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We detail the construction of the most general asymptotically flat, stationary, rotating, nonextremal,
dyonic black hole of the four-dimensionalN ¼ 2 supergravity coupled to 3 vector multiplets that describes
the STU model. It generates through U dualities the most general asymptotically flat, stationary black hole
of N ¼ 8 supergravity. We develop the solution generating technique based on SOð4; 4Þ=SLð2;RÞ4 coset
model symmetries, with an emphasis on the 4-fold permutation symmetry of the gauge fields. We indicate
how previously known nonextremal and extremal solutions of the STU model are recovered as limiting
cases. Several properties of the general black hole solution are discussed, including its thermodynamics, the
quadratic mass formula, the Bogomolny-Prasad-Sommerfield limit, the slow and fast extremal rotating
limits, its properties in regards to the Kerr/conformal field theory correspondence, its Killing tensors and
the separability of geodesic motion and probe scalars.
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I. INTRODUCTION

Black holes are some of the most important nonpertur-
bative objects of quantum gravity. To understand their
fundamental properties, such as their microscopic descrip-
tion, it is essential to have explicit black hole solutions and
understand all their classical properties, such as their
thermodynamics. In four-dimensional Einstein-Maxwell
theory, the Kerr-Newman solution represents a general
stationary, asymptotically flat black hole. More general
theories, such as those arising from string theory, admit
more general families of black hole solutions. One of the
most studied string theory compactifications down to 4
dimensions is the reduction of M theory on T7, which is
described in the low-energy regime by maximal N ¼ 8
supergravity [1,2]. The bosonic sector, which is relevant for
classical solutions, includes Einstein-Maxwell theory as a
truncation, and also includes several other well-studied
theories of gravity coupled to vectors and scalars. A
number of black hole solutions of N ¼ 8 supergravity
and its truncations have been discovered over the last
35 years, but the most general family had proved elusive. In
this paper, we give a derivation of the most general
stationary, asymptotically flat black hole of N ¼ 8 super-
gravity in a specific U-duality frame, as announced in [3].
N ¼ 8 supergravity admits a consistent truncation to an

N ¼ 2 supergravity coupled to three vector multiplets,
which is known as the STU model [4,5] (S, T and U are
sometimes used to denote its three complex scalar fields).
The STU supergravity is particularly useful because a
suitable 5-charge solution of STU supergravity suffices to

generate the general black hole of N ¼ 8 supergravity
through U dualities [6,7]. Solutions of STU supergravity
can also be used to generate solutions of pure N > 2

supergravities and heterotic supergravity [7]. Such U
dualities only act on the matter fields, while leaving the
four-dimensional metric invariant.
While N ¼ 8 supergravity admits an E7ð7ÞðRÞ symmetry

of its field equations, the STU supergravity action has an
SLð2;RÞ3 symmetry, and also symmetry under permutations
of the three SLð2;RÞ factors, which is commonly referred to
as the “S-T-U” triality symmetry [5]. Upon dimensional
reduction along time, the classical symmetry of the action
enhances to SO(4,4), which contains an SLð2;RÞ4 sub-
group. The extra SLð2;RÞ is associated with the Ehlers
SLð2;RÞ that arises from reduction of Einstein gravity [8,9].
N ¼ 8 supergravity has been of considerable interest

recently thanks to the identification of elegant ultraviolet
cancellations in perturbation theory, see e.g. [10]. Using
Kawai-Lewellen-Tye relations [11], amplitudes in N ¼ 8
supergravity are related to amplitudes in N ¼ 4 super-
Yang-Mills theory. The latter theory is finite [12,13],
prompting speculation that N ¼ 8 supergravity might be
finite. However, pure N ¼ 8 supergravity cannot be
decoupled from string theory [14], contrary to N ¼ 4
super-Yang-Mills theory [15].
The entropy of extremal black holes in N ¼ 8 super-

gravity is related to qubit entanglement measures in
quantum information systems, as reviewed in [16,17].
There have been in particular studies of the STU super-
gravity, which corresponds to entanglement of three qubits
[18–20] and four qubits [21–23]. More generally, extremal
black hole entropy in N ¼ 8 supergravity corresponds to
tripartite entanglement of seven qubits [24].
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Ungauged N ¼ 8 supergravity can be generalized to
gauged N ¼ 8 supergravities. Whereas the ungauged
theory admits a Minkowski vacuum solution, the gauged
theories admit anti–de Sitter (AdS) vacuum solutions, so
are relevant for studying the AdS/CFT correspondence
[15]. The gauged theories have attracted recent interest
because the original N ¼ 8, SO(8) gauged supergravity
[25,26], previously thought to be unique, has been gener-
alized to a one-parameter family of N ¼ 8 gauged super-
gravities [27]. Black holes in the ungauged N ¼ 8
supergravity provide a starting point for finding black
holes of the gauged N ¼ 8 supergravity. Systematic
solution generating techniques, which work for the unga-
uged theory, fail for the gauged theories. Therefore, finding
solutions of the gauged theory requires guesswork based on
solutions of the ungauged theory. For some recent results in
this direction, see [28–30] and references therein.
It is conceptually straightforward to find complicated

charged black hole solutions of interest, such as the most
general black hole of N ¼ 8 supergravity, given the
existence of well-known algorithms and suitable uncharged
black hole solutions, but it can be a difficult algebraic task.
A common method of generating charged, stationary black
holes is to dimensionally reduce the theory on the time
coordinate to give Euclidean 3-dimensional gravity
coupled to matter. After Hodge dualizing three-dimensional
vectors to scalars, the resulting bosonic matter Lagrangian
typically consists of a coset model of scalar fields, which
admits symmetries forming a real Lie algebra. A solution
can then be generated starting from an initial seed solution
and acting on it with coset model symmetries. In this
paper we will detail the coset model based on SO(4,4)
symmetries and use it to obtain general black holes. The
four-dimensional STU supergravity has four gauge fields
on an equal footing. In this paper, wewill present a formula-
tion of the SO(4,4) coset model that keeps the permutation
symmetry between the four gauge fields manifest.
The conceptual foundations of coset model symmetries

have been known for years [31,32]. The main interest of
such symmetries, when considering spacelike reductions
down to 4 dimensions only, is their role as symmetries of
string theory after quantization [33] (see e.g. [34–37] for
reviews). Attempts have been made to similarly understand
symmetries appearing in timelike reductions, which led to
string theories in mixed time signatures [38,39], but it is not
clear if such theories can be quantized. In the case of
reductions down to 3 dimensions, it has been conjectured
that the classical symmetry group is quantized in string
theory [40,41] but only partial indications have been
obtained in this direction [42,43]. In this paper we will
only treat symmetries classically as a solution generating
technique. A classification of the symmetries appearing in
torus reductions of various maximal supergravities (on both
space and time) has been performed [44–47]. Explicit
algorithms for particular cosets have been developed

extensively over the years, starting from the pioneering
work on Einstein gravity [8,9], understood in terms of an
SLð2;RÞ coset [48], and on Einstein-Maxwell theory [49],
understood in terms of an SU(2, 1) coset [50–53]. Other
theories considered are Kaluza-Klein theory, understood in
terms of an SLð3;RÞ coset [54]; the particular Einstein-
Maxwell-dilaton-axion theory used for generating solutions
of N ¼ 4 supergravity written in terms of a Spð4;RÞ coset
[55–62]; 5d minimal supergravity, which admits G2ð2Þ
symmetries in [47,63–70]; and STU supergravity in 4
and 5 dimensions, which admits SO(4,4) symmetries
[71–75]. For the full N ¼ 8 supergravity, reduction to 3
Euclidean dimensions gives the maximal N ¼ 16 super-
gravity theory [31] with 128 scalars parametrizing the coset
E8ð8Þ=SO�ð16Þ [32,76,77].
The stationary asymptotically flat black hole which

generates, under U dualities, all single-centered, stationary
black holes of N ¼ 8 supergravity has been presented in
[3]. The main purpose of this article is to present the details
of the solution and its generation from SO(4,4) hidden
symmetries. The solution generalizes previously known
subcases [55,71,78–87]; see also [88–96] for extremal
branches. It admits 8 independent electromagnetic charges
(4 electric and 4 magnetic), in addition to mass and angular
momentum [the generalization with Newman-Unti-
Tamburino (NUT) charge is considered as well]. Since
there are 4 gauge fields on an equal footing, it is simpler to
present explicitly the more general solution with 8 inde-
pendent charges rather than a 5-charge solution. Moreover,
keeping the NUT charge on the same footing as the mass
allows for a simplifying SO(2) symmetry that can be
broken as a final step to specialize to asymptotically flat
black holes.
Many physical properties of the general solution are as

expected from its known subcases, such as the Kerr-
Newman black hole. There are generically two horizons.
The asymptotically flat solution obeys the first law of
thermodynamics and the Smarr relation. The formal first
law of thermodynamics and Smarr relation at the inner
horizon also hold. The product of areas of the outer and
inner horizons is quantized, i.e. independent of the mass.
This product is proportional to the sum of the angular
momentum squared and the Cayley hyperdeterminant,
which is a quartic invariant of the electromagnetic charges.
Rotating extremal limits exist, with both fast and slow
rotation. The black hole entropy takes the expected chiral
Cardy form in these extremal cases and the near-horizon
limits have the expected SLð2;RÞ enhanced symmetry.
Supersymmetric black holes with finite horizon area are
recovered in a specific nonrotating extremal limit.
We show that in a different conformal frame, the metric

belongs to a class of spacetimes admitting a Killing-Stäckel
tensor, similar to all other known charged generalizations of
the Kerr black hole [97]. Consequently, the geodesics of the
conformally related metric are completely integrable, and
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the null geodesics in Einstein frame are completely
integrable. The massless Klein-Gordon equation is sepa-
rable around the general stationary asymptotically flat
black hole of N ¼ 8 supergravity obtained from our
solution by U dualities.
The entropy of extremal black holes in N ¼ 8 super-

gravity is known to have a simple expression [98] in terms
of the Cartan-Cremmer-Julia quartic E7ð7Þ invariant, which
is constructed solely from the electromagnetic charges.
Here, we derive the formula for entropy of the nonextremal
black hole, and show that it cannot be expressed as a
function of the usual E7ð7Þ invariants, namely the quartic
invariant, the mass and angular momentum. Instead, the
entropy of the generic nonextremal stationary asymptoti-
cally flat black hole of N ¼ 8 supergravity depends upon
an additional E7ð7Þ invariant that remains to be understood.
We identify this quantity for black holes in the U-duality
frame of the STU model in terms of auxiliary parameters
that are also used to parametrize the conserved charges of
the black hole. In specific subcases including the dyonic
Kerr-Newman black hole and the dyonic, rotating Kaluza-
Klein black hole, we are able to provide the explicit
expression for the invariant and therefore the entropy in
terms of conserved charges.
The rest of the paper is organized as follows. We present

the relevant supergravity theories in Sec. II. We outline the
solution generating technique based on SO(4,4) sym-
metries in Sec. III, and then apply it to the particular case
of a Kerr-Taub-NUT seed solution in Sec. IV. We sum-
marize the general resulting solution in Sec. V, and present
its physical properties in Sec. VI. Then we discuss
particular limits of the general solution, recovering known
nonextremal solutions in Sec. VII and finding some
extremal limits in Sec. VIII. In Sec. IX, we consider a
more general class of metrics, discuss Killing tensors and
the separability of geodesic motion and the Klein-Gordon
equation. We conclude in Sec. X.

II. STU SUPERGRAVITY

Four-dimensional maximal N ¼ 8 supergravity can be
obtained from T7 reduction of 11-dimensional supergrav-
ity, via 10-dimensional type IIA supergravity. The bosonic
fields of N ¼ 8 supergravity are the metric, 28 U(1) gauge
fields, and 70 scalar fields parametrizing E7ð7Þ=SUð8Þ. To
obtain a generating solution for the most general black hole
of N ¼ 8 supergravity, global symmetries of the field
equations (classical U dualities) imply that it suffices to
truncate to a theory with only 4 gauge fields [7]. The
relevant supergravity theory, sometimes called the STU
model, is an N ¼ 2 supergravity coupled to 3 vector
multiplets. Each vector multiplet contains a gauge field,
a dilaton, and an axion. The fourth gauge field belongs to
the N ¼ 2 supergravity multiplet. Together, the bosonic
fields are the metric, four U(1) gauge fields AI , three
dilatons φi and three axions χi. We label the gauge fields by

I ¼ 1, 2, 3, 4, and label the dilatons and axions by i ¼ 1, 2,
3. It is convenient to denote1

xi ¼ χi; yi ¼ e−φi ; ð2:1Þ

which can be united as a complex scalar

zi ¼ xi þ iyi: ð2:2Þ

The scalars parametrize ðSLð2;RÞ=Uð1ÞÞ3. These complex
scalars are sometimes denoted S; T;U, hence the name
“STU supergravity.”
Since we are in 4 dimensions, the gauge fields AI may be

dualized to dual gauge fields ~AI . The field strengths are
FI ¼ dAI and the dual field strengths are ~FI ¼ d ~AI . We use
the terminology “electric and magnetic according to the
nature of the gauge fields AI . Note that other literature often
uses the terms electric and magnetic differently, depending
on the choice of duality frame.
We choose a duality frame so that there is a 4-fold

symmetry of the gauge fields AI . One way to understand
this is that the original gauged generalization of the theory,
the original maximal N ¼ 8, SO(8) gauged supergravity,
arises from S7 reduction of 11-dimensional supergravity
[26]. An Abelian truncation then gives N ¼ 2, Uð1Þ4
gauged supergravity [100]. The four U(1) gauge fields
originate from the Uð1Þ4 Cartan subgroup of the full SO(8)
gauge group, explaining why the four gauge fields AI are
on an equal footing. Taking the ungauged limit then gives
the STU supergravity. Furthermore, setting all the gauge
fields equal as A1 ¼ A2 ¼ A3 ¼ A4, with vanishing scalars,
recovers Einstein-Maxwell theory.
The Lagrangian in terms of ðA1; ~A2; ~A3; A4Þ is relatively

short,

L4 ¼ R⋆1 − 1

2

X3
i¼1

ð⋆dφi ∧ dφi þ e2φi⋆dχi ∧ dχiÞ

−
1

2
e−φ1ðeφ2þφ3⋆F 1∧ F 1 þ eφ2−φ3⋆ ~F 2 ∧ ~F 2;

þ e−φ2þφ3⋆ ~F 3 ∧ ~F 3 þ e−φ2−φ3⋆F 4∧ F 4Þ
þ χ1ðF1∧ F4 þ ~F2 ∧ ~F3Þ; ð2:3Þ

where F I and ~F I are field strengths modified by “trans-
gression” terms, given by

F 1 ¼ F1 þ χ3 ~F2 þ χ2 ~F3 − χ2χ3F4; F 4 ¼ F4;

~F 2 ¼ ~F2 − χ2F4; ~F 3 ¼ ~F3 − χ3F4: ð2:4Þ

Note that the parity-odd terms can also be written as
χ1ðF 1 ∧ F 4 þ ~F 2 ∧ ~F 3Þ. After relabeling and changing

1The literature has various conventions; our previous papers
[3,28] stated xi ¼ −χi, but used only χi. The convention in [99] is
xi ¼ −χi.
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the signs of some axions, this matches the Lagrangian of
[71,100].2 A further advantage of this formulation is that it
comes directly from T2 reduction of a 6-dimensional
supergravity, given in Sec. II E 2.
It is also useful to write the Lagrangian (2.3) in the

general form

L4 ¼ d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
fABðΦÞ∂μΦA∂μΦB

−
1

4
kIJðΦÞFI

μνFJμν þ 1

4
hIJðΦÞϵμνρσFI

μνFJ
ρσ

�
; ð2:5Þ

where ΦA ¼ ðφ1;φ2;φ3; χ1; χ2; χ3Þ are the scalar fields,
and AI ¼ ðA1; ~A2; ~A3; A4Þ are the U(1) gauge fields, with
field strengths FI ¼ dAI . The kinetic coefficients are

fAB ¼ diagð1; 1; 1; e2φ1 ; e2φ2 ; e2φ3Þ;

hIJ ¼ −
χ1
2

0
BBB@

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCCA; ð2:6Þ

and kIJ is a longer expression that can be easily deduced
from the Lagrangian (2.3).

A. Symmetries: SLð2;RÞ and triality

We define the three matrices of scalars Mi as (see
e.g. [5])

Mi ¼
1

yi

�
1 xi
xi x2i þ y2i

�
¼

�
eφi χieφi

χieφi e−φi þ χ2i e
φi

�
:

ð2:7Þ

The scalar matrix Mi transforms under the classical
SLð2;RÞ1 × SLð2;RÞ2 × SLð2;RÞ3 U dualities in the triv-
ial representation for two out of the three SLð2;RÞ groups.
For the nontrivial corresponding SLð2;RÞi group, it trans-
forms as

Mi → ωT
i Miωi; ð2:8Þ

where ωi ∈ SLð2;RÞi, given by

ωi ¼
�
d b

c a

�
; ad − bc ¼ 1: ð2:9Þ

In the quantum theory, a; b; c; d are integers. The scalar
kinetic terms of the Lagrangian may be written as

Lscalar ¼ −
1

2

X3
i¼1

ð⋆dφi ∧ dφi þ e2φi⋆dχi ∧ dχiÞ

¼ 1

4

X3
i¼1

Trð⋆dM−1
i ∧ dMiÞ; ð2:10Þ

which is manifestly invariant under SLð2;RÞ3 and
under permutation of the three pairs of scalars. Note that
if the scalars ðφi; χiÞ, i ¼ 1, 2, 3 vanish at infinity,
then Mi ¼ IþOð1=rÞ.
More generally, one can show that the equations of

motion of the Lagrangian (2.3) can be written in a form
manifestly invariant under SLð2;RÞ3 and under permuta-
tion of the three copies of SLð2;RÞ. The symmetry is
however not manifest in the action (2.3). However, there
exist three actions that each make manifest a pair of
SLð2;RÞ symmetries and that only differ by dualizations
of gauge fields [5]. In this sense, the theory described by
(2.3) admits a triality symmetry.

