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Dimension-five photon (γ) scalar (ϕ) interaction terms usually appear in the bosonic sector of unified
theories of electromagnetism and gravity. In these theories the three propagation eigenstates are different
from the three field eigenstates. The dispersion relation in an external magnetic field shows that, for a non-
zero energy (ω), out of the three propagating eigenstates one has superluminal phase velocity vp. During
propagation, another eigenstate undergoes amplification or attenuation, showing signs of an unstable
system. The remaining one maintains causality. In this paper, using techniques from optics as well as
gravity, we identify the energy (ω) interval outside which vp ≤ c for the field eigenstates jγ∥i and jϕi, and
stability of the system is restored. The behavior of group velocity vg is also explored in the same context.
We conclude by pointing out its possible astrophysical implications.

DOI: 10.1103/PhysRevD.90.026002 PACS numbers: 11.25.Mj

Scalar ϕðxÞ photon γ interaction through the dimension-
five operator originates in many theories beyond the
standard model of particle physics, usually in the unified
theories of electromagnetism and gravity [1]. The scalars
involved can be moduli fields of string theory, Kaluza-
Klein particles from extra dimension, scalar components of
the gravitational multiplet in extended supergravity models
etc., to name a few [2–9].
Usually these models predict optical activity where the

vacuum is turned into a birefringent and dichroic one [10].
As a polarized light beam passes through such a medium,
its plane of polarization gets rotated. This particular
aspect has been explored and exploited extensively in
the literature to explain and predict many interesting
physical phenomena [11].
In this paper we point out other interesting aspects of

such interactions encountered in the low energy sector of
the theory, in a magnetized background of field strength B.
The theory under consideration has a tree-level interaction
term gϕγγϕFμνFμν, where gϕγγ is a dimensionful coupling
constant between ϕ and the electromagnetic (EM) field.
This term is Lorentz invariant (LI) and remains invariant
under charge conjugation (C), parity transformation (P)
and time reversal (T) symmetry transformations.
Renormalizability of the theory is compromised because
of the presence of dimensionful coupling constant gϕγγ .
However, in the presence of an external background
magnetic field, all the good [both continuous and discrete
(i.e., LI and CPT)] symmetries of the theory get compro-
mised. Since theories violating CPT are known to violate
Lorentz invariance [12] hence causality; therefore, the

explicit violation of both in a nontrivial background intro-
duces modifications to the dispersion relations affecting
phase velocity (vp) and group velocity (vg). The same also
introduces presence of unstable modes in a certain energy
(ω) domain. Some of these issues are explored below.
The theory under consideration has three propagation

eigenstates, a scalar jϕi and two transversely polarized
photons jγjj;⊥i. One of the eigenstates, jγjji, has polarization
vector parallel and the other one, jγ⊥i, has the same
orthogonal to the background magnetic field B.
We point out in this paper the two interesting possibil-

ities that may emerge from the solutions of the two
eigenstates, jϕi and jγ∥i, (i) their phase velocity may
become superluminal, (ii) their respective amplitudes
may undergo attenuation or amplification, provided their
energies lie in a certain interval. Within this energy interval
the amplitudes of jγ∥i and jϕi may get amplified or
damped, thus they are nonpropagating modes.
Naively, though this phenomena seems to get amelio-

rated, only at energy ω ¼ ∞, but through a careful analysis
we show that there exists a finite energy interval outside
which the individual field states jγ∥i and jϕi are cured of
this malady. In other words outside that interval, the
solutions of the same are well behaved as far as their
stability and the magnitudes of the phase velocities (i.e., vp
for jϕi and jγ∥i, both) are concerned.
The same however cannot be endorsed for the group

velocity vg for these two states. The same (i.e., vg) for jϕi
and jγ∥i reach the luminal limit at ω ¼ ∞ only.
We note in passing that the phase velocities of jϕi � jγ∥i

do exhibit velocity selection rules as had been discussed
in [13].
The other eigenstate, jγ⊥i, is free from any pathological

problems. It poses a stable solution as well as causal group
and phase velocities, i.e., vg ¼ vp ¼ c, ∀x, t, and ω.
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In this article we analyze the issues involved, from three
different angles: (a) using differential geometric arguments
involving the properties of a metric [gμνðeffÞðωÞ in our

