. ϵ is the UV
cutoff. The subsystem width in terms of the turning point r�
is [13]

Δx1 ¼ l ¼ 2

Z
r�

0

dr
Ard−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þQrd − A2r2ðd−1Þ
p ; ð22Þ

while the entanglement entropy in terms of the area
functional is

SA ¼ Area
4Gdþ1

¼ 2Vd−2Rd−1

4Gdþ1

Z
r�

ϵ

dr
rd−1

2þQrdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þQrd − A2r2ðd−1Þ

p : ð23Þ

There is a leading area law divergence from the contribu-
tion near the boundary r ¼ ϵ, with EE ∼ N2 Vd−2

ϵd−2
, where we

have used N2 ∼ Rd−1

Gdþ1
. For large energy density Q and large

width l, the turning point equation 2þQrd� − A2r2d−2� ¼ 0

can be approximated asQrd� ≃ A2r2ðd−1Þ� ≫ 1, so that l ∼ r�
from Eq. (22). The finite cutoff-independent piece of SA is
then estimated as

SfiniteA ∼� Rd−1

Gdþ1

Vd−2
ffiffiffiffi
Q

p
l2−

d
2 ½d ≠ 4� ð24Þ

∼ N2V2

ffiffiffiffi
Q

p
logðlQ1=4Þ ½d ¼ 4�: ð25Þ

The sign in front of Eq. (24) isþ for d < 4 and − for d > 4.
Toward estimating mutual information for AdS plane

waves, we must note that there are multiple regimes
stemming from the various length scales l, x, Q−1=d.
When the strip widths and separations are large relative
to the correlation length, i.e., lQ1=d ≫ 1 and xQ1=d ≫ 1,
we can use the above estimates for the finite parts of
entanglement entropy to estimate mutual information. For
the AdS5 plane wave, when the strips are not too far apart,
we can assume mutual information is nonzero, obtaining
from the finite parts above

I½A; B� ¼ 2SfinðlÞ − Sfinð2lþ xÞ − SfinðxÞ

∼ V2

ffiffiffiffi
Q

p
log

�
l2

xð2lþ xÞ
�
: ð26Þ

The argument of the logarithm vanishes when

I½A; B� → 0 ⇒ l2 ¼ 2lxþ x2;

i:e:;
xc
l
¼

ffiffiffi
2

p
− 1≃ 0.414: ð27Þ

Thus, the subsystems disentangle at a separation less than
that for the AdS5 ground state, which has xc

l ¼ 0.732. It is
also noteworthy that for any large Q, the subsystems
disentangle only when they are sufficiently wide apart in
comparison with the width, i.e., x ≥ 0.414l, independent of
the characteristic energy scale Q−1=4; in particular the
disentangling point xc here could be substantially bigger
thanQ−1=4. This transition location agrees with the analysis
for hyperscaling violating spacetimes in Refs. [10] and
[21], in accordance with the fact that the AdS5 plane wave
gives rise to the corresponding hyperscaling violating
spacetime. The strips, being parallel to the flux, are
unaffected by the reduction along the xþ circle from that
perspective. In the present case, we are studying this
entirely from the higher-dimensional AdS plane wave point
of view. Note that this is quite distinct from the finite
temperature case [21] in the corresponding regime lT ≫ 1,
xT ≫ 1, i.e., sizes larger than the temperature scale 1

T; in
that case, the linear extensive growth of entanglement in
this regime implied that the subsystems disentangled for
any finite separation x independent of the width l (21).

ADS PLANE WAVES, ENTANGLEMENT, AND MUTUAL … PHYSICAL REVIEW D 90, 026003 (2014)

026003-7



Strictly speaking, we are thinking of the regulated AdS
plane wave as a limit of the highly boosted low-temperature
AdS black brane, with a large separation of scales Q ≫ r40
between the energy density Q ¼ λ2r40 and the temperature
r0, with λ being the boost parameter. Over this wide range
of length scales, the physics is dominated by the AdS plane
wave description, with departures arising in the far infrared
where the black brane horizon physics enters as a regulator.
From this point of view, we are thinking of the strip
subsystem widths as satisfying Q−1=4 ≪ l ≪ 1

r0
, with the

above behavior of mutual information holding correspond-
ingly; in the far IR when l ≫ 1

r0
, the behavior of mutual

information resembles that in the finite temperature case.
A similar analysis can be done for the AdS4 plane wave,

in the regime lQ1=3 ≫ 1 and xQ1=3 ≫ 1, taking again for
simplicity both strips of equal width l with separation x.
Then the mutual information arises from the finite parts of
entanglement estimated (24) for large Q giving

