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This paper discusses the relationships between gauge theories defined by gauge groups with finite
trivially acting centers and theories with restrictions on nonperturbative sectors, in two and four
dimensions. In two dimensions, these notions seem to coincide. Generalizing old results on orbifolds
and Abelian gauge theories, we propose a decomposition of two-dimensional non-Abelian gauge theories
with center-invariant matter into disjoint sums of theories with rotating discrete theta angles; for example,
schematically, SUð2Þ ¼ SOð3Þþ þ SOð3Þ−. We verify that decomposition directly in pure nonsuper-
symmetric two-dimensional Yang-Mills as well as in supersymmetric theories. In four dimensions, by
contrast, these notions do not coincide. To clarify the relationship, we discuss theories obtained by
restricting nonperturbative sectors. These theories violate cluster decomposition, but we illustrate how they
may at least in special cases be understood as disjoint sums of well-behaved quantum field theories, and
how dyon spectra can be used to distinguish, for example, an SOð3Þ theory with a restriction on instantons
from an SUð2Þ theory. We also briefly discuss how coupling various analogues of Dijkgraaf-Witten theory,
as part of a description of instanton restriction via coupling topological field theories to quantum field
theories, may modify these results.
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I. INTRODUCTION

This paper concerns the relationship between gauge
theories in which the gauge group has a center that acts
trivially on the matter and theories with restrictions on
instantons, and it applies the relationship to generate some
identities for gauge theories in various dimensions.
In more detail, a G gauge theory where G is semisimple

with center C will typically have fewer instantons than a
corresponding G=C gauge theory. A prototype is the
relationship between SUð2Þ and SOð3Þ gauge theories;
the latter contain instantons that do not lift to SUð2Þ.
Now, although an SUð2Þ gauge theory contains fewer

instantons, it need not be the same as an SOð3Þ theory with
a restrictiononinstantons.The latter,byawell-knownresultof
Weinberg, violates cluster decomposition, whereas an SUð2Þ
gauge theory by itself will not, at least in four dimensions.
Thus, we have two related but in general distinct notions:
(i) A gauge theory with a trivially acting subgroup,
(ii) A gauge theory with a restriction on instantons.
In the special case of two dimensions, we will argue that

these notions coincide. This is a natural generalization of
previous work on orbifolds and Abelian gauge theories,
encapsulated in the “decomposition conjecture” formulated
in [1]. For orbifolds of the form [X=Γ], for example, for a
finite groupΓ, this says that if a nontrivial subgroup ofΓ acts
trivially on the theory, theCFTof the orbifold is equivalent to
a disjoint union of CFTs for effective orbifolds. Projection
operators onto the various components are formed from
linear combinations of the dimension-zero twist fields and
the identity operator.

Since there are no gauge dynamics in two dimensions,
one would expect analogous behaviors in non-Abelian
gauge theories, and that is what we argue here. Specifically,
for a G gauge theory, G semisimple, with K a finite
subgroup of the center, if the matter of the theory is
invariant under K, then we argue that the theory decom-
poses as a disjoint union of G=K gauge theories with
variable discrete theta angles. For example, schematically,

SUð2Þ ¼ SOð3Þþ þ SOð3Þ−:
This can be explicitly checked in a number of examples.
For one, we describe how Migdal’s exact solution of two-
dimensional pure Yang-Mills decomposes as above, as well
as how the exact partition functions of supersymmetric
gauge theories on S2 also decompose (when they have
center-invariant matter).
Phrased another way, we will argue in this paper that the

decomposition conjecture of [1], which does not specify
presentations, does indeed extend to two-dimensional non-
Abelian gauge theories, as expected.
In four dimensions, these notions are distinct. An SUð2Þ

gauge theory is simply not the same as a sum of two SOð3Þ
theories, for example. One can still enforce a restriction on
instantons in an SOð3Þ theory, but the resulting physical
theory differs from an SUð2Þ theory. We will discuss how to
see this distinction explicitly in the spectrum of, e.g., dyons
in the theory.
The first half of this paper, Sec. II, is devoted to

studying examples of two-dimensional gauge theories.
We begin with a review of the application of the decom-
position conjecture to orbifolds and Abelian gauge the-
ories, which describes how existence of a trivially acting*ersharpe@vt.edu
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finite subgroup of the orbifold or gauge group implies that
the theory ‘decomposes’ into a disjoint union of mutually
non-interacting ordinary theories. As gauge fields in two
dimensions do not have propagating degrees of freedom,
one would expect the same behavior in non-Abelian
gauge theories with trivially acting finite subgroups,
which we check in examples. The precise statement of
decomposition for non-Abelian gauge theories utilizes
two-dimensional discrete theta angles, so we review those
before discussing general cases. We then discuss pure
nonsupersymmetric two-dimensional Yang-Mills as a
prototype, and observe how Hilbert spaces, partition
functions, and Wilson line vevs factorize in precisely
the fashion indicated by decomposition. We also discuss
how decomposition can be seen in theories with center-
invariant matter, first via Higgsing to Abelian gauge
theories, and then by examining exact expressions for
supersymmetric partition functions on S2.
In Sec. III we turn to four-dimensional theories. Here,

gauge theories with trivially acting finite subgroups are
not equivalent to gauge theories with restrictions on non-
perturbative sectors. For example, the latter will violate
cluster decomposition whereas the former need not, unlike
two-dimensional cases. It has been argued that four-
dimensional SCFTs with restrictions on instantons may
obey an analogue of the decomposition conjecture, decom-
posing into a disjoint union of theories, though much less
work has been done in four dimensions than two. To better
understand both four-dimensional decomposition and the
distinction above, we examine dyon spectra in theories with
restrictions on nonperturbative sectors, and observe how
they can be used to distinguish, for example, an SUð2Þ
gauge theory from an SOð3Þ gauge theory with a restriction
on instantons obeying an analogue of decomposition. We
also discuss Vafa-Witten topological field theory partition
functions in theories with a restriction on instantons, which
seem to provide a simple example of four- dimensional
decomposition in action.
Finally, in Sec. IV we discuss Dijkgraaf-Witten theories,

as they are sometimes described in the literature along-
side certain constructions of theories with restrictions on
instantons. Coupling to analogues of Dijkgraaf-Witten
theory modifies (sometimes, altogether removes) the
decomposition property that much of this paper is devoted
to, as previously observed in two dimensions in [1]. We
briefly review Dijkgraaf-Witten theory in this context and
outline its effects.
Recently there has been a tremendous amount of

progress in understanding two-dimensional supersymmet-
ric gauge theories and gauged linear sigma models, one of
the central tools used to study string compactifications, and
dualities therein (see for example [2–6] for a few recent
contributions). It is our hope that the results presented here
on two-dimensional non-Abelian gauge theories will be
useful to that effort.

II. TWO-DIMENSIONAL GAUGE THEORIES

Briefly, in two-dimensional theories, we claim that a
gauge theory with a trivially acting finite subgroup is
equivalent to a disjoint union of theories with effectively-
acting gauge groups, unlike four-dimensional gauge
theories.
For orbifolds and Abelian gauge theories in two dimen-

sions, this phenomenon has by now been extensively
documented, and also used to make predictions for
Gromov-Witten invariants, predictions which have since
been checked. In this context the result has been known as
the “decomposition conjecture” [1].
Because in two dimensions gauge fields have no

propagating degrees of freedom and hence no gauge
dynamics, surely the same decomposition conjecture that
applies to orbifolds and Abelian gauge theories must also
apply to two-dimensional non-Abelian gauge theories.
Briefly, if the center of the gauge group acts trivially on
the massless matter, then the theory contains a trivially
acting orbifold, and the analysis for orbifolds implies that
the theory should decompose.
We begin by reviewing the application of the decom-

position conjecture to two-dimensional orbifolds and
Abelian gauge theories, and then turn to non-Abelian
gauge theories in two dimensions, where we will see
analogous phenomena. The different factors appearing in
the decomposition will have different discrete theta angles,
so we then review of discrete theta angles, and formulate
the general decomposition claim for non-Abelian gauge
theories in two dimensions. We check the decomposition
conjecture in detail for pure nonsupersymmetric Yang-
Mills theory in two dimensions, then discuss checks when
center-invariant matter is present, and finally check via
partition functions for (2,2) supersymmetric theories
(obtained via localization).

A. Review of orbifolds and Abelian gauge theories

For two-dimensional orbifolds and Abelian gauge
theories, it is by now well understood that existence
of a trivially acting subgroup is physically equivalent to
a restriction on nonperturbative sectors. Such theories
break1 cluster decomposition, but in a very mild fashion
which is remedied by the observation that the theory
decomposes into a disjoint union of physical theories with
no mutual interactions, indexed by irreducible representa-
tions of the trivially acting subgroup. This has been
extensively discussed and numerous examples described
in, e.g., [1,7–17]. (See also [18–20] for reviews, and
[21–26] for checks of applications to Gromov-Witten
theory).