context] related to the stability of a manifold, as used in
the context of relativity, (b) analyzing the dispersion
relations (DR), and (c) by explicit evaluation of the phase
velocities (vp) from the solutions of the eigenstates, jγjj;⊥i
and jϕi, using principles of optics [14].
A critical analysis of the DR actually conforms with the

findings, obtained from the stability analysis of the effective
metric, gμνðeffÞðωÞ. The interesting part however is vp turns out
to be complex exactly in the same energy domain, as is
predicted from the stability analysis of gμνðeffÞðωÞ aswell as the
dispersion relations. This indicates the system to be in an
unstable state in the relevant energy domain. A detailed
further analysis reveals that, outside this energy range,
some of the Lorentz invariance violating (LIV) pieces in
the expression of vp cancel out giving a LI and causal result.
We conclude by pointing out the possible implications of this
result in astrophysical or cosmological contexts.
Equations of motion.—The action for coupled scalar

photon system, in four-dimensional flat space, is given by

S ¼
Z

d4x

�
1

2
∂μϕ∂μϕ −

1

4
gϕγγϕFμνFμν −

1

4
FμνFμν

�
: ð1Þ

The equations of motion can be obtained from Eq. (1) by
employing the usual variational principles. However, in
what follows, we would rewrite Eq. (1) by decomposing
the EM field tensor Fμν into two parts, a slowly varying
background mean field F̄μν, and an infinitesimal fluctuation
fμν (i.e., Fμν ¼ F̄μν þ fμν), and then derive the equations of
motion from the modified action. Without loss of general-
ity, we would consider a local inertial frame, where the only
nonzero component of F̄μν is F̄12 ¼ B. Assuming the
magnitude of the scalar field to be of the order of the
fluctuating EM field fμν, one can linearize the resulting
equations. The resulting equations of motion for the EM
and the scalar fields turn out to be

∂μfμν ¼ −gϕγγ∂μϕF̄μν; ð2Þ

∂μ∂μϕ ¼ −
1

2
gϕγγF̄μνfμν: ð3Þ

Equation (2) describes the evolution of the 2 degrees of
freedom associated with the gauge fields and Eq. (3)
describes the same for the scalar field. Since Eq. (2)
provides four equations for 2 degrees of freedom of the
gauge fields, one has to get rid of the extra relations by
fixing a gauge and using the constraint equation.
However, there is another way, i.e., by working in terms

of the field strength tensors and making use of the Bianchi
identity. In this paper we will follow the second method.
We will start with the Bianchi identity ∂μfνλ þ ∂νfλμ þ
∂λfμν ¼ 0 and multiply the same by F̄νλ; after this we
operate ∂μ on the resulting expression, to arrive at

∂μ∂μðfλρF̄λρÞ ¼ −2∂λ∂μðfμρF̄ρλÞ: ð4Þ

Next we can multiply Eq. (2) by F̄νλ, and subsequently
operate ∂λ on the same to obtain

∂λ∂μðfμνF̄νλÞ ¼ −gϕγγ∂λ∂μϕF̄μνF̄νλ:

Now using the relation given by Eq. (4), on the last
equation, we find the equation for the eigenstate jγjji,
given by

∂μ∂μðfρσF̄ρσ=2Þ ¼ gϕγγ∂λ∂αϕðF̄ανF̄νλÞ: ð5Þ

The equation for the eigenstate jγ⊥i can be obtained by
performing the same steps leading to Eq. (5), except the
multiplication of Eq. (2) by the factor F̄νλ. In this step,

instead of F̄νλ we have to use the multiplicative factor ~̄Fνλ.
This would lead us to

∂μ∂μðfνλ ~̄Fνλ
=2Þ ¼ 0: ð6Þ

It is easy to perform a consistency check on Eq. (6)
using Eq. (5). If we replace F̄νλ by

~̄Fνλ in Eq. (5) then we
immediately recover Eq. (6), because the right-hand side
of Eq. (5) vanishes; since F̄αν ~̄Fνλ ¼ 0, because of our
assumption that, for the background EM field, only
F̄12 ≠ 0. Hence Eq. (6) is consistent.