B. Dualization

There are several other formulations of STU super-
gravity that appear in the literature, corresponding to
different duality frames. To obtain these, we need relations
between gauge fields FI and dual gauge fields ~FI , for each
I. We introduce the dual gauge potential as a Lagrange
multiplier to enforce the Bianchi identity for the original
gauge field strength, and then vary with respect to the
original field strength. To dualize F1 to ~F1, we add to the
Lagrangian (2.3) an extra term

− ~A1 ∧ dF1 ¼ − ~F1 ∧ F1 þ dð ~A1 ∧ F1Þ: ð2:11Þ
Varying the modified Lagrangian with respect to F1, we see
that F1 and ~F1 are related by

~F1 − χ1F4 ¼ −e−φ1þφ2þφ3⋆F 1: ð2:12Þ

Similarly, F4 and ~F4 are related by

~F4 − χ1F1 ¼ e−φ1ð−e−φ2−φ3⋆F 4 þ χ2χ3eφ2þφ3⋆F 1

þ χ2eφ2−φ3⋆ ~F 2 þ χ3e−φ2þφ3⋆ ~F 3Þ: ð2:13Þ

To dualize ~F2 to F2, we instead add to the Lagrangian (2.3)
an extra term

A2 ∧ d ~F2 ¼ F2 ∧ ~F2 − dðA2 ∧ ~F2Þ; ð2:14Þ

and similarly for dualizing ~F3 to F3. We see that F2 and F3

are related to ~F2 and ~F3 by

F2 þ χ1 ~F3 ¼ e−φ1þφ2ðe−φ3⋆ ~F 2 þ χ3eφ3⋆F 1Þ;
F3 þ χ1 ~F2 ¼ e−φ1þφ3ðe−φ2⋆ ~F 3 þ χ2eφ2⋆F 1Þ: ð2:15Þ

2Our field strengths are related to the hatted field strengths of
[71] by F 1 ¼ F̂2, ~F 2 ¼ F̂1, ~F 3 ¼ F̂ 1, F 4 ¼ F̂ 2 and the signs of
χ1 and χ3 are flipped while the one of χ2 is kept fixed.
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To obtain a dual Lagrangian, we take the original Lagrangian modified by adding the extra term, and then substitute in the
algebraic relation between a gauge field strength and its dual. Applying the procedure to replace F1 in favor of ~F1, we obtain
the Lagrangian in terms of ð ~A1; ~A2; ~A3; A4Þ,

L4 ¼ R⋆1 − 1

2

X3
i¼1

ð⋆dφi ∧ dφi þ e2φi⋆dχi ∧ dχiÞ −
1

2
e−φ1−φ2−φ3⋆F4 ∧ F4

−
1

2

X3
i¼1

e2φi−φ1−φ2−φ3⋆ð ~Fi − χiF4Þ ∧ ð ~Fi − χiF4Þ þ χ1χ2χ3F4 ∧ F4

− ðχ1χ2 ~F3 þ χ2χ3 ~F1 þ χ3χ1 ~F2Þ ∧ F4 þ χ1 ~F2 ∧ ~F3 þ χ2 ~F3 ∧ ~F1 þ χ3 ~F1 ∧ ~F2: ð2:16Þ

An advantage of this Lagrangian is that there is a manifest symmetry between 3 gauge fields, and it fits into a more general
prepotential formalism for N ¼ 2 supergravity coupled to vector multiplets, as discussed later in Sec. II C.
The Lagrangian (2.16) gives duality relations involving ð ~F1; ~F2; ~F3; F4Þ, namely

eφ1−φ2−φ3⋆ð ~F1 − χ1F4Þ ¼ F1 þ χ3 ~F2 þ χ2 ~F3 − χ2χ3F4;

eφ2−φ3−φ1⋆ð ~F2 − χ2F4Þ ¼ F2 þ χ1 ~F3 þ χ3 ~F1 − χ3χ1F4;

eφ3−φ1−φ2⋆ð ~F3 − χ3F4Þ ¼ F3 þ χ2 ~F1 þ χ1 ~F2 − χ1χ2F4; ð2:17Þ

and

~F4 ¼ −e−φ1−φ2−φ3⋆F4 þ
X3
i¼1

e2φi−φ1−φ2−φ3χi⋆ð ~Fi − χiF4Þ þ 2χ1χ2χ3F4

− ðχ2χ3 ~F1 þ χ3χ1 ~F2 þ χ1χ2 ~F3Þ: ð2:18Þ

Alternatively, these can be obtained from the duality
relations involving ðF1; ~F2; ~F3; F4Þ that arise from the first
Lagrangian (2.3).

C. Prepotential formalism

Any N ¼ 2 supergravity coupled to vector multiplets
can be derived from a prepotential in a certain duality
frame. We first define the gauge field and dual gauge field

A0 ≡ − ~A4; ~A0 ≡ A4: ð2:19Þ

In this formalism, STU supergravity has complex scalars
XΛ, Λ ¼ 0, 1, 2, 3 and gauge fields ~FΛ ¼ d ~AΛ for Λ ¼ 0, 1,
2, 3. The Lagrangian is

L4 ¼ R⋆1 − 2gij̄⋆dXi ∧ dX̄j̄ þ 1

2
~FΛ ∧ ~GΛ; ð2:20Þ

where gij̄ ¼ ∂i∂ j̄K is a Kähler metric derived from a Kähler
potential K, and ~GΛ depends on ~FΛ and its dual. The
prepotential is

FðXÞ ¼ −
X1X2X3

X0
: ð2:21Þ

One may define complex scalars zi ¼ Xi=X0, fix the gauge
X0 ¼ 1, and relate zi ¼ xi þ iyi ¼ χi þ ie−φi . For more
details, see e.g. [99].

D. Truncations

Some special cases of our general black hole solutions
are already known in the literature. Most of these are
solutions of theories that are consistent bosonic truncations
of the STU model, and some of these are bosonic
truncations of other supergravity theories. We therefore
review these truncations (see also [101]). The relationships
between these truncations are indicated in Fig. 1.

1. ST2 supergravity

There is a consistent truncation of STU supergravity to
an N ¼ 2 supergravity coupled to two vector multiplets.
We refer to it as ST2 supergravity, since it involves setting
the complex scalars T ¼ U in STU supergravity. There are
3 independent gauge fields, 2 dilatons and 2 axions. It is
obtained by setting A2 ¼ A3, φ2 ¼ φ3 and χ2 ¼ χ3, which
implies that ~A2 ¼ ~A3. The theory can be obtained by
reduction of 5-dimensional supergravity coupled to a vector
multiplet, as discussed in Sec. II E 1. This theory admits
SOð2; 2Þ ∼ SLð2;RÞ × SLð2;RÞ symmetries which get
enhanced to SO(4,3) upon dimensional reduction to 3
dimensions [101,102].

2. S3 supergravity

There is a consistent truncation of STU supergravity to
an N ¼ 2 supergravity coupled to one vector multiplet.
This is sometimes known as S3 supergravity (or T3
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supergravity), since the truncation of the STU supergravity
includes setting the three complex scalars equal,
S ¼ T ¼ U. There are 2 independent gauge fields, 1 dilaton
and 1 axion. It is obtained by setting equal the fields in each

of the three vector multiplets of STU supergravity,
namely A=

ffiffiffi
3

p ≡ A1 ¼ A2 ¼ A3, φ=
ffiffiffi
3

p ≡ φ1 ¼ φ2 ¼ φ3

and χ=
ffiffiffi
3

p ≡χ1¼χ2¼χ3. The ð ~A1; ~A2; ~A3; A4Þ Lagrangian
(2.16) becomes

L4 ¼ R⋆1 − 1

2
⋆dφ ∧ dφ −

1

2
e2φ=

ffiffi
3

p ⋆dχ ∧ dχ −
1

2
e−φ=

ffiffi
3

p ⋆ð ~F − χF4Þ ∧ ð ~F − χF4Þ

−
1

2
e−

ffiffi
3

p
φ⋆F4 ∧ F4 þ χffiffiffi

3
p

�
~F ∧ ~F − χ ~F ∧ F4 þ χ2

3
F4 ∧ F4

�
: ð2:22Þ

It can be obtained by reduction of 5-dimensional minimal
supergravity, as discussed in Sec. II E 1. The 3-dimensional
action obtained by dimensional reduction has G2ð2Þ
symmetries.

3. Kaluza-Klein theory

A further consistent bosonic truncation of S3 super-
gravity is Kaluza-Klein theory, i.e. the reduction to 4
dimensions of 5-dimensional Einstein gravity. This comes
from (2.22) by taking ~A ¼ 0 and χ ¼ 0. Relabeling
A4 → A, the Lagrangian is

L4 ¼ R⋆1 − 1

2
⋆dφ ∧ dφ −

1

2
e−

ffiffi
3

p
φ⋆F ∧ F: ð2:23Þ

The symmetry group obtained upon dimensional reduction
to 3 dimensions is SLð3;RÞ.

4. −iX0X1 supergravity

A different set of consistent truncations from STU super-
gravity comes from setting the 4 gauge fields pairwise equal.
From the Lagrangian (2.3), we set A1 ¼ A4, ~A2 ¼ ~A3, and
φ2 ¼ φ3 ¼ χ2 ¼ χ3 ¼ 0, giving the Lagrangian

L4 ¼ R⋆1 − 1

2
⋆dφ ∧ dφ −

1

2
e2φ⋆dχ ∧ dχ

− e−φð⋆F1 ∧ F1 þ ⋆ ~F2 ∧ ~F2Þ
þ χðF1 ∧ F1 þ ~F2 ∧ ~F2Þ; ð2:24Þ

whereφ≡ φ1 and χ ≡ χ1. This is thebosonic truncation of an
N ¼ 2 supergravity coupled to one vector mutiplet. This
theory is also known in the literature as the EM2DA theory
[59,61]. An important use is to generate solutions ofN ¼ 4
supergravity, since it is a truncation of the SU(4) formulation
of N ¼ 4 supergravity [103]. By dualizing ~F2 to F2, or

FIG. 1. Bosonic truncations of N ¼ 8 supergravity.
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equivalentlymakingasymplectic transformation, the theory is
equivalent to that obtained from a prepotential FðXÞ ¼
−iX0X1 [104]. A truncation of the SO(4) formulation of
N ¼ 4 supergravity [105,106] corresponds to the dual for-
mulation [107].Upon dimensional reduction to 3 dimensions,
the theory admits SUð2; 2Þ ∼ SOð4; 2Þ symmetries.

5. Einstein-Maxwell-dilaton-axion theory

A further consistent bosonic truncation of the −iX0X1

supergravity has just one gauge field. We take ~A2 ¼ 0 in
(2.24), so the Lagrangian is

L4 ¼ R⋆1 − 1

2
⋆dφ ∧ dφ −

1

2
e2φ⋆dχ ∧ dχ

− e−φ⋆F ∧ F þ χF ∧ F; ð2:25Þ

where F ¼ F1. This is sometimes known as Einstein-
Maxwell-dilaton-axion (EMDA) theory or dilaton-axion
gravity. Again, the theory is used when generating sol-
utions ofN ¼ 4 supergravity. Upon dimensional reduction
to 3 dimensions, the theory admits Spð4;RÞ ∼ SOð3; 2Þ
symmetries.

6. Einstein-Maxwell theory

Einstein-Maxwell theory corresponds to setting the
gauge fields equal, A ¼ A1 ¼ A2 ¼ A3 ¼ A4, and the
scalars trivial, φi ¼ χi ¼ 0. The Lagrangian is

L4 ¼ R⋆1 − 2⋆F ∧ F: ð2:26Þ

It is the bosonic sector of pure N ¼ 2 supergravity. Upon
dimensional reduction to 3 dimensions, the theory admits
SUð2; 1Þ symmetries.

E. Oxidation to higher dimensions

Some special cases of our general black hole solutions have
been discussed in the literature with a higher-dimensional
interpretation. For example, a 4-dimensional black hole can
be regarded as a 5-dimensional homogeneous black string.
Also, the embedding in 10-dimensional or 11-dimensional
supergravity allows for a microscopic interpretation of black
holes in terms of string theory or M theory and its web
of dual theories. We therefore quickly review several
oxidations of 4-dimensional STU supergravity into higher-
dimensional theories. A review of the lift to 5 and 6
dimensions, including truncations and a generalization to
an SO(5, 4) coset model, is [101].

1. Uplift to 5 dimensions

TheLagrangian (2.16) has a direct uplift to a 5-dimensional
N ¼ 2 supergravity coupled to 2 vector multiplets, also
known as the STU model or 5-dimensional Uð1Þ3 super-
gravity [4,5]. This 5-dimensional theory has 3 gauge fields
~Ai, i ¼ 1, 2, 3 on an equal footing. The Lagrangian is

L5 ¼ R⋆1 − 1

2

X3
i¼1

h−2i ð⋆dhi ∧ dhi þ ⋆ ~Fi ∧ ~FiÞ

þ ~F1 ∧ ~F2 ∧ ~A3; ð2:27Þ

subject to the constraint that h1h2h3 ¼ 1. A common para-
metrization of the scalars is

h1 ¼ e−φ
0
1
=
ffiffi
6

p
−φ0

2
=
ffiffi
2

p
; h2 ¼ e−φ

0
1
=
ffiffi
6

p þφ0
2
=
ffiffi
2

p
;

h3 ¼ e2φ
0
1
=
ffiffi
6

p
: ð2:28Þ

Another parametrization of the scalars, which is useful for
lifting to 6 dimensions, is

h1 ¼ e2ϕ2=
ffiffi
6

p
; h2 ¼ eϕ=

ffiffi
2

p
−ϕ2=

ffiffi
6

p
; h3 ¼ e−ϕ=

ffiffi
2

p
−ϕ2=

ffiffi
6

p
:

ð2:29Þ
The scalar kinetic terms with these parametrizations are

1

2

X3
i¼1

h−2i ⋆dhi ∧ dhi ¼
1

2

X2
i¼1

⋆dφ0
i ∧ dφ0

i

¼ 1

2
ð⋆dϕ ∧ dϕþ ⋆dϕ2 ∧ dϕ2Þ:

ð2:30Þ

We may dualize the third gauge field ~A3 to a 2-form
potential B. The usual dualization procedure gives
~F3 ¼ d ~A3 ¼ −h−21 h−22 ⋆H, where dH ¼ − ~F1 ∧ ~F2, and
the Lagrangian is

L5 ¼ R⋆1 − 1

2

X3
i¼1

h−2i ⋆dhi ∧ dhi

−
1

2

X2
i¼1

h−2i ⋆ ~Fi ∧ ~Fi −
1

2
h−21 h−22 ⋆H ∧ H: ð2:31Þ

The Kaluza-Klein reduction ansatz is

ds25 ¼ f−1ds2 þ f2ðdz5 − A4Þ2;
~Að5dÞi ¼ ~Ai þ χiðdz5 − A4Þ: ð2:32Þ

Three of the four gauge fields ~Ai are manifestly on an equal
footing; the fourth gauge field A4 is the graviphoton.
Redefining fhi ¼ e−φi , the Lagrangian (2.16) is recovered.
There are some notable consistent truncations. Setting

~A2 ¼ ~A3 and h2 ¼ h3 gives anN ¼ 2 supergravity coupled
to 1 vector multiplet. If we set h1 ¼ e2φ=

ffiffi
6

p
, then the

Lagrangian is

L5 ¼ R⋆1 − 1

2
⋆dφ ∧ dφ −

1

2
e−4φ=

ffiffi
6

p ⋆ ~F1 ∧ ~F1

− e2φ=
ffiffi
6

p ⋆ ~F2 ∧ ~F2 þ ~F2 ∧ ~F2 ∧ ~A1: ð2:33Þ
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Reduction to 4 dimensions gives the ST2 supergravity. A
further consistent truncation is to set all gauge fields equal,
~Ai ¼ ~A, and trivial scalars hi ¼ 1. This gives the minimal
pure N ¼ 2 supergravity, whose bosonic Lagrangian is

L5 ¼ R⋆1 − 3

2
⋆ ~F ∧ ~F þ ~F ∧ ~F ∧ ~A: ð2:34Þ

Reduction to 4 dimensions gives the S3 supergravity (2.22).

2. Uplift to 6 dimensions

The 4-dimensional theory (2.3) has a higher-dimensional
origin in minimal 6-dimensional N ¼ ð2; 0Þ supergravity
coupled to a tensor multiplet. The Lagrangian is

L6 ¼ R⋆1 − 1

2
⋆dϕ ∧ dϕ −

1

2
e−

ffiffi
2

p
ϕ⋆H ∧ H; ð2:35Þ

where H ¼ dB is a 3-form field strength.
Directly reducing L6 on T2, and then dualizing the 4-

dimensional 2-form potential B to an axion χ1 leads to the
ðA1; ~A2; ~A3; A4Þ Lagrangian (2.3). If instead the 2-form B is
dualized to a vector in 5 dimensions, and then reduced to
4 dimensions, then we obtain the ð ~A1; ~A2; ~A3; A4Þ
Lagrangian (2.16). Either way, there is the same inter-
mediate 5-dimensional STU supergravity theory in some
duality frame.
Kaluza-Klein reduction of the 6-dimensional theory

(2.35) directly gives the Lagrangian in terms of
ð ~A1; ~A2; HÞ. We make the reduction ansatz (see e.g. [108])

ds2ð6dÞ ¼ eϕ2=
ffiffi
6

p
ds2 þ e−3ϕ2=

ffiffi
6

p
ðdz6 þ ~A1Þ2;

Bð6dÞ ¼ Bþ ~A2 ∧ ðdz6 þ ~A1Þ; ð2:36Þ

decomposing the field strengths as

Hð6dÞ ¼ Hþ ~F2 ∧ ðdz6 þ ~A1Þ;
H ¼ dB − ~A2 ∧ ~F1; ~Fi ¼ d ~Ai: ð2:37Þ

This gives 5-dimensional STU supergravity in the form
(2.31). The 5-dimensional fields ~F1 and ϕ2 come from
reduction of the Einstein-Hilbert term; H and ~F2 come
from reduction of the 6-dimensional H.
There is a consistent truncation of the 6-dimensional

theory (2.35) to the minimal pure N ¼ ð2; 0Þ supergravity
by setting ϕ ¼ 0 and imposing the constraint that H is
self-dual,

H ¼ ⋆H: ð2:38Þ

The theory is obtained from the Lagrangian

L6 ¼ R⋆1 − 1

2
⋆H ∧ H; ð2:39Þ

with the self-duality condition imposed on the resulting
field equations. Upon dimensional reduction to 5 dimen-
sions, the latter condition is equivalent to ~A2 ¼ ~A3 and
h2 ¼ h3. The resulting 5-dimensional theory is therefore
given by (2.33).

3. Uplift to 10 dimensions

The 6-dimensional supergravity action (2.35) naturally
uplifts to a consistent truncation of type IIB supergravity on
T4. The nontrivial 10-dimensional fields are the metric gμν,
the Ramond-Ramond two-form C and the dilaton Φ. The
reduction ansatz is

ds210 ¼ ds26 þ eϕ=
ffiffi
2

p
ðdX2

1 þ dX2
2 þ dX2

3 þ dX2
4Þ;

Φ ¼ ϕffiffiffi
2

p ; C≡ B: ð2:40Þ

4. Uplift to 11 dimensions

The 5-dimensional STU supergravity can be embedded
in 11-dimensional supergravity as follows. The action of
11-dimensional supergravity is

L11 ¼ R⋆1 − 1

2
⋆F ∧ F −

1

6
F ∧ F ∧ A; ð2:41Þ

where A is the 3-form and F ¼ dA its 4-form field
strength. We Kaluza-Klein reduce on T6 as (see e.g. [109])

ds211 ¼ ds25 þ h1ðdX2
1 þ dX2

2Þ þ h2ðdX2
3 þ dX2

4Þ
þ h3ðdX2

5 þ dX2
6Þ;

A ¼ ~A1 ∧ dX1 ∧ dX2 þ ~A2 ∧ dX3 ∧ dX4

þ ~A3 ∧ dX5 ∧ dX6; ð2:42Þ

with the constraint that h1h2h3 ¼ 1 in order that T6 has
constant volume. The 11-dimensional action (2.41) then
reduces to the 5-dimensional action (2.27).

III. GENERATING TECHNIQUE

Ungauged supergravity theories have global symmetries
that can be used for solution generating techniques. When
considering solutions with Killing vectors, one may dimen-
sionally reduce the theories, leading to enhanced sym-
metries. If a 4-dimensional solution has a timelike Killing
vector field, then we may perform a timelike dimensional
reduction to a 3-dimensional theory. It has been generally
shown that, if the 4-dimensional theory is gravity coupled
to scalars parametrizing a symmetric space Ḡ=K̄ (a feature
of all supergravity theories with enough supersymmetry)
and vectors transforming in a representation of Ḡ, then the
3-dimensional theory is a theory of gravity coupled
to scalars that parametrize a larger symmetric space
G=K [32]. In particular, the 3-dimensional symmetric
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space is SOð4; 4Þ=SLð2;RÞ4 for the STU model. These
coset model techniques are described in for example
[32,110,111], and in the particular case of SO(4,4) in
[71,72,74]. The reduction down to three dimensions was
already worked out explicitly for the STU model in terms
of the so called c� map, as done for example in [112].
There are other solution generating techniques available,

but the reduction to 3 dimensions is particularly efficient.
For example, an alternative method is to lift to higher
dimensions, perform boosts to add charges, reduce back
to 4 dimensions, apply permutations of gauge fields and
electromagnetic duality, and repeat, but this requires
multiple steps. Reduction to 3 dimensions is advantageous
because the solution generating technique is essentially a
one-step process once an appropriate group element has
been identified.