1In passing, note that cluster decomposition and locality are
different concepts. For example, [7] (Appendix B) shows how
two-dimensional BF theory at level k > 1, which is manifestly
local, violates cluster decomposition.
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This behavior is very different from four dimensions:
there, an SUð2Þ gauge theory has instantons that are a
subset of those of an SOð3Þ gauge theory, but the SUð2Þ
gauge theory does not itself necessarily decompose into a
disjoint union of physical theories. We will explore such
relationships in four dimensions in Sec. III.
As this behavior in two dimensions has been extensively

discussed elsewhere, in this section we will merely give a
brief overview of the highlights, in order to make this paper
somewhat self-contained.
Perhaps the simplest example of this phenomenon is

provided by an orbifold in which one quotients a trivial
group action on a space. As a trivial example, consider
[X=Zn] where the Zn acts trivially on the entire space. In
this case, all of the points on X are fixed under the orbifold
group action, and the usual prescription2 yields a total of
n − 1 dimension-zero twist fields and a spectrum consisting
of n copies of the cohomology of X. As this spectrum
contains multiple dimension-zero operators, it violates
cluster decomposition, but in the mildest possible way:
this spectrum is equivalent to that of a theory on a disjoint
union of n copies of X. In that description, projection
operators onto the various components of the disjoint
union are formed from discrete Fourier transforms of the
dimension-zero operators, both in this and more general
orbifolds of this form. As a result, correlation functions
factorize, both in this and more general orbifolds of
this form.
A less trivial example is given by the orbifold [X=D4],

where D4 is the eight-element group with center Z2. The
elements are given by

f1; z; a; b; az; bz; ab; ba ¼ abzg;
where z generates the center of D4. The quotient D4=Z2 is
Z2 × Z2, whose elements we will represent as

f1; ā; b̄; ābg;
where, for example, ā represents the coset fa; azg. Now,
the one-loop partition function of the D4 orbifold is of the
form

ZðD4Þ ¼
1

jD4j
X

g;hgh¼hg

Zg;h;

where Zg;h denotes the contribution from sectors with
boundary conditions determined by the commuting pair
ðg; hÞ. Now, as the Z2 acts trivially on X, for each pair
ðg; hÞ that appears in the orbifold, their contribution
matches that of a Z2 × Z2 orbifold:

Zg;h ¼ Zḡ;h̄:

However, not every commuting pair in Z2 × Z2 lifts to a
commuting pair in D4—as expected on general principles,
the D4 orbifold has fewer nonperturbative sectors (i.e.,
twisted sectors) than the Z2 × Z2 orbifold. Specifically,
there are no D4 twisted sectors of the form

as the pairs ða; bÞ, ða; abÞ, ðb; abÞ do not commute in D4.
(However, the omitted sectors close under SLð2;ZÞ, so
there is no violation of modular invariance.) Thus, first, the
D4 orbifold cannot match the Z2 × Z2 orbifold, as
the partition function of the former is missing some of
the sectors of the latter. Furthermore, the sectors that are
missing, are the same as the ones that acquire signs when
one turns on discrete torsion in a Z2 × Z2 orbifold. In fact,
with a little work, one can show

ZðD4Þ¼ZðZ2×Z2ÞþZðZ2×Z2;with discrete torsionÞ;

the essential point being that the problematic sectors cancel
out and so do not appear in the D4 orbifold.
In open strings, this decomposition can be seen more

directly on the open string states. A subgroup of the orbifold
group that acts trivially on the target space can act non-
trivially on the Chan-Paton factors. However, just from
taking invariants, the only contributions that can arise in the
open string spectrum are from open strings connecting
Chan-Paton factors in the same representation of the sub-
group in question. In this way one quickly sees a natural
decomposition of the theory, indexed by irreducible repre-
sentations of the pertinent subgroup, with no open string
interactions between different sectors.
So far we have discussed orbifolds, but analogous results

also hold in Abelian gauge theories in two dimensions with
massless states of nonminimal charge. One prototype for
such considerations is an analogue of the ordinary (2,2)
supersymmetric CPN−1 model, with gauge group Uð1Þ and
N chiral superfields of charge k > 1, instead of charge 1 (so
that after Higgsing, a Zk survives to act, trivially, on the
fields). Now, perturbatively, minimal and nonminimal
charges are indistinguishable—one can rescale one to
get the other—but nonperturbatively, the resulting theories
can be different [8]:

(i) On a compact world sheet, to uniquely specify the
matter fields, one must specify a vector bundle to
which they couple. The invariant meaning of differ-
ent charge assignments is in terms of different
bundles, and different bundles imply different zero
modes, hence different anomalies, and so different
physics.

(ii) On a noncompact world sheet, a Uð1Þ gauge theory
with minimal charges can be distinguished from one

2The reader might well be concerned that the usual prescrip-
tion breaks down in such a case. However, it was shown in, e.g.,
[8] that for example modular invariance requires the inclusion of
all twisted sectors of this form in general.
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with nonminimal charges by the existence of mas-
sive minimally-charged fields. Even if their masses
are above the cutoff scale in the theory, their
presence can still be detected via periodicity of
the two-dimensional θ angle.

Such Abelian gauge theory examples containing a
trivially acting finite subgroup also obey decomposition.
As a concrete example, consider a generalization of the
CPN−1 example above, a GLSM with N chiral superfields
xi, another chiral superfield z, and gauge group Uð1Þ2 with
charges

xi z
1 −n
0 k

where n is positive. This theory has D-terms,X
i

jxij2 − njzj2 ¼ r1;

kjzj2 ¼ r2;

where we assume r1 ≫ 0, r2 ≫ 0. This example is dis-
cussed in [10] (Sec. 3.3). The second Uð1Þ nearly gauges
away the z, except for a remaining trivial Zk action. The
remaining fields and Uð1Þ describe the CPN−1 model. The
result3 is CPN−1 with a trivial Zk action, classified by
nmod k. The quantum cohomology ring of this theory was
shown in [10] (Sec. 3.3) to be

C½x; y�=ðxNy−n ¼ q; yk ¼ 1Þ:

The different values of y index k different copies of the
quantum cohomology ring ofCPN−1, with shiftingB fields.
Thus, the quantum cohomology ring of this theory is
consistent with decomposition.
The considerations above also apply to nonlinear sigma

models in two dimensions. If we restrict nonperturbative
sectors, the resulting theory violates cluster decomposition,
but in an extremely mild way, as the result is equivalent to a
disjoint union of ordinary theories with variable B fields.
Schematically, we can see this in the path integral for a
nonlinear sigma model as follows. To project onto sectors
with world sheet instantons defined by maps ϕ such thatZ

ϕ�ω

is divisible by n, for some fixed two-form ω, for example, is
accomplished by inserting a projection operator of the form

Z
½Dϕ�e−S

�Xn−1
k¼0

e2πiðk=nÞ
R

ϕ�ω
�
;

which is the same as

Xn−1
k¼0

Z
½Dϕ� exp

�
−Sþ 2πiðk=nÞ

Z
ϕ�ω

�
:

In this second form, the interpretation as a disjoint union of
theories with rotating B fields (defined by ðk=nÞω) is clear.
The decomposition conjecture [1] gives a very precise

description of how to build the disjoint union from the
original nonlinear sigma model with a restriction on
instantons. Such theories also give physical realizations
of strings on certain stacks known as gerbes, and so the
decomposition conjecture makes physical predictions for
Gromov-Witten invariants of strings on gerbes. These
predictions have been rigorously proven, see for example
[21–26].

B. Discrete theta angles

Just as in four dimensions [27,28], there is also a discrete
theta angle in two dimensions, as has been observed in
[16,29–31]. These discrete theta angles play an essential
role in the form of decomposition for two-dimensional non-
Abelian gauge theories, so we review them here.
Consider a G gauge theory with G ¼ ~G=K, ~G

semisimple and simply-connected, and K a finite sub-
group of the center of ~G. K will be a product of cyclic
groups, i.e.,

K ¼ Zn1⊕Zn2⊕ � � � :

There is a degree two K-valued characteristic class w,
which for SOðnÞ for example would be the degree two
Stiefel-Whitney class. Each such characteristic class can be
used to define a discrete theta angle via a term in the action
which is schematically4 of the form

θ0
Z

w

for θ0 a character5 of K.
Thus, for example, in two dimensions there are two

SOð3Þ gauge theories, which we shall label SOð3Þ�, just as
in four dimensions.
In general, the set of discrete theta angles for a gauge

group G as above is indexed by the set K̂ of irreducible
representations of K (which, since K is a finite Abelian
group, has as many elements as K, and since K is a sum of
cyclic groups, can be identified with the characters of K).

3Technically, this is the GLSM for a Zk gerbe on CPN−1, of
characteristic class −n mod k ∈ H2ðCPN−1;ZkÞ.