Now we introduce the new set of variables, ψ ¼ fνλF̄νλ

2

and ~ψ ¼ fνλ
~̄F
νλ

2
, and use them in Eqs. (5) and (6), and

subsequently go to momentum space, to obtain the

dispersion relations. Those are given by

k2ψ − gϕγγðkαF̄ανF̄νλkλÞϕ ¼ 0; k2 ~ψ ¼ 0;

and k2ϕ − gϕγγψ ¼ 0. ð7Þ

Since we have assumed that only F̄12 ¼ B ¼ ~̄F
03 ≠ 0,

then it follows from there that ðF̄μνF̄μνÞ ¼ 2B2 and
ðkαF̄ανF̄νλkλÞ ¼ k2⊥B2. Furthermore, if the angle between
B and ~K is Θ, then the component of ~K normal to B is
~K⊥ ¼ ~K sinΘ. Hence, using the same one can denote

k2⊥B2 ¼ K2sin2ΘB2 ≃ ðωB sinΘÞ2: ð8Þ

While rewriting Eq. (8), it was assumed that ω≃ K to
zeroth order in the coupling constant gϕγγ. From now on, for
the sake of brevity, we may denote B sinΘ ¼ BT , at times.
In order to make the mass dimension of ψ ; ~ψ and ϕ

the same, we can multiply Eq. (7) by ωB sinΘ and redefine
Φ ¼ ωB sinΘϕ. Upon doing the same, the coupled
dispersion relations can be cast as a matrix equation:
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2
664
k2 0 0

0 k2 −gϕγγðωBTÞ
0 −gϕγγðωBTÞ k2

3
775
2
64

~ψ

ψ

Φ

3
75 ¼ 0: ð9Þ

The real symmetricmatrix, in Eq. (9), can be diagonalized by
a orthogonal rotation through angle θ, in the ψ − Φ plane.
Propagation eigenstates.—We already have explained

that ~ψ and ψ have their respective polarization vectors ⊥
and ∥ to B. The off-diagonal elements in Eq. (9) make ψ
and Φ to mix during their space-time evolution; while ~ψ
remains unaffected. Next we diagonalize Eq. (9), by the
orthogonal transformation discussed before, and express
the same as

0
BB@
k2 0 0

0 k2−gϕγγBTω 0

0 0 k2þgϕγγBTω

1
CCA
0
BB@

~ψ
Φþψffiffi

2
p

Φ−ψffiffi
2

p

1
CCA¼0: ð10Þ

It is easy to see from Eq. (10) that the propagating
eigenstates ~ψ , Φþψffiffi

2
p and Φ−ψffiffi

2
p , satisfy the following dispersion

relations:

ω ¼ K; ð11Þ

ωþ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ gϕγγBTω

q
; ð12Þ

ω− ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − gϕγγBTω

q
: ð13Þ

We point out that the dispersion relations obtained from
Eqs. (9) and (10) are identical to those obtained in [15–17],
provided appropriate limits are taken.
Upon dividing Eqs. (12) and (13) by K, we arrive

at the expressions for the phase velocities, v�p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gϕγγBT=ω

p
, corresponding to the propagation eigen-

states, ½Φ�Ψffiffi
2

p �. It is easy to verify that, for gϕγγBT > ω, the

magnitude of vþp > 1 that is, phase velocity of the eigen-
state ½ΦþΨffiffi

2
p � propagates with superluminal speed, and v−p is

complex so the amplitude of the corresponding eigenstate
½ΦþΨffiffi

2
p � would be attenuated or damped, as was mentioned in

the beginning.
Effective metric.—To understand more about the Lorentz

invariance violating (LIV) dispersion relation in the
magnetized vacuum for the mixed propagation eigenstate
½ΨþΦffiffi

2
p �, we note that the dispersion relation for the same

can be written as gμνðeffÞðωÞkμkν ¼ 0, where gμνðeffÞðωÞ ¼
diagð½1 − gϕγγB sinΘ

ω �;−1;−1;−1Þ and kμ is the usual wave
4-vector. The form of the effective metric given above is
similar to the ones discussed in the context of doubly
special relativity (DSR) [18]. We clarify at the outset
that the same has been obtained, here, by demanding

that the dispersion relation can be written as a quadratic
of kμ ’s, like the same for massless particles. One may
interpret this effective metric as the metric of the underlying
spacetime over which ½ΨþΦffiffi

