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In this paper we compute the effective Lagrangian of static gravitational fields interacting with thermal
fields of generalized electrodynamics at high temperature. We employ the usual Matsubara imaginary-time
formalism to obtain a closed form expression to the thermal effective Lagrangian at one-loop and two-loop
order, in an arbitrary ω-dimensional spacetime, in which the equivalence between the static hard thermal
loops and those with zero external energy momentum is widely explored. Afterwards, the symmetries of the
resulting expressions are discussed as well as the presence of the Tolman local temperature.
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I. INTRODUCTION

Thermal field theory is the appropriate framework in
describing models in thermodynamical equilibrium, as well
as to address the question of stability of these models as
a function of environmental variations. In order to have a
better understanding in the model’s behavior within several
regimes depending at the system’s temperature, much
attention has been devoted in studying the high-temperature
limit of the Green’s functions, in general, hard thermal loop
amplitudes. It then came to attention that in order to have a
proper resummation procedure, in which is necessary to
control infrared divergences and give physical meaningful
outcomes in perturbation theory, one needs to take into
account the hard thermal loops [1]. Basically, this corre-
sponds, in the momentum space, to consider that all the
external momenta and energies of the thermal amplitude are
much smaller than the temperature T.
There are some special cases in field theories, namely,

the static and the long wavelength limits, in which it is
known that the thermal amplitudes are local functions of
the external fields and possess, in general, a closed form
expression. In particular, in the case of gauge theories, it
has been shown that it is possible to construct closed form
expressions for the effective Lagrangian, which generates
all thermal Green’s functions [1–4].
One may actually say that the symmetries of a given

system are one of the most important characteristic which
are widely explored in several branches within theoretical
physics. For instance, in gauge theories there are Ward
identities which relate the thermal amplitudes with each
other. Not that different, there are similar quantities when
one employs the approach of hard thermal loops in a
background of soft gravitational fields, where the gravita-
tional thermal amplitudes satisfy simple Ward identities due

to the local coordinate transformations [5]. Furthermore, the
aforementioned limits, static and the long wavelength, are
also present in the evaluation of expressions for the effective
Lagrangian, but translated into the following form: when
the background gravitational field is either time or space
independent, respectively. However, the frail point of these
limits are that each of them yields two different local
effective Lagrangian functionals [6–8].
Nevertheless, recently, an interesting and rich result

has been obtained, in which it is shown at one-loop [9]
and subsequently at two-loop [10] calculations, that a
static background is equivalent to a spacetime independent
configuration, in the high-temperature limit. More pre-
cisely, it has been shown that the static limit of thermal
Green’s functions in gauge theories coincide with the limit
when all the external four-momenta are set to zero. Lately,
these results were generalized to all orders [11]. Another
example of the usefulness of this method may also be
found in the discussion on thermal scalar fields in a static
background [12], which derives in a much more simple
manner a previous known result [1].
These aforementioned results together, especially the

equivalence between the static hard thermal loops and zero
external energy momentum, have lead to a rather interest-
ing study of a QED plasma in a background of static
gravitational fields [13]. Besides the rich symmetries of the
system, a closed form expression was evaluated for the
effective Lagrangian up to two-loop order. Also, remark-
ably, it was shown that the resulting expression is equiv-
alent to the pressure of a QED plasma in Minkowski
spacetime, with the global temperature replaced by the
Tolman local temperature [14]. This behavior is in agree-
ment with the so-called Tolman-Ehrenfest effect, which
states that a system at thermal equilibrium in a stationary
gravitational fields has its temperature varying with the
spacetime metric and it is characterized by T loc ≡ Tffiffiffiffiffi
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As it has been pointed out in several works [15–20]
along the years, it is long clear that Maxwell’s theory is
not the only one to describe the electromagnetic field. One
of the most successful generalizations is the generalized
electrodynamics [15]. Actually, Podolsky’s theory is the
only one linear, Lorentz and Uð1Þ invariant generalization
of Maxwell’s theory [17]. Another interesting feature
inherent to Podolsky’s theory is the existence of a
generalized gauge condition, namely, the generalized
Lorenz condition: Ω½A� ¼ ð1þM−2