I½A;B� ∼ V1

ffiffiffiffi
Q

p
ð2

ffiffi
l

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ x

p
−

ffiffiffi
x

p Þ: ð28Þ

This decreases as the separation x increases and finally
vanishes when

I½A;B� → 0 ⇒
xc
l
¼ 1

4
; ð29Þ

which is the location of the disentangling transition in this
regime. Again we see that the subsystems disentangle when
they are sufficiently wide apart in comparison to their
widths l, without specific dependence on the energy scale
Q−1=3 as for the AdS5 plane wave discussed above.
Nonconformal D-brane plane waves and entanglement

entropy were studied in Ref. [14], with the emerging
picture and scalings consistent with AdS plane waves in
cases where comparison is possible. The analysis is more
complicated in the nonconformal cases since there are
multiple different length scales in the phase diagram. The
structure of mutual information is still further complicated,
and we will not carry out a systematic study here. We can,
however, make some coarse estimates in the large flux
regime. For instance the D2-M2-brane system ground state
phase diagram [28] extends to a corresponding one for the
D2-brane plane waves. The finite part of EE for a strip
along the flux in the D2-brane supergravity regime is SfinD2∼
V1

ffiffiffiffi
Q

p ffiffi
l

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
NeffðlÞ

p
∼ V1

ffiffiffiffi
Q

p ffiffi
l

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

ðg2YMNlÞ1=3
q

∝ l1=3. Noting

the D2-sugra regime of validity, it can be seen that this

finite part is greater than V1

ffiffiffiffi
Q

p ffiffi
l

p ffiffiffiffiffiffiffiffiffi
N3=2

p
for the M2-brane

(AdS4) plane wave arising in the far IR [14]. In the D2-
regime, we can approximate the mutual information as
MID2 ∼ V1

ffiffiffiffi
Q

p ð2l1=3 − ð2lþ xÞ1=3 − x1=3Þ, which shows a
disentangling transition at xc

l ∼ 0.31. Recalling that for the
M2-brane regime we have xc

l ∼ 0.25, we see that xc
decreases along the RG flow from the D2-brane sugra to

the M2-brane regime. Similarly for the ground states also, it
can be checked that in the D2-regime we have xc

l ∼ 0.66,
while in the M2-regime, we have xc

l ∼ 0.62. It is unclear if
these are indications of some deeper structure for the
“flow” of mutual information.
Now we make a few comments on mutual information in

the case where the strips are orthogonal to the energy flux.
In the large flux regime, we know [13] that entanglement
entropy shows a phase transition for l ≫ Q−1=d with no
connected extremal surface but only disconnected ones. In
this regime, we expect that mutual information simply
vanishes since the connected surface of mutual information
(16) is already disconnected; thus, the entanglement is
saturated for each of S½l�, S½2lþ x�, S½x� ∼ Ssat so that
MI ∼ 2SðlÞ − S½2lþ x� − S½x� ¼ 0. In Sec. V C, we will
study entanglement and mutual information in the pertur-
bative regime Qld ≪ 1; however, in this regime, we do not
expect any signature of the phase transition which is only
visible for wide strips. It is then reasonable to expect some
interesting interplay between the phase transition and the
location of the disentangling transition for mutual
information.

B. Narrow strips: lQ1=d ≪ 1, strips along flux

We would now like to understand the case of narrow
strips, i.e., with the dimensionless quantity lQ1=d ≪ 1. In
this limit, we expect that the entanglement entropy is only a
small departure from the pure AdS case, since the energy
density flux Q will only make a small correction to the
ground state entanglement. We will first analyze the strip
along the flux and obtain the entanglement correction to the
ground state. This has parallels with entanglement thermo-
dynamics [17,19,20] for these AdS plane waves, treating
the gþþ mode as a small deformation to AdS.
In the limit Q1=dl ≪ 1, we first calculate the change in

the turning point r� up to OðQÞ, and then expand the width
integral and area integral around AdSdþ1, using Eqs. (22)
and (23). First we note that the pure AdS case, with s the
turning point of the minimal surface, has the width integral