A. Reduction to 3 dimensions

After Hodge dualizing 3-dimensional vectors to scalars,
the 3-dimensional theory corresponding to the STU model

is a theory of Euclidean-signature gravity coupled to 16
scalars: a scalar U corresponding to gtt; a scalar σ dual to
the Kaluza-Klein vector; 8 electromagnetic scalars ζI and
~ζI; 3 dilatons yi ¼ e−φi ; and 3 axions xi ¼ χi. The 8 scalars
fU; σ; xi; yig arising from the 4-dimensional metric and
scalars have the usual positive sign kinetic terms,
whereas the 8 scalars fζI; ~ζIg arising from the 4-
dimensional vectors have negative sign kinetic terms.
The scalars parametrize a symmetric space G=K ¼
SOð4; 4Þ=SLð2;RÞ4.
Let us first present the 3-dimensional Lagrangian in

terms of the 16 scalars, before explaining the relationship to
4-dimensional fields. The set of 3-dimensional (pseudo)
scalar fields is φa ¼ fU; σ; xi; yi; ζI; ~ζIg. They parametrize
the target space of the coset model whose Lagrangian is

L3 ¼ R⋆31 −
1

2
Gab∂μφ

a∂μφb⋆31: ð3:1Þ

The 3-dimensional moduli space metric Gab is of the form

ds2G=K ¼
X
i

dx2i þ dy2i
y2i

þ 4dU2 þ e−4U

4

�
dσ þ

X
I

ð~ζIdζI − ζId~ζIÞ
�

2

− e−2U
X
I;J

�
YYIYJ

XIJ
dζIdζJ þ Y

XIJYIYJ
d~ζId~ζJ þ

XXIJYI

YJ
2dζId~ζJ

�
: ð3:2Þ

XIJ is symmetric, XIJ ¼ XðIJÞ, and obeys the “self-duality”
conditions X12 ¼ X34, X13 ¼ X24, X23 ¼ X14, with

X12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ y21Þðx22 þ y22Þ

p
x1x2

;

X13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx21 þ y21Þðx23 þ y23Þ

p
x1x3

;

X23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx22 þ y22Þðx23 þ y23Þ

p
x2x3

;

X11 ¼ X22 ¼ X33 ¼ X44 ¼ 1: ð3:3Þ

The remaining functions are

Yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

p
½ðx21 þ y21Þðx22 þ y22Þðx23 þ y23Þ�1=4

;

Y4 ¼ −½ðx21 þ y21Þðx22 þ y22Þðx23 þ y23Þ�1=4;
X ¼ x1x2x3

y1y2y3
;

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ y21Þðx22 þ y22Þðx23 þ y23Þ

p
y1y2y3

: ð3:4Þ

They obey the constraints

Y1Y2Y3Y4 ¼ −1; X2X12X13X14 ¼ Y2;

1

X2
¼

�
Y2

X2X2
12

− 1

��
Y2

X2X2
13

− 1

��
Y2

X2X2
14

− 1

�
: ð3:5Þ

From varying with respect to σ, we have the field
equation

d

�
e−4U⋆3

�
dσ þ

X
I

ð~ζIdζI − ζId~ζIÞ
��

¼ 0: ð3:6Þ

We may therefore dualize the scalar σ in favor of a 1-form
potential ω3 through the relation

dω3 ¼ −
e−4U

2
⋆3

�
dσ þ

X
I

ð~ζIdζI − ζId~ζIÞ
�
: ð3:7Þ

Similarly, we may dualize the electromagnetic scalars ζI

and ~ζI to 1-form potentials AI
ð3dÞ and ~AIð3dÞ through
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dAI
ð3dÞ ¼ −ζIdω3 þ e−2U⋆3

X
J

�
Y

XIJYIYJ
d~ζJ þ

XXIJYJ

YI
dζJ

�
;

d ~AIð3dÞ ¼ −~ζIdω3 − e−2U⋆3

X
J

�
YYIYJ

XIJ
dζJ þ XXIJYI

YJ
d~ζJ

�
: ð3:8Þ

The 4-dimensional fields of STU supergravity are reconstructed as follows. The metric is

ds2 ¼ −e2Uðdtþ ω3Þ2 þ e−2Uds23; ð3:9Þ

and the gauge fields and dual gauge fields are

AI ¼ ζIðdtþ ω3Þ þ AI
ð3dÞ; ~AI ¼ ~ζIðdtþ ω3Þ þ ~AIð3dÞ: ð3:10Þ

The dilatons φi and axions χi are the same in both 3 and 4 dimensions.
We have presented the 3-dimensional theory in a manner that emphasizes the 4-fold symmetry of the gauge fields. Other

treatments in the literature dualize various 4-dimensional gauge fields, so use different notations in 3 dimensions.
Consistently with (2.19), we define

ζ0 ≡ −~ζ4; ~ζ0 ≡ ζ4; ð3:11Þ
and ζΛ ¼ ðζ0; ζ1; ζ2; ζ3Þ, ~ζΛ ¼ ð~ζ0; ~ζ1; ~ζ2; ~ζ3Þ. Then the scalar metric Gab takes the form (see e.g. [74,99])

ds2G=K ¼
X
i

dx2i þ dy2i
y2i

þ 4dU2 þ e−4U

4
ðdσ − ζΛd~ζΛ þ ~ζΛdζΛÞ2 þ e−2U½ðImN ÞΛΣd~ζΛd~ζΣ

þ ððImN Þ−1ÞΛΣðdζΛ − ðReN ÞΛΓd~ζΓÞðdζΣ − ðReN ÞΣΔd~ζΔÞ�: ð3:12Þ

The period matrix N ΛΣ is symmetric and given by (see e.g. [113])3

N ¼

0
BBBBBB@

−2x1x2x3 − iy1y2y3
�
1þP

3
i¼1

x2i
y2i

�
x2x3 þ i x1y2y3y1

x1x3 þ i x2y1y3y2
x1x2 þ i x3y1y2y3

x2x3 þ i x1y2y3y1
−i y2y3y1

−x3 −x2
x1x3 þ i x2y1y3y2

−x3 −i y1y3y2
−x1

x1x2 þ i x3y1y2y3
−x2 −x1 −i y1y2y3

1
CCCCCCA
: ð3:13Þ

Note that if the scalars vanish at infinity, then N ¼ −iIþOð1=rÞ. As shown in [112], the pseudoscalar σ dual to ω3 is
given by

dω3 ¼ −
1

2
e−4U⋆3ðdσ þ ~ζΛdζΛ − ζΛd~ζΛÞ: ð3:14Þ

The dualization relations for the 3-dimensional gauge fields and dual gauge fields are

dAΛ
ð3dÞ ¼ −ζΛdω3 − e−2U⋆3½ðImN ÞΛΣd~ζΣ þ ðReN ÞΛΓððImN Þ−1ÞΓΣðdζΣ − ðReN ÞΣΔd~ζΔÞ�;

d ~AΣð3dÞ ¼ −~ζΣdω3 þ e−2U⋆3ððImN Þ−1ÞΣΛðdζΛ − ðReN ÞΛΣd~ζΣÞ: ð3:15Þ

These dualities are equivalent to the dualities (3.7) and (3.8).
To match the notation of [71], which essentially dualizes two of the gauge fields, apply the previous changes of xi and yi,

and let

3Our conventions relates to the ones of [74,99] as ðζΛours; ~ζoursΛ Þ ¼ ð−~ζtheirsΛ ; ζΛtheirsÞ. Also, with respect to our conventions yi and F are
defined in [113] with an opposite sign.
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ðζ1; ~ζ1Þ ¼ ðσ2;−ψ2Þ; ðζ2; ~ζ2Þ ¼ ðψ1; σ1Þ;
ðζ3; ~ζ3Þ ¼ ðψ3; σ3Þ; ðζ4; ~ζ4Þ ¼ ðσ4;−ψ4Þ; ð3:16Þ

and

σ ¼ −2χ4 − ζ1 ~ζ1 þ ζ2 ~ζ2 þ ζ3 ~ζ3 − ζ4 ~ζ4: ð3:17Þ

B. Parametrizing soð4;4Þ
We choose an explicit parametrization of the Lie algebra

soð4; 4Þ as given in [74]. However, to make the 4-fold
permutation symmetry of the gauge fieldsmanifest, wemake
some notational changes. We have the 4 Cartan generators

H0 ¼ E33 þ E44 − E77 − E88;

H1 ¼ E33 − E44 − E77 þ E88;

H2 ¼ E11 þ E22 − E55 − E66;

H3 ¼ E11 − E22 − E55 þ E66; ð3:18Þ

12 positive-root generators

E0 ¼ E47 − E38; E1 ¼ E87 − E34;

E2 ¼ E25 − E16; E3 ¼ E65 − E12;

EQ1 ¼ E45 − E18; EQ2 ¼ E32 − E67;

EQ3 ¼ E36 − E27; EQ4 ¼ E41 − E58;

EP1 ¼ E57 − E31; EP2 ¼ E46 − E28;

EP3 ¼ E42 − E68; EP4 ¼ E17 − E35; ð3:19Þ

and 12 negative-root generators

F0 ¼ E74 − E83; F1 ¼ E78 − E43;

F2 ¼ E52 − E61; F3 ¼ E56 − E21;

FQ1 ¼ E54 − E81; FQ2 ¼ E23 − E76;

FQ3 ¼ E63 − E72; FQ4 ¼ E14 − E85;

FP1 ¼ E75 − E13; FP2 ¼ E64 − E82;

FP3 ¼ E24 − E86; FP4 ¼ E71 − E53; ð3:20Þ

where Eij is the 8 × 8matrix with 1 in the ði; jÞ component,
and zeros elsewhere. Our generators ðEQI ; EPI

; FQI ; FPIÞ are
related to the generators ðEqΛ ; EpΛ ; FqΛ ; FpΛÞ of [74] by

ðEqi ; EpiÞ ¼ ðEPi
;−EQiÞ; ðEq0 ; Ep0Þ ¼ ðEQ4 ; EP4Þ;

ðFqi ; FpiÞ ¼ ðFPi
;−FQiÞ; ðFq0 ; Fp0Þ ¼ ðFQ4 ; FP4Þ;

ð3:21Þ

whilst we use the same notation for the generators HΛ, EΛ
and FΛ.
The generalized transpose ♯ is defined to act on the

generators as

H♯
Λ ¼ HΛ; E♯

Λ ¼ FΛ; F♯
Λ ¼ EΛ; ð3:22Þ

and

ðEQIÞ♯ ¼ −FQI ; ðEPIÞ♯ ¼ −FPI
;

ðFQIÞ♯ ¼ −EQI ; ðFPIÞ♯ ¼ −EPI
: ð3:23Þ

The following are elements of the eigenspace of the
involution τðxÞ ¼ −x♯ with eigenvalue þ1:

kΛ ¼ EΛ −FΛ; kQI ¼ EQI þFQI ; kP
I ¼ EPI þFPI

;

ð3:24Þ

and the following have eigenvalue −1:

pΛ¼EΛþFΛ; pQI ¼EQI −FQI ; pPI ¼EPI −FPI
:

ð3:25Þ

kΛ, pQI and pPI
are compact, and pΛ, kQI and kP

I
are

noncompact. Equivalently, the generalized transpose ♯
adapted to the coset is

A♯ ¼ ηATη−1; ð3:26Þ

where the 8 × 8 matrix

η ¼ diagð−1;−1; 1; 1;−1;−1; 1; 1Þ ð3:27Þ

is the quadratic form preserved by slð2;RÞ4 ¼ soð2; 2Þ2.
The explicit generators of the four commuting slð2;RÞ
subalgebras were detailed in [114,115].
The symmetric space G=K can then be parametrized by

the group element

V ¼ expð−UH0Þ exp
�
1

2

X
i

φiHi

�
exp

�
−
X
i

χiEi

�
exp

�
−
X
I

ðζIEQI þ ~ζIEPIÞ
�
exp

�
−
1

2
σE0

�

¼ expð−UH0Þ exp
�
−
1

2

X
i

ðlog yiÞHi

�
exp

�
−
X
i

xiEi

�
exp

�X
Λ

ð−~ζΛEqΛ þ ζΛEpΛÞ
�
exp

�
−
1

2
σE0

�
: ð3:28Þ
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The metric on G=K is then the right-invariant metric
obtained from the Maurer-Cartan 1-form θ ¼ dVV−1,

ds2G=K ¼ TrðP�P�Þ; P� ¼
1

2
ðθ þ θ♯Þ: ð3:29Þ

Equivalently, one can define the matrix

M ¼ V♯V ð3:30Þ

and the coset Lagrangian is then given by

−
1

2
Gab∂μφ

a∂μφb⋆31 ¼ −
1

8
Tr½⋆3ðM−1dMÞ

∧ ðM−1dMÞ�: ð3:31Þ

Either way, we recover the 3-dimensional moduli space of
(3.2).
A group element g acts as

V → kVg ð3:32Þ

where k ∈ SLð2;RÞ4 is a local compensator, depending on
the fields, defined to ensure that the coset element remains

in Borel gauge, i.e. of the form (3.28). Since k♯k ¼ I, M
transforms as

M → g♯Mg; ð3:33Þ
which is simpler than working with V, because the
compensator is not required.

C. Extracting 3-dimensional fields

1. Scalars

The 3-dimensional scalars are determined from the
matrix M (3.28). For our choice of soð4; 4Þ parametriza-
tion, they can be extracted fromM by inspection, using the
following formulas. The scalarU, which corresponds to the
gtt component of the metric, is given by

e−4U ¼ M33M44 −M2
34: ð3:34Þ

The i ¼ 1 dilaton and axion can be extracted from

x1 ¼
M34

M33

; y−11 ¼ e2UM33: ð3:35Þ

The remaining dilatons and axions are obtained from

1

y2y3
¼ M11 þ e4UðM33M2

41 þM44M2
31 − 2M31M34M41Þ;

x2
y2y3

¼ M16 þ e4UðM34M41M63 þM31M34M64 −M31M44M63 −M33M41M64Þ;
x3
y2y3

¼ M12 þ e4UðM31M32M44 þM33M41M42 −M31M34M42 −M32M34M41Þ;

x23 þ y23
y2y3

¼ M22 þ
M2

32

M33

þ e4U
ðM32M34 −M33M42Þ2

M33

: ð3:36Þ

The electromagnetic scalars ζI and ~ζI are obtained from

e−4Uζ1 ¼ M35M34 −M45M33; e−4U ~ζ1 ¼ M31M44 −M41M34;

e−4Uζ2 ¼ M42M34 −M32M44; e−4U ~ζ2 ¼ M64M33 −M63M34;

e−4Uζ3 ¼ M63M44 −M64M34; e−4U ~ζ3 ¼ M32M34 −M42M33;

e−4Uζ4 ¼ M31M34 −M41M33; e−4U ~ζ4 ¼ M35M44 −M45M34: ð3:37Þ

The scalar σ, dual to the Kaluza-Klein vector, is

σ¼2M38

M33

þ e4U

M33

ðM33M35M41þM31M33M45þ2M32M34M63−M33M42M63−M32M33M64−2M31M34M35Þ

¼2M38

M33

−ζ4 ~ζ4−ζ1 ~ζ1þζ2 ~ζ2þζ3 ~ζ3þ2x1 ~ζ2 ~ζ3−2x1ζ4ζ1: ð3:38Þ

With the exception of U, the scalars do not depend on the overall factor in M but only on ratios of entries of M, and in
calculations it can be more practical to rescale M by a convenient factor.

DAVID D. K. CHOW AND GEOFFREY COMPÉRE PHYSICAL REVIEW D 90, 025029 (2014)

025029-12



2. Gauge fields

Three-dimensional gauge fields can be reconstructed
from the 3-dimensional scalars using the dualizations (3.7)
and (3.8). It is easier, however, to perform these dual-
izations initially in terms of the seed solution, and act with
the solution generating technique on the gauge fields
directly. This prevents the dualization of complicated
expressions. For STU supergravity, this approach was
noted in [73].
From (3.31), the coset matrix M obeys the equation of

motion dðM−1⋆3dMÞ ¼ 0. Therefore, we can define the
matrix of one-forms N as

dN ¼ M−1⋆3dM: ð3:39Þ

The coset transformations act on N as

N → g−1N g: ð3:40Þ

The matrix M−1dM is a combination of all 28
soð4; 4Þ generators with coefficients that depend on the
3-dimensional scalars. Some of these coefficients are
directly related to 1-form potentials. In particular, we
have

dN ¼ M−1⋆3dM

¼ dω3F0 þ
X
I

ðdAI
ð3dÞF

PI − d ~AIð3dÞFQIÞ þ…

¼ dω3F0 þ
X
Λ

ðd ~AΛð3dÞFpΛ þ dAΛ
ð3dÞFqΛÞ þ…;

ð3:41Þ

where the Kaluza-Klein 1-form, gauge fields and dual
gauge fields are related to 3-dimensional scalars through
(3.7) and (3.8). The dots stands for the terms involving
the remaining generators, whose coefficients involve
more complicated dependence on the 3-dimensional
scalars. From (3.20), one can extract the Kaluza-Klein
1-form

ω3 ¼ N 74; ð3:42Þ

and the 3-dimensional electromagnetic 1-forms

A1
ð3dÞ ¼ N 75; A2

ð3dÞ ¼ N 64; A3
ð3dÞ ¼ N 24;

A4
ð3dÞ ¼ N 71; ~A1ð3dÞ ¼ N 81; ~A2ð3dÞ ¼ N 76;

~A3ð3dÞ ¼ N 72; ~A4ð3dÞ ¼ N 85: ð3:43Þ

D. Conserved charges

Consider solutions that are asymptotically flat, or more
generally asymptotically Taub-NUT, with vanishing sca-
lars at infinity. Taub-NUT spacetime is asymptotically flat

at spatial infinity, in the sense that its metric has the
appropriate falloff, so charges may be defined at spatial
infinity. For the metric ansatz, we assume that ds23 is
asymptotically Euclidean, and take r to be the usual
radial coordinate. More precisely, we assume that

ds23 ¼ dr2 þ ðr2 − 2mrÞðdθ2 þ sin2θdϕ2Þ þOðr−2Þdr2
þOðr0Þdθ2 þOðr0Þdϕ2; ð3:44Þ

where m is a constant. The asymptotic behavior of a
solution gives 10 independent conserved charges at first
order in the asymptotic radial expansion around
Minkowski: mass M, NUT charge N, 4 electric charges
QI , and 4 magnetic charges PI . There is also the angular
momentum J defined at second order in the radial
expansion. We define QI and PI to be associated with
AI . There are also 6 scalar charges, dilaton charges Σi
and axion charges Ξi, but they are not independent for
the solutions that we consider. These 16 charges are
encoded in the first-order asymptotic behavior of the 16
3-dimensional scalars fU; σ; ζI; ~ζI; xi; yig, using the
reduction Ansätze and dualizations of Sec. III A. The
angular momentum J appears in the second-order asymp-
totic behavior of σ.
More precisely, we assume that we have the expansions

at infinity

e2U ¼ 1 −
2M
r

þOðr−2Þ; ζI ¼ QI

r
þOðr−2Þ;

φi ¼
Σi

r
þOðr−2Þ;

ω3 ¼
�
2N cos θ þ 2J

sin2θ
r

þOðr−2Þ
�
dϕ;

~ζI ¼
PI

r
þOðr−2Þ; χi ¼

Ξi

r
þOðr−2Þ: ð3:45Þ

Then M is the canonical Arnowitt-Deser-Misner mass and
J is the canonical angular momentum obtained by the
standard Komar integral. We have fixed the gauge so that ζI

and ~ζI vanish at infinity.
Our convention for the 3-dimensional and 4-dimensional

volume forms are ϵrθϕ > 0 and ϵtrθϕ > 0, so that as
r → ∞,4

⋆31 ∼ r2 sin θdr ∧ dθ ∧ dϕ;