4To be clear, such finite-group-valued cohomology does not
have a representation in de Rham cohomology, so we are using an
integral loosely to denote a formal contraction.

5As w is K-valued, one contracts with a character of K to
derive a number.
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Thus, we will index discrete theta angles in G gauge
theories by6 μ ∈ K̂.
Furthermore, if G is any semisimple group and K a finite

subgroup of its center, then a G=K gauge theory will
contain jKj ¼ jK̂j more discrete theta angles than G. These
new discrete theta angles will not be entirely independent of
the old ones. For example, ðSUð4Þ=Z2Þ=Z2 ¼ SUð4Þ=Z4

has two more discrete theta angles relative to SUð4Þ=Z2,
which itself has two, so that SUð4Þ=Z4 has four altogether.
More generally, letting C denote centers, if G ¼ ~G=K then
there is an extension

1⟶K⟶Cð ~GÞ⟶CðGÞ⟶1; ð1Þ

and hence the discrete theta angles are related by7

1⟶ dCðGÞ⟶ dCð ~GÞ⟶K̂⟶1: ð2Þ

C. Decomposition conjecture for non-Abelian
gauge theories

Briefly, if a non-Abelian gauge theory with semisimple
gauge group G has a center CðGÞ that acts trivially on the
massless matter of the theory, then this theory implicitly
contains a trivially acting CðGÞ orbifold, and so ought to
admit the same decomposition structure described earlier.
We shall check this assertion in detail, utilizing exact
solutions for pure nonsupersymmetric Yang-Mills theory
and recent localization-derived exact results for super-
symmetric gauge theories in two dimensions.

To set notation, let ~G denote a semisimple, simply-
connected, compact Lie group. We will compare ~G gauge
theories with center-invariant matter to ~G=Cð ~GÞ gauge
theories with the same matter, where Cð ~GÞ denotes the
center. The latter theories have (finitely many) discrete
theta angles, indexed by irreducible representations of
Cð ~GÞ. Letting a theory with discrete theta angle indexed

by μ ∈ dCð ~GÞ be denoted

ð ~G=Cð ~GÞÞμ
we will argue that the gauge theories decompose as

~G ¼
X

μ∈dCð ~GÞ
ð ~G=Cð ~GÞÞμ: ð3Þ

For example,

SUð2Þ ¼ SOð3Þþ þ SOð3Þ−
and

SUð4Þ ¼ ðSUð4Þ=Z4Þ0 þ ðSUð4Þ=Z4Þ1 þ ðSUð4Þ=Z4Þ2
þ ðSUð4Þ=Z4Þ3:

A little more generally, for any semisimple compact G,
not necessarily simply-connected, and for K a subgroup of
the center, we have discrete theta angles in K̂ and a
decomposition

G ¼
X
λ∈K̂

ðG=KÞλ: ð4Þ

Now, in this case, G itself may also have discrete theta
angles, so we can generalize to include the decomposition
of theories with discrete theta angles.
Generalizing along such lines, let G ¼ ~G=K for ~G as

above and K some subgroup of Cð ~GÞ, where G has center
CðGÞ. Then, G gauge theories are indexed by a discrete
theta angle λ ∈ K̂. In this case, we can decompose G gauge
theories with discrete theta angle λ as

ðGÞλ ¼
X

μ∈dCðGÞ
ðG=CðGÞÞλ;μ: ð5Þ

Since

G=CðGÞ ¼ ~G=Cð ~GÞ

we can interpret ðλ ∈ K̂; μ ∈ dCðGÞÞ as defining an element8

of dCð ~GÞ. To be somewhat more specific, we will choose

6As a minor consistency check, note that the components of the
decomposition in orbifolds and Abelian gauge theories described
in [1] were also indexed by irreducible representations. Here, this
is a consequence of the construction of discrete theta angles,
whereas in [1] the justification was completely different, relying
instead on, e.g., observations on open string spectra.

7A few details may be useful for some readers. The dual
sequence above is obtained by applying Homð−; Uð1ÞÞ, and so
one gets a sequence

1⟶ dCðGÞ⟶ dCð ~GÞ⟶K̂⟶Ext1ðCðGÞ; Uð1ÞÞ:
In the cases at hand, CðGÞ will always be a sum of cyclic groups,
and Ext1ðZn; Uð1ÞÞ ¼ 0, hence Ext1ðCðGÞ; Uð1ÞÞ ¼ 0. To see
this, we apply Homð−; Uð1ÞÞ to the sequence

0⟶Z⟶
×n

Z⟶Zn⟶0

to get

HomðZ; Uð1ÞÞ⟶HomðZ; Uð1ÞÞ⟶Ext1ðZn; Uð1ÞÞ⟶0

and use HomðZ; Uð1ÞÞ ¼ Uð1Þ; hence, the first map is the
surjective nth power map and Ext1ðZn; Uð1ÞÞ ¼ 0 [32].

8There are noncanonical isomorphisms of sets K̂ × dCðGÞ →dCð ~GÞ. Unless dCð ~GÞ splits, however, the product structure will be
more complicated.
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always an isomorphism that respects the extension (1), by
which we mean, if g ∈ Cð ~GÞ is in the image of K, then we
define ðλ; μÞ to be such that

ðλ; μÞðgÞ ¼ λðgÞ: ð6Þ

As a consequence, these decompositions are related as
follows:

~G ¼
X
λ∈K̂

ðGÞλ ¼
X

ρ∈dCð ~GÞ
ð ~G=Cð ~GÞÞρ: ð7Þ

We list a few examples of the predictions of this more
general form of the decomposition conjecture below. First,
using the fact that

SOð4Þ ¼ SUð2Þ × SUð2Þ
Z2

we have

SOð4Þþ ¼ SOð3Þþ × SOð3Þþ þ SOð3Þ− × SOð3Þ−;
SOð4Þ− ¼ SOð3Þþ × SOð3Þ− þ SOð3Þ− × SOð3Þþ:

Note as a consequence that

SUð2Þ × SUð2Þ ¼ SOð4Þþ þ SOð4Þ−;
¼

X
i;j¼�

SOð3Þi × SOð3Þj;

as expected from equation (7).
Another example follows from the fact that the center of

SUð4Þ is Z4. If instead we take a Z2 quotient, then we get

ðSUð4Þ=Z2Þþ ¼ ðSUð4Þ=Z4Þ0 þ ðSUð4Þ=Z4Þ2;
ðSUð4Þ=Z2Þ− ¼ ðSUð4Þ=Z4Þ1 þ ðSUð4Þ=Z4Þ3:

The result above follows from the fact that Z4=Z2 contains
two cosets, f0; 2g and f1; 3g. Note that, as a consequence,

SUð4Þ ¼ ðSUð4Þ=Z2Þþ þ ðSUð4Þ=Z2Þ−;

¼
X3
k¼0

ðSUð4Þ=Z4Þk;

as expected from equation (7).

D. Decomposition in nonsupersymmetric
pure gauge theories

In this section we will verify the decomposition claim for
nonsupersymmetric pure Yang-Mills theories. For theories
with vanishing discrete theta angles, exact expressions for
Hilbert spaces, partition functions, and so forth are known

(see for example [33–37]). To verify the decomposition
claim, we will utilize extensions of those results to theories
with discrete theta angles. Such extensions have been
discussed previously in [29], and we will discuss and
elaborate on them here.9

Let us begin with a discussion of the Hilbert spaces of
nonsupersymmetric pure Yang-Mills theory with gauge
group G ¼ ~G=K, where ~G is compact, semisimple, and
simply-connected, and K is a (finite) subgroup of the center
of ~G.
For the theory with vanishing discrete theta angles, the

conventional gauge theory, the Hilbert space is the space of
functions fðgÞ on G, invariant under conjugation. Such
functions, known as class functions, can be expanded in an
analogue of a Fourier series in characters χ of G, as

fðgÞ ¼
X
R

cRχRðgÞ

for constants cR determined by the function f.
Now, let us consider the Hilbert space of the correspond-

ing theory with a nonzero discrete theta angle defined by
λ ∈ K̂. Because of the discrete theta angle term in the
Lagrangian, a particle moving around a closed noncon-
tractible path must pick up a phase. Thus, we should think
about the Hilbert space as consisting of sections of a line
bundle on G, or equivalently a class function f on ~G
satisfying

fðgzÞ ¼ λðzÞfðgÞ;

where z ∈ K. As a result, fðgÞ can be expanded in terms of
characters χR of ~G which are in a fixed representation of K.
Before going on to describe partition functions, let us

briefly describe how the result above is compatible with
decomposition. Recall from equation (4) that decomposi-
tion predicts that for pure nonsupersymmetric Yang-Mills
theories with semisimple gauge group G and K a (finite)
subgroup of the center, the theory should decompose in a
fashion we indicate schematically as

G ¼
X
λ∈K̂

ðG=KÞλ:

Now, the Hilbert space of the G gauge theory contains all
class functions on G. On the left-hand side, the Hilbert
space of each ðG=KÞλ theory contains class functions of G
which are in a fixed representation of K. The set of all class
functions on G has a natural decomposition according to
representations of K, and so we see that the Hilbert spaces
match in exactly the fashion predicted by decomposition.