l ¼ 2

Z
s

0

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

r2ðd−1Þ − A2
q ¼ 2

Z
s

0

dr
ðr=sÞd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðrsÞ2ðd−1Þ

q

¼ 2

� ffiffiffi
π

p
Γð d

2d−2Þ
Γð 1

2d−2Þ
�
s≡ 2ηs; ð30Þ

using A2 ¼ 2
sd−1

and η ¼ R
1
0

xd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x2ðd−1Þ

p dx. We want to cal-

culate the change in the ground state entanglement entropy
under the AdS plane wave perturbation to OðQÞ, with the
strip along the flux. With the entangling surface fixed at
width l, the turning point s now changes to r� ¼ sþ δr�.
We recast Eq. (22) and the turning point equation as
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l
2
¼

Z
r�

0

dr
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðrÞ
r2ðd−1Þ − A2

q with gðrÞ ¼ 2þQrd; and

A2 ¼ gðr�Þ
r2ðd−1Þ�

≡ g�
r2ðd−1Þ�

: ð31Þ

Then we obtain

l
2
¼

Z
r�

0

dr

ffiffiffiffi
g�

p
rd−1�

1
rd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞ − g�ð rr�Þ2ðd−1Þ

q

¼
Z

r�

0

dr
ðr=r�Þd−1
fðr; r�Þ

ð1þ Qrd�
4
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Qrd−Qrd�ð r
r�Þ2ðd−1Þ

2f2ðr;r�Þ

r ; ð32Þ

with the function

fðr; r�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
r
r�

�
2ðd−1Þ

s
;

0 < fðr; r�Þ < 1 for all r < r�: ð33Þ

The above expression has been obtained by taking
Qrd� ≪ 1 and expanding out the integrand. The above
width integral can be further simplified to OðQÞ as

l
2
¼
Z

r�

0

dr
ðr=r�Þd−1
fðr;r�Þ

�
1þQrd�

4

��
1−

Qrd−Qrd�ð rr�Þ2ðd−1Þ
4f2ðr;r�Þ

�

¼
Z

r�

0

dr
ðr=r�Þd−1
fðr;r�Þ

�
1þ Q

4f2ðr;r�Þ
ðrd� − rdÞ

�
¼ sη¼ðr�−δr�Þη; ð34Þ

the last expression arising since the width l is as in AdS.
Using Eq. (30), we see that the leading AdS piece cancels,
giving

δr� ¼ −
Q
4η

Z
r�

0

dr
ðr=r�Þd−1
f3ðr; r�Þ

ðrd� − rdÞ

∼ −
Qsdþ1

4η

Z
1

0

dx
xd−1ð1 − xdÞ

ð1 − x2ðd−1ÞÞ3=2 : ð35Þ

As r� happens to be the turning point of the minimal
surface, r < r�, which implies that δr� < 0 always. Also
since δr� is OðQÞ, we have approximated r� ∼ s to obtain
the second expression. Thus,

δr� ∼ −
Qsdþ1

4η

ffiffiffi
π

p
ðd − 1Þ2

�
Γð 1

d−1Þ
Γð1

2
þ 1

d−1Þ
− ðd − 1ÞΓð

d
2d−2Þ

Γð 1
2d−2Þ

�

≡ −
Qrdþ1�
4η

N r� : ð36Þ

We now calculate the change in the area integral and
correspondingly the entanglement entropy up to OðQÞ. For
pure AdS, i.e., the CFT ground state, we have

4Gdþ1S0 ¼ 2Vd−2Rd−1
Z

s

0

dr
rd−1

1

fðr; sÞ ; ð37Þ

with fðr; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðrsÞ2ðd−1Þ

q
as in Eq. (33). We focus on

the finite part of the above integral and use l ¼ 2sη,
obtaining

4Gdþ1S0 ¼ #Rd−1Vd−2

ϵd−2
−
2d−1π

d−1
2

ðd− 2Þ
�
Γð d

2d−2Þ
Γð 1

2d−2Þ
�d−1Vd−2

ld−2
Rd−1:

ð38Þ

In our case of the AdSdþ1 plane wave,

4Gdþ1S ¼ 2Vd−2Rd−1
Z

r�

0

dr
rd−1

2þQrdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þQrd − A2r2ðd−1Þ

p :

ð39Þ

Treating this as an infinitesimal gþþ deformation and
expanding around pure AdS, we would like to obtain
the OðQÞ change in EE, or equivalently the infinitesimal
change for the plane wave excited state relative to the
ground state. From the turning point equation, we have