□Þ∂μAμ; it must be
considered an important issue, since it is only through
the choice of the correct gauge condition that we can
completely fix the gauge degrees of freedom of a given
gauge theory [16].
On the other hand, the generalized electrodynamics

when interacting with matter fields has been studied in
details at finite [18] and zero temperatures [19], and also
has revealed to be a compelling theory, leading to interest-
ing results at radiative corrections [19]. Therefore, based on
the recent results at finite temperature literature, we believe
it to be a rather natural and stimulating extension to study
the thermal generalized electrodynamics in a static gravi-
tation background. The main purpose of the present work
is to obtain the higher-loop corrections to the effective
Lagrangian of a generalized electrodynamics plasma in a
static gravitation background. It should be emphasized that
the background metric is static when it does not depend on
time. The one-loop results do not take into account the
interactions between electrons and (generalized) photons.
In order to consider these effects we shall compute the two-
loop contribution.
In this paper, we discuss a generalized electrodynamics

in a static gravitation background at thermodynamical
equilibrium in the light of the Matsubara imaginary-time
formalism [21,22]. In Sec. II we start by making a brief
review of the generalized electrodynamics and presenting
some useful results from the vierbein formalism [23].
Moreover, we evaluate in detail the three contributions
from the one-particle irreducible diagrams at one-loop
order for the effective Lagrangian. Next, in Sec. III, we
discuss and present a detailed calculation of the two-loop
effective Lagrangian, where some approximation is needed
in order to perform the integration exactly. Besides, we
discuss some general remarks about the infrared behavior
of the present theory, as well as some nonperturbative
effects. In Sec. IV we summarize the results, and present
our final remarks and prospects.

II. EFFECTIVE LAGRANGIAN
AT ONE-LOOP ORDER

In this section we will introduce our basic notation
and describe the analysis method. Let us consider the
Lagrangian density for (generalized) photons and electrons
in a gravitational background [19]

L¼
ffiffiffiffiffi
jgj

p �
iψ̄gμνγμð∂ν− ieAνÞψ þ gμν∂μc̄ð1þM−2

□Þ∂νc

−
1

4
gμνgαβFμαFνβ þ

1

2M2
gμσgαλgνξ∂μFσλ∂ξFνα

−
1

2ξ
ðð1þM−2

□Þgμν∂μAνÞ2
�
; ð1Þ

where gμν is the metric tensor ðjgj ¼ j det gμνjÞ and M is
the free parameter from the generalized electrodynamics,
also Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic stress
tensor, and ðc; c̄Þ is the set of the Faddeev-Popov ghost
fields. It should be remarked that in order to determine a
closed form expression for the static effective Lagrangian at
the high-temperature limit we shall consider some approx-
imations. For this purpose, we can bear in mind the much
larger scale of temperature and thus neglect the suppressed
quantities such as all the spacetime derivatives of the metric
as well as the fermion mass.
To derive the Feynman rules for the dynamical fields in a

gravitational background, it is suitable to make use of the
vierbein formalism [23]. In fact, a local Lorentz frame can
be defined in terms of the vierbein eμa, so that in a given
point of the manifold the metric can be written as

gμν ¼ eμaeνbηab; ð2Þ

where the greek and latin indices stand for general and
local coordinates, respectively. Moreover, we shall make
use throughout the paper of the notation ~pa ¼ eaμpμ.

1

Hence, this formalism allows us to write the Lagrangian
density (1) in the following form:

L ¼
ffiffiffiffiffi
jgj

p �
iψ̄ ~γað ~∂a − ig ~AaÞψ −

1

4
~Fab

~Fab

þ 1

2M2
~∂a

~Fab ~∂c ~Fcb −
1

2ξ
ðð1þM−2 ~□Þ ~∂a

~AaÞ2

þ ~∂ac̄ð1þM−2 ~□Þ ~∂ac

�
; ð3Þ

in such vierbein basis we have that the Dirac matrices ~γa
satisfy

f~γa; ~γbg ¼ 2ηab ¼ 2gμνeaμebν: ð4Þ

By means of completeness, we shall evaluate the lowest
order contributions to the effective Lagrangian. The respec-
tive contributions are presented at Fig. 1. These are the
diagrams from the fermion loop (a), generalized photon
loop (b), and ghost loop (c)