2
p � is propagating. The inverse

of the same is gμνðeffÞðωÞ, given by gμνðeffÞðωÞ ¼
diagð 1

½1−gϕγγB sinΘ
ω �

;−1;−1;−1Þ. Next we would perform sta-

bility analysis of the system using this metric.
Stability analysis using gμνðeffÞðωÞ.—It has been pointed

out in [19] that, for a space-time to be stable, the
determinant of its metric must be negative, else the system
is unstable and would decay to a stable ground state. The
purpose of writing the effective metric was to find out if
there exists a bound or interval over which determinant of
the same is negative indicating possibility of attenuation or
growth of the amplitudes of the eigenmodes.
If we take a critical look at gμνðeffÞðωÞ, it is clearly

seen that unless ω > gϕγγB sinΘ ¼ ωc the value of
DetjgμνðeffÞðωÞj > 0, hence there would be growth (insta-
bility) or damping (attenuation) in the system. Now
if we go back to Eq. (12), one can verify that the same

can be recast in the following form: ðω − gϕγγB sinΘ
2

Þ2−
ðgϕγγB sinΘ

2
Þ2 ¼ K2. Accordingly, for ω < ωc, wave vector

K becomes imaginary, signaling attenuation or growth of
amplitude. Therefore, we are tempted to conclude
that the deductions of [19] hold even for the effective
metric gμνðeffÞðωÞ.
Causal stability.—It has been pointed out in [20–22] that

the stability of causal manifolds are governed by two
conditions: (a) the underlying metric has to be Lorenzian
and (b) there should exists a scalar timelike function TðxÞ,
i.e., continuous and infinitely differentiable everywhere
on the manifold; and covariant derivative of TðxÞ i.e.,
DμTðxÞ ≠ 0, and gμνðeffÞðωÞDμTðxÞDνTðxÞ > 0 [23,24]. In
our case both conditions are satisfied, provided we take
TðxÞ ¼ t as the time coordinate (i.e., illustrating the
absence of closed timelike or spacelike curves).
Inhomogeneous wave equations.—It is possible to get

the solutions for the propagating eigenstates ~ψ , Φþψffiffi
2

p and
Φ−ψffiffi

2
p , from the dispersion relations given by Eqs. (11)–(13),
which follows from Eq. (10).
Sometimes, presenting results in its full generality

becomes a fruitful and instructive exercise in many areas
of exact science. It helps in pointing out potential sources of
new scientific features. Keeping this philosophy in mind,
we express the solutions of the coupled set of equations, as
an explicit function of the rotation angle θ, in the ψ − Φ
plane. They have the following form:0

BB@
~ψ

cos θψ þ sin θΦ

− sin θψ þ cos θΦ

1
CCA ¼

0
BB@

A0eiðωt−kxÞ

A1eiðωþt−kxÞ

A2eiðω−t−kxÞ

1
CCA: ð14Þ
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It is not difficult to see that, for θ ¼ π=4, one recovers
back the expressions for propagating eigenstates, Φ�ψffiffi

2
p . We

would like to mention here that we would not consider
θ ¼ π

4
until we reach an appropriate point.

The constants A0; A1 and A2 appearing in Eq. (14) are to
be derived from the boundary conditions one imposes on
the dynamical degrees of freedom. The solutions for the
dynamical variables, from Eq. (14), turn out to be

~ψðt; xÞ ¼ A0eiðωt−k:xÞ;

ψðt; xÞ ¼ ½A1 cos θeiωþt − A2 sin θeiω−t�e−ikx;
and Φðt; xÞ ¼ ½A1 sin θeiωþt þ A2 cos θeiω−t�e−ikx: ð15Þ

In the following we consider the boundary conditions,
Φð0; 0Þ ¼ 0 and ψð0; 0Þ ¼ 1. With these boundary con-
ditions, we have A2

sin θ ¼ −1 and the solution for ψ turns out
to be

ψðt; xÞ ¼ ½cos2θeiðωþt−kxÞ þ sin2θeiðω−t−kxÞ�: ð16Þ
Defining, a2xðtÞ ¼ ðRe½ψðt; 0Þ�Þ2 þ ðIm½ψðt; 0Þ�Þ2, we get
the following form for ψðt; xÞ:

ψðt; xÞ ¼ axðtÞe
i

�
tan−1

h cos2θ sinωþtþ sin2θ sinω−t
cos2θ cosωþtþ sin2θ cosω−t

i
−kx

�
:

ð17Þ
A wave equation of this type is usually called an inhomo-
geneous wave equation [14]. The phase velocity for such a
system, where the solution is represented by aðtÞeiðφðtÞ−kxÞ
is defined by vp ¼ 1

K
∂φðtÞ
∂t .