A2 ¼ 2þQrd�
r2ðd−1Þ�

as before, giving

4Gdþ1S ¼ 2Vd−2Rd−1
Z

r�

0

dr
rd−1

2þQrdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − ð rr�Þ2ðd−1ÞÞ þQrd −Qrd�ð rr�Þ2ðd−1Þ

q

¼ 2
ffiffiffi
2

p
Vd−2Rd−1

Z
r�

0

dr
rd−1

1

fðr; r�Þ
�
1þQrd

2

��
1 −

Qrd −Qrd�ð rr�Þ2ðd−1Þ
4fðr; r�Þ2

�

¼ 4Gdþ1S0 þ 2
ffiffiffi
2

p
Rd−1N EEVd−2Qr2�; ð40Þ

where
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N EE ¼
Z

1

0

dx

�
x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2ðd−1Þ

p þ 1

4xd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2ðd−1Þ

p
� ð1 − xdÞ
ð1 − x2ðd−1ÞÞ − 1

��

¼
ffiffiffi
π

p
8ðd − 1Þ2

�ðdþ 1ÞΓð 1
d−1Þ

Γð1
2
þ 1

d−1Þ
−
2ðd − 1ÞΓð d

2d−2Þ
Γð 1

2d−2Þ
�
: ð41Þ

It can be checked that the constant N EE is positive, so that
the correction to the entanglement entropy is positive. To
OðQÞ, we can replace r� by s, the pure AdS turning point.
Then using l ¼ 2sη, we see that

ΔS ∼þ Rd−1

Gdþ1

N EE

4η2
ffiffiffi
2

p Vd−2Ql2

¼ þ Rd−1

Gdþ1

N EE

4η2
ffiffiffi
2

p Vd−2

ld−2
ðQldÞ; ð42Þ

with Qld ≪ 1. There are parallels of this analysis
with entanglement thermodynamics [17–20] (see also
Refs. [34–36]). In the present case, we have the energy
change in the strip ΔE ∼

R
δTttdd−1x ∼QVd−2l, giving

TEΔSE ∼ ΔE with the “entanglement temperature” TE ∼ 1
l.

There is also an entanglement pressure. Although it is not
crucial for our purposes here, it would be interesting to
develop this further.
The above entanglement entropy change implies that the

change in mutual information is negative (with I0½A; B� the
mutual information in pure AdS):

I½A;B� ¼ I0½A; B� þ ΔI½A;B� ¼ I0½A; B�

þ Rd−1

Gdþ1

N EEffiffiffi
2

p Vd−2Qð2l2 − ð2lþ xÞ2 − x2Þ

¼ I0½A; B� − 2
Rd−1

Gdþ1

N EE

4η2
ffiffiffi
2

p Vd−2Ql2
�
1þ x

l

�
2

:

ð43Þ

Thus, we see that mutual information strictly decreases, for
a small Tþþ energy density flux perturbation along the strip
subsystem. In this perturbative regime with the correction
scaling as OðQÞ and as the area of the interface Vd−2, the
entanglement and mutual information corrections involve
the dimensionless quantity Vd−2Ql2.
It is worth noting that unlike in the wide strip regime

(26), the disentangling transition in this perturbative regime
certainly depends on the energy density Q and the strip
width through Qld. In particular, using Eqs. (38) and (19),
we see that the mutual information (43) vanishes at

N 0
EE

�
1

ðxlÞd−2
þ 1

ð2þ x
lÞd−2

− 2

�

−
N EE

2
ffiffiffi
2

p
η2

Qld
�
1þ x

l

�
2

¼ 0; ð44Þ

where N 0
EE is the constant coefficient of the finite part in

Eq. (38). A numerical study later (Sec. V D) describes the
location of the vanishing of mutual information and the
disentangling transition for intermediate regimes as well,
where Qld ∼Oð1Þ.

C. Narrow strips: lQ1=d ≪ 1, strips orthogonal to flux

We describe the change in entanglement entropy and
mutual information for the strips orthogonal to the flux in
the perturbative regime lQ1=d ≪ 1 here. The analysis is
similar to the previous case but involves more calculation.
We first consider a single strip and study entanglement.