1From this very definition it follows: □ ¼ gμν∂μ∂ν ¼
ηab ~∂a

~∂b ¼ ~□.
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L1 ¼ LF
1 þ LP

1 þ LG
1 ; ð5Þ

with

LF
1 ¼ ln detDði~γa ~∂aÞ; ð6Þ

LP
1 ¼ −

1

2
ln detLðMabÞ; ð7Þ

LG
1 ¼ ln det ðð1þM−2 ~□Þ ~□Þ; ð8Þ

where

Mabðx; yÞ ¼
�
ηab ~□ −

�
1 −

1

ξ
ð1þM−2 ~□Þ

�
~∂a
~∂b

�

× ð1þM−2 ~□Þδðx; yÞ: ð9Þ
We denoted detD as being the determinant over the Dirac
matrices and the Hilbert space (det), but notice that in LP

1

we also have the determinant on the spacetime indices.
Now, we can solve it using the general result detLðMabÞ ¼
det f½ð1þM−2 ~□Þ ~□�ωð1þM−2 ~□Þg, leading to

LF
1 ¼ ln detDði~γa ~∂aÞ; ð10Þ

LP
1 ¼ −

ω

2
ln det ðð1þM−2 ~□Þ ~□Þ

−
1

2
ln det ð1þM−2 ~□Þ; ð11Þ

LG
1 ¼ ln det ðð1þM−2 ~□Þ ~□Þ: ð12Þ

Moreover, using the imaginary-time formalism [21,22] we
can express these three contributions as

LF
1 ¼ 1

2β
2Eðω=2Þ

XZ
nF

ln ð−β2ηab ~pa ~pbÞ; ð13Þ

LP
1 þ LG

1 ¼ 1 − ω

2β

XZ
nB

ln

�
β2
�
1 −

ηab ~pa ~pb

M2

��

þ 2 − ω

2β

XZ
nB

ln ½−β2ηcd ~pc ~pd�; ð14Þ

where we have defined the notation for the fermionic and
bosonic sum/integral

XZ
nF

≡X
nF

Z
dω−1p
ð2πÞω−1 ;

XZ
nB

≡X
nB

Z
dω−1p
ð2πÞω−1 : ð15Þ

It should be emphasized that we are employing the
irreducible representation for the Dirac matrices, so that
the trace of the identity is given by trðIÞ ¼ 2Eðω=2Þ, where
Eðω=2Þ is the integer part of ω=2. Furthermore, notice that
in the first expression, Eq. (13), the sum is over the
fermionic Matsubara frequencies ωnF ¼ ð2nFþ1Þπ

β , where
the time component of the momentum is p0 ¼ iωnF , while,
in the second expression, Eq. (14), the sum is over bosonic
Matsubara frequency ωnB ¼ 2nBπ

β ðp0 ¼ iωnBÞ.
In order to evaluate the sum/integrals in Eqs. (13) and

(14) in a simpler way, one can conveniently choose a
locally rest vierbein frame as defined [13,23]

~p0 ¼
p0ffiffiffiffiffiffi
g00

p : ð16Þ

At finite temperature, the thermal bath introduces a privileged
reference frame which may be characterized by its four-
velocity uμ [21,22]. In all points of the manifold, we have a
special coordinate system (locally rest frame) in which

uμ ¼
�

1ffiffiffiffiffiffi
g00

p ; ~0

�
: ð17Þ

Proceeding this way, we may use

~pa ~ua ¼ pμuμ ¼
p0ffiffiffiffiffiffi
g00

p ð18Þ

to define a special class of vierbein, as shown in (16). Hence,
for two arbitrary four-vectors, we have that their scalar
product is given by [13]

ηab ~pa ~qb¼ gμνpμqν;

¼p0q0
g00

þgij½piþðg−1Þimg0mp0�½qjþðg−1Þjlg0lq0�:

ð19Þ

FIG. 1. One-loop and two-loop diagrams’ contribution to the effective Lagrangian.
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In particular, from these results it follows that