In more complicated physical situations, when medium
effects, polarization effects due to strong external fields etc.,
are taken into account, the angle θ would depend on those
parameters. Hence φðtÞmay become a complicated function
of time. As a result, the phase velocity vp may become a
function of time with varied physical implications.
However, for the simple case in hand, substituting θ ¼ π

4
in Eq. (17), followed by some algebra, it is easy to
demonstrate that φðtÞ ¼ ðωþþω−Þt

2
. Now using the same in

the expression for phase velocity vp yields

vp ¼
�
ωþ þ ω−

2K

�
: ð18Þ

Using Eqs. (12) and (13) in Eq. (18) and considering the
dispersion relation to zeroth order in gϕγγ , i.e., ω≃ K, we
obtain

vp ¼ 1

2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

gϕγγBT

ω

�s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ gϕγγBT

ω

�s #
: ð19Þ

The expression for phase velocity, as given by Eq. (19),
provides an interesting limit for ω; in order to have a real

phase velocity, one must have ω ≥ gϕγγBT . So in principle,
one can define an expansion parameter δ ¼ gϕγγBT

ω ,
and perform an all order expansion of ð1� gϕγγBT

ω Þ1=2, in
powers of δ, for δ < 1, and be convinced that the magnitude
of vp stays less than c, i.e., phase velocity is causal.
Group velocity.—Group velocity for the situation under

consideration is given by vg ¼ j ∂ _φ∂K j. Using the expression
for _φ, in the last relation, we obtain the expression for group
velocity in terms of δ,

υg ¼
1

2

�
1 − δ

2ffiffiffiffiffiffiffiffiffiffiffi
1 − δ

p þ 1þ δ
2ffiffiffiffiffiffiffiffiffiffiffi

1þ δ
p

�
. ð20Þ

Expanding the right-hand side of Eq. (20) in powers of δ
(assuming δ < 1), one finds that vg > 1, even when
0 < δ < 1. Of course, the problem of having complex vg
is avoided by considering δ < 1, however the issue of
superluminality remains. We believe that this is an artifact
of the special background that violates Lorentz and CPT
invariance. The presence of this special background may be
responsible for making vg of the jγ∥i state superluminal.
In Fig. 1, we have plotted vg and vp, for various values of

ω. As can be seen from the plots, that as energy, ω → ∞ the
group (phase) velocity, vgðpÞ → 1.
The solution for jϕi is similar to jγ∥i modulo a constant

phase factor. It seems that, for ω < ωc, there is energy
exchange between these two modes. A detailed under-
standing of the physics of energy transfer as well as how the
system behaves once the backreaction of the propagating
modes on the background is taken into account, following
[25] and [26], seems to be an important issue. However
addressing the same are beyond the aim and the scope of the
current article and would not be dealt with any further here.
Signature.—In astrophysical situations synchrotron or

curvature radiation is the most common process of non-
thermal emission. As is well known, from [27], such

0.975

0.985

1.0

1.0125

1.025

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.8

V
el

oc
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Phase and Group Velocity vs Energy

Group velocity

Phase velocity

FIG. 1 (color online). Plot of velocity versus energy. Energy is
plotted in units of 10−15 GeV. The other parameters are gϕγγ ¼
ð10−11 GeVÞ−1 and B ¼ 109 Gauss.
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radiations are always polarized along and orthogonal to the
B − V plane, where V is the instantaneous velocity vector
of the radiating charged particle. The synchrotron ampli-
tudes of the electromagnetic radiation for these two
polarized states are given by

A⊥ ¼
ffiffiffi
3

p
γ2fθe
ωr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2fθ

2
e

q
K1=3

�
ω

2ωr

�
;