In this case, the width direction of the strip A is parallel to
xd−1, with x� ¼ t�xd−1ffiffi

2
p . The bulk extremal surface γA is

specified by xþ ¼ xþðrÞ, x− ¼ x−ðrÞ, and the spacelike
strip subsystem has width

Δxþ ¼ −Δx− ¼ lffiffiffi
2

p > 0 ð45Þ

(spacelike implying Δt ¼ 0) and longitudinal size Vd−2 ∼
Ld−2 with L ≫ l in the xi directions. ϵ is the UV cutoff.
Then the width integrals and the entanglement entropy area
functional reduce to [13]

Δxþ

2
¼

Z
r�

0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2

r2ðd−1Þ þQrd − 2B
q ;

Δx−

2
¼

Z
r�

0

ðQrd − BÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2

r2ðd−1Þ þQrd − 2B
q ; ð46Þ

SA ¼ 2Rd−1Vd−2

4Gdþ1

Z
r�

ϵ

dr
rd−1

ABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2 − 2Br2ðd−1Þ þQr3d−2

p :

ð47Þ

Unlike the previous case, here we have two parameters A, B
and two integrals specifying the subsystem width l as a
function of the turning point r� of the extremal surface,
given by Eq. (46). For pure AdS, with Q ¼ 0, Eq. (46)
along with Eq. (45) fixes B ¼ 1, with x� treated “sym-
metrically” as expected in the absence of the energy flux.
Wewill treat the AdS plane wave case inOðQÞ perturbation
theory and expand both integrals around AdS. The turning
point equation here is
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A2B2

r2ðd−1Þ�
þQrd� − 2B ¼ 0 ⇒

A2B2

r2ðd−1Þ

¼
�
r�
r

�
2ðd−1Þ

ð2B −Qrd�Þ: ð48Þ

This recasts the denominator of the width integrals in terms

of fðr; r�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð rr�Þ2ðd−1Þ

q
and B alone,

�
A2B2

r2ðd−1Þ
þQrd−2B

�
1=2

¼
�
r�
r

�
d−1

fðr;r�Þ
ffiffiffiffiffiffi
2B

p �
1−

Qrd�ð1−ð rr�Þ3d−2Þ
2Bf2

�1=2
: ð49Þ

However unlike Eq. (31) earlier, we are still left with the
parameter B here, so the turning point equation does not
suffice. The other relation for recasting both A and B in
terms ofQ, r� comes from the fact that we have a spacelike
subsystem, i.e., Eq. (45). Specifically with the pure AdS
case corresponding to B ¼ 1, in this perturbative regime
withQld ≪ 1, we can safely assume that B ¼ 1þ ΔB with
ΔB ∼OðQÞ. Since the two width integrals for Δxþ and
Δx− must obey the equality Δxþ ¼ −Δx− ¼ lffiffi

2
p , we must

have that the change in the turning point δr� obtained from
both is the same, which fixes ΔB ∝ Qrd� as we will see.
To elaborate, from Eqs. (45), (46), and (49), we have

Δxþffiffiffi
2

p ¼ l
2
¼

Z
r�

0

dr
ðr=r�Þd−1
fðr; r�Þ

ffiffiffiffi
B

p 1

½1 − Qrd�ð1−ðr=r�Þ3d−2Þ
2Bf2 �1=2

:

ð50Þ

Now, with B ¼ 1þ ΔB ¼ 1þOðQÞ, we can expand this
to OðQÞ, obtaining

l
2
¼

Z
r�

0

dr
ðr=r�Þd−1
fðr; r�Þ

−
ΔB
2

Z
r�

0

dr
ðr=r�Þd−1
fðr; r�Þ

þQrd�

Z
r�

0

dr
ðr=r�Þd−1ð1 − ðr=r�Þ3d−2Þ

4f3ðr; r�Þ
: ð51Þ

As in the previous subsection, we keep our entangling
surface fixed so l ¼ 2sη, with s the pure AdS turning
point. The new turning point is r� ¼ sþ δr�, so
l=2 ¼ r�η − δr�η. Thus,