ηab ~pa ~pb ¼ gμνpμpν ¼
�

1ffiffiffiffiffiffi
g00

p
�

2

½ðp0Þ2 − jp0j2�; ð20Þ

where we have introduced the change of variables

p0
i ¼

ffiffiffiffiffiffi
g00

p ½Ni
jpj þ ðg−1Þimg0mp0�; ð21Þ

in such a way that gij ¼ Ni
lη

lmNj
m. Moreover, under this

change of variables we have the nontrivial Jacobian:

dω−1p0 ¼ J dω−1p, with J ¼ ðg00Þω−12
ffiffiffī
g

p ¼ ðg00Þ
ω
2ffiffiffiffi

jgj
p , where

we have made use of the identity ḡ−1g00 ¼ g, in which ḡ ¼
det gij [13]. Therefore, from the result (20) and subsequent
manipulation on the change of variables (21), we can deal
properlywith themetric dependence, and the expressions (13)
and (14) are written simply as

LF
1 ¼ 2Eðω=2Þ

2β

ffiffiffiffiffijgjp
ðg00Þω2

XZ
nF

ln ð−β2½ðq0Þ2 − jqj2�Þ; ð22Þ

and

LP
1 þ LG

1 ¼ 1 − ω

2β

ffiffiffiffiffijgjp
ðg00Þω2

XZ
nB

ln

�
β2
�
1 −

ðq0Þ2 − jqj2
ð ffiffiffiffiffiffi

g00
p

MÞ2
��

þ 2 − ω

2β

ffiffiffiffiffijgjp
ðg00Þω2

XZ
nB

ln ½−β2½ðq0Þ2 − jqj2��: ð23Þ

We should emphasize that all temperature-independent parts
of (22) and (23) lead to a divergent result, i.e., the zero-point
energy of the vacuum, which can be subtracted off since it is
an unobservable constant.
We shall start by evaluating first the fermionic sum and

integral from (22) by means of imaginary-time formalism
[21,22]

Ið1ÞF1
¼

XZ
nF

ln ð−β2½ðq0Þ2 − jqj2�Þ;

¼ 2

Z
dω−1q
ð2πÞω−1 ln ð1þ e−βωqÞ; ð24Þ

moreover, the remaining integral can be solved by using
standard rules of finite temperature integration. For instance,
we may use the well-known result for fermionic fields

Z
∞

0

zx−1

1þ ez
dz ¼ ð1 − 21−xÞΓðxÞζðxÞ; ð25Þ

and then obtain

Ið1ÞF1
¼ 2β1−ω

ð4πÞω−12
ΓðωÞζðωÞ
Γðωþ1

2
Þ ð1 − 21−ωÞ: ð26Þ

Hence, from the result (26) we have the following expression
for the fermionic contribution (22):

LF
1 ¼

ffiffiffiffiffi
jgj

p �
1

β
ffiffiffiffiffiffi
g00

p
�

ω
�
2Eðω=2Þð1 − 21−ωÞ

ð2 ffiffiffi
π

p Þω−1
ΓðωÞζðωÞ
Γðωþ1

2
Þ
�
:

ð27Þ

Nevertheless, the massless bosonic sum/integral from (23)
can be evaluate by similar computation

Ið1ÞB1
¼

XZ
nB

ln ð−β2½ðq0Þ2 − jqj2�Þ;

¼ −
2β1−ω

ð4πÞω−12
ΓðωÞζðωÞ
Γðωþ1

2
Þ ; ð28Þ

in which we have made use of the well-known result

Z
∞

0

zx−1

ez − 1
dz ¼ ΓðxÞζðxÞ: ð29Þ

At last, we shall evaluate the massive bosonic sum/integral
[18]2

Ið1ÞB2
¼

XZ
nB

ln

�
β2
�
1 −

ðq0Þ2 − jqj2
ð ffiffiffiffiffiffi

g00
p

MÞ2
��

¼ −
2β

ð4πÞω−12
ð ffiffiffiffiffiffi

g00
p

MÞω
Γðωþ1

2
Þ

×
X
k¼1

Z
∞

1

dwðw2 − 1Þω−12 e−kβ ffiffiffiffiffi
g00

p
Mw: ð30Þ

Moreover, one may use the integral representation for the
modified Bessel function of the second kind [24] to solve the
above integral, and obtain

ffiffiffi
π

p
Γðωþ1

2
Þ
Z

∞

1

dxðx2 − 1Þω−12 e−Ax ¼
�
2

A

�ω
2

Kω
2
ðAÞ: ð31Þ

Finally, it follows that we can write the massive bosonic
determinant in terms of a perturbative series