⋆1 ∼ r2 sin θdt ∧ dr ∧ dθ ∧ dϕ: ð3:46Þ

4The 4-dimensional orientation is the same as in [71], but the
opposite of [99].
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Dualizing ω3, we have

⋆3dω3 ¼ −
2N
r2

dr −
1

2
d

�
4J cos θ þ c

r2

�
þOðr−3Þ;

ð3:47Þ

where c is a constant. The duality relation (3.14) then
implies that

σ ¼ −
4N
r

þ 4J cos θ þ c
r2

þOðr−3Þ: ð3:48Þ

Therefore, the charges are

M ¼ − lim
r→∞

ðrUÞ; QI ¼ lim
r→∞

ðrζIÞ; Σi ¼ lim
r→∞

ðrφiÞ;

J ¼ lim
r→∞

�
rðω3ϕ − 2N cos θÞ

2sin2θ

�
; N ¼ −

1

4
lim
r→∞

ðrσÞ;

PI ¼ lim
r→∞

ðr~ζIÞ; Ξi ¼ lim
r→∞

ðrχiÞ: ð3:49Þ

For comparison with other duality frames, it is useful to
define electromagnetic charges ~QI and ~PI corresponding to
~FI , analogous to the electromagnetic charges QI and PI

corresponding to FI. These electromagnetic charges are
related by

ðQI; PIÞ ¼ ð− ~PI; ~Q
IÞ: ð3:50Þ

Charges for A0 are related to charges for A4 by

ðQ0; P0Þ ¼ ð− ~Q4;− ~P4Þ; ð ~Q0; ~P0Þ ¼ ðQ4; P4Þ: ð3:51Þ

E. Charge matrices

The charge matrixQ is defined by a 1=r expansion of the
matrix M as

M ¼ IþQ
r
þQð2Þ

r2
þOðr−3Þ: ð3:52Þ

Using the definition of M in terms of the 3-dimensional
scalars and the expansions (3.45) and (3.48), the charge
matrix is expressed in terms of physical charges as

Q ¼ 2MH0 þ 2Np0 −
X4
I¼1

ðQIpQI þ PIpPIÞ

þ
X3
i¼1

ðΣiHi − ΞipiÞ

¼ 2MH0 þ 2Np0 þ
X3
Λ¼0

ð−QΛppΛ þ PΛpqΛÞ

þ
X3
i¼1

ðΣiHi − ΞipiÞ: ð3:53Þ

From Q alone, one may therefore read off the charges
without knowing full details of the solution. Since a group
element g acts as M → g♯Mg, to preserve asymptotic
flatness at spatial infinity we should have g♯g ¼ I. For S3

supergravity, the charge matrix has been studied before
in [116].
Using the generators of (3.18), (3.19) and (3.20), we have

1

4
TrðQ2Þ ¼ 4ðM2 þ N2Þ −

X4
I¼1

½ðQIÞ2 þ ðPIÞ2�

þ
X3
i¼1

ðΣ2
i þ Ξ2

i Þ: ð3:54Þ

This quantity is invariant under transformations that pre-
serve asymptotic flatness at spatial infinity.
The angular momentum does not appear in the charge

matrixQ, since it enters theM expansion (3.52) inQð2Þ, at
subleading order 1=r2. Using the expansions (3.45)–(3.48),
one can show that

Qð2Þ ¼ ð−2J cos θ þ a0Þp0 þ…; ð3:55Þ

where a0 is a constant and the dots are the other terms
proportional to the Cartan generators HΛ and the Lie
algebra generators pi; pqΛ ; ppΛ which all have eigenvalue
−1 under the τ involution.
In [117] (see also [118,119]), it was proposed to define

the charge matrix integral Q∂ϕ as

Q∂ϕ ≡ −
3

8π

Z
S2∞

ð∂ϕÞμM−1∂νMdxμ ∧ dxν: ð3:56Þ

This may be written as

Q∂ϕ ¼ −
3

4

Z
π

0

dθ sin2 θ∂θQð2Þ ¼ −2Jp0 þ…; ð3:57Þ

where we used the 3-dimensional line element (3.44) at the
first step and (3.55) at the second step. The angular
momentum can therefore be extracted from Q∂ϕ . The
quantity
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1

16
TrðQ2∂ϕÞ ¼ J2 þ… ð3:58Þ

contains the angular momentum square and is invariant
under the action of transformations that preserve asymp-
totic flatness at spatial infinity.

IV. CHARGING UP THE BLACK HOLES

We apply the solution generating technique to the
specific example of the Ricci-flat Kerr-Taub-NUT space-
time [78] to obtain dyonic rotating black holes. The
resulting solutions of supergravity will in general carry
11 independent parameters, consisting of mass, NUT
charge, angular momentum, 4 electric charges and 4
magnetic charges. It is convenient to keep the NUT charge
on the same footing as the mass, which allows for an SO(2)
symmetry that simplifies the solution. When discussing
asymptotically flat black holes, we are free to restrict the
solution to a 10 parameter family by solving the final zero
NUT charge constraint. This constraint is a linear equation
in terms of the NUT charge of the initial seed Kerr-Taub-
NUT black hole and is therefore straightforwardly solved.

A. Seed solutions

We present here the initial seed solutions used in the
solution generating technique.

1. Taub-NUT seed solution

Static solutions are obtained by starting with the Taub-
NUT spacetime, whose metric is

ds2 ¼ −
r2 − 2mr − n2

r2 þ n2
ðdtþ 2n cos θdϕÞ2

þ r2 þ n2

r2 − 2mr − n2
dr2 þ ðr2 þ n2Þðdθ2 þ sin2θdϕ2Þ;

ð4:1Þ

where m is the mass and n is the NUT charge. By Kaluza-
Klein reduction on the t coordinate, it may be expressed in
terms of 3-dimensional fields as

e−2U ¼ r2 þ n2

r2 − 2mr − n2
; ω3 ¼ 2n cos θdϕ;

ds23 ¼ dr2 þ ðr2 − 2mr − n2Þðdθ2 þ sin2θdϕ2Þ: ð4:2Þ

By Hodge dualizing ω3, using the orientation (3.46), we
obtain the 3-dimensional scalar

σ ¼ −
4nðr −mÞ
r2 þ n2

: ð4:3Þ

Since this is a Ricci-flat metric, all other 3-dimensional
scalars are trivial. It is convenient to define the rescaled

matrix M̄ ¼ ðr2 − 2mr − n2ÞM, which has polynomial
entries.

2. Kerr-Taub-NUT seed solution

Our seed for rotating black holes is the Kerr-Taub-NUT
solution [78], which can be written as

ds2 ¼ −
R

r2 þ u2

�
dt̄ −

ā2 − u2

ā
dϕ̄

�
2

þ U
r2 þ u2

�
dt̄ −

r2 þ ā2

ā
dϕ̄

�
2

þ ðr2 þ u2Þ
�
dr2

R
þ du2

U

�
; ð4:4Þ

where5

R ¼ r2 þ ā2 − 2mr; U ¼ ā2 − u2 þ 2nu: ð4:5Þ

Standard Boyer-Lindquist-like coordinates and parameters
come from defining the coordinates ðt; θ;ϕÞ by

ϕ

a
¼ ϕ̄

ā
; t ¼ t̄þ 2n2

ā
ϕ̄; u ¼ nþ a cos θ; ð4:6Þ

where the new angular parameter a and Kaluza-Klein 1-
form ω3 are defined by

ā2 ¼ a2 − n2; dtþ ω3 ¼ dt̄þ ω̄3: ð4:7Þ

To recover the Taub-NUT solution (4.1), then take a → 0.
Note that if a ¼ 0, then ā2 ¼ −n2 leads to an imaginary
rotation parameter ā, but this is not a physical feature since
it can be removed by the reparametrization (4.7). In Kaluza-
Klein form (3.9), the Kerr-Taub-NUT solution can be
written as

ds23 ¼
RU
ā2

dϕ̄2 þ ðR −UÞ
�
dr2

R
þ du2

U

�
;

e−2U ¼ r2 þ u2

R −U
;

ω̄3 ¼
ðr2 þ ā2ÞU − ðā2 − u2ÞR

āðR − UÞ dϕ̄

¼ 2ðmrU þ nuRÞ
āðR −UÞ dϕ̄: ð4:8Þ

By Hodge dualizing ω3, using the orientation (3.46), we
obtain the 3-dimensional scalar

5The function U defined here should not be confused with U
defined in (3.9). It should be clear to the reader which definition is
valid depending on the context.
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σ ¼ 4ðmu − nrÞ
r2 þ u2

: ð4:9Þ

The nontrivial 3-dimensional scalars are e−2U and σ. We also have ζI ¼ ~ζI ¼ 0, for I ¼ 1; 2; 3; 4, and xi ¼ 0, yi ¼ 1, for
i ¼ 1, 2, 3. It is convenient to define, for the Kerr-Taub-NUT solution, the rescaled matrix

M̄≡ ðR −UÞM; ð4:10Þ

since its entries are polynomials rather than rational functions. Specifically, its entries are quadratic in r and u,

M̄¼

0
BBBBBBBBBBBBBBB@

R−U 0 0 0 0 0 0 0

0 R−U 0 0 0 0 0 0

0 0 r2 þ u2 0 0 0 0 2ðmu− nrÞ
0 0 0 r2 þ u2 0 0 −2ðmu− nrÞ 0

0 0 0 0 R−U 0 0 0

0 0 0 0 0 R−U 0 0

0 0 0 −2ðmu− nrÞ 0 0 ðr− 2mÞ2 þ ðu− 2nÞ2 0

0 0 2ðmu− nrÞ 0 0 0 0 ðr− 2mÞ2 þ ðu− 2nÞ2

1
CCCCCCCCCCCCCCCA

:

ð4:11Þ

The static limit is obtained in the same way as discussed earlier.
The matrix of one-forms N takes the form N ¼ N ϕdϕ. By definition, the components N ϕ obey

∂uN ϕ ¼ −
R
a
M−1∂rM; ∂rN ϕ ¼ U

a
M−1∂uM: ð4:12Þ

These are solved by (up to a gauge choice)

N ϕ ¼ ω3ϕðF0 þ E0Þ −
4ðm2U þ n2RÞ

aðR − UÞ E0 þ
2ðmuR − nrUÞ

aðR −UÞ H0: ð4:13Þ

B. Addition of charges

We act on the Kerr-Taub-NUT matrix MKTN with the group element

g ¼ exp

�
−
X
I

γIkP
I

�
exp

�
−
X
I

δIkQI

�
: ð4:14Þ

The generators kQI and kP
I
are given in (3.24). δI are electric charge parameters, and γI are magnetic charge parameters. The

generator k is explicitly
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k ¼

0
BBBBBBBBBBBBBBB@

cγ1cγ4 0 sγ1cγ4 0 sγ1sγ4 0 −cγ1sγ4 0

0 cγ2cγ3 0 −cγ2sγ3 0 sγ2sγ3 0 sγ2cγ3
sγ1cγ4 0 cγ1cγ4 0 cγ1sγ4 0 −sγ1sγ4 0

0 −cγ2sγ3 0 cγ2cγ3 0 −sγ2cγ3 0 −sγ2sγ3
sγ1sγ4 0 cγ1sγ4 0 cγ1cγ4 0 −sγ1cγ4 0

0 sγ2sγ3 0 −sγ2cγ3 0 cγ2cγ3 0 cγ2sγ3
−cγ1sγ4 0 −sγ1sγ4 0 −sγ1cγ4 0 cγ1cγ4 0

0 sγ2cγ3 0 −sγ2sγ3 0 cγ2sγ3 0 cγ2cγ3

1
CCCCCCCCCCCCCCCA

×

0
BBBBBBBBBBBBBBB@

cδ1cδ4 0 0 −cδ1sδ4 sδ1sδ4 0 0 sδ1cδ4
0 cδ2cδ3 −sδ2cδ3 0 0 sδ2sδ3 cδ2sδ3 0

0 −sδ2cδ3 cδ2cδ3 0 0 −cδ2sδ3 −sδ2sδ3 0

−cδ1sδ4 0 0 cδ1cδ4 −sδ1cδ4 0 0 −sδ1sδ4
sδ1sδ4 0 0 −sδ1cδ4 cδ1cδ4 0 0 cδ1sδ4
0 sδ2sδ3 −cδ2sδ3 0 0 cδ2cδ3 sδ2cδ3 0

0 cδ2sδ3 −sδ2sδ3 0 0 sδ2cδ3 cδ2cδ3 0

sδ1cδ4 0 0 −sδ1sδ4 cδ1sδ4 0 0 cδ1cδ4

1
CCCCCCCCCCCCCCCA

: ð4:15Þ

We use the notation sδI ¼ sinh δI , cδI ¼ cosh δI , sδI…J ¼ sδI…sδJ, cδI…J ¼ cδI…cδJ, and similarly for γ instead of δ.
This choice of group element is motivated by the 4-fold symmetry of the gauge fields FI , and by examining the resulting

charge matrix when acting on a simple uncharged solution such as the Schwarzschild solution. Asymptotic flatness at
spatial infinity, which means that the scalars become trivial at infinity, implies that k♯k ¼ I. The generators ki do not alter
the charge matrix of Schwarzschild, and furthermore leave the Schwarzschild solution invariant, up to a gauge
transformation. The generator k0 rotates the mass into a NUT charge; the group element k ¼ eβk0 gives the Taub-NUT
solution with massM ¼ m cosð2βÞ and NUT chargeN ¼ m sinð2βÞ. This leaves the generators kQI and kP

I
that we use. The

new matrix

M ¼ k♯MKTNk; ð4:16Þ

with the generalized transpose ♯ defined in (3.26), encodes the 16 3-dimensional scalars, which can be extracted using the
formulas of Sec. III C 1.
In particular, the Oðr−1Þ part of M determines a new charge matrix Q, from which we can read off the asymptotic

charges. Since Taub-NUT and Kerr-Taub-NUT differ in M at order Oðr−2Þ, the rotating and nonrotating cases share the
same charge matrix.
We obtain the mass and NUT charge,

M ¼ mμ1 þ nμ2; N ¼ mν1 þ nν2; ð4:17Þ

where

μ1 ¼ 1þ
X
I

�
s2δI þ s2γI

2
− s2δIs

2
γI

�
þ 1

2

X
I;J

s2δIs
2
γJ; μ2 ¼

X
I

sδIcδI

�
sγI
cγI

cγ1234 −
cγI
sγI

sγ1234

�
; ð4:18Þ

and
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ν1¼
X
I

sγIcγI

�
cδI
sδI

sδ1234−
sδI
cδI

cδ1234

�
; ν2¼ ι−D ð4:19Þ

where

ι ¼ cδ1234cγ1234 þ sδ1234sγ1234 þ
X
I<J

cδ1234
sδIJ
cδIJ

cγIJ
sγIJ

sγ1234;

D ¼ cδ1234sγ1234 þ sδ1234cγ1234 þ
X
I<J

cδ1234
sδIJ
cδIJ

sγIJ
cγIJ

cγ1234:

ð4:20Þ

For asymptotically flat solutions, we cancel the NUT
charge (4.17) by setting n ¼ n0 where

n0 ≡ −m
ν1
ν2

: ð4:21Þ

The electric and magnetic charges admit elegant expres-
sions in terms of derivatives of the mass and NUT charge
with respect to δI,

QI ¼ 2
∂M
∂δI ; PI ¼ −2

∂N
∂δI : ð4:22Þ

Equivalently,

QI ¼ mρ1I þ nρ2I ; PI ¼ mπI1 þ nπI2; ð4:23Þ

where

ρ1I ¼ 2
∂μ1
∂δI ; ρ2I ¼ 2

∂μ2
∂δI ;

πI1 ¼ −2
∂ν1
∂δI ; πI2 ¼ −2

∂ν2
∂δI : ð4:24Þ

These explicit coefficients are

ρ1I ¼ 2sδIcδI

�
1 − s2γI þ

X
J≠I

s2γJ

�
;

ρ2I ¼ 2ð1þ 2s2δIÞ
�
sγI
cγI

cγ1234 −
cγI
sγI

sγ1234

�
; ð4:25Þ

and

πI1 ¼ 2

�
sγIcγIðcδ1234 − sδ1234Þ þ

X
J≠I

sγJcγJ

�
cδ1234

sδIJ
cδIJ

− sδ1234
cδIJ
sδIJ

��
;

πI2 ¼ −2
�
ðcγ1234 − sγ1234Þ

�
cδ1234

sδI
cδI

− sδ1234
cδI
sδI

�

þ
X
J≠I

�
cγ1234

sγIJ
cγIJ

�
cδJ
sδJ

sδ1234 −
sδJ
cδJ

cδ1234

�
þ sγ1234

cγIJ
sγIJ

�
sδJ
cδJ

cδ1234 −
cδJ
sδJ

sδ1234

��	
: ð4:26Þ

The angular momentum can be read from (3.55) and is

J ¼ ðν2m − ν1nÞa; ð4:27Þ

where ν1; ν2 are defined in (4.19).

C. Reconstruction of the 4d solution

We can determine the full 4-dimensional solution by
extracting the 3-dimensional scalars and gauge fields, using
the formulas of Secs. III C 1 and III C 2. The solution can
then be simplified after lengthy algebraic manipulations
and using the insights of previously known subcases. The
procedure of identifying patterns and relationships among
the various functions appearing in the solution is the most
nontrivial part of the solution generating process. Here, we
describe how to obtain the 4-dimensional fields, and then in
Sec. V we summarize the solutions in the simplest
presentation that we found.

1. Nonrotating, no NUT

For the static case with no NUT charge, the solution
generating technique gives a 4-dimensional spherically
symmetric metric of the form

ds2 ¼ −
r2 − 2mr − n20

W0

dt2

þW0

�
dr2

r2 − 2mr − n20
þ dθ2 þ sin2 θdϕ2

�
:

ð4:28Þ
W2

0ðrÞ is a quartic polynomial in r that can be written
down concisely from the components of M using (3.34),
namely

W2
0ðrÞ ¼ M̄33M̄44 − M̄2

34: ð4:29Þ

The electromagnetic scalars ζI and ~ζI of (3.37) encode
the gauge fields AI . The scalars ζI are related by
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appropriate permutation of the indices I ¼ 1; 2; 3; 4, and
similarly for ~ζI. We dualize the 3-dimensional scalars
σ, ζI and ~ζI to 3-dimensional vectors, using (3.7)
and (3.8), to obtain the dϕ coefficients of AI, ~AI and
ω3. This is straightforward for spherically symmetric solu-
tions with no NUT charge. In this case, ω3 ¼ 0 and
ζI , ~ζI only depend on r. Therefore, Eq. (3.15) implies
that d ~AIð3dÞ ¼ ~PIðrÞ sin θdθ ∧ dϕ for some functions
~PIðrÞ. Integrability implies that FI are constants,
which implies that ~AIð3dÞ are given in terms of the
magnetic charges as ~AIð3dÞ ¼ ~PI cos θdϕ. The gauge fields
AI
ð3dÞ are then most easily obtained by electromagnetic

duality.
The 4-dimensional dilatons and axions are simply the 3-

dimensional scalars derived from (3.36). The scalar fields
xi; yi, are obtained from (3.35) and (3.36). The easiest way
to obtain them is to read off x1 and y1 from (3.35), and then,
from symmetry arguments, obtain x2, x3, y2 and y3 by
permutation of indices.

2. General rotating

In the general rotating case, the solution generating
technique will give a 4-dimensional metric of the form

ds2 ¼ −
R −U
W

ðdtþ ω3ϕdϕÞ2

þW

�
dr2

R
þ du2

U
þ RU
a2ðR −UÞ dϕ

2

�
; ð4:30Þ

where RðrÞ and UðuÞ are defined in (4.5) and W2ðr; uÞ
is a quartic polynomial in r and u that can be obtained
from

W2ðr; uÞ ¼ M̄33M̄44 − M̄2
34: ð4:31Þ

Here we define a2 ¼ ā2 þ n2 as in (4.7). The Kaluza-Klein
1-form ω3 can be obtained from (3.42). The scalars can be
obtained from the same procedure as in the static
case. Rather than dualizing electromagnetic scalars, the
4-dimensional gauge fields ~A1, and A4 are more conven-
iently obtained from the matrixN as (3.43) and (3.10). The
other gauge fields ~A2, ~A3, ~A4 and A1, A2, A3 can then be
obtained by appropriate permutation of indices.