−δr�η ¼ −
ΔBr�
2

Z
1

0

dx
xd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2ðd−1Þ
p

þQrdþ1�

Z
1

0

dx
xd−1ð1 − x3d−2Þ
4ð1 − x2ðd−1ÞÞ3=2 : ð52Þ

Starting with the Δx− integral and using Eqs. (45), (46),
and (49), we have, analogous to Eq. (50),

l
2
¼

Z
r�

0

dr
ðr=r�Þd−1
fðr; r�Þ

B −Qrdffiffiffiffi
B

p ð1 − Qrd�ð1−ðr=r�Þ3d−2Þ
2Bf2 Þ1=2

: ð53Þ

As above, expanding to OðQÞ gives

l
2
¼

Z
r�

0

dr
ðr=r�Þd−1
fðr; r�Þ

þ ΔB
2

Z
r�

0

dr
ðr=r�Þd−1
fðr; r�Þ

þQrd�

Z
r�

0

dr
ðr=r�Þd−1ð1 − ðr=r�Þ3d−2Þ

4f3ðr; r�Þ

−Q
Z

r�

0

dr
rdðr=r�Þd−1
fðr; r�Þ

: ð54Þ

Then as above, the change in turning point is given by

−δr�η ¼
r�ΔB
2

Z
1

0

dx
xd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2ðd−1Þ
p

þQrdþ1�

Z
1

0

dx
xd−1ð1 − x3d−2Þ
4ð1 − x2ðd−1ÞÞ3=2

−Qrdþ1�

Z
1

0

dx
x2d−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2ðd−1Þ
p : ð55Þ

For this spacelike subsystem, the above (55) should be
identical to Eq. (52). Using Eq. (30), this gives

ΔB¼ αQrd�; with

α¼ 1

η

Z
1

0

dx
x2d−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− x2ðd−1Þ
p ¼ Γð 1

2d−2ÞΓð 1
d−1Þ

2ðd− 1Þ2Γð3
2
þ 1

d−1ÞΓð d
2d−2Þ

:

ð56Þ

Using the above, we get

δr� ¼ βQrdþ1� ; with

β ¼ 1

4ðd − 1Þ −
2

1
d−1

8ðd − 1Þ3 ffiffiffi
π

p Γð 1
2d−2Þ2

Γð3
2
þ 1

d−1Þ
: ð57Þ

It can be checked that β < 0 (β → 0− for large d); thus, δr�
is negative.
We can do a similar perturbation for finding the OðQÞ

change in the entanglement entropy S0 for pure AdS given
by Eq. (37). In the present AdSdþ1 plane wave case with the
strip orthogonal to the flux, the entanglement entropy is
Eq. (47), i.e.,

4Gdþ1S ¼ 2Vd−2Rd−1
Z

r�

ϵ

dr
rd−1

AB

rd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2B2

r2ðd−1Þ þQrd − 2B
q :

ð58Þ
From the turning point equation, we know that
AB ¼ rd−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B −Qrd�

p
. With fðr; r�Þ as defined before,

the EE can be recast as
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4Gdþ1S ¼ 2Vd−2Rd−1

×
Z

r�

ϵ

dr
rd−1

ð1 − Qrd�
2B Þ

1=2

fðr; r�Þ
h
1 − Qrd�ð1−ðr=r�Þ3d−2Þ

2Bf2

i
1=2 :

ð59Þ

Now with B ¼ 1þ αQrd� , we see that the perturbation in
EE is independent of ΔB to OðQÞ, since B appears above
only as Q

B. Expanding S to OðQÞ, we obtain

4Gdþ1S ¼ 2Vd−2Rd−1
Z

r�

0

dr
rd−1

1

fðr; r�Þ

×

�
1 −

Qrd�
4

þQrd�
4f2

ð1 − ðr=r�Þ3d−2Þ
�

¼ 4Gdþ1S0 þ 2Vd−2Rd−1Qr2�

×
Z

1

0

dx

�
1 − x3d−2

4xd−1ð1 − x2ðd−1ÞÞ3=2

−
1

4xd−1ð1 − x2ðd−1ÞÞ1=2
�

¼ 4Gdþ1S0 þ 2Vd−2Rd−1Qr2�MEE; ð60Þ

with

MEE ¼
ffiffiffi
π

p
4ðd − 1Þ2

�
Γð 1

d−1Þ
Γð dþ1

2d−2Þ
− ðd − 1ÞΓð

d
2d−2Þ

Γð 1
2d−2Þ

�
: ð61Þ

It can be checked that MEE > 0 for d > 1. Thus, the
change in entanglement entropy is positive, as before. To
OðQÞ, we have r� ∼ l, so that, as before,

ΔS ¼ Rd−1

2Gdþ1

MEE

4η2
Vd−2Ql2 ¼ Rd−1

2Gdþ1

MEE

4η2
Vd−2

ld−2
ðQldÞ;