Ið1ÞB2
¼ −

4βð ffiffiffiffiffiffi
g00

p
MÞω

ð2πÞω2
X
k¼1

�
1

kβ
ffiffiffiffiffiffi
g00

p
M

�ω
2

Kω
2
ðkβ ffiffiffiffiffiffi

g00
p

MÞ:

ð32Þ

2Since β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p
> 0, thus e−β

ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
< 1, it then follows

that e−β
ffiffiffiffiffiffiffiffiffi
q2þM2

p

1−e−β
ffiffiffiffiffiffiffiffiffi
q2þM2

p ¼ P
k¼1e

−kβ
ffiffiffiffiffiffiffiffiffiffiffi
q2þM2

p
.
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Hence, collecting the results (28) and (32) the bosonic
contribution (23) reads

LP
1 þ LG

1

¼ ðω − 1Þ
ffiffiffiffiffijgjp

ðg00Þω2
2

ð2πÞω2
X
k¼1

� ffiffiffiffiffiffi
g00

p
M

kβ

�ω
2

Kω
2
ðkβ ffiffiffiffiffiffi

g00
p

MÞ

þ ðω − 2Þ
ffiffiffiffiffijgjp

ð2 ffiffiffi
π

p Þω−1
�

1

β
ffiffiffiffiffiffi
g00

p
�

ω ΓðωÞζðωÞ
Γðωþ1

2
Þ : ð33Þ

Therefore, with the results, Eqs. (27) and (33), one may then
write the complete one-loop effective Lagrangian (5) as

L1¼
ffiffiffiffiffi
jgj

p �
1

β
ffiffiffiffiffiffi
g00

p
�

ω
�

1

ð2 ffiffiffi
π

p Þω−1
ΓðωÞζðωÞ
Γðωþ1

2
Þ
�

×

�
2Eðω=2Þð1−21−ωÞþðω−2Þ

þ 1ffiffiffi
π

p Γðωþ1
2
Þ

Γðω−1ÞζðωÞ
X
k¼1

�
2β

ffiffiffiffiffiffi
g00

p
M

k

�ω
2

Kω
2
ðkβ ffiffiffiffiffiffi

g00
p

MÞ
�
:

ð34Þ

Unfortunately, there is not known a closed form for the
above series, which means that the thermal properties may
be used in such a way to find a suitable approximation in
order to evaluate its expression. For this matter, we may
assume the situation where βM ≫ 1, which means that
the parameter M should be much larger than the thermal
energy. In this case we may use the asymptotic expansion for
jzj → ∞ [24]

KνðzÞ ∼
ffiffiffiffiffi
π

2z

r
e−z

�
1þ 4ν2 − 1

8z
þ � � �

�
: ð35Þ

This results into

X
k¼1

�
2β

ffiffiffiffiffiffi
g00

p
M

k

�ω
2

Kω
2
ðkβ ffiffiffiffiffiffi

g00
p

MÞ

≃X
k¼1

�
2β

ffiffiffiffiffiffi
g00

p
M

k

�ω
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2kβ
ffiffiffiffiffiffi
g00

p
M

r
e−kβ

ffiffiffiffiffi
g00

p
M: ð36Þ

Moreover, as aforementioned, we have that ðe−βMÞnþ1 ≪
ðe−βMÞn. Hence, it follows that the leading term of the above
sum is for k ¼ 1,