V. SUMMARY OF GENERAL CHARGED
BLACK HOLES

In this section, we summarize the explicit expressions
for the general black hole solutions that we have
constructed.

A. Static black hole

A general asymptotically flat, static generating solution
for N ¼ 8 supergravity was obtained in [80]. It is para-
metrized by a mass and 5 independent electromagnetic

parameters, which are 6 electromagnetic charges with one
constraint in order to cancel the NUT charge. Here, we
present an 9-parameter asymptotically flat, static solution
with 4 independent electric and 4 independent magnetic
charges, including the explicit matter fields, which general-
izes the seed solution of [80]. A NUT charge can also be
included. Starting from this seed solution, one may then
follow the procedure of [80] and generate, using U dual-
ities, the static asymptotically flat solution of N ¼ 8
supergravity with 56 electromagnetic parameters.
Extreme, asymptotically flat, static black holes were
studied in [88,89,91–93,95,96].
Including NUT charge, the solution is parametrized by

10 constants: mass parameter m, NUT parameter n, electric
charge parameters δI and magnetic charge parameters γI ,
for I ¼ 1; 2; 3; 4. The mass and NUT charges are defined in
(4.17) and the NUT charge can be canceled by fixing
n ¼ n0 defined in (4.21). The electric charges QI and
magnetic charges PI are given by (4.23). The orientation is
given by (3.46).

1. Metric

The metric can be written as

ds2 ¼ −
R0ðrÞ
W0ðrÞ

ðdtþ 2N cos θdϕÞ2

þW0ðrÞ
�

dr2

R0ðrÞ
þ dθ2 þ sin2θdϕ2

�
; ð5:1Þ

where

R0ðrÞ ¼ r2 − 2mr − n2;

W2
0ðrÞ ¼ R2

0ðrÞ þ 2R0ðrÞð2Mrþ VÞ þ ðLðrÞ þ 2NnÞ2:
ð5:2Þ

Here M;N are the mass and NUT charge defined earlier
in (4.17),

LðrÞ ¼ λ1rþ λ0 ð5:3Þ

is a linear function in r, and the three remaining constants
λ0; λ1; V are

λ1 ¼ 2ðmν2 − nν1Þ; λ0 ¼ 4ðm2 þ n2ÞD;

V ¼ 2ð−μ2mþ μ1nÞnþ 2ðm2 þ n2ÞC; ð5:4Þ

where all quantities have been defined earlier in (4.18) and
(4.19), except C, given by
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C ¼ 1þ
X
I

ðs2δIc2γI þ s2γIc
2
δIÞ þ

X
I<J

ðs2δIJ þ s2γIJÞ þ
X
I≠J

s2δIs
2
γJ þ

X
I

X
J<K

ðs2δIs2γJK þ s2γIs
2
δJKÞ

þ 2
X
I<J

�
sδ1234cδ1234

sγIJ
cδIJ

cγIJ
sδIJ

þ s2δ1234
s2γIJ
s2δIJ

þ sδIJsγIJcδIJcγIJ þ s2δIJs
2
γIJ

�
− ν21 − ν22: ð5:5Þ

The metric is asymptotically flat when n ¼ n0 given in (4.21), which cancels the NUT charge N ¼ 0. A global coordinate
system is then achieved when the angular coordinates have the standard ranges θ ∈ ½0; π�, ϕ ∼ ϕþ 2π.

2. Gauge fields

The gauge fields and dual gauge fields are

AI ¼ ζIðrÞðdtþ 2N cos θdϕÞ þ PI cos θdϕ; ~AI ¼ ~ζIðrÞðdtþ 2N cos θdϕÞ −QI cos θdϕ; ð5:6Þ

where it turns out that one can write the scalars ζIðrÞ in terms of the master function W0ðrÞ as

ζI ¼ 1

2W2
0

∂W2
0

∂δI ¼ 1

W2
0ðrÞ

�
RðrÞ

�
QIrþ

∂V
∂δI

�
þ ðLðrÞ þ 2NnÞ

�∂LðrÞ
∂δI − PIn

��
: ð5:7Þ

In the case without NUT charge, one needs to take the derivative with generic n first, then set n ¼ n0 in the result. The dual
scalars ~ζIðrÞ are

~ζI ¼
RðrÞðPIrþ ~VIÞ þ ðLðrÞ þ 2NnÞð ~LIðrÞ þQInÞ

W2
0ðrÞ

; ð5:8Þ

where ~LIðrÞ is a linear function and ~VI a constant, given by

~LIðrÞ ¼ ðmρ2I − nρ1I Þr − 4ðm2 þ n2Þ ~DI; ~VI ¼ ðnπI1 −mπI2Þnþ 2ðm2 þ n2Þ ~CI; ð5:9Þ

with

~DI ¼
sγI
cγI

cγ1234s2δI −
cγI
sγI

sγ1234c2δI;

~CI ¼ ðsδ1234 − cδ1234Þ ~CII þ 2sγIcγIsδ1234

�
2þ

X
K

s2γK

�
þ
X
J≠I

�
cδ1234

sδIJ
cδIJ

− sδ1234
cδIJ
sδIJ

�
~CIJ

þ 2
X
J≠I

sγJcγJ

�
sδIJ
cδIJ

cδ1234ðs2γI þ s2γJÞ −
cδIJ
sδIJ

sδ1234
X
K≠I;J

s2γK

�
;

~CIJ ¼ 2ð1þ 2s2δIÞsγ1234
��

2þ
X
K≠J

1

s2γK

�
sγ1234

cγJ
sγJ

− ð1þ 2s2γJÞ
cγ1234
sγJcγJ

�
þ 2s2δIsγJcγJ

�
1þ

X
K

s2γK

�
: ð5:10Þ

3. Scalar fields

The scalar fields are

eφi ¼ r2 þ n2 þ gi
W

; χi ¼
fi

r2 þ n2 þ gi
; ð5:11Þ

where

fi ¼ 2ðmrþ n2Þξi1 þ 2nðm − nÞξi2 þ 4ðm2 þ n2Þξi3;
gi ¼ 2ðmrþ n2Þηi1 þ 2nðm − nÞηi2 þ 4ðm2 þ n2Þηi3: ð5:12Þ
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The coefficients ξi1, ξi2 and ξi3 for i ¼ 1 are

ξ11 ¼ ½ðsδ123cδ4− cδ123sδ4Þsγ1cγ1 þð1↔4Þ�− ðð1;4Þ↔ð2;3ÞÞ;

ξ12 ¼
�
1

2
ðcδ23sγ14þ cγ14sδ23Þðcδ14cγ23þ sγ23sδ14Þþ sδ1sγ4cδ4cγ1ðsδ2sγ2cδ3cγ3þ sδ3sγ3cδ2cγ2Þþ ð1↔4Þ

�
− ðð1;4Þ↔ð2;3ÞÞ;

ξ13 ¼ ½ðsδ134cδ2c2γ2þ cδ134sδ2s2γ2Þsγ3cγ3 þð2↔3Þ�− ðð1;4Þ↔ð2;3ÞÞ; ð5:13Þ

and the coefficients ηi1, ηi2 and ηi3 for i ¼ 1 are

η11 ¼ s2δ2 þ s2δ3 þ s2γ1 þ s2γ4 þ ðs2δ2 þ s2δ3Þðs2γ1 þ s2γ4Þ þ ðs2δ2 − s2δ3Þðs2γ3 − s2γ2Þ;
η12 ¼ 2sδ2cδ2ðcγ2sγ134 − sγ2cγ134Þ þ ð2↔3Þ;

η13 ¼ 2sδ23cδ23ðsγ23cγ23 þ sγ14cγ14Þ þ s2δ23

�
1þ

X
I

s2γI

�
þ ðs2δ2 þ s2δ3 þ 2s2δ23Þðs2γ14 þ s2γ23Þ

þ s2δ2s
2
γ2 þ s2δ3s

2
γ3 þ s2γ14: ð5:14Þ

The results for i ¼ 2 and i ¼ 3 are obtained by respectively
interchanging indices 1↔2 and 1↔3.

B. Rotating black hole

The general rotating solution depends on 11 independent
parameters: the mass, NUT and rotation parameters (m, n,
a); and electric (δI) and magnetic (γI) charge parameters.
The mass and NUT charges are defined in (4.17) and the
NUT charge can be canceled by fixing n ¼ n0 defined in
(4.21). The electric chargesQI and magnetic charges PI are
given by (4.23) and the angular momentum is given in
(4.27). The orientation is given by (3.46).

1. Metric

The metric of the general solution is

ds2 ¼ −
R −U
W

ðdtþ ω3Þ2

þW

�
dr2

R
þ du2

U
þ RU
a2ðR −UÞ dϕ

2

�
; ð5:15Þ

where R and U are the quadratic functions

RðrÞ ¼ r2 − 2mrþ a2 − n2; UðuÞ¼ a2 − ðu − nÞ2:
ð5:16Þ

The master functionW and the Kaluza-Klein 1-form ω3 can
be expressed as

W2 ¼ ðR −UÞ2 þ ð2Nuþ LÞ2 þ 2ðR −UÞð2Mrþ VÞ;

ω3 ¼
2Nðu − nÞRþUðLþ 2NnÞ

aðR −UÞ dϕ ð5:17Þ

in terms of RðrÞ, UðuÞ and two linear functions LðrÞ and
VðuÞ given by

LðrÞ ¼ 2ð−nν1 þmν2Þrþ 4ðm2 þ n2ÞD;

VðuÞ ¼ 2ðnμ1 −mμ2Þuþ 2ðm2 þ n2ÞC; ð5:18Þ
where ν1, ν2, μ1, μ2 and D have been defined in (4.18) and
(4.19) and C has been defined in (5.5). The static limit is
obtained by setting u ¼ nþ a cos θ and taking a → 0.
Then ω3 ¼ 2N cos θdϕ, and the solution reduces to the
static solution presented previously. The expression of W
and ω3 solely in terms of R, U and linear functions gives an
elegant form of the metric.

2. Gauge fields

Astonishingly, the gauge fields can be expressed in the
elegant form

AI ¼ −W
∂
∂δI

�
dtþ ω3

W

�
; ð5:19Þ

which makes manifest that the gauge fields AI can be built
solely from functions already appearing in the metric. In
terms of 3-dimensional fields, we have the equivalent
relations

AI ¼ ζIðdtþ ω3Þ þ AI
ð3dÞ; ð5:20Þ

where

ζI ¼ 1

2W2

∂
∂δI ðW

2Þ¼ 1

W2

�
ðR−UÞ

�
QIrþ

∂V
∂δI

�

þðLþ2NuÞ
�∂L
∂δI−PIu

��
;

AI
ð3dÞ ¼−

∂
∂δIω3¼

�
PIðu−nÞþ U

R−U

�
PIu−

∂L
∂δI

��
dϕ
a
:

ð5:21Þ
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The dual gauge fields are

~AI ¼ ~ζIðdtþ ω3Þ þ ~AIð3dÞ; ð5:22Þ

where

~AIð3dÞ ¼−
�
QIðu−nÞþUðQIuþ ~LIÞ

R−U

�
dϕ
a
;

~ζI ¼
1

W2
ððR−UÞðPIrþ ~VIÞþðLþ2NuÞð ~LIþQIuÞÞ;

ð5:23Þ

where ~LIðrÞ, ~VIðuÞ are the linear functions

~LIðrÞ ¼ ðmρ2I − nρ1I Þr − 4ðm2 þ n2Þ ~DI;

~VIðuÞ ¼ ðnπI1 −mπI2Þuþ 2ðm2 þ n2Þ ~CI: ð5:24Þ

The coefficients ρ1I , ρ
2
I , π

I
1 and πI2 are defined in (4.25) and

(4.26). The coefficients ~DI , ~CI are defined in (5.10). We
have not found an elegant expression for ~AI analogous to
(5.19). The asymmetry between AI and ~AI originates from
the choice of SO(4,4) group element (4.14), which does not
have symmetry under interchange of δI and γI .

3. Scalar fields

The scalar fields are

eφi ¼ r2 þ u2 þ gi
W

; χi ¼
fi

r2 þ u2 þ gi
; ð5:25Þ

where

fi ¼ 2ðmrþ nuÞξi1 þ 2ðmu − nrÞξi2 þ 4ðm2 þ n2Þξi3;
gi ¼ 2ðmrþ nuÞηi1 þ 2ðmu − nrÞηi2 þ 4ðm2 þ n2Þηi3;

ð5:26Þ
and the coefficients ξi1; ξi2; ξi3; ηi1; ηi2; ηi3 are the same as
the static coefficients (5.13) and (5.14).

VI. PHYSICAL QUANTITIES

In this section, we restrict to asymptotically flat sol-
utions, which have vanishing NUT charge, N ¼ 0, by
setting n ¼ n0 given by (4.21), unless otherwise stated.
Note that derivatives with respect to δI must be done before
setting n ¼ n0.

A. Thermodynamics

In this subsection, we explicitly reinstate the 4-
dimensional Newton constant G. Recall from Sec. IV B
that the charge matrix provides the mass M in (4.17), and
electric charges QI and magnetic charges PI in (4.23). We
normalize the electromagnetic charges as

Q̄I ¼
1

4G
QI; P̄I ¼ 1

4G
PI: ð6:1Þ

The angular momentum J is obtained from another charge
matrix in (4.27). Canonical methods then associate the
mass to ∂t, the angular momentum to −∂ϕ, the electric
charges Q̄I associated with AI to the gauge parameter
ΛI ¼ −1, and similarly magnetic charges P̄I associated
with ~AI . To recapitulate, we have

M ¼ m
G

�
μ1 −

ν1μ2
ν2

�
;

J ¼ ma
G

ðν21 þ ν22Þ
ν2

;

Q̄I ¼
m
2G

�∂μ1
∂δI −

ν1
ν2

∂μ2
∂δI

�
;

P̄I ¼ m
2G

�
ν1
ν2

∂ν2
∂δI −

∂ν1
∂δI

�
; ð6:2Þ

where μ1, μ2, ν1 and ν2 are given in (4.18) and (4.19).
The black hole has outer and inner horizons at r ¼ r�,

the roots of the radial function RðrÞ. The angular velocity
Ωþ at the outer horizon is determined by the Killing vector

ξμ∂μ ¼ ∂t þ Ωþ∂ϕ ð6:3Þ

that becomes null at the horizon, and is

Ωþ ¼ a
LðrþÞ

; ð6:4Þ

where L is given in (5.3). The entropy and temperature are

Sþ ¼ π

G
LðrþÞ; Tþ ¼ R0ðrþÞ

4πLðrþÞ
¼ rþ −m

2πLðrþÞ
: ð6:5Þ

In the static case, the function Wðrþ; uÞ defined in (5.17)
reduces to LðrþÞ, and so these quantities can be expressed
in terms of W. The electric potential ΦIþ ¼ ξμþAI

μ and
magnetic potential Ψþ

I ¼ ξμþ ~AIμ at the horizon are

ΦIþ ¼ ΩþAI
ð3dÞϕðrþÞ ¼

1

L

�∂L
∂δI − n0PI

�




r¼rþ

;

Ψþ
I ¼ Ωþ ~AI

ð3dÞϕðrþÞ ¼
~LI þ n0QI

L






r¼rþ

; ð6:6Þ

where ~LI is given in (5.9). These quantities obey the first
law of thermodynamics

δM ¼ TþδSþ þΩþδJ þ ΦIþδQ̄I þΨþ
I δP̄

I; ð6:7Þ

and the Smarr relation
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M ¼ 2TþSþ þ 2ΩþJ þ ΦIþQ̄I þΨþ
I P̄

I: ð6:8Þ

Technically, the Smarr relation follows from nontrivial
identities obeyed by the parameters,

X
I

ðρ2IπI1 − ρ1Iπ
I
2Þ ¼ 8ðμ1ν2 − μ2ν1 − ι −DÞ;

X
I

�
QI

∂D
∂δI − PI ~DI

�
¼ 4Dðμ1 þ 1Þm

þ ð4Dμ2 þ 2ν1Þn0: ð6:9Þ

B. Cayley hyperdeterminant

For regular, static, extremal black holes of N ¼ 8
supergravity, the entropy is expressed in terms of the
electromagnetic charges as [98]6

Sþ ¼ 2π
ffiffiffiffiffiffi
j⋄jp

; ð6:10Þ

where ⋄ is the Cartan-Cremmer-Julia E7ð7Þ quartic invari-
ant. See [120] for further details of the definitions of ⋄.
Specializing to STU supergravity, the E7ð7Þ quartic invari-
ant ⋄ reduces to an SLð2;RÞ3 invariant, the Cayley
hyperdeterminant Δ. Consequently, the entropy reduces
to (see e.g. [18])

Sþ ¼ 2π
ffiffiffiffiffiffiffi
jΔj

p
; ð6:11Þ

where the hyperdeterminant is

ΔðQI; PIÞ ¼ 1

16
ð4ðQ1Q2Q3Q4 þ P1P2P3P4Þ

þ 2
X
J<K

QJQKPJPK −
X
J

ðQJÞ2ðPJÞ2Þ:

ð6:12Þ

Some special cases of Δ are: all gauge fields equal
(QI ¼ Q, PI ¼ P), with Δ ¼ 1

4
ðQ2 þ P2Þ2; only electric

charges (PI ¼ 0), with Δ ¼ 1
4
Q1Q2Q3Q4; only one non-

vanishing gauge field (QI ¼ PI ¼ 0 for I ¼ 2; 3; 4),
with Δ ¼ − 1

16
ðQ1Þ2ðP1Þ2; and pairwise equal gauge

fields [ðQ1; P1Þ ¼ ðQ4; P4Þ and ðQ2; P2Þ ¼ ðQ3; P3Þ],
with Δ ¼ 1

4
ðQ1Q2 þ P1P2Þ2.

The hyperdeterminant is invariant under permutations of
the four gauge fields. It is also manifestly invariant under
SLð2;RÞ3 upon rewriting as

Δ ¼ 1

32
ϵabϵcdϵa

0b0ϵc
0d0ϵa

00c00ϵb
00d00γaa0a00γbb0b00γcc0c00γdd0d00 ;

ð6:13Þ

where ϵab ¼ ϵ½ab�, ϵ01 ¼ 1, and the components γaa0a00 are

ðγ000; γ111Þ ¼ −ðQ1; P1Þ; ðγ001; γ110Þ ¼ ðP2; Q2Þ;
ðγ010; γ101Þ ¼ ðP3; Q3Þ; ðγ011; γ100Þ ¼ ðQ4; P4Þ:

ð6:14Þ

The sets of indices ða; b; c; dÞ, ða0; b0; c0; d0Þ and
ða00; b00; c00; d00Þ each correspond to different copies of
SLð2;RÞ. Using Schouten identities such as ϵa½bϵcd� ¼ 0,
the hyperdeterminant may be rewritten as

Δ ¼ 1

32
ϵa

0b0ϵc
0d0ϵa

00b00ϵc
00d00ϵacϵbdγaa0a″γbb0b00γcc0c00γdd0d00

¼ 1

32
ϵa

00b00ϵc
00d00ϵabϵcdϵa

0c0ϵb
0d0γaa0a00γbb0b00γcc0c00γdd0d00 ;

ð6:15Þ

so the hyperdeterminant is invariant when the three copies
of SLð2;RÞ are cycled. Since each expression is also
manifestly invariant under interchange of two copies of
SLð2;RÞ, the hyperdeterminant is invariant under the
triality symmetry of permuting the three copies
of SLð2;RÞ.
For the general NUT-free, nonextremal black hole

solution that we derived, the hyperdeterminant can be
expressed in terms of the parameters m, δI and γI as

Δ ¼ m4ðν21 þ ν22Þ2ð4ιD − ν21Þ
ν42

; ð6:16Þ

where ν1, ν2, ι and D are given in (4.19).