9We would like to thank Y. Tachikawa for discussions of his
results on two-dimensional nonsupersymmetric pure Yang-Mills
theories with discrete theta angles.
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In addition, as G gauge theories may themselves have
discrete theta angles, decomposition makes a more refined
conjecture (5),

ðGÞλ ¼
X

μ∈dCðGÞ
ðG=CðGÞÞλ;μ

for G ¼ ~G=K, K a subgroup of Cð ~GÞ. In terms of the
Hilbert space under discussion, this reflects the fact since K
commutes with Cð ~GÞ, class functions on ~G are simulta-
neously representations of K and Cð ~GÞ. In particular, the
Hilbert space on the left, consisting of class functions in
representation λ ofK, can be further decomposed according
to representations of Cð ~GÞ.
A brief example may help illuminate this matter.

Suppose ~G ¼ SUð4Þ and K ¼ Z2, so G ¼ SUð4Þ=Z2.
The Hilbert space of a pure G gauge theory of the form
discussed here then decomposes into class functions of
fixed Z2 representations. However, each Z2 representation
can be further decomposed into Z4 representations. If we
let n ∈ f0; 1; 2; 3g characterize representations of Z4, then,
schematically,

trivial rep’ of Z2↔0; 2 of Z4;

nontrivial rep’ of Z2↔1; 3 of Z4:

In this fashion, we see that Hilbert spaces reproduce the
decomposition (5).
Now, let us turn to partition functions. In two-dimensional

pure gauge theories with vanishing discrete theta angles, the
partition functions are known exactly [33–35], and are of the
form ([36] [equ’n (3.20)], [37] [equ’n (2.51)])

Z ¼
X
R

ðdimRÞ2−2g exp ð−AC2ðRÞÞ;

where g is the genus of the two-dimensional spacetime,A its
area, and the sum is over representations of the gauge group.
Now, let us work out partition functions of two-

dimensional theories with discrete theta angles. To that
end, it is helpful to consider a genus-one surface with one
end sliced off, as illustrated below:

Since the wavefunctions around noncontractible loops
are, as discussed above, understood as sections of nontrivial
bundles over G, the partition function of the left slice must
also be such a section. Since the entire partition function is
obtained by gluing, and the contribution of the left-hand
side is a section of a nontrivial bundle, the contribution

from the cap on the right must also be a section of the same
nontrivial bundle.
Such sections of nontrivial bundles can be understood in

terms of class functions on ~G associated to specific μ ∈ K̂,
as previously discussed. The resulting partition function,
for a theory with discrete theta angle defined by μ ∈ K̂,
should be of the same form as before, namely

Z ¼
X
R

ðdimRÞ2−2g exp ð−AC2ðRÞÞ;

except that here, the sum over representations is restricted
to representations R ofG associated with μ. (This result has
previously been given in [29].)
The result above is invariant under retriangulations, by

virtue of nearly identical computations to cases with
vanishing discrete theta angles. The essential point is that
to prove independence from choice of triangulation and
related results requires the following four identities [36,37]:Z

dUχRðUÞχR0 ðUÞ ¼ δR;R0 ; ð8Þ
X
R

jχRihχRj ¼ 1; ð9Þ

Z
dUχRðAUBU−1Þ ¼ 1

dimR
χRðAÞχRðBÞ; ð10Þ

Z
dVχRðAVÞχR0 ðV−1BÞ ¼ δR;R0

1

dimR
χRðABÞ: ð11Þ

Three of the equations above apply automatically without
modification. Only equation (9) requires any thought.
Because K is a subgroup of the center, K commutes with
the gauge group, and so the sum over representations in
equation (9) can be further diagonalized to provide a set of
completeness relations, one for each representation of K.
Thus, after suitable renormalizations, one can writeX

R;fixedμ

jχRihχRj ¼ 1

for each μ ∈ K̂.
We can derive results for partition functions axiomati-

cally, as in [36] (Sec. 3.7), from a nearly identical ansatz:

Cap ¼
X
R

ðdimRÞχRðUÞe−AC2ðRÞ ≡ ZcapðUÞ; ð12Þ

Tube ¼
X
R

jRihRje−AC2ðRÞ; ð13Þ

Pants ¼
X
R

jRi ⊗ jRi ⊗ jRi e
−AC2ðRÞ

dimR
; ð14Þ
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where in each case, the sum is over representations
associated to fixed μ ∈ K̂.
In this language, we can understand invariance under

retriangulations, for example, in the following standard
fashion. Consider a cap which has been subdivided down
the middle, as illustrated below:

To be independent of triangulation means that if we glue
the caps above along U, the result should be a cap in which
U does not appear, i.e.,

Z
dUZcapðVUÞZcapðU−1WÞ ¼ ZcapðVWÞ;

and this is a nearly immediate consequence of
equation (11). This analysis is nearly identical to that of
[36] (Sec. 3.4.2), the only difference being that here sums
over representations are restricted to those representations
with fixed μ ∈ K̂. Other arguments from [36] [chapter 3]
apply here to two-dimensional Yang-Mills with discrete
theta angles with equal immediacy.
To make the discussion above more clear, let us outline

the results for the SUð2Þ and SOð3Þ� gauge theories. For
SUð2Þ, the partition function is given by

Z ¼
X
R

ðdimRÞ2−2g exp ð−AC2ðRÞÞ;

where the sum is over all representations R of SUð2Þ, and
for SOð3Þþ, the sum is over all representations of SOð3Þ.
For SOð3Þ−, the sum is over SUð2Þ representations that are
not also SOð3Þ representations. That sounds somewhat odd
as a description of an SOð3Þ gauge theory, but the point is
that it should be interpreted in terms of sections of non-
trivial bundles over SOð3Þ.
In this case, decomposition should now be clear: the

sum appearing in the SUð2Þ gauge theory is the sum of the
representations appearing in the SOð3Þþ and SOð3Þ− gauge
theories, so the partition functions obey decomposition:

ZðSUð2ÞÞ ¼ ZðSOð3ÞþÞ þ ZðSOð3Þ−Þ:

More generally, in a G gauge theory, summing over the
various discrete theta angles in G=K gauge theories
reproduces the sum over G representations, and so the
partition functions obey decomposition (4):

ZðGÞ ¼
X
λ∈K̂

ZððG=KÞλÞ:

It is not difficult to see how the further generalization
(5) also arises. Recall this form of the decomposition
conjecture says, schematically,

ðGÞλ ¼
X

μ∈dCðGÞ
ðG=CðGÞÞλ;μ

for G ¼ ~G=K. Here, the point is that the partition function

ZððGÞλÞ

involves a sum over representations of ~G that are in a fixed
representation of K. As noted in the discussion of Hilbert
spaces, representations of ~G in a fixed representation of K
can be further decomposed into representations of CðGÞ,
hence the partition functions decompose in the fashion
outlined above.
In addition to exact expressions for Hilbert spaces and

partition functions, there also exist exact expressions for
vevs of Wilson lines in two-dimensional Yang-Mills, see
for example [36] (Sec. 3.5), [38] [Eq. (3)]. These expres-
sions also generalize to nonzero discrete theta angles, and
obey a decomposition principle.
Briefly, closely following the discussion in [36]

(Sec. 3.5.1) for nonintersecting loops, if one has a
Wilson loop defined by a curve Γ and representation RΓ,

WðRΓ;ΓÞ ¼ TrRΓ
P exp

�I
Γ
A

�
;

then

hWðRΓ;ΓÞi ¼
Z

dU
Y
c

ZðΣc; U;U−1ÞWðRΓ;ΓÞ;

where the Σc are the various components of the two-
dimensional spacetime obtained after slicing along Γ, with
boundaries labelled by group elementsU,U−1 according to
orientation. As in [36] (Sec. 3.5.1), the expression above
can be written as a sum over representations, in essentially
the usual form.
From the discussion above, we see that vevs of Wilson

lines factorize in exactly the same fashion as Hilbert spaces
and partition functions, and for the same fundamental
reason. The vev of a Wilson line in a ðGÞλ theory, for
example, forG ¼ ~G=K and λ ∈ K̂, is defined by a sum over
~G representations associated to the fixed representation λ of
K. As before, those representations can be further decom-
posed into representations of CðGÞ, from which the usual
decomposition statement follows. As the details are more or
less identical to what has been described previously, wewill
not extensively elaborate. In passing, note that the vev of a
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given Wilson line in some components may vanish—the
sum will add up to the vev of the Wilson line, but the
contributions to the sum need not be separately nonzero.
Briefly, as one further consistency check, (q-deformed)

pure nonsupersymmetric two-dimensional Yang-Mills was
related to G=G gauged WZW models in [39]. We will not
discuss gauged WZW models in great detail, but we do
note in passing that they necessarily obey their own
analogue of the decomposition conjecture. Specifically,
if G is a semisimple Lie group and H ⊂ G a subgroup with
center C, then in a G=H gauged WZW model, since one
gauges the adjoint action ofH, the center C necessarily acts
trivially on the theory, so applying the same reasoning as
for orbifolds and Abelian gauge theories, the G=H gauged
WZW model must also obey decomposition.
As another consistency check, pure nonsupersymmetric

two-dimensional Yang-Mills is also closely related to BF
theory in two dimensions, see for example [40]. It is
therefore relevant to mention that BF theory in two
dimensions at level k > 1 also exhibits a breakdown in
cluster decomposition, which can be understood in terms of
a decomposition of the theory into disjoint sectors [7]
(Appendix B).
Finally, in passing, two-dimensional pure nonsupersym-

metric Yang-Mills also arises in other contexts. One such is
described in [37] (Sec. 3.1), in terms of volumes of moduli
spaces of flat connections. We will not elaborate on such
matters here, but we do note that the decomposition of
volumes of moduli spaces of flat SOð3Þ connections
described there is consistent with the decomposition con-
jecture presented here.