X
k¼1

�
2β

ffiffiffiffiffiffi
g00

p
M

k

�ω
2

Kω
2
ðkβ ffiffiffiffiffiffi

g00
p

MÞ

≃ ffiffiffi
π

p ð2β ffiffiffiffiffiffi
g00

p
MÞω−12 e−β ffiffiffiffiffi

g00
p

M: ð37Þ

Therefore, within this approximation, we have that the
Eq. (34) reads

L1 ¼
ffiffiffiffiffi
jgj

p �
1

β
ffiffiffiffiffiffi
g00

p
�

ω
�

1

ð2 ffiffiffi
π

p Þω−1
ΓðωÞζðωÞ
Γðωþ1

2
Þ

�

×

�
2Eðω=2Þð1 − 21−ωÞ þ ðω − 2Þ

þ Γðωþ1
2
Þ

Γðω − 1ÞζðωÞ ð2β
ffiffiffiffiffiffi
g00

p
MÞω−12 e−β ffiffiffiffiffi

g00
p

M

�
: ð38Þ

As one should expected for a density, either Eq. (34) or
Eq. (38) presents the factor

ffiffiffiffiffijgjp
. They also exhibit a

characteristic temperature dependence in the full expression
on the local temperature defined by T loc ¼ Tffiffiffiffiffi

g00
p , which is a

direct consequence of the Tolman-Ehrenfest effect (thermal
time) [14]. On the other hand, this result is surprisingly
interesting and unexpected, due to the fact that we have
added a scale by the massive contribution. Therefore, these
facts yield to the resulting expression to be invariant under
the scale transformation gμν → Ωgμν [25].

III. TWO-LOOP EFFECTIVE LAGRANGIAN

In order to investigate the effect of a higher-order
correction, we shall evaluate the two-loop order contribu-
tion to the effective Lagrangian as depicted in diagram (d)
at the Fig. 1. Wewill apply the same technique as illustrated
before in the calculation of the one-loop contribution. This
can be obtained by computing the contribution

L2 ¼
e2

2β2
1ffiffiffiffiffijgjp XZ

nF

XZ
mF

tr

�
γμ

1

γ:p
γν

1

γ:q

�

×

�
gμν −

kμkν
k2

��
1

k2
−

1

k2 −M2

�
; ð39Þ

where k ¼ p − q is the photon momentum; besides, we are
using the gauge field propagator expression at Landau
gauge ξ ¼ 0 [19],

iDμν ¼
�
gμν −

kμkν
k2

��
1

k2
−

1

k2 −M2

�
: ð40Þ

Moreover, in the vierbein basis, we have f~γa; ~γbg ¼ 2ηab,
then the Dirac ~γ matrices trace may readily be evaluated

tr½~γa ~γb ~γc ~γd� ¼ 2Eðd=2Þðηabηcd − ηacηbd þ ηadηbcÞ; ð41Þ

and, after some algebraic manipulation, we obtain the
resulting expression for L2 from (39)

L2 ¼
e2

β2
2Eðd=2Þ−1ffiffiffiffiffijgjp XZ

nF

XZ
mF

�
1

~k2
−

1

~k2 −M2

�

×

�
ð3 − ωÞ ð ~p: ~qÞ

2~q2 ~p2
−
2ð ~p: ~qÞ
~k2 ~p2

þ 1

~k2
þ ð ~p: ~qÞ2

~k2 ~q2 ~p2

�
: ð42Þ
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However, at finite temperature, the massive term is not
easily handled, neither in order to get a closed expression
for it. Hence, as in the Sec. II, we shall regard henceforth
the approximation M2=k2 ≈ β2M2 ≫ 1 in (42), which is
consistent with the hard thermal loop approximation, and
then consider the leading terms

1

~k2
−

1

~k2 −M2
¼ 1

~k2
1

1 − ~k2=M2
≈

1

~k2
þ 1

M2
þ

~k2

M4
; ð43Þ

in order to get the most significant contribution from
the generalized electrodynamics. Thus, this yields to the
following expression:

L2 ¼
e2

β2
2Eðd=2Þ−1ffiffiffiffiffijgjp XZ

nF

XZ
mF

�
1

~k2
þ 1

M2
þ

~k2

M4

�

×

�
ð3 − ωÞ ð ~p: ~qÞ

~q2 ~p2
−
4ð ~p: ~qÞ
~k2 ~p2

þ 2

~k2
þ 2ð ~p: ~qÞ2

~k2 ~q2 ~p2

�
: ð44Þ

In particular, as matter of illustration, a useful manipulation
in order for future calculation reads