ð62Þ

so that, as in Eq. (43) previously, the mutual information
decreases as

I½A;B� ¼ I0½A;B� − 2
Rd−1

Gdþ1

MEE

8η2
Vd−2Ql2

�
1þ x

l

�
2

;

ð63Þ

in this perturbative regime with Qld ≪ 1. It should not be
surprising that no hint of the phase transition is visible in
this perturbative regime. For subsystem size well below the
characteristic length scale set by the energy density, i.e.,
l ≪ Q−1=d, we only expect small corrections to the ground
state entanglement and mutual information structure. The
phase transition, on the other hand, corresponds to strips
much wider than the characteristic length scale. In that
regime, the two integrals for Δx� scale rather differently so

that the spacelike subsystem requirement cannot be met;
this leads to the absence of a connected surface and is the
reflection of a phase transition. The corresponding entan-
glement saturation occurs since the degrees of freedom
responsible for entanglement do not straddle the boundary
for long if their size ∼OðQ−1=dÞ is much smaller than the
subsystem width, since they enter the strip and leave.

D. More complete phase diagram and some
numerical analysis

In the previous subsections, we have studied entangle-
ment entropy and mutual information for large and small
Qld, Qxd. It is interesting to study the interpolation
between these, including the regime where Qld, Qxd are
Oð1Þ. Toward this, we perform a numerical study of the
entanglement entropy integrals and thence mutual infor-
mation (using Mathematica). The plots in Figs. 2 and 3
show the finite cutoff-independent part of entanglement
entropy (black, green, and blue curves) for the AdS4 and
AdS5 plane waves, settingQ ¼ 1, 3, 10, respectively, in the
case of the strip along the energy flux; the red curves are
those for pure AdS4 and AdS5. In the numerics, the area
integrals have been regulated using a small UV cutoff
regulator, and subtracting off the area law divergence term,
we obtain the finite part. For small l, we see that the AdS
plane wave (black, green, blue) curves lie “above” the pure
AdS (red) curves, which means the finite entanglement is
larger than for the ground state. This is of course consistent
with the previous analytic studies in the perturbative and
large Qld regimes, but the plots show that this is also true
for all Qld. Furthermore, the curves for larger Q values lie
above those for smaller Q values, which is intuitively
reasonable, implying that the finite entanglement increases
with increasing energy densityQ. The plot regions for large
l are in reasonable agreement with fitted curves for

ffiffi
l

p
and

2 4 6 8 10 12
l

10

10

20

Sfin l

FIG. 2 (color online). Plots of the finite parts of entanglement
entropy for the AdS4 ground state (red) and the AdS4 plane wave
(the black, green, and blue curves correspond to the values
Q ¼ 1, 3, 10, respectively).
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log l (the fits improve with increasing accuracy, the number
of data points, etc., as expected with numerics).
Likewise, Fig. 4 shows the plot of mutual information vs

the separation x for the AdS5 plane wave with both strip
subsystems along the flux (with fixed widths l taken as
l ¼ 50). The small x region shows a growth reflecting the
divergence when the subsystems approach to collide
(which is similar to the divergence for pure AdS5). The
mutual information vanishes at the critical value xc

l ¼ 0.41.
We have also checked that the corresponding plot for pure
AdS5 behaves as expected, with the critical value
xc
l ≃ 0.732. Figure 5 shows the x

l vs lQ
1=d parameter space

(shaded regions) with nonzero mutual information for the
AdS5 plane wave with both strip subsystems along the flux.
We vary the width l and find the critical value xc holding Q
fixed; the three curves are for Q ¼ 1, 3, 10 as before. We
see that the critical value xc

l interpolates from about 0.732
(lQ1=d ≪ 1, approximately AdS5 behavior) to 0.41 for the
AdS5 plane wave. We see that the mutual information
parameter space remains nonzero for large lQ1=d, unlike the

finite temperature case [21] where the curve has finite
domain (with xc ¼ 0 for large lT). We have seen previously
that in the wide strip regime Qld ≫ 1, the mutual infor-
mation disentangling transition location is independent of
the energy density Q; this is reflected in Fig. 5 by the fact
that the black, green, and blue curves all flatten out for large
l, signalling that the critical value xc

l is independent of the
precise curve and corresponding Q value. However, we
note that in the intermediateQld ∼Oð1Þ regime, the mutual
information disentangling transition location xc