E. Decomposition in theories
with center-invariant matter

Let us now consider adding center-invariant matter, to a
not-necessarily-supersymmetric pure gauge theory in two
dimensions. We claim the decomposition conjecture con-
tinues to hold. We are not aware of exact partition function
results for non-supersymmetric gauge theories with
matter,10 but we can perform other checks.
Specifically, we can Higgs the non-Abelian gauge

symmetry to a subgroup, and apply the decomposition
conjecture in its form for orbifolds and Abelian gauge
theories to recover a decomposition of the desired form.
First, consider a two-dimensional SUð2Þ theory contain-

ing an adjoint scalar. At a generic point on the Higgs
branch, the SUð2Þ has been Higgsed to Uð1Þ. If the other
matter is invariant under the Z2 center, then its Uð1Þ
charges must be even, as f�1g ⊂ Uð1Þ must leave the
matter invariant.
Now, we know from our review of Abelian gauge

theories that a Uð1Þ gauge theory with massless matter

of even charges11 will decompose into a disjoint union of
two theories, with variable flat B fields. We can understand
each of those components as the result of Higgsing the two
SOð3Þ gauge theories. In this language, the flat B fields are
the low-energy description of the discrete theta angles.
For another example, consider an SUð3Þ gauge theory

with center-invariant matter, As above, consider a point on
the Higgs branch where the SUð3Þ is Higgsed to a Uð1Þ2
(so that we can apply our understanding of Abelian gauge
theories). Since the center of SUð3Þ is generated by

diagðξ; ξ; ξÞ

for ξ a primitive third root of unity, and the Uð1Þ2 ⊂ SUð3Þ
is given by

diagðeiθ1 ; eiθ2 ; e−iðθ1þθ2ÞÞ;

we see that if the matter is invariant under the center of
SUð3Þ, then it must be invariant under the subgroup
ð1; ξ; ξ2Þ ⊂ Uð1Þ for each Uð1Þ, and hence all matter fields
must have, after Higgsing, charges that are multiples of
three. At this point, as before, we can apply our under-
standing of decomposition in Abelian gauge theories to
argue that, at least along the Higgs branch, the theory
decomposes into a disjoint union of three theories, each of
which should be the result of Higgsing an SUð3Þ=Z3 gauge
theory with suitable discrete theta angle. In this fashion we
get another consistency check of the decomposition con-
jecture for non-Abelian gauge theories.
More generally, given a G ¼ ~G=K gauge theory, ~G

semisimple, simply-connected, and compact, K a subgroup
of the center, with matter that is invariant under K,
essentially the same considerations apply on the Higgs
branch. Briefly, if we Higgs12 the gauge group G to a
product of Uð1Þ’s, and, because the matter is center-
invariant, the Uð1Þ charges must all be nonminimal. The
known version of the decomposition conjecture then
applies to give results consistent with the non-Abelian
version described in Sec. II C.

F. Decomposition of supersymmetric theories

For (2,2) supersymmetric gauge theories on S2, there are
now exact results for partition functions [42,43], obtained
via localization. In this section, we will show that those
exact partition functions for supersymmetric theories with

10That said, there has been recent progress in solving two-
dimensional Yang-Mills with adjoint-valued matter [41].

11In purely Abelian gauge theories, one also needed to give
massive minimally-charged matter, and then one could use θ
angle periodicities to distinguish these theories from theories
obtained merely by a rescaling. Here, equivalent information
seems to be implicitly encoded in the fact that we are Higgsing
an SUð2Þ theory.

12If the matter is such that such a Higgsing is not possible, then
it is not possible to reduce to considerations of Abelian gauge
theories and apply older results.
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center-invariant matter obey the decomposition conjecture
stated previously in Sec. II C. We will follow the notation
of [42].
Let us begin with a comparison of the supersymmetric

partition functions for the pure SUð2Þ and SOð3Þ� theories.
Following [42] [Eq. (3.34)], the partition function of a
supersymmetric theory on S2 is given by

ZS2 ¼
1

jWj
X
m

Z �Y
j

dσj
2π

�
Zclassðσ;mÞZgaugeðσ;mÞ

×
Y
Φ

ZΦðσ;m; τ;nÞ; ð15Þ

where [42] [Eq. (3.35)]

Zclassðσ;mÞ ¼ e−4πiξTr σ−iθTrm exp ð8πirRe ~Wðσ=rþ im=ð2rÞÞÞ;

Zgaugeðσ;mÞ ¼
Y
α∈G

�jαðmÞj
2

þ iαðσÞ
�

¼
Y
α>0

�
αðmÞ2

4
þ αðσÞ2

�
;

ZΦðσ;m; τ;nÞ ¼
Y
ρ∈RΦ

ΓðR½Φ�
2

− iρðσÞ − ifa½Φ�τa − ρðmÞþfa½Φ�na
2

Þ
Γð1 − R½Φ�

2
þ iρðσÞ þ ifa½Φ�τa − ρðmÞþfa½Φ�na

2
Þ
:

The notation above follows [42]. Briefly, fa½Φ� encodes the
non-R-charges of a chiral multiplet Φ, and R½Φ� its R-
charge. RΦ denotes the corresponding representation of the
gauge group. W denotes the Weyl group of the gauge
group. τ ¼ ðτaÞ and n ¼ ðnaÞ define twisted masses for the
chiral superfield.
The m are elements of the Lie algebra of a Cartan

subgroup of the torus, corresponding to elements of the
cocharacter or dual weight13 lattice for the gauge group,
meaning for any representation R of the gauge group
and corresponding weight ρ, ρðmÞ ∈ Z. In admittedly
ambiguous notation, we will use m to denote both
pertinent Lie algebra elements as well as more abstract
elements of the cocharacter lattice, indexed by tuples of
integers.
For our purposes, it will be essential to understand how

the sum over m’s varies depending upon the precise
group. Let us first compare the sum for SUð2Þ and SOð3Þ.
Briefly, the character lattice of SUð2Þ is twice as large as
the character lattice of SOð3Þ, since the odd-spin repre-
sentations are only representations of SUð2Þ. Since the
character lattice of SUð2Þ is larger, the cocharacter lattice
of SUð2Þ must be smaller. In particular, if we normalize
such that for SOð3Þ, m varies over all integers, then for
SUð2Þ, m must vary over only even integers.

Next, let us turn to discrete theta angles in this example.
First, note that ordinary theta angles are encoded in
Zclassðσ;mÞ, in the

exp ð−iθTrmÞ
factor. In this notation, in this term we interpret m as a
matrix in the Lie algebra of a Cartan torus14 in the gauge
group, and the trace is taken over that matrix.
Now, for a semisimple gauge group, that trace will

always vanish, and indeed one does not expect ordinary
theta angles in two dimensions in a semisimple gauge
theory. However, that term implicitly tells us how to insert
discrete theta angles in these partition functions—by add-
ing a (nonvanishing) term to the (vanishing) theta
angle term.
In the case of SOð3Þ, a nonzero discrete theta angle is

encoded as a factor

exp ð−iπmÞ ¼ ð−Þm

placed in the same location in the partition function
expression as the ordinary theta angle term. In other words,
for odd m, corresponding to an m in SOð3Þ’s cocharacter
lattice but not SUð2Þ’s, this is a sign. (Note that our notation
is ambiguous: for ordinary theta angles, we interpretm as a
matrix, whereas for the discrete theta angle term, we
interpret m as an integer. As both are, morally, the same
m, we will continue to use ambiguous notation, and trust
the reader to disambiguate at need.)
We can now see, for SUð2Þ gauge theories with center-

invariant matter, how the decomposition conjecture is
realized in partition functions. Specifically, for SUð2Þ,
the partition function (15) is a sum over only even m;

13The term ‘dual weight’ lattice can be ambiguous: some
authors occasionally use the term ‘weight lattice’ to refer to the
lattice of weights of representations of a particular Lie group,
whereas for others it is defined with respect to the Lie algebra
only, independent of the Lie group. The former notion, defined in
terms of representations of a particular Lie group, can be more
invariantly characterized in terms of homomorphisms from the
maximal torus of the gauge group to the circle, and so is often
called the character lattice. The dual lattice we are interested in
here is similarly known as the cocharacter lattice. We would like
to thank T. Pantev for a useful discussion of this issue.