XZ
nF

XZ
mF

2ð ~p: ~qÞ
~q2 ~p2 ~k2

¼ 2Ið1ÞF Ið1ÞB − ðIð1ÞF Þ2; ð45Þ

where we will use the following definition henceforth for
the fermionic and bosonic quantities:

IðnÞF ¼
XZ
nF

1

ð ~p2Þn ; IðnÞB ¼
XZ
lB

1

ð~k2Þn : ð46Þ

We can proceed in the exact same way as outlined above,
using results from the dimensional regularization tech-
nique, and then rewrite conveniently all the terms from
Eq. (44) in its dominant contribution as the following:

L2 ¼ e2
2Eðd=2Þ−1ffiffiffiffiffijgjp ðω − 2Þ

�
−Ið1ÞF Ið1ÞB þ 1

2
ðIð1ÞF Þ2

þ 1

2M4

�
1

β2
XZ
nF

XZ
mF

4ð ~p: ~qÞ2
~p2 ~q2

��
: ð47Þ

The evaluation of the sum and integral from the last term
of Eq. (47) is lengthy but straightforward, and it follows
directly from the aforementioned identities and well-known
results at finite temperature [21,22], and the result reads

IF ¼ 1

β2
X
nF;mF

Z
dω−1p
ð2πÞω−1

dω−1q
ð2πÞω−1

4ð ~p: ~qÞ2
~p2 ~q2

;

¼ 32

3
ffiffiffi
π

p ð ffiffiffiffiffijgjp Þ2
ð ffiffiffiffiffiffi

g00
p

βÞ2ω
1

ð2 ffiffiffi
π

p Þ2ðω−1Þ

×
½ð1 − 21−ωÞΓðωÞζðωÞ�2

Γðω−1
2
ÞΓðω−2

2
Þ ; ð48Þ

the remaining terms may also be easily evaluated,

Ið1ÞF ¼ 2
ffiffiffiffiffijgjp

ðβ ffiffiffiffiffiffi
g00

p Þω−2
ð1 − 23−ωÞΓðω − 2Þζðω − 2Þ

Γðω−1
2
Þð2 ffiffiffi

π
p Þω−1 ; ð49Þ

and

Ið1ÞB ¼ −
2

ffiffiffiffiffijgjp
ðβ ffiffiffiffiffiffi

g00
p Þω−2

Γðω − 2Þζðω − 2Þ
Γðω−1

2
Þð2 ffiffiffi

π
p Þω−1 ; ð50Þ

where we have dropped off the temperature-independent
terms. Therefore, after evaluating all the terms, we obtain
the following expression for the two-loop effective
Lagrangian:

L2 ¼
2Eðd=2Þe2

ffiffiffiffiffijgjp
ðβ ffiffiffiffiffiffi

g00
p Þ2ω−4

ðω − 2Þ
½Γðω−1

2
Þð2 ffiffiffi

π
p Þðω−1Þ�2

×

�
ð1 − 23−ωÞð3 − 23−ωÞΓ2ðω − 2Þζ2ðω − 2Þ

þ 8

3
ffiffiffi
π

p 1

ðβ ffiffiffiffiffiffi
g00

p
MÞ4

Γðω−1
2
Þ

Γðω−2
2
Þ ½ð1 − 21−ωÞΓðωÞζðωÞ�2

�
:

ð51Þ

The result given by Eq. (51) can be identified with the
two-loop Podolsky contribution to the pressure, in the
high-temperature regime; besides, it presents, as expected
for a density, the factor

ffiffiffiffiffijgjp
. Furthermore, as the one-loop

result, the two-loop expression also displays a simple
dependence on the Tolman local temperature, as defined
in T loc ¼ Tffiffiffiffiffi

g00
p . Moreover, from Eq. (51) we may identify the

first term as being the two-loop QED contribution as
calculated in [13]