l certainly
depends on the Q value, the different curves being distinct.
Thus, it is only in the Qld ≫ 1 regime that the mutual
information disentangling transition becomes effectively
independent of the energy flux Q.
There are similar plots for the AdS4 plane wave, which

we have not shown.
Our discussion so far and the corresponding plots have

been for strips parallel to the energy flux. For the strips
orthogonal to the flux, entanglement shows a phase
transition, corroborated in the corresponding plot (shown
in Ref. [13]). Plotting mutual information appears more
intricate with more technical challenges in general. For
wide strips l≳Q−1=d, the strip entanglements saturate;
crude plots show the strips disentangling at critical xcl values
varying as Q varies, with all xcl less than those for the strip
along the flux (e.g., xc

l ∼ 0.11 with Q ¼ 1, AdS4 plane
wave). It would be interesting to study this more
completely.

VI. DISCUSSION

We have studied entanglement entropy and mutual
information in AdSdþ1 plane waves dual to CFT excited
states with energy-momentum density Tþþ ¼ Q, building
on Refs. [5,13], focusing on d ¼ 3, 4 for two strips of width
l and separation x, parallel and orthogonal to the flux.
For the strips parallel to the flux, mutual information

exhibits a disentangling transition at a critical separation xc
l

0.1 0.2 0.3 0.4 0.5

x

l

10

20

30

40
I A,B

FIG. 4 (color online). Plot of the mutual information vs x
l with

fixed width l for the AdS5 plane wave.

1 2 3 4 5 6
lQ1 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

l

FIG. 5 (color online). Plot of the x
l vs lQ1=d parameter space

with nonzero mutual information for the AdS5 plane wave.

5 10 15 20
l

5

5

10

15

20

Sfin l

FIG. 3 (color online). Plots of the finite parts of entanglement
entropy for the AdS5 ground state (red) and the AdS5 plane wave
(the black, green, and blue curves correspond to the values
Q ¼ 1, 3, 10, respectively).
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less than that for the ground state. For wide stripsQld ≫ 1,
we see that the subsystems disentangle only when they are
sufficiently wide apart in comparison with the width; the
critical separation xc

l is independent of the characteristic
energy scale Q−1=d in this regime. This is quite distinct
from the finite temperature case [21] where, e.g., the linear
extensive growth of entanglement in the corresponding
regime lT ≫ 1 implies the subsystems disentangle for any
finite separation x independent of l. For the strips orthogo-
nal to the flux, entanglement entropy shows a phase
transition for l ≫ Q−1=d [13]; in this case, entanglement
is saturated, and so mutual information also vanishes. In the
perturbative regimeQld ≪ 1 for the strips both parallel and
orthogonal to the flux, we have seen that the change in
entanglement entropy is ΔS ∼þVd−2Ql2 with the analysis
similar to entanglement thermodynamics. Here the mutual
information always decreases. Thus, the disentangling
transition in this regime again occurs for separations
smaller than those for the ground state. In this perturbative
regime, the critical separation xc

l certainly depends onQ and
l. The numerical study shows the critical xc

l has nontrivial
dependence on Q in intermediate regimes as well. As one
approaches the wide strip regime Qld ≫ 1, the mutual
information curves approach each other and flatten out,
signalling independence with Q.
Overall this suggests that the energy density disorders

the system, so that the subsystems disentangle faster
relative to the ground state. The thermal state is disordered,
since in the regime with linear (extensive) entropy the
subsystems are disentangled or uncorrelated for any

nonzero separation x. The AdS plane wave states are in
some sense “partially ordered”; the disentangling transition
location occurs at critical values xc

l smaller than those for
the ground state for the strip along the energy flux, but the
critical value remains nonzero even for wide strips
Qld ≫ 1. Perhaps this “semidisordering” is also true for
more general excited states that are “in between” the
ground and thermal states.
The AdS5 plane wave gives rise to a hyperscaling

violating spacetime exhibiting logarithmic violation of
entanglement entropy, suggesting that perhaps these are
indications of Fermi surfaces [9,10]. In the regime where
the strip widths and separation are large relative to the
energy scaleQ−1=4, the logarithmic scaling of entanglement
implies a corresponding scaling of mutual information,
similar to the corresponding behavior for Fermi surfaces.
This regime is of course just one part of the full phase
diagram thinking of these as simply excited states in AdS/
CFT, as we have seen. It would be interesting to explore
these further.
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