14In writing this, we are utilizing the fact that the cocharacter
lattice can be interpreted as a subset of the Cartan torus.
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for SOð3Þþ, a sum over all integer m; for SOð3Þ−, a sum
over all integer m but containing an extra ð−Þm.
Schematically, if we write15

ZðSOð3ÞþÞ ¼
1

2

X
m∈Z

AðmÞ

for a function AðmÞ which encodes all the m-dependence,
then

ZðSOð3Þ−Þ ¼
1

2

X
m∈Z

ð−ÞmAðmÞ

(for a theory with the same matter), and

ZðSUð2ÞÞ ¼
X
m∈2Z

AðmÞ ¼ ZðSOð3ÞþÞ þ ZðSOð3Þ−Þ

(for an SUð2Þ theory with the same matter). Thus, we see
that exact S2 partition functions of supersymmetric gauge
SUð2Þ theories with center-invariant16 matter factor in
precisely the form predicted by decomposition, providing
a consistency check.
Before describing the general case, let us consider

another example: SUð3Þ. The simple roots of SUð3Þ can
be represented as [45] (Sec. 7.2)

�
1

2
;

ffiffiffi
3

p

2

�
;

�
1

2
;−

ffiffiffi
3

p

2

�

from which we derive that the cocharacter lattice for
SUð3Þ=Z3 has elements of the form�

2m;
2ffiffiffi
3

p n
�

for m; n ∈ Z. The weights of the fundamental can, in the
same conventions, be represented as

�
1

2
;

ffiffiffi
3

p

6

�
;

�
−
1

2
;

ffiffiffi
3

p

6

�
;

�
0;−

ffiffiffi
3

p

3

�

from which we deduce that the cocharacter lattice for
SUð3Þ has elements of the form�

2m;
6ffiffiffi
3

p n

�
:

Now, if we are given

m ¼
�
2m;

2ffiffiffi
3

p n

�

in the cocharacter lattice of SUð3Þ=Z3, the Z3-valued
analogue of the second Stiefel-Whiney class is determined
by nmod 3. Thus, we could add a discrete theta angle to the
partition function of an SUð3Þ=Z3 theory by adding a term

exp ð−iθnÞ

for n determined by m as above and θ ∈ f0; 2π=3; 4π=3g.
In other words, if w denotes the integral of the Z3-valued
analogue of the Stiefel-Whitney class, then in effect,

wðmÞ ¼ nmod 3:

With that in hand, decomposition can be checked for
SUð3Þ theories in the same form as for SUð2Þ theories. As
before, we can write

ZðSUð3ÞÞ ¼
X
m∈Z

X
n∈3Z

AðmÞ

for the S2 partition function of an SUð3Þ theory with center-
invariant matter, wherem is determined by integersm, n as
above, and AðmÞ is defined for m corresponding to
arbitrary integer m, n. We can decompose this as

X
m∈Z

X
n∈3Z

AðmÞ ¼ 1

3

X
m∈Z

X
n∈Z

AðmÞ

þ 1

3

X
m∈Z

X
n∈Z

e−2πin=3AðmÞ

þ 1

3

X
m∈Z

X
n∈Z

e−4πin=3AðmÞ;

15This expression is valid for both the pure supersymmetric
theory as well as a theory with matter: the difference between the
two is encoded in the function AðmÞ. We have included an overall
factor of (1=2) to reflect the change in size of the integration
region—because SUð2Þ has twice the volume of SOð3Þ, in
principle one would expect that gauging SOð3Þ should result
in a path integral with a normalization of 1=2 relative to gauging
an SUð2Þ. That said, in quantum field theories not coupled to
gravity, overall normalizations of the partition function are not
meaningful, and can be absorbed into counterterms (see, e.g.,
[44] for a pertinent discussion). Thus, it might be better to
characterize such choices as conventions. In that language, we
have chosen convention-dependent factors to make the discussion
more clear.

16If the matter is not center-invariant, the partition function can
still be written as a sum of two infinite series, but neither infinite
series seems to be interpretable as the partition function of a
gauge theory. In particular, the derivation of ZΦ for a chiral
superfield in representation R explicitly assumes that ρðmÞ is an
integer for all weights ρ and elementsm of the cocharacter lattice;
for example, [42] (Sec. 3.2) computes the pertinent operator
determinant by expanding in a series of spin spherical harmonics
of spin ð1=2ÞjρðmÞj, which is only sensible if ρðmÞ is an integer.
More generally, an infinite sum can be written in a variety of ways
as a formal sum of other infinite sums; what is pertinent here is
that the infinite sums have a physical meaning as partition
functions of gauge theories, following the pattern predicted by
decomposition.
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which can then be interpreted as

ZðSUð3ÞÞ ¼ ZððSUð3Þ=Z3Þ0Þ þ ZððSUð3Þ=Z3Þ1Þ
þ ZððSUð3Þ=Z3Þ2Þ;

precisely in accord with the prediction of decomposition.
It is straightforward to generalize this to more general

semisimple gauge groups G. In general, for semisimple G
with center K, if MG denotes the cocharacter lattice for G,
then MG ⊂ MG=K and MG=K=MG has as many elements as
K. In each case, to evaluate partition functions explicitly,
one must represent the integral of the analogue of the
second Stiefel-Whitney class as an invariant w of the
cocharacter lattice, and that invariant determines the perti-
nent discrete theta angle term in the partition function. That
invariant w is encoded in the relation17 between the
cocharacter lattices:

1⟶MG⟶MG=K⟶
w

K⟶1:

The decomposition statement is encoded in the fact that

1

jKj
X
μ∈K̂

eiμðwðmÞÞ

is a projection operator that projects the lattice MG=K onto
MG, in other words, is the identity on m ∈ MG=K in the
image of MG, but vanishes otherwise.
It is now straightforward to check that the partition

functions obey decomposition. For example, for G semi-
simple and K a (finite) subgroup of the center, decom-
position in the form (4) can be checked as follows:

ZðGÞ ¼
X

m∈MG

AðmÞ;

¼ 1

jKj
X
λ∈K̂

X
m∈MG=K

eiλðwðmÞÞAðmÞ;

¼
X
λ∈K̂

ZððG=KÞλÞ;

where MG is the cocharacter lattice of G, and

ZððG=KÞλÞ ¼
1

jKj
X

m∈MG=K

eiλðwðmÞÞAðmÞ:

The same methods can also be applied to check
decomposition in the more general form (5): for
G ¼ ~G=K, G semisimple, ~G simply connected, K a
subgroup of the center of ~G, and λ ∈ K̂,

ZððGÞλÞ ¼
X

m∈MG

eiλðwKðmÞÞAðmÞ;

¼ 1

jCðGÞj
X

μ∈dCðGÞ
X

m∈MG=CðGÞ

eiðλ;μÞwCð ~GÞðmÞAðmÞ;

¼
X

μ∈dCðGÞ
ZððG=CðGÞÞλ;μÞ:

In the expression above, wK∶ MG → K (with kernel M ~G),
wCð ~GÞ∶ MG=CðGÞð¼ M ~G=Cð ~GÞÞ → Cð ~GÞ with kernel M ~G,
and wCðGÞ∶ MG=CðGÞ → CðGÞ with kernel MG. The pro-
jection operator has been modified slightly: we have
replaced the factor

eiμðwCðGÞðmÞÞ

(which reduces to 1 on the image of MG in MG=CðGÞ) with

eiðλ;μÞwCð ~GÞðmÞ:

We can see that this reduces to the desired expression on
MG as follows. Because18 wCðGÞ ¼ α∘wCð ~GÞ where

1⟶K⟶Cð ~GÞ⟶α
CðGÞ⟶1;

and the fact that the image of MG is in the kernel of wCðGÞ,
we see that the image of MG in M ~G=Cð ~GÞ ¼ MG=CðGÞ must
lie in the image ofK, hence from Eq. (6) and commutivity19

of the square

we find that

eiðλ;μÞwCð ~GÞðmÞ ¼ eiλwKðmÞ

for m in the image of MG. Thus, our modified projection
operator reduces to the desired form on MG.

III. FOUR-DIMENSIONAL THEORIES

In four-dimensional theories, it is no longer the case that
a gauge theory with a trivially acting subgroup is physically
equivalent to a gauge theory with a restriction on instan-
tons. For example, in four dimensions, pure N ¼ 1 super-
symmetric SUð2Þ Yang-Mills theory does not violate

17See Appendix A for a derivation.