L2 ¼
ffiffiffiffiffi
jgj

p �
e2

ðβ ffiffiffiffiffiffi
g00

p Þ2ω−4
�
2Eðd=2Þðω − 2Þ

× ð1 − 23−ωÞð3 − 23−ωÞ
�
Γðω − 2Þζðω − 2Þ
Γðω−1

2
Þð2 ffiffiffi

π
p Þω−1

�
2

: ð52Þ

From that, we may see the difference between the two
contributions: Eqs. (51) and (52), especially regarding the
temperature dependence. Nonetheless, in the same way as
happened in the one-loop expression, the higher-derivative
contribution manifests the Tolman-Ehrenfest effect, then
respecting the scale invariance as well.
It is a long-time well-known fact that higher-loops

corrections to the effective Lagrangian in QED may exhibit
infrared divergences which arise from the dominant high-
temperature contribution of the zero mode. Hence, in order
to deal with these divergences, it was proposed a systematic
way in dealing to them: one should sum an infinite series of
one-particle irreducible diagrams of the one-loop static
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photon self-energy which are individually divergent. This
was also investigated from QED in the background of static
gravitational fields [13]. And, it was shown that they are
equivalent to the pressures of a plasma at high temperature,
with the temperature replaced by the local temperature
T loc. Also, this shows that the Tolman-Ehrenfest effect is
explicitly manifested even when the quantum corrections
are taken into account.
Nevertheless, it was shown previously that though the

addition of the Podolsky’s term (a massive sector) into
the Maxwell action enhances the ultraviolet behavior of the
whole theory, it does not change the infrared behavior of
the radiative correction quantities [19] (actually, it is only
infrared safe at the known Fried-Yennie gauge ξ ¼ 3); this
is because there is still a massless mode propagating.
Therefore, we may conclude that this is also true here in the
finite temperature case, and the infrared divergences here
should be dealt in the same way as it is in the massless
theory. This subject is under consideration and is part of a
systematic study of nonperturbative phenomena of the
generalized electrodynamics at finite temperature.

IV. CONCLUDING REMARKS

In this paper we presented a study on the thermody-
namical properties of the generalized electrodynamics in
a static gravitational background by evaluating systemati-
cally the one-loop and two-loop expressions for the
effective Lagrangian. One of the main motivations of the
present study was the recent result showing the equivalence
between static and zero energy-momentum thermal ampli-
tudes, which holds for the leading contributions at high
temperature. This correspondence played an important role
in obtaining the effective Lagrangian expressions for static
gravitational fields interacting with a plasma of generalized
photons and massless electrons at high temperature.
It is a remarkable result that, in the same way as it

happened in QED, the contributions from the generalized
electrodynamics at βM ≫ 1 arising from the approxima-
tion of static gravitational fields correspond to those

obtained by the ordinary theory defined in Minkowski
spacetime, by the simple replacement of an overall factor
of

ffiffiffiffiffijgjp
an imprint of a density, and moreover by the

modification of the (global) Minkowski temperature by the
Tolman local temperature. Surprisingly, although a scale
M has been introduced in the theory, due to the higher-
derivative term, the (Weyl) scale invariance is preserved in
the whole expression. Nevertheless, since heat interacts
with gravity, one may reason naturally that the emergence
of a local temperature is unavoidable for a system in a
configuration of thermal equilibrium to obviate the heat
flowing from regions with different values of gravitational
potential [14].
Although we have tried to maintain our treatment

as much as arbitrary, especially in which concerns the
spacetime dimensions, mainly because of the several
studies on unified field theories, we are always bounded
by the direct physical application, and they all lie in a four-
dimensional spacetime. As aforementioned, a subsequent
study of the present analysis will consist in a systematic
discussion on nonperturbative phenomena of generalized
electrodynamics at finite temperature. Because, though we
have massive modes propagating in the gauge field, we
still have the presence of the massless modes. And, it is
precisely these massless modes that generate the infrared
divergences when higher-order contributions are present;
such divergence may be traced back to the dominant high-
temperature contribution of the zero mode. By means of
complementarity, we may also investigate higher-loops
contributions [26] to realize if the higher-derivative con-
tributions still respects the scale invariance, i.e., if they
exhibit a dependence in terms of the Tolman local temper-
ature. These issues and others will be further elaborated,
investigated, and reported elsewhere.
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