C. Inner horizon thermodynamics

Associating thermodynamic quantities to the inner hori-
zon of a black hole is an old idea [121–123], but the
physical interpretation of these quantities remains unclear.
Two particularly interesting inner horizon quantities are the
“temperature” T− and “entropy” S− which are defined from
geometrical quantities at the horizon, through S− ¼ A−=4
and T ¼ κ−=2π, where A− is the area of the inner horizon
(defined with a particular orientation) and κ− is the surface
gravity corresponding to the null generator ξμ−∂μ ¼ ∂t þ
Ω−∂ϕ of the inner horizon. All inner horizon thermody-
namic quantities T−, S−, Ω−, ΦI

− and Ψ−
I are those defined

at the outer horizon, but with rþ replaced by r−. It is then
easy to see that

S−T− ≤ 0; ð6:17Þ

which makes the physical interpretation of T− and S−
unclear. We emphasize that

6Our convention for the normalization of ⋄ differs by a factor
of 4 from [98].
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S− ¼ π

G
Lðr−Þ ð6:18Þ

is not necessarily non-negative, and therefore whether the
negative sign in S−T− comes from T− or S− depends on the
particular solution.
The inner horizon thermodynamic quantities also obey

the first law of thermodynamics and the Smarr relation,

δM ¼ T−δS− þ Ω−δJ þ ΦI
−δQ̄I þΨ−

I δP̄
I;

M ¼ 2T−S− þ 2Ω−J þ ΦI
−Q̄I þΨ−

I P̄
I: ð6:19Þ

There are relations between the outer and inner entropies,
temperatures and angular velocities,

S−
Sþ

¼ Tþ
−T−

¼ Ωþ
Ω−

¼ Lðr−Þ
LðrþÞ

; ð6:20Þ

generalizing formulas known for the Kerr solution [123].
We also notice the relations

Sþ ¼ π2

3
cJ

−2T−

Ω− −Ωþ
¼ π2

3
cQI

−2T−

ΦI
− −ΦIþ

¼ π2

3
cPI

−2T−

Ψ−
I −Ψþ

I
;

ð6:21Þ

for each I ¼ 1; 2; 3; 4, where we define the “central
charges”

cJ ¼ 6
∂ΔJ

∂J ; cQI
¼ 6

∂ΔJ

∂Q̄I
; cPI ¼ 6

∂ΔJ

∂P̄I ;

ð6:22Þ

and

ΔJ ¼ Δþ J2: ð6:23Þ

The quantities (6.22) can be obtained as central charges
of a Virasoro algebra for the class of extremal fast and
slow rotating black holes, as discussed in Secs. VIII B and
VIII C. In the case of general nonextremal black holes,
there is no known derivation of these central charges from a
Virasoro algebra. The first relation in (6.21) can also be
written using (6.20) as

8π2J ¼ ΩþSþ

�
1

Tþ
þ 1

T−

�
: ð6:24Þ

The thermodynamics of the inner horizon has been con-
sidered in higher-derivative theories in [124].

D. Product of horizon areas

The product of the two horizon areas is independent of
the mass and quantized in terms of the angular momentum
and electromagnetic charges as

AþA−

64π2G2
¼ J2 þ ΔðQI; PIÞ ¼ ΔJ: ð6:25Þ

Some special cases have been considered previously: the 4-
charge Cvetič-Youm black hole [125]; the dyonic Kerr-
Newman black hole [126] and the dyonic black hole of
Kaluza-Klein theory [127]. Since the metric is unaltered by
U dualities, this result generalizes to black holes of N ¼ 8
supergravity with 28 electric and 28 magnetic charges by
replacing the hyperdeterminant Δ with the quartic E7ð7Þ
invariant ⋄.
A natural interpretation of the product of areas formula is

given in terms of auxiliary left and right “entropies”

SL ≡ 1

2
ðSþ þ S−Þ; SR ≡ 1

2
ðSþ − S−Þ; ð6:26Þ

which are clearly non-negative. The cases where S− < 0
are then rephrased as cases where SR > SL. The product
formula becomes a level-matching condition,

S2L − S2R ¼ 4π2ðJ2 þ ΔÞ: ð6:27Þ

Generalizing a result of Einstein gravity [128], in
Einstein-Maxwell theory, it has been shown [129,130]
(see [131] for a review) that universally

AþA− ¼ ð8πJÞ2 þ ð4πQ2Þ2; ð6:28Þ

for any electrically charged stationary axisymmetric
black hole with surrounding matter. Furthermore, there
are inequalities involving the area A of a smooth
stable axisymmetric marginally outer trapped surface
[132–134], for example

A2 ≥ ð8πJÞ2 þ ð4πQ2Þ2: ð6:29Þ

These types of inequalities are reviewed in [135]. The
inequalities can generalize to Einstein-Maxwell-dilaton
theory, in particular to Kaluza-Klein theory [136]. We
expect that these results further generalize using the
appropriate quartic invariant in the charges, to the STU
model as

AþA− ¼ ð8πJÞ2 þ ð8πÞ2Δ; A2 ≥ ð8πJÞ2 þ ð8πÞ2Δ;
ð6:30Þ

and to N ¼ 8 supergravity as

AþA− ¼ ð8πJÞ2 þ ð8πÞ2⋄; A2 ≥ ð8πJÞ2 þ ð8πÞ2⋄:
ð6:31Þ

E. Nonextremal entropy and F invariant

The nonextremal black hole entropy can be rewritten in
the Cardy form [81,137,138]
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Sþ ¼ 2πð ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δþ F

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−J2 þ F

p
Þ; ð6:32Þ

where

FðM;QI; PIÞ ¼ m4ðν21 þ ν22Þ3
ν42

: ð6:33Þ

Indeed, the equalityΩþ=Tþ ¼ −Ω−=T− (6.20) implies that
∂SL=∂J ¼ 0 after using the first law at the outer and inner
horizons and the definition of SL in (6.26). Differentiating
(6.27) with respect to J, one has ∂ðS2RÞ=∂J ¼ −8π2J. Then
integrating gives SR ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−J2 þ F

p
. The constant of

integration F is fixed by the actual value of SR to be
(6.33). Using (6.27), we deduce that SL ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δþ F

p
. The

result for Sþ ¼ SL þ SR follows.
Since the entropy, the quartic invariant and J are all E7ð7Þ

invariant, F admits an E7ð7Þ-invariant generalization,
depending also on the moduli. We will therefore refer to
F defined in (6.33) as the F invariant.

F. BPS bound

For the general rotating black hole, from (2.8) we have

Miðr;uÞ¼
1

W

�
r2þu2þgi fi

fi ðW2þf2i Þ=ðr2þu2þgiÞ
�
:

ð6:34Þ
At infinity, we find the identity since all scalar moduli are
trivial,

Mi ¼ IþOðr−1Þ: ð6:35Þ

In generality, we define the moduli-dependent SLð2;RÞ3
invariant

M2 ¼
1

16
γaa0a00 ½ðM−1

1 ÞabðM−1
2 Þa0b0 ðM−1

3 Þa00b00

− ðM−1
1 Þabϵa0b0ϵa00b00 − ϵabðM−1

2 Þa0b0ϵa00b00

− ϵabϵa
0b0 ðM−1

3 Þa00b00 �γbb0b00 ; ð6:36Þ

which, for trivial moduli evaluated at infinity, is

M∞
2 ¼ 1

16
γaa0a00 ðδabδa0b0δa00b00 − δabϵa

0b0ϵa
00b00

− ϵabδa
0b0ϵa

00b00 − ϵabϵa
0b0δa

00b00 Þγbb0b00

¼ 1

16

X
I;J

ðQIQJ þ PIPJÞ: ð6:37Þ

The quantity M∞
2 ¼ jZðP;Q; z∞Þj2 is also the modulus of

the central charge of the N ¼ 2 algebra [139]

ZðP;Q; z; z̄Þ ¼ 1ffiffiffi
2

p eKðz;z̄Þ=2ðXΛðzÞQΛ − FΛðzÞPΛÞ ð6:38Þ

where K ¼ − log ð−8y1y2y3Þ is the Kähler potential of the
STU model and FΛ ¼ ∂ΛF. We have the Bogomolny
bound on the square mass,

M2 ≥ M∞
2 : ð6:39Þ

G. Quadratic mass formula

We define the moduli-dependent symplectic invari-
ants [139]

I2ðr; uÞ ¼ −
1

4
ð ~PΛ; ~QΛÞ

�
ImN þ ReN ðImN Þ−1ReN −ReN ðImN Þ−1

−ðImN Þ−1ReN ðImN Þ−1
��

~PΛ

~QΛ

�
;

J2ðr; uÞ ¼
1

4
ð ~PΛ; ~QΛÞ

�
ImF þ ReFðImFÞ−1ReF −ReFðImFÞ−1

−ðImFÞ−1ReF ðImFÞ−1
��

~PΛ

~QΛ

�
; ð6:40Þ

where FΛΣ ¼ ∂Λ∂ΣF and F ¼ −X1X2X3=X0 is the prepotential of the STU model. Here, asymptotic flatness at spatial
infinity fixes the scalar moduli at infinity as xi ¼ 0, yi ¼ 1, at r ¼ ∞. The invariants read at infinity

I∞2 ≡ I2ð∞; uÞ ¼ 1

4

X
I

½ðQIÞ2 þ ðPIÞ2�; J∞2 ≡ J2ð∞; uÞ ¼ 1

4

X
I

½ðQIÞ2 þ ðPIÞ2� − 1

8

X
I;J

ðPIPJ þQIQJÞ; ð6:41Þ

where we used (3.51).
For any N ¼ 2 model,

jZj2 þ jZij2 ¼ I∞2 ; −jZj2 þ jZij2 ¼ J∞2 ; ð6:42Þ

where Z is the central charge and Zi ¼ DiZ is the Kähler
derivative of the central charge. Therefore, J∞2 can simply
be expressed as J∞2 ¼ I∞2 − 2M∞

2 .

It is useful to define the invariant

S∞2 ¼ 1

4
GAB∂rΦA∂rΦBjr¼∞: ð6:43Þ

For the STU model, we have
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S∞2 ¼ 1

4

X
i

ðΣ2
i þ Ξ2

i Þ: ð6:44Þ
It was observed by Gibbons [140] that for static

configurations, the black hole mass obeys the condition

M2 þ N2 þ S∞2 ¼ I∞2 þ 4S2þT2þ: ð6:45Þ

This relation was interpreted in [141] as the statement that
the total self-force on the black hole due to the attractive
self-force of gravity and the scalar fields is not exceeded by
the repulsive self-force due to the gauge fields, and
vanishes only at extremality. For static black holes of
Einstein-Maxwell theory and the Einstein-Maxwell-
dilaton-axion theory (2.25), similar relations were derived
using the 3-dimensional coset model in [142], and further
generalized in [46].
We find that when rotation is present, the relation

generalizes to

M2 þ N2 þ S∞2 ¼ I∞2 þ 4S2þ

�
T2þ þ Ω2þ

4π2

�
: ð6:46Þ

The angular velocity leads to an additional repulsive
centrifugal force.
In fact, the last term on the right-hand side can also be

written in terms of seed parameters m; n or quantities
defined at the inner horizon as

4G2S2þ

�
T2þ þ Ω2þ

4π2

�
¼ m2 þ n2 ¼ 4G2S2−

�
T2
− þ Ω2

−

4π2

�
:

ð6:47Þ
Using the latter relation, the identity (6.46) amounts to the
statement that the quantity TrðQ2Þ defined in (3.54) is
invariant under coset model transformations and therefore
has the same value on the seed and final solutions. The
identity therefore follows from a conservation law asso-
ciated with the 3d coset model.

VII. NONEXTREMAL SPECIAL CASES

The general solution that we have constructed unifies
many solutions in the literature. We now show how these
are special cases of our general solution. We first describe
nonextremal special solutions while some extremal limits
will be discussed in Sec. VIII. In all cases, the black hole
entropy is given by (6.32) in terms of the angular
momentum, the quartic invariant Δ (6.12) and the F
invariant (6.33).

A. Dyonic Kerr-Newman-Taub-NUT

If δI ¼ γI ¼ 0, then all electromagnetic charges vanish.
This gives the Ricci-flat Kerr-Taub-NUT solution, which
we used as the starting point of the solution generating
technique.

More generally, if δI ¼ δ and γI ¼ γ for all gauge fields,
then all electric charges are equal and all magnetic charges
are equal. This gives the dyonic Kerr-Newman-Taub-NUT
solution [78] of Einstein-Maxwell theory (2.26). The
conserved charges are

M ¼ m coshð2δÞ coshð2γÞ þ n sinhð2δÞ sinhð2γÞ;
N ¼ n coshð2δÞ coshð2γÞ −m sinhð2δÞ sinhð2γÞ;

Q≡QI ¼ m sinhð2δÞ coshð2γÞ þ n sinhð2γÞ coshð2δÞ;
P≡ PI ¼ m sinhð2γÞ coshð2δÞ − n sinhð2δÞ coshð2γÞ;

J ¼ aM; ð7:1Þ

and the quartic invariant is

Δ ¼ 1

4
ðQ2 þ P2Þ2: ð7:2Þ

Specializing to the dyonic Kerr-Newman solution, we set
n ¼ n0, so that N ¼ 0. Then the F invariant is

F ¼ M2ðM2 −Q2 − P2Þ: ð7:3Þ

B. Kaluza-Klein black hole

If δI ¼ γI ¼ 0 for I ¼ 2; 3; 4 and N ¼ 0, then we have
the asymptotically flat, dyonic, rotating black hole
[79,82,83] (see also [143]) of Kaluza-Klein theory
(2.23). The conserved charges are

M ¼ 1

2
mðc2δ1c2γ1 − 1Þ; Q1 ¼

2msδ1ðc2δ1 þ s2δ1s
2
γ1Þ

cδ1
;

J ¼ macγ1ðc2δ1 þ s2δ1s
2
γ1Þ

cδ1
; N ¼ 0;

P1 ¼ 2msγ1cγ1
cδ1

: ð7:4Þ

The quartic invariant and F invariant are

Δ ¼ −
1

16
ðQ1Þ2ðP1Þ2; F ¼ m4

c2γ1
c4δ1

ðc2δ1 þ s2δ1s
2
γ1Þ3;

ð7:5Þ

but the F invariant is not easily expressed in terms of the
conserved charges. For this purpose, we define the mon-
otonic function

HðψÞ ¼ 2 cosψ cosðψ=3Þ þ 6 sinψ sinðψ=3Þ − 2; ð7:6Þ

where 0 ≤ ψ ≤ π=2. We take

DAVID D. K. CHOW AND GEOFFREY COMPÉRE PHYSICAL REVIEW D 90, 025029 (2014)

025029-26



sin2ψðM;Q1; P1Þ ¼ 54M2½ðQ1Þ2 − ðP1Þ2�2
½8M2 þ ðQ1Þ2 þ ðP1Þ2�3 ;

ð7:7Þ

which satisfies 0 ≤ ψ ≤ π=2 for regular black hole con-
figurations obeying 4M ≥ ½ðQ1Þ2=3 þ ðP1Þ2=3�3=2. Then,
after some lengthly algebra, we obtain

F ¼
�
M2 −

1

4
ðQ1Þ2

��
M2 −

1

4
ðP1Þ2

�

þ 1

3

�
M2 þ 1

8
½ðQ1Þ2 þ ðP1Þ2�

	
2

HðψðM;Q1; P1ÞÞ:

ð7:8Þ

For this class of solutions, the triality invariance reduces to
the Z2 invariance Q1 → P1, P1 → −Q1, under which F is
manifestly invariant. The function HðψÞ was found by first
expanding F in terms of the sum and difference of squares
of electric and magnetic charges in a perturbation series.
The Taylor coefficients of the function HðψÞ were then
recognized as belonging to a hypergeometric series using
an algorithm for integer sequence recognition,7 then sim-
plified in terms of trigonometric functions. The final result
was then tested numerically. Finally, note that when P1 ¼ 0
we have

F ¼ 1

64
½32M4 − 40M2ðQ1Þ2 − ðQ1Þ4

þ 4Mð4M2 þ 2ðQ1Þ2Þ3=2�: ð7:9Þ

We therefore obtained a novel expression for the entropy of
the Kaluza-Klein black hole

Sþ ¼ 2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F −

1

16
ðQ1Þ2ðP1Þ2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F − J2

p �
ð7:10Þ

where F is given in (7.8), which could be used to study its
thermodynamics further.

C. Four electric charges (Cvetič-Youm)

If γI ¼ 0 and n ¼ 0, then the NUT charge vanishes,
N ¼ 0, and we have the asymptotically flat, 4-charge
Cvetič-Youm solution [81]. The full explicit solution,
including expressions for the gauge fields, was given in
[71]. If we include nonvanishing n, then we recover the
Kerr-Taub-NUT solution with 4 electric charges given
in [71].8

In our parametrization, μ2 ¼ ν1 ¼ 0. The conserved
charges are

M ¼ m
4

X
I

coshð2δIÞ; N ¼ nðcδ1234 − sδ1234Þ;

QI ¼ m sinhð2δIÞ; PI ¼ 2nðcδ1sδ234 − sδ1cδ234Þ:
ð7:11Þ

The NUT charge can be set to zero by setting n ¼ 0, which
we assume from now on. The angular momentum is then

J ¼ maðcδ1234 − sδ1234Þ: ð7:12Þ

The quartic invariant (6.12) and F invariant (6.33) are

Δ ¼ 1

4
Q1Q2Q3Q4;

F ¼ 1

8

�
m4 − 4Δþ

Y
I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

I

q

þm2
X
I<J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

I

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þQ2

J

q �
: ð7:13Þ

We have not found a closed form expression for the F
invariant in terms of physical charges only.
Let us also present the metric in our notation. The master

function (5.17) takes the almost factorized form

W2ðr; uÞ ¼ ðr2 − 2mrþ u2Þðr2 þ 2ð2M −mÞrþ u2Þ
þ 4ν22m

2r2: ð7:14Þ

The metric is then given by

ds2 ¼ −
r2 − 2mrþ u2

Wðr; uÞ ðdtþ ω3Þ2 þWðr; uÞ

×

�
dr2

RðrÞ þ
du2

a2 − u2
þ RðrÞða2 − u2Þ
a2ðr2 − 2mrþ u2Þ dϕ

2

�
;

ð7:15Þ

where RðrÞ ¼ r2 − 2mrþ a2 and the Kaluza-Klein 1-form
is

ω3 ¼
2ν2mða2 − u2Þr
aðr2 − 2mrþ u2Þ dϕ: ð7:16Þ

D. −iX0X1 supergravity black hole

If we set the electric and magnetic charges pairwise
equal, which is equivalent to ðδ1; γ1Þ ¼ ðδ4; γ4Þ and
ðδ2; γ2Þ ¼ ðδ3; γ3Þ, then we have the dyonic rotating
black hole [84] of −iX0X1 supergravity (2.24). The dyonic
Kerr-Newman-Taub-NUT is recovered upon setting
Q2 ¼ Q1, P2 ¼ P1.