A∥ ¼ i

ffiffiffi
3

p
γf

ωr
ð1þ γ2fθ

2
eÞK2=3

�
ω

2ωr

�
: ð21Þ

In Eq. (21), γf is the Lorentz factor, ωr ¼ 3γ3f
ρ is the cutoff

frequency and ρ is the radius of curvature of the trajectory
of the radiating particle. Lastly θc ¼ 1

γf
is the opening angle

of the radiating cone.
Since for ω < ωc, the only evolving polarized state is

jγ⊥i when dimension-5, ϕFμνFμν interaction is present,
therefore, to a far-away observer, the synchrotron radiation
would appear to be linearly polarized.
So, the differential intensity spectrum per unit energy,

per unit solid angle at the source for the jγ⊥i state,

following Eq. (21), is given by d2I
dωdΩ ¼ ðeωÞ2

4π2
ðjA⊥j2Þ.

Furthermore, if all the astrophysical absorption mecha-
nisms are negligible, then the magnitude of d2I

dωdΩ at the
source as well as at the observation point would remain the
same. Therefore, the differential intensity spectrum for two
different energies ðω1;ω2 < ωcÞ, would be related to the
respective energies ω1 and ω2 by

d2Iðω1Þ
dω1dΩ
d2Iðω2Þ
dω2dΩ

¼
�ω1K1

3
ð ω1

2ωc
Þ

ω2K1
3
ð ω2

2ωc
Þ
�2
; implying

ω2

ω1

¼

2
64d2Iðω1Þ

dω1dΩ
d2Iðω2Þ
dω2dΩ

3
75

3
4

:

ð22Þ

This is the intensity-energy relation. While deriving the
same [i.e., Eq. (22)], we have used Eq. (21) and expanded
K1=3ðxÞ in descending powers of x.
Next wewould like to relate this intensity-energy relation

[Eq. (22)] with the rotation measure.
Since the intervening media between the source and the

far-away observer is magnetized and composed of non-
relativistic, degenerate electrons; the plane of polarization
(POP) of a polarized light (of energy ω) passing through the
same would undergo Faraday rotation (FR), given by [28]

φ ¼ απðB cosΘÞ
ω2me

nlþ ζ: ð23Þ

Here, ζ is the angle between POP and B̂ at source and l is
the length of the path traveled. The rest of the symbols in
Eq. (23) have their usual meaning.
Since the net rotation measure (φ − ζ) due to FR goes as

1
ω2; therefore, for a multifrequency plane polarized light
beam, the ratio of the two rotation measures at two distinct
energies (ω1 and ω2), will be given by the following
relation:

ω2=ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðφ1 − ζÞ=ðφ2 − ζÞ

p
: ð24Þ

Equation (24) may henceforth be termed as energy-
dependent-rotation measure.
Now we can use Eqs. (22) and (24) to arrive at a relation

between the rotation measure and the differential intensity
spectrum, for ~ψ (i.e., the solution for the jγ⊥i state), and the
same is

ðφ1 − ζÞ
ðφ2 − ζÞ ¼

�
d2Iðω1Þ
dω1dΩ

÷
d2Iðω2Þ
dω2dΩ

�3
2

: ð25Þ

For magnetic field strength at the source, B ∼ 109 Gauss,
and gϕγγ ∼ ð1011 GeVÞ−1, we have ωc ∼ 10−5 eV which
lies in the radio range.
So, the polarization versus (differential) intensity dis-

tribution pattern, for plane polarized light, in the energy
range 0 < ω < 10−5 eV, from distant astrophysical objects
(with dominant synchrotron source), should behave accord-
ing to Eqs. (22) and (25).
Conversely, for ω above ωc, both ~ψ and ψ would

propagate in space-time and ψ would undergo amplitude
modulation because of mixing withΦ. Hence, the emerging
light beam may bear some appropriate polarimetric [29]
and dispersive signatures of gϕγγϕF̄μνFμν interaction, when
the Faraday and the mixing effects are considered together,
provided the same is realized in nature.
Similar signatures from different astrophysical radio

sources were reported in [30] and [31] sometime back.
They may have some implications for the situation we have
discussed in this paper. However, one should work with the
new data sets before coming to a definite conclusion.
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