18See Appendix A for a derivation.
19See Appendix A for a derivation.
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cluster decomposition, and has the same number of vacua
in the IR as pure N ¼ 1 supersymmetric SOð3Þ Yang-Mills
theory.
However, it is nonetheless intriguing to compare, for

example, SUð2Þ gauge theories to SOð3Þ gauge theories
with restrictions on instantons.
In this section, we will discuss four-dimensional gauge

theories with restrictions on instantons, enforced by
inserting projection operators into path integrals. These
theories do not obey cluster decomposition, but, at least for
SCFTs, have been argued to obey an analogue of the
decomposition conjecture [7] (Appendix A), so that cluster
decomposition is violated in an extremely mild way. That
said, unlike decomposition in two dimensions, there has
been very little work done on decomposition in four
dimensions, so part of the purpose of this section is to
further illuminate decomposition in four-dimensional the-
ories. For simplicity, we will restrict to four-dimensional
SCFTs, both because these were the theories considered in
[7] (Appendix A), and also so that we can reliably work in a
weak coupling regime.
We will first examine dyon spectra in four-dimensional

theories with restrictions on instanton sectors. Reducing the
number of instantons changes the theta angle periodicity,
hence one can in principle run into a consistency problem
in theta angle charge rotations [46]. If the theory decom-
poses into a disjoint union of (ordinary) theories, a contra-
diction is averted. Furthermore, we will see that dyon
spectra can be used to distinguish an SUð2Þ gauge theory
from an SOð3Þ gauge theory with a restriction on instantons
obeying an analogue of decomposition. We will also briefly
examine Vafa-Witten topological field theory partition
functions, as they can be used to provide simple examples
of the four-dimensional decomposition of [7] (Appendix A)
in action.

A. Dyon charge lattices

Let us begin by examining dyon spectra in four-
dimensional theories with restrictions on instantons. Start
with a four-dimensional gauge theory with conventions
chosen such that θ is 2π-periodic. Restrict allowed instan-
tons to those with instanton numbers divisible by some
integer k > 0. The restricted theory has a different θ
periodicity: the theory is invariant under θ≡ θ þ 2π=k.
Because of how dyon charges depend upon the θ angle

[46], this constrains dyon spectra. In the original theory, the
physics and so the dyon spectrum20 was invariant under
θ↦θ þ 2π, but in the new theory, it must be invariant
under θ↦θ þ 2π=k.
This would appear to pose a consistency problem for the

theory. If, for example, we have a dyon of charge ðλe; λmÞ,
then under a 2π=k rotation of θ, the dyon charge would

become21 [46] ðλe þ λm=k; λmÞ, which, except for special
values of k, is unlikely to land somewhere in the original
charge lattice.
Nevertheless, it is still possible for the charge lattice to be

closed under such a rotation. One universal solution is if the
dyon spectrum is a sum of copies of the dyon spectrum of the
original theory, but with θ rotated in increments of 2π=k, as
arises in a disjoint union of theories on the same spacetime.
(This is a prediction of the conjectured analogue of the
decomposition conjecture of [1] in four-dimensional theories
[7].) Ordinarily locality as discussed in [27] (Sec. 1.1) would
prohibit dyon spectra of this form; however, if we have a
disjoint union of theories, so that dyons associated with
different theories do not interact, then locality only applies
withineachseparate sector, andsoanycontradiction is averted.
The solution above is not unique, and we will see that in

special cases, other solutions are possible. One example we
will study indetailwill involve the relationbetweenanSOð3Þ
gauge theory with a restriction on instantons, and an SUð2Þ
theory.Wewill see that the SUð2Þ theory encodes a different
solution to the corresponding problem in this context.
Let us consider a concrete example to make this proposal

more precise. Consider an SUð2Þ gauge theory with a
restriction on instantons, restricted to instantons with
instanton number divisible by 3. The dyon spectrum of
the original SUð2Þ theory itself has the form [27]

(Allowed electric charges are arbitrary integers; allowed
magnetic charges are even integers.) Under θ↦θ þ 2π=3,
the charges rotate as ðλe; λmÞ↦ðλe þ λm=3; λmÞ, and the
resulting charge lattice has the form

20Individual dyon charges rotate as described in [46], but the
spectrum as a whole remains invariant.

21The dyon charge formula, although it depends upon θ, is a
purely semiclassical result independent of instanton sector [46],
and so it is not affected by the restriction on allowed instantons.
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Here, the electric charges of dyons with λm ¼ 2 are
shifted by 1=3. Similarly, the electric charges of dyons with
λm ¼ 4 would be shifted by 2=3, and so forth.
As anticipated above, under this rotation, the dyon

spectrum is not invariant. However, the physics should
be invariant, as we are rotating the theta angle by its
periodicity. As suggested above, one solution is that the
correct dyon spectrum is determined by a set of dyons
arising from variable θ angles. The resulting dyon spectrum
is given by the sum of the two spectra above, plus another
resulting from rotating θ↦θ þ 4π=3, to get

We have used “3”’s to indicate that there are three
separate dyons with the same listed charges. As noted
earlier, this dyon spectrum is only sensible if the theory
decomposes into a disjoint union; our point is that such a
decomposition gives a dyon spectrum compatible with
theta angle dyon charge rotations.
Another example will be instructive. Let us compare

SUð2Þ to the SOð3Þ� gauge theories. These are very
similar: all have the same perturbative description, for
example, as the Lie algebras match. Furthermore, the
SUð2Þ instantons are a subset of the SOð3Þ instantons,
which suggests (incorrectly) that the SUð2Þ theory is
equivalent to an SOð3Þ theory with a restriction on
instantons. Let us work through this in detail, to see
how the SUð2Þ theory is distinguished from SOð3Þ� with
a restriction on instantons.
Specifically, consider the four-dimensional SOð3Þ−

theory [27,28]. Let us restrict the instantons of the
SOð3Þ− theory to those with instanton numbers divisible
by 2 (in conventions in which the instantons of SOð3Þ−
have integral instanton number). The original SOð3Þ−
theory is periodic under θ↦θ þ 4π; the new theory with
the restriction on instanton numbers is periodic under
θ↦θ þ 2π.
The prediction above is that in this restricted theory, the

dyon spectrum is the sum of the dyons in two different
theories:

SOð3Þθ− and SOð3Þθþ2π
− ¼ SOð3Þθþ:

(Hand-in-hand, the physical theory must similarly
decompose into a disjoint union.) In the figure below,
we illustrate dyon charge multiplicities occurring in the
resulting spectrum:

As a consistency check, under the rotation θ↦θ þ 2π,
note that the lattice as a whole is invariant under the dyon
charge rotation [46]

ðλe; λmÞ↦ðλe þ λm; λmÞ:

For example, when λm is even, the only allowed λe’s are all
even, and so they shift into one another. When λm is odd, all
λe’s are permitted, and they shift into one another.
In this case, the solution above is not unique. Another

dyon spectrum which is also closed under θ↦θ þ 2π is of
the form

and is significantly different from the spectrum above. For
example, in this spectrum we do not have multiple copies of
any dyons; this theory appears to be “connected,” loosely
speaking. In fact, this is precisely the spectrum of the
SUð2Þ theory [27]. Other than the spectrum of dyons,
however, the restricted SOð3Þ− and SUð2Þ theories are very
similar: both have the same perturbative description, both
have the same instantons, but the dyon spectrum in the two
cases is significantly different.

B. Vafa-Witten TFT partition functions

As four-dimensional decomposition has not been
checked nearly as thoroughly as two-dimensional cases,
it is useful to study further examples. To that end, in this
section we will discuss partition functions of the topologi-
cal field theories of [47], arising from topologically-twisted
four-dimensional N ¼ 4 theories, with a restriction on
instantons. We shall see that those partition functions
can be written as partition functions of disjoint unions of
theories, in agreement the four-dimensional decomposition
prediction of [7] (Appendix A). In fact, the same arguments
can be applied verbatim to other supersymmetric instanton
computations, such as the Nekrasov partition function, as
the partition functions have the same general form. For

ERIC SHARPE PHYSICAL REVIEW D 90, 025030 (2014)

025030-14



simplicity, we will only describe Vafa-Witten partition
functions. (Of course, a thorough check of decomposition
in this case would require more than comparing partition
functions—we would need to also demonstrate that corre-
lation functions factorize, for example, as has been shown
in related two-dimensional theories. Our purpose here is
merely to provide some evidence supporting the argument
of [7] [Appendix A].)
Briefly, the partition functions of these topological field

theories are of the form [47]

ZðqÞ ¼
X
n

anqn;

where

q ¼ e2πiτ ¼ exp

�
iθ −

8π2

g2

�
;

and ak is proportional to the moduli space of n instantons.
Suppose, for example, that we consider the analogous
theory defined by a restriction to instanton numbers
divisible by k. Then the partition function of this new
theory would be

ZkðqÞ ¼
X
n

ankqnk:

Note that this is the same as

X
n

�
1

k

Xk−1
α¼0

e2πiαn=k
�
anqn ¼

1

k

Xk−1
α¼0

X
n

anqne2πiαn=k:

The effect of the insertion is to project onto instanton
numbers divisible by k: when n is divisible by k, each factor
in the α sum is 1, otherwise the α sum is a sum over roots of
unity, which vanishes. At the same time, writing the
partition function for the theory with a restriction on
instanton sectors, in this form,

ZkðqÞ ¼
1

k

Xk−1
α¼0

X
n

anqne2πiαn=k

¼ 1

k

Xk−1
α¼0

X
n

an exp

�
n

�
iθ þ i2πα=k −

8π2

g2

��
;

¼ 1

k

Xk−1
α¼0

ZðqαÞ;

where

qα ¼ exp

�
iθ þ i2πα=k −

8π2

g2

�
;

consistent with an interpretation as a disjoint union of
theories with rotating θ angles, as predicted in [7].