7The algorithm can be found at http://www.oeis.org.
8We swap parameters δ1 and δ2, and correct a typographical

error in the sign of χ2 for the solution with NUT charge presented
there.
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The solution is substantially simpler in this truncation.
To simplify the solution and physical quantities, it is convenient to define

Δr1 ¼ m½coshð2δ1Þ coshð2γ2Þ − 1� þ n sinhð2δ1Þ sinhð2γ1Þ;
Δr2 ¼ m½coshð2δ2Þ coshð2γ1Þ − 1� þ n sinhð2δ2Þ sinhð2γ2Þ;
Δu1 ¼ n½coshð2δ1Þ coshð2γ2Þ − 1� −m sinhð2δ1Þ sinhð2γ1Þ;
Δu2 ¼ n½coshð2δ2Þ coshð2γ1Þ − 1� −m sinhð2δ2Þ sinhð2γ2Þ; ð7:17Þ

and

r1 ¼ rþ Δr1; r2 ¼ rþ Δr2; u1 ¼ uþ Δu1; u2 ¼ uþ Δu2: ð7:18Þ
Then W ¼ r1r2 þ u1u2 and the metric takes the simplified form

ds2 ¼ −
R
W

�
dt −

a2 − u1u2 þ ðΔu1 þ nÞðΔu2 þ nÞ
a

dϕ

�
2

þW
R
dr2

þ U
W

�
dt −

r1r2 þ a2 þ ðΔu1 þ nÞðΔu2 þ nÞ
a

dϕ

�
2

þW
U

du2: ð7:19Þ

The gauge fields and duals are

A1 ¼ Q1r2
W

�
dt −

a2 − u1u2 þ ðΔu1 þ nÞðΔu2 þ nÞ
a

dϕ

�

−
P1u2
W

�
dt −

r1r2 þ a2 þ ðΔu1 þ nÞðΔu2 þ nÞ
a

dϕ

�
þ ðΔu2 þ nÞ

2a
∂ðΔu1Þ
∂δ1 dϕ; ð7:20Þ

and

~A1 ¼
P1r1
W

�
dt −

a2 − u1u2 þ ðΔu1 þ nÞðΔu2 þ nÞ
a

dϕ

�

þQ1u1
W

�
dt −

r1r2 þ a2 þ ðΔu1 þ nÞðΔu2 þ nÞ
a

dϕ

�
þ ðΔu1 þ nÞ

2a
∂ðΔr1Þ
∂δ1 dϕ; ð7:21Þ

with A2 and ~A2 obtained by interchanging 1↔2. Here, the
partial derivatives with respect to δI are performed after
setting ðδ1; γ1Þ ¼ ðδ4; γ4Þ and ðδ2; γ2Þ ¼ ðδ3; γ3Þ. The non-
trivial scalar fields are

eφ1 ¼ r22 þ u22
W

; χ1 ¼
r2u1 − r1u2
r22 þ u22

: ð7:22Þ

Using a linear coordinate transformation of the coordinates
t and ϕ, and a gauge transformation, the metric and gauge
fields may be written in the simpler form

ds2 ¼ −
R
W

ðdτ þ u1u2dψÞ2 þ
U
W

ðdτ − r1r2dψÞ2

þW

�
dr2

R
þ du2

U

�
; ð7:23Þ

and

A1 ¼ Q1r2
W

ðdτ þ u1u2dψÞ −
P1u2
W

ðdτ − r1r2dψÞ;

~A1 ¼
P1r1
W

ðdτ þ u1u2dψÞ þ
Q1u1
W

ðdτ − r1r2dψÞ: ð7:24Þ

Guided by this simplified form of the solution, asymptoti-
cally AdS generalizations in gauged supergravity were
obtained in [28].
The parameters for the mass and NUT charge are

ν1 ¼−μ2 ¼−
1

2
½sinhð2δ1Þsinhð2γ1Þþ sinhð2δ2Þsinhð2γ2Þ�;

ν2 ¼ μ1 ¼
1

2
½coshð2δ1Þcoshð2γ2Þþ coshð2δ2Þcoshð2γ1Þ�:

ð7:25Þ

The conserved charges are therefore
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M ¼ mþ 1

2
ðΔr1 þ Δr2Þ; N¼ nþ 1

2
ðΔu1 þ Δu2Þ;

Q1 ¼
∂M
∂δ1 ¼

1

2

∂ðΔr1Þ
∂δ1 ; P1 ¼ −

∂N
∂δ1 ¼ −

1

2

∂ðΔu1Þ
∂δ1 ;

Q2 ¼
∂M
∂δ2 ¼

1

2

∂ðΔr2Þ
∂δ2 ; P2 ¼ −

∂N
∂δ2 ¼ −

1

2

∂ðΔu2Þ
∂δ2 ;

J ¼ Ma: ð7:26Þ

Since the gauge fields are set pairwise equal before taking
δI derivatives, there is a factor of 2 difference for the
electromagnetic charges compared with the general
formulas (4.22).
Setting the NUT charge to zero, we obtain the quartic

and F invariants

Δ ¼
�
1

2
I∞2 −M∞

2

�
2

¼ 1

4
ðQ1Q2 þ P1P2Þ2;

F ¼
�
M2 −

1

2
I∞2

�
2

− Δ ¼ ðM2 −M∞
2 ÞðM2 þM∞

2 − I∞2 Þ

ð7:27Þ

in terms of other invariants defined in (6.37) and (6.41), and
which read here

I∞2 ¼ 1

2
½ðQ1Þ2 þ ðP1Þ2 þ ðQ2Þ2 þ ðP2Þ2�;

M∞
2 ¼ 1

4
½ðQ1 þ P1Þ2 þ ðQ2 þ P2Þ2�: ð7:28Þ

If ðδ1; γ1Þ ¼ ðδ4; γ4Þ and δ2 ¼ δ3 ¼ γ2 ¼ γ3 ¼ 0, then
we have the Einstein-Maxwell-dilaton-axion solution of
[55], which is labeled by its conserved charges
Q1; P1;M; J.

E. Reduction of the black string of minimal
5d supergravity

If δ2 ¼ δ3 ¼ δ4, γ2 ¼ γ3 ¼ γ4 and P1 ¼ N ¼ 0, then we
have the Kaluza-Klein reduction of the most general
asymptotically Kaluza-Klein homogeneous 5-dimensional
black string of minimal N ¼ 1 5d supergravity [87]. The
solution is labeled by its conserved charges M; J;Q1;
Q2; P2. The charge Q1 is the momentum along the string
in the Kaluza-Klein direction while Q2 and P2 are the 4-
dimensional electromagnetic charges.

F. One dyonic gauge field and two magnetic gauge fields

If P4 ¼ Q2 ¼ Q3 ¼ Q4 ¼ 0 andN ¼ 0, then we have an
analytic continuation of the Kaluza-Klein black hole
solution with two additional magnetic charges of [85].

VIII. EXTREMAL BLACK HOLES

An extremal black hole is characterized by the property
that its Hawking temperature vanishes. All extremal black
holes enjoy the attractor mechanism, which states that at the
horizon all scalar moduli reach an extremum value, which
is solely a function of the electromagnetic charges and
angular momentum carried by the black hole. In terms of 3-
dimensional coset models, extremal black holes lie on
nilpotent orbits of the symmetry algebra of the coset model.
There are a number of different extremal solutions that

may be obtained as limits of our general nonextremal
solution.9 We will not attempt a classification but simply
present 3 extremal limits of general interest that lead to
black holes with finite area: the 1=8-Bogomolny-Prasad-
Sommerfield (BPS) static black hole, the extremal fast
rotating black hole and the extremal slow rotating black
hole which includes as a subcase the regular static extremal
non-BPS black hole.

A. Static 1/8-BPS limit

Supersymmetric black holes of N ¼ 8 supergravity
which are 1=2-BPS or 1=4-BPS have zero area in the
supergravity regime, see e.g. [144]. Instead, the 1=8-BPS
black holes have finite area. Such black holes can be
generated through U dualities from a 1=8-BPS black hole
of the STU model, as constructed in [88,89,145,146]. In
this section, we will show how the 1=8-BPS black hole can
be obtained as a specific extremal limit of the nonextremal
solution.
In the static case a ¼ 0, we take the limit ϵ → 0 while

scaling

m ∼ ϵ2; δI ∼ ϵ0; eγI ∼ ϵ−1: ð8:1Þ

The solution admits 4 independent electric and 4 indepen-
dent magnetic charges. The mass saturates the BPS bound

M2 ¼ M∞
2 ð8:2Þ

where M∞
2 is defined in (6.37), which indicates that the

solution is supersymmetric. The F invariant is zero in the
limit. The quartic invariant is non-negative, Δ ≥ 0, and
the entropy (6.32) is

Sþ ¼ 2π
ffiffiffiffi
Δ

p
; ð8:3Þ

which reproduces the known entropy formula [18]. Since
the area is generically nonvanishing, the black hole is 1=8-
BPS. The scalar fields also obey the particular property

9See [118,119] for developments on a limiting procedure for
relating nonextremal to extremal coset orbits.
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S∞2 ¼ I∞2 −M∞
2 ð8:4Þ

where these quantities have been defined in Sec. VI.
The metric (5.1) takes the isotropic form

ds2 ¼ −r2W−1
0 ðrÞdt2 þW0ðrÞr−2ðdr2 þ r2dΩ2Þ; ð8:5Þ

and the scalar fields admit a nontrivial radial profile
interpolating between the attractor values at the horizon
and trivial values at infinity, as imposed by asymptotic
flatness. dualities, the black hole is expected to reduce to
the one discussed in [88,89,145,146].

B. Extremal fast rotating solution

The extremal, fast rotating solution is achieved for
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n20

p
. The solution admits 4 independent electric

and 4 independent magnetic charges as well as angular
momentum. There is a degenerate horizon at r ¼
rþ ¼ r− ¼ m. Using (6.46) and (6.47), the mass obeys
the remarkable formula

M2 ¼ I∞2 − S∞2 þ a2: ð8:6Þ

In our parametrization, we have J=a ¼ mðν21 þ ν22Þ=ν2.
Therefore, the F invariant can be evaluated as

F ¼ J2: ð8:7Þ

The entropy (6.32) then becomes

Sþ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δþ J2

p
: ð8:8Þ

The entropy of the generic extremal rotating black hole is
therefore independent of scalar moduli in general, since it is
only a functional of the quartic invariant and the angular
momentum. This is a feature of the attractor mechanism.
Angular momentum breaks supersymmetry. In the BPS

limit (8.1), a → 0 and J=a ∼ ϵ0, then J → 0 and all
conserved quantities coincide with those of Sec. VIII A.
Therefore, one can also consider the BPS limit as a special
limit of the extremal fast rotating solution.
The near-horizon limit is defined as

t → r0λ−1t; r → rþ þ λr0r; ϕ → ϕþ Ωextþ λ−1r0t;

ð8:9Þ

and

AI → AI − ΦIþ;extλ
−1r0dt; ~AI → ~AI −Ψþ

I;extλ
−1r0dt;

ð8:10Þ

where λ → 0, Ωextþ , ΦIþ;ext,Ψ
þ
I;ext are the chemical potentials

at extremality and r0 is an overall constant that we choose
to be r20 ¼ LðrþÞ. The near-horizon metric is

ds2 ¼ Wþ

�
−r2dt2 þ dr2

r2
þ du2

U
þ Γ2ðdϕþ krdtÞ2

�
;

ð8:11Þ

where WþðuÞ ¼ Wðrþ; uÞ, and

Γ2ðuÞ ¼ LðrþÞ2UðuÞ
a2W2þðuÞ

; k ¼ 2ðmν2 − n0ν1ÞΩþ ¼ 2πJ
Sþ

:

ð8:12Þ

The near-horizon gauge fields are

AI ¼ fIðdϕþ krdtÞ þ eI

k
dϕ;

~AI ¼ ~fIðdϕþ krdtÞ þ ~eI
k
dϕ; ð8:13Þ

where

fIðuÞ ¼ −
LðrþÞ
a

�
ζIðrþ; uÞ þ

ν1π
I
1 þ ν2π

I
2

2ðν21 þ ν22Þ
�
;

eI ¼ 2ðmν2 − n0ν1ÞΦIþ − n0πI1 þmπI2;

~fIðuÞ ¼ −
LðrþÞ
a

�
~ζIðrþ; uÞ −

ν1ρ
1
I þ ν2ρ

2
I

2ðν21 þ ν22Þ
�
;

~eI ¼ 2ðmν2 − n0ν1ÞΨþ
I þ n0ρ1I −mρ2I : ð8:14Þ

The geometry has the expected enhanced SLð2;RÞ × Uð1Þ
symmetry [147] and the expected functional form [148].
In the BPS limit, k ¼ 0 and the geometry reduces
to AdS2 × S2.
Following the Kerr/conformal field theory (CFT) con-

jecture [149], the entropy is reproduced by Cardy’s formula

Sþ ¼ 1

3
π2cJTJ ð8:15Þ

for a chiral sector of a CFT with central charge and
temperature

cJ ¼ 12J; TJ ¼
1

2πk
: ð8:16Þ

We expect that boundary conditions exist when a Virasoro
algebra acts as asymptotic symmetry algebra, as in all
known subcases (see [150] for references). A distinct
description of the entropy is in terms of Cardy’s formula

Sþ ¼ 1

3
π2cQ1

TQ1
ð8:17Þ

for a chiral sector of a CFT with central charge and
temperature
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cQ1
¼ 24

∂Δ
∂Q1

; TQ1
¼ 1

2πe1
; ð8:18Þ

which generalizes [151,152]. More explicitly,

cQ1
¼ 6Q2Q3Q4 þ 3P1ðP2Q2 þ P3Q3 þ P4Q4 − P1Q1Þ:

ð8:19Þ

There are similar expressions corresponding to the other
electromagnetic charges.

C. Extremal slow rotating and non-BPS static limit

An extremal limit with slow rotation is defined as

m∼ ϵ2m; n∼ ϵn; a∼ ϵa; eγ1 ∼ ϵ−1eγ1 ð8:20Þ

with ϵ → 0 and the remaining parameters (γ2; γ3; γ4; δI ,
I ¼ 1; 2; 3; 4) unscaled. The non-BPS static limit is defined
analogously but with a ¼ 0. There are four distinct limits
depending on the choice of γI, I ¼ 1; 2; 3; 4 that is blown
up. By permutation symmetry, all limits lead to the same
metric. We expect that the four different limits are related
by field redefinitions of the charging parameters without
changing the physics. Since n0 ¼ OðϵÞ, one can set the
NUT charge to zero by setting the final n ¼ n0. Besides
angular momentum, the solution admits 4 independent
electric and 4 independent magnetic charges.
In the limit (8.20) the temperature Tþ and angular

velocity Ωþ vanish. The horizon is located at r ¼ 0. In
the limiting procedure rþ ¼ −r− þOðϵ2Þ, which implies
that S− ¼ −Sþ. From (6.25), we deduce that J2 þ Δ ≤ 0,
the F invariant is F ¼ −Δ and the entropy (6.32) becomes

Sþ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ − J2

p
: ð8:21Þ

Since Δ ≤ 0, there are no BPS solutions with finite area in
this class. One can explicitly check that the mass obeys

M2 ¼ I∞2 − S2∞ ð8:22Þ

and, in particular, it does not depend upon the angular
momentum J. Upon setting to zero all magnetic charges,
the solution reduces to the extremal slow rotating four-
charge extremal solution studied in Sec. 5 of [86].10

Regular extremal static non-BPS black holes with 8
independent electromagnetic charges are obtained by set-
ting J ¼ 0. One such class of black holes labeled by 2
independent parameters was obtained in [94]. In that case,
we have the charge assignments ~P1 ¼ 1, ~P2 ¼ ~P3, ~Q2 ¼
~Q3 and P4 ¼ 0.

The general metric can be obtained by taking the limit
(8.20). It turns out that the functions LðrÞ and VðuÞ defined
in (5.18) blow up as L ¼ Oðϵ−1Þ, V ¼ Oðϵ−2Þ. Therefore,
the form of the W2 and ω3 functions is not adapted to the
description of the extremal slow rotating limit. However,
these functions are finite in the limit, and we find

W2 ¼ r4 þ 4Mr3 þ ðM2b1 þ b2J cos θÞr2
þ b3M3r − 4J2cos2θ − 4Δ;

ω3 ¼
2J
r
sin2θdϕ; ð8:23Þ

where b1; b2; b3 only depend on the charging parameters
ðδI; γIÞ, I ¼ 1; 2; 3; 4. We have b1 ≥ 0; b3 ≥ 0. The form of
ω3 is exceptionally simple and only depends on the
physical angular momentum. Since J2 ≤ −Δ,W2 is indeed
positive near r ¼ 0, which is the location of the extremal
horizon. Finally, the metric is

ds2 ¼ −
r2

Wðr; θÞ
�
dtþ 2J

r
sin2θdϕ

�
2

þWðr; θÞ
r2

½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�: ð8:24Þ

The matter fields can be obtained from the limit and we will
not display them here.
In the near-horizon limit, we replace

t → λ−1r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ − J2

p
t; r → λr0r; ð8:25Þ

and

AI → AI − dðΦIþλ−1r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ − J2

p
tÞ;

~AI → ~AI − dðΨþ
I λ

−1r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ − J2

p
tÞ; ð8:26Þ

and then take λ → 0. For convenience, we fix r0 ¼
ffiffiffi
2

p
for

convenience, we obtain

ds2 ¼ Wþ

�
−r2dt2 þ dr2

r2
þ dθ2 þ Γ2ðdϕ − krdtÞ2

�

ð8:27Þ

with

Wþ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ − J2cos2θ

p
; k ¼ Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Δþ J2
p ;

Γ2 ¼ sin2θ
−Δ − J2

−Δ − J2cos2θ
: ð8:28Þ

The geometry only depends upon the quartic invariant and
the angular momentum and it admits the expected
enhanced SLð2;RÞ × Uð1Þ symmetry [147]. The gauge

10Note that contrary to the claim of [86], at least five
independent electromagnetic charges are necessary to obtain a
generating solution.
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fields in the near-horizon limit can be most easily obtained
by taking the extremal limit with slow rotation (8.20)
followed by the near-horizon limit (8.25) of the expression
(5.19). In order to evaluate the latter expression, we need to
keep n general, and take n ¼ n0 only after taking the
derivative with respect to δI . We first note that C ¼ −ν21 þ
Oðϵ−2Þ and ΦIþ ¼ ∂δI log ν1 þOðϵÞ. Then, we obtain after
the limit ϵ → 0,

W2 ¼ 4ν21n
2ðn2 − a2cos2θÞ þOðλÞ;

ω3 ¼ −
2anν1
λr0r

sin2θdϕþOðλ0Þ: ð8:29Þ

After using (4.22), we get ξI ¼ ∂δI log ν1 and
AI ¼ PI cos θdϕ − ∂δI log ν1ω3, which results finally in

AI ¼ fIðdϕ − krdtÞ − eI

k
dϕ;

fI ¼ PIð−Δ − J2Þðπ̂I þ J cos θÞ
Jð−Δ − J2cos2θÞ ; eI ¼ PIπ̂Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Δ − J2
p ;

~AI ¼ ~fIðdϕ − krdtÞ − ~eI
k
dϕ;

~fI ¼
QIð−Δ − J2Þðρ̂I − J cos θÞ

Jð−Δ − J2cos2θÞ ; ~eI ¼
QI ρ̂Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ − J2

p ;

ð8:30Þ

after performing the gauge transformation as indicated in
(8.26). After analysis, we find

π̂I ¼ −2
1

PI

∂Δ
∂QI

; ρ̂I ¼ −2
1

QI

∂Δ
∂PI : ð8:31Þ

Following the Kerr/CFT conjecture [149], the entropy is
reproduced by Cardy’s formula

Sþ ¼ 1

3
π2cJTJ ð8:32Þ

for a chiral sector of a CFT with central charge and
temperature

cJ ¼ 12J; TJ ¼
1

2πk
: ð8:33Þ

Eight other Cardy formulas hold,

Sþ ¼ 1

3
π2cQI

TQI
¼ 1

3
π2cPITPI ; ð8:34Þ

one for each electric or magnetic charge, with central
charges and temperatures

cQI
¼ −6

∂Δ
∂Q̄I

; TQI
¼ 1

2πeI
;

cPI ¼ −6
∂Δ
∂P̄I ; TPI ¼ 1

2π ~eI
: ð8:35Þ

1. Kaluza-Klein black hole

Let us present the details of the extremal slow rotating
solution in the case where the only nonzero electromagnetic
charges are Q≡Q1, P≡ P1, corresponding to the charg-
ing parameters δ≡ δ1 and γ ≡ γ1. This is a 4-dimensional
solution of Kaluza-Klein theory, about by reduction of the
5-dimensional Einstein gravity [79,82,83] (see also [153]).
Extremality fixes the mass in terms of the electromag-

netic charges. In our parametrization, we find

M¼me2γcosh2δ
8

; Q̄¼me2γsinh3δ
8coshδ

; P̄¼ me2γ

8coshδ
;

ð8:36Þ

which satisfy

M2=3 ¼ Q̄2=3 þ P̄2=3: ð8:37Þ

Let us assume for simplicity and without loss of generality
that Q̄ ≥ 0, P̄ ≥ 0. Then we have the factorization
W2 ¼ WQWP, where

WQ ¼ r2 þ 4Q̄2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̄2=3 þ P̄2=3

q
r

þ 8Q̄1=3P̄−1=3ðQ̄ P̄−J cos θÞ;

WP ¼ r2 þ 4P̄2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̄2=3 þ P̄2=3

q
r

þ 8P̄1=3Q̄−1=3ðQ̄ P̄þJ cos θÞ: ð8:38Þ

Note that reversing the spacetime orientation would lead to
a change J → −J in WQ and WP as a consequence of the
equations of motion.
The coefficients in the gauge fields in the near-horizon

limit are given by

π̂1 ¼ ρ̂1 ¼
ffiffiffiffiffiffiffi
−Δ

p
¼ Q̄ P̄ : ð8:39Þ

At the horizon r ¼ 0, the scalar moduli reduce to

xi ¼ 0; y2 ¼ y3 ¼
1

y1
¼ P̄2=3ðQ̄ P̄þJ cos θÞ

Q̄2=3ðQ̄ P̄−J cos θÞ : ð8:40Þ

Introducing ψ ∼ ψ þ 2π, one can reconstruct a 5-
dimensional Ricci-flat metric as
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ds25 ¼ f2ðθÞ
�
Rψdψ −

P̄r
Q̄ P̄−J cos θ

�
dtþ J

r
sin2θdϕ

�
þ P̄ cos θdϕ

�
2

þ GðθÞ
2fðθÞ

�
−

r2

G2ðθÞ ðdtþ
J
r
sin2θdϕÞ2 þ dr2

r2
þ dθ2 þ sin2θdϕ2

�
; ð8:41Þ

where Rψ is arbitrary and

fðθÞ ¼
�
Q̄
P̄

�
1=3

�
Q̄ P̄−J cos θ
Q̄ P̄þJ cos θ

�
1=2

; GðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̄2P̄2 − J2cos2θ

p
: ð8:42Þ

The near-horizon metric is obtained by replacing r → λr, t → t=λ, and then taking the limit λ → 0; it falls into the
classification of [154]. The geometry of the horizon is globally S3. The metric can be put in the form

ds2 ¼ ΓðθÞ
�
−r2dt̄2 þ dr2

r2
þ dθ2 þ

X2
A;B¼1

γABðθÞðdϕA − kArdt̄ÞðdϕB − kBrdt̄Þ
�
; ð8:43Þ

where t̄ ¼ t=ðQ̄2P̄2 − J2Þ1=2, ϕ1 ¼ ϕ, ϕ2 ¼ Rψψ ,

ΓðθÞ ¼ P̄1=3ðQ̄ P̄þJ cos θÞ
2Q̄1=3 ; k1 ¼ J

ðQ̄2P̄2 − J2Þ1=2 ; k2 ¼ Q̄P̄2

ðQ̄2P̄2 − J2Þ1=2 ; ð8:44Þ

and

γAB ¼ 1

ðQ̄ P̄þJ cos θÞ2
�
Q̄2P̄2 − J2cos2θ þ ðQ̄ P̄ cos θ − JÞ2 2Q̄ðQ̄ P̄ cos θ − JÞ

2Q̄ðQ̄ P̄ cos θ − JÞ 2Q̄ðQ̄ P̄−J cos θÞ=P̄

�
: ð8:45Þ

It admits an SLð2;RÞ × Uð1Þ2 symmetry. The Killing
vectors ξ−1 ¼ ∂t, ξ0 ¼ r∂r − t∂t and

ξ1 ¼
�

1

2r2
þ t̄2

2

�
∂ t̄ − t̄r∂r þ

k1

r
∂ϕ þ

k2

Rψr
∂ψ ð8:46Þ

satisfy the SLð2;RÞ commutators ½ξ0; ξ1� ¼ −ξ1,
½ξ0; ξ−1� ¼ ξ−1 and ½ξ−1; ξ1� ¼ −ξ0.
Following the Kerr/CFT conjecture [149], the entropy is

reproduced by either of Cardy’s formulas

Sþ ¼ 1

3
π2cJTJ ¼

1

3
π2cQTQ ð8:47Þ

for a chiral sector of CFTs with central charges and
temperatures

cJ ¼ 12J; TJ ¼
1

2πk1
; ð8:48Þ

cQ ¼ −6
∂Δ
∂Q̄ ; TQ ¼ 1

2πk2
; ð8:49Þ

as obtained in [155] (see also [156]).

IX. KILLING TENSORS AND SEPARABILITY

It is well known that the Kerr solution possesses various
types of Killing tensors. These tensors are related to the
integrability of geodesic motion, and the separability of the
Klein-Gordon equation and the Dirac equation. Black hole
solutions of N ¼ 8 supergravity also involve metrics that
possess various types of Killing tensors as we will now
demonstrate. Using (5.17), the metric (5.15) can be written
in the form

ds2 ¼ −
R −U
W

dt2 −
ðLuRþ LrUÞ

aW
2dtdϕ

þ ðW2
rU −W2

uRÞ
a2W

dϕ2 þW

�
dr2

R
þ du2

U

�
; ð9:1Þ

where

W2 ¼ ðR −UÞ
�
W2

r

R
−
W2

u

U

�
þ ðLuRþ LrUÞ2

RU
: ð9:2Þ

Its determinant is
ffiffiffiffiffiffi−gp ¼ W. For the black hole solution,

the functions RðrÞ and UðuÞ are given in (5.16), and
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LrðrÞ ¼ Lþ 2Nn;

W2
rðrÞ ¼ R2 þ 4MrRþ ðLþ 2NnÞ2;

LuðuÞ ¼ 2Nðu − nÞ;
W2

uðuÞ ¼ U2 − 2UV þ 4N2ðu − nÞ2; ð9:3Þ

where LðrÞ and VðuÞ are given in (5.18).
Henceforth, in this section we consider a more general

class of metrics of the form (9.1). We generalize so that: R,
Wr and Lr are arbitrary functions of r; U, Wu and Lu are
arbitrary functions of u; andW satisfies (9.2). There are two
conformally related metrics of interest: the usual Einstein
frame metric ds2, and the string frame metric

d~s2 ¼ r2 þ u2

W
ds2; ð9:4Þ

whose inverse ð∂=∂ ~sÞ2 is given by

ðr2 þ u2Þ
� ∂
∂ ~s

�
2

¼ R∂2
r þU∂2

u þ
�
W2

u

U
−
W2

r

R

�
∂2
t

− a

�
Lr

R
þLu

U

�
2∂t∂ϕ þ a2

�
1

U
−
1

R

�
∂2
ϕ:

ð9:5Þ

Let us recall some definitions of Killing tensors. A (rank-
2) Killing-Stäckel tensor is a symmetric tensor Kμν ¼ KðμνÞ
that satisfies ∇ðμKνρÞ ¼ 0. A (rank-2) conformal Killing-
Stäckel tensor is a symmetric tensor Qμν ¼ QðμνÞ that
satisfies ∇ðμQνρÞ ¼ qðμgμνÞ for some qμ, given in 4 dimen-
sions by qμ ¼ 1

6
ð∂μQν

ν þ 2∇νQν
μÞ.

For black hole solutions of supergravity, usually only the
string frame metric admits Killing tensors, whereas the
Einstein frame metric usually only admits conformal
Killing tensors [97]. Here we note that in general, the
string frame metric has a Killing-Stäckel tensor given by

~Kμν∂μ∂ν ¼
1

r2 þ u2

��
u2W2

r

R
þ r2W2

u

U

�
∂2
t − a

�
u2Lr

R
þ r2Lu

U

�
2∂t∂ϕ þ a2

�
r2

U
−
u2

R

�
∂2
ϕ − u2R∂2

r þ r2U∂2
u

�
: ð9:6Þ

It is generically irreducible, i.e. not a linear combination of
the metric and products of Killing vectors. In general, if a
metric d~s2 possesses a Killing-Stäckel tensor ~Kμν, then for
any conformally related metric ds2 there is an induced
conformal Killing-Stäckel tensor with components given
byQμν ¼ ~Kμν; see e.g. [157]. In particular, the string frame
Killing-Stäckel tensor induces a conformal Killing-Stäckel
tensor for the Einstein frame metric. Note that the existence
of a conformal frame admitting a Killing-Stäckel tensor is a
more restrictive condition than the existence of a conformal
Killing-Stäckel tensor in Einstein frame. This conformal
Killing-Stäckel tensor was identified for the subcases with
4 electric charges in [97], and for the nonextremal rotating
Kaluza-Klein black hole in [158].
If we specialize to Lr ¼ Wr and Lu ¼ Wu, then we can

write without loss of generality W ¼ Wr þWu. Then the
Einstein frame metric is of the form

ds2 ¼ −
R

Wr þWu

�
dtþWu

a
dϕ

�
2

þ U
Wr þWu

�
dt −

Wr

a
dϕ

�
2

þ ðWr þWuÞ
�
dr2

R
þ du2

U

�
: ð9:7Þ

This class of metrics has been studied in detail [28], and has
the property that both the string frame and Einstein frame
metrics possess Killing-Yano tensors with torsion. It

implies that both the Einstein and string frame metrics
admit Killing-Stäckel tensors. The class of metrics includes
the general black hole metric truncated to −iX0X1 super-
gravity, by setting the gauge fields pairwise equal, say
ðδ1; γ1Þ ¼ ðδ4; γ4Þ and ðδ2; γ2Þ ¼ ðδ3; γ3Þ.

A. Geodesics

The Killing tensor in string frame guarantees the
complete integrability of geodesic motion in this frame,
which we now demonstrate explicitly. In string frame, the
Hamilton-Jacobi equation for geodesic motion is

∂S
∂λ þ

1

2
~gμν∂μS∂νS ¼ 0; ð9:8Þ

where S is Hamilton’s principal function, ∂μS ¼ pμ ¼
dxμ=dλ, pλ are momenta conjugate to xμ, and λ is an affine
parameter. Consider the ansatz

S ¼ 1

2
μ2λ − Etþ Lϕþ SrðrÞ þ SuðuÞ: ð9:9Þ

The constants pt ¼ −E and pϕ ¼ L are momenta con-
jugate to the ignorable coordinates t and ϕ, related to
energy and angular momentum. The particle mass is μ,
so that pμpμ ¼ −μ2. The components ðr2 þ u2Þ~gμν are
additively separable into functions of r and of u, and so
the Hamilton-Jacobi equation is additively separable.
Explicitly, we have
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�
W2

u

U
−
W2

r

R

�
E2 þ 2a

�
Lr

R
þ Lu

U

�
ELþ a2

�
1

U
−
1

R

�
L2 þ R

�
dSr
dr

�
2

þ U

�
dSu
du

�
2

þ μ2ðr2 þ u2Þ ¼ 0; ð9:10Þ

and so

dSr
dr

¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

rE2 − 2aLrELþ a2L2 − ðCþ μ2r2ÞR
q

;

dSu
du

¼ 1

U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−W2

uE2 − 2aLuEL − a2L2 þ ðC − μ2u2ÞU
q

; ð9:11Þ

where C is a separation constant. We then determine rðλÞ and uðλÞ by integrating

dr
dλ

¼ ~grrpr ¼
R

r2 þ u2
dSr
dr

;
du
dλ

¼ ~guupu ¼
U

r2 þ u2
dSu
du

: ð9:12Þ

Finally, we determine tðλÞ and ϕðλÞ by integrating

dt
dλ

¼ ~gttpt þ ~gtϕpϕ ¼ E
r2 þ u2

�
W2

r

R
−
W2

u

U

�
−

aL
r2 þ u2

�
Lr

R
þ Lu

U

�
;

dϕ
dλ

¼ ~gtϕpt þ ~gϕϕpϕ ¼ aE
r2 þ u2

�
Lr

R
þ Lu

U

�
þ a2L
r2 þ u2

�
1

U
−
1

R

�
: ð9:13Þ

In Einstein frame, generically only the μ ¼ 0 massless
Hamilton-Jacobi equation separates.

B. Klein-Gordon equation

Separability of the massless Klein-Gordon equation
makes the analysis of [159] applicable to the general black
hole of N ¼ 8 supergravity, which will therefore admit
hidden conformal symmetries in the near-horizon region.
The massive Klein-Gordon equation for the Einstein

frame metric is

▫Φ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ μ2Φ: ð9:14Þ

Consider the ansatz

Φ ¼ ΦrðrÞΦuðuÞeiðkϕ−ωtÞ: ð9:15Þ

Then the Klein-Gordon equation gives

μ2W ¼ ω2W2
r − 2aωkLr þ a2k2

R

−
ω2W2

u þ 2aωkLu þ a2k2

U

þ 1

Φr

d
dr

�
R
dΦr

dr

�
þ 1

Φu

d
du

�
U
dΦu

du

�
: ð9:16Þ

In the particular case where the Einstein metric takes the
form (9.7), such as for generic black holes of −iX0X1

supergravity, the μ ≠ 0 massive Klein-Gordon equation in

Einstein frame separates. Generically, there is separation
only in the massless case μ ¼ 0, leading to

d
dr

�
R
dΦr

dr

�
þ
�
ω2W2

r − 2aωkLr þ a2k2

R
þ C

�
Φr ¼ 0;

d
du

�
U
dΦu

du

�
−
�
ω2W2

u þ 2aωkLu þ a2k2

U
þ C

�
Φu ¼ 0;

ð9:17Þ

whereC is an integration constant. Specializing to the black
hole solutions we constructed, the radial equation has
regular singular points at the locations of the horizons,
r ¼ r�, and an irregular singular point at infinity, similar to
what happens for the Kerr solution. The solutions are Heun
functions. The angular equation involving u can be
analyzed similarly.

X. CONCLUSION AND FURTHER DIRECTIONS

We have constructed a generating solution for the most
general stationary, asymptotically flat black hole of N ¼ 8
supergravity. We checked that this black hole reduces in
specific subcases to all previously known solutions of the
STU model with 4 independent (combinations of) electro-
magnetic charges [71,81,84,85,87]. Unlike many other
treatments of STU supergravity, we have emphasized the
4-fold permutation symmetry of the gauge fields in the 3-
dimensional coset model, not just the triality symmetry. We
discussed several extremal limits of interest, but a com-
prehensive examination of all extremal limits of our
solution remains to be done. The generic black hole that
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we constructed admits a conformal Killing-Stäckel tensor,
and the massless Klein-Gordon equation separates, so we
can deduce the presence of hidden conformal symmetries in
the near-horizon region.
The solution generating technique that we detailed is

general and could be used for a wider class of stationary
seed solutions, beyond the Kerr-Taub-NUT solution that
we used. Different choices of group element can be used,
allowing for more general asymptotic behavior. One
example is the application to “subtracted geometries”
[138,160,161], obtained by solution generating techniques
in [99,162]. Another example is obtaining charged black
holes in a magnetic Melvin universe [163]. The techniques
can also be applied to the various theories in 5 and 6
dimensions that we discussed.
The issue of black hole uniqueness has not been fully

addressed (see [164] for a recent review). It was shown in
[32] that, with certain assumptions, all charged black holes
in coset models lie in the orbit of the Kerr black hole. These
assumptions were clarified in [165] in the static case, where
it was shown that all scalar fields should be regular on the
horizon in order to apply the theorem of [32]. Clarifying the
theorem of [32] in the stationary case seems a natural step
to prove uniqueness.
Under general assumptions, stationary 4-dimensional

black holes are axisymmetric [166], so can be Kaluza-
Klein reduced to 2 spatial dimensions. For Einstein gravity
and Einstein-Maxwell theory, inverse scattering techniques
can then be used to generate solutions, as reviewed in [167].
These techniques can be generalized to certain theories of
gravity coupled to matter, in particular supergravities. They
have been developed for the S3 supergravity in [168], and
more generally for the STU supergravity in [114]. One may
gain more insights into the algebraic structure of the general
black hole solution by deriving it using these techniques.
Inverting the relation between conserved charges and

auxiliary parameters that parametrize the 4-dimensional
fields would allow for expressing the entropy, or equiv-
alently the F invariant that we defined, in terms of physical
charges. Our formula for the entropy of a general non-
extremal black hole is not manifestly invariant under
SLð2;RÞ3 or triality. We therefore are unable to provide
here a manifestly E7ð7Þ-invariant entropy formula for
nonextremal black holes in N ¼ 8 supergravity. Even in
the simpler case of Kaluza-Klein theory, i.e. reduction of 5-
dimensional Einstein gravity, the F invariant for the dyonic
black hole takes an intricate form that we were able to
present. We leave this difficult algebraic problem for future
investigations.
We checked that the first law of thermodynamics closes

both at the outer and inner horizon and that the Smarr
formula holds at the outer and inner horizons. We derived a
generalization of the quadratic mass formula in the pres-
ence of rotation and NUT charge. We also presented some
relationships between physical charges defined at the outer

and inner horizon that generalize previously known sub-
cases. A microscopic understanding of these relationships
remains to be uncovered.
Extremal black holes have been of interest recently with

regards to the Kerr/CFT conjecture and its generalizations.
The general black hole admits two distinct extremal
rotating limits, the fast and slow rotating cases. In each
case, similar to each subset of solutions that has been
previously studied under that viewpoint, we reproduced all
expected properties of extremal black holes, such as the
existence of an SLð2;RÞ × Uð1Þ symmetric near-horizon
region and the Cardy form of the entropy. We noted the
property that the generic near-horizon metric of extremal
slow rotating black holes only depends upon the angular
momentum and the quartic invariant. These results, if
combined with a general asymptotic symmetry group
analysis, would allow a microscopic counting of these
extremal black holes.
Several avenues for microscopically accounting for the

entropy of specific nonextremal black holes in STU
supergravity have been proposed [159,169–171]. It would
be very interesting to try to unify these approaches and
propose a microscopic model for the general black hole.
We have given a generating solution for the most general

black hole of maximal supergravity in four dimensions.
Without the complication of magnetic charges and with
fewer gauge fields, the same had been done a long time ago
for black holes in maximal supergravity in five dimensions
[172] and higher dimensions [173]. Black rings are a
further class of exact solutions in five dimensions, and
are known in Einstein gravity with two independent
rotations [174]. Several charged generalizations are known;
see [175] for references. Using U dualities, a generating
black ring solution for maximal supergravity is expected to
involve 21 parameters, including mass, 2 angular momenta,
3 electric monopole charges, and 15 dipole charges [176].
Its construction would be a formidable task, and even its
truncation to the 5-dimensional STU supergravity is
not known.
Partial generalizations to asymptotically AdS black holes

in the Uð1Þ4 truncation of maximal N ¼ 8, SO(8) gauged
supergravities (including the recently discovered one-
parameter family of ω-deformed theories [27,30]) have
been found; see [28,29,177]. The asymptotically flat
solution presented here has been generalized in [28] to
two classes of asymptotically AdS solutions: static solu-
tions with 4 independent electric charges and 4 independent
magnetic charges; and rotating solutions with pairwise
equal gauge fields, generalizing the solution of −iX0X1

supergravity, which has 2 independent electric charges and
2