IV. DIJKGRAAF-WITTEN THEORY

The recent paper [48] studied strings on gerbes, the same
sorts of theories we have discussed in this paper, albeit
described there in the language of quantum field theories
coupled to topological field theories (TQFTs). The proto-
type for the TQFT coupling in [48] was given by Dijkgraaf-
Witten theory [49]. Briefly, we can understand analogues of
Dijkgraaf-Witten theory in n dimensions, as defined by
[48], directly in finite gauge theory, without the overhead of
various Abelian gauge theories. In such language, the
theories of [48] can be described as an n-dimensional
orbifold of a point with an analogue of discrete torsion
turned on.
For example, in two dimensions with gauge group G,

the partition function of the two-dimensional version22 of
Dijkgraaf-Witten theory on T2 is given by

Z2 ¼
1

jGj
X
gh¼hg

αðg; hÞ
αðh; gÞ ;

where α ∈ H2ðG;Uð1ÞÞ is a group cocycle (with trivial
action on the coefficients). The ratio

αðg; hÞ
αðh; gÞ

is invariant under both coboundaries and SLð2;ZÞ.
In three dimensions, with gauge group G the partition

function of Dijkgraaf-Witten theory has a similar form,
with phase factors now given by the analogues of discrete
torsion for the C field [50,51]. For example, on a three-
torus, the partition function is given by

Z3 ¼
1

jGj
X

commuting triples

Y
permutationsP

αðgi1 ; gi2 ; gi3Þ�P:

The alternating ratio of cocycles α ∈ H3ðG;Uð1ÞÞ can be
shown to be both invariant under coboundaries and also
invariant under SLð3;ZÞ [49,50].
Similarly, in d dimensions, for gauge group G the

analogue of Dijkgraaf-Witten theory has a similar form.
For example, on a d torus, the partition function is given by

Zd ¼
1

jGj
X

commuting pairs

Y
permutationsP

αðgi1 ; gi2 ;…; gidÞ�P;

where α is a cocycle representing an element of
HdðG;Uð1ÞÞ, with trivial action on the coefficients. (It is

22The original Ref. [49] only considered three-dimensional
theories, but glossing over occasional subtleties such as certain
functoriality issues in low dimensions, analogues are straightfor-
ward to write down in any dimension, as indeed [48] does.
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straightforward to check that this expression is invariant
under coboundaries.) (See also [52] for a derivation of such
expressions from simplices in two dimensions, and [49] for
an analogous derivation in three dimensions.)
Now, turning on discrete torsion in a trivially acting

subgroup of a gauge group in two dimensions modifies the
decomposition conjecture, as observed in [1] (Sec. 10). In
particular, in the presence of discrete torsion, decomposi-
tion may no longer take place at all.
A prototypical example is provided by the two-

dimensional orbifold [X=ðZ2 × Z2Þ], where X is a mani-
fold (defining a nonlinear sigma model) and the first Z2

acts trivially on X. It was argued in [1] (Sec. 10.1) that in
this case, if discrete torsion is turned on, the theory on
[X=ðZ2 × Z2Þ] is equivalent to a sigma model on one copy
of X—a 2-fold cover of [X=Z2]. More generally, for the
two-dimensional orbifold [X=ðZk × ZkÞ] where the firstZk
acts trivially, for any nontrivial discrete torsion, this theory
is equivalent23 [1] (Sec. 10.2) to a sigma model on one copy
of X, a k-fold cover of [X=Zk]. (The fastest way to see this
is to compute the genus one world sheet partition function
—because of the discrete torsion phase factors, all con-
tributions from twisted sectors cancel out, leaving just the
partition function of an ordinary nonlinear sigma model
on X.)

V. CONCLUSIONS

In this paper we have discussed decomposition in two
and four dimensions. In two dimensions, it is a long
established result that in orbifolds and Abelian gauge
theories, if a finite subgroup leaves matter invariant, then
the theory “decomposes” into a disjoint union of theories.
As there is no gauge dynamics in two dimensions, one
therefore expects closely related phenomena in two-
dimensional non-Abelian gauge theories. We gave a gen-
eral conjecture for its formulation and demonstrated that
both nonsupersymmetric pure two-dimensional Yang-Mills
and supersymmetric theories in two dimensions obey the
general principle. In particular, this allowed us to derive a
decomposition result for pure two-dimensional nonsuper-
symmetric Yang-Mills.
In four dimensions, existence of a trivially acting finite

subgroup is no longer equivalent to a restriction on
instantons. We discussed how these can be distinguished
using dyon spectra, and also discussed partition function
constructions in four-dimensional topological field theories

with restrictions on instantons that mirror analogous
two-dimensional constructions.
There are a number of other directions to pursue. For one

example, it is well known that two-dimensional Yang-Mills
can also be formulated as a string theory (see, e.g., [36,55]
for a complete description of that string theory). It would be
interesting to understand how that string theory also
decomposes.
For another example, zero-area limits of partition

functions of q-deformed pure two-dimensional Yang-
Mills are now understood to compute some indices of
four-dimensional superconformal field theories, see, e.g.,
[56,57]. It would be interesting to understand the impli-
cations of the decomposition conjecture described here
for four-dimensional superconformal indices. Perhaps,
although full four-dimensional theories do not obey the
same decomposition (unless one enforces a strong instan-
ton restriction), the indices decompose.
Yet another direction to pursue is decomposition in three

dimensions. Do three-dimensional theories with trivially
acting finite groups decompose, or only if one imposes a
further restriction on instantons? Such questions would be
interesting to understand.
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APPENDIX: MISCELLANEOUS COCHARACTER
LATTICE RELATIONS

In this appendix we shall derive a few relations between
cocharacter lattices that are used in the text.
First, for semisimple G with K a finite subgroup of the

center, if MG denotes the cocharacter lattice for G, then we
shall show that

1⟶MG⟶MG=K⟶
w

K⟶1:

This relation can be derived as follows [58]. Begin with
the short exact sequence

1⟶K⟶TG⟶TG=K⟶1;

and apply the functor HomðUð1Þ;−Þ. The result is

1⟶MG⟶MG=K⟶Ext1ðUð1Þ; KÞ⟶1:

To compute Ext1 above, apply Homð−; KÞ to

0⟶Z⟶R⟶Uð1Þ⟶1

to get

23In passing, we should mention that there is also related work
in the math literature, albeit describing a different duality.
Specifically, the paper [53] gives a mathematical proposal for
understanding decomposition with discrete torsion turned on in
the fashion indicated here. However, in this example, the duality
described in [53] predicts [54] k copies of [X=Zk] rather than one
copy of X.

ERIC SHARPE PHYSICAL REVIEW D 90, 025030 (2014)

025030-16



1⟶HomðUð1Þ; KÞ⟶HomðR; KÞ⟶HomðZ; KÞ⟶Ext1ðUð1Þ; KÞ⟶Ext1ðR; KÞ:

Now,

HomðUð1Þ; KÞ ¼ 1 ¼ HomðR; KÞ
since Uð1Þ, R are divisible groups and K is torsion, and similarly Ext1ðR; KÞ ¼ 0 since R is torsion-free and K is torsion.
Thus,

Ext1ðUð1Þ; KÞ ≅ HomðZ; KÞ ¼ K

instead of K̂. We would like to thank T. Pantev for sharing this computation. We will denote the map w∶ MG=K → K by wK.
Next, define the map α∶ Cð ~GÞ → CðGÞ, where CðGÞ denotes the center of G, as the second nontrivial map in the

sequence

1⟶K⟶Cð ~GÞ⟶α
CðGÞ⟶1:

We shall show that the following diagram commutes:

To show this, begin with the diagram

This commutes; hence, the diagram obtained by applying HomðUð1Þ;−Þ, namely,

also commutes, which is the desired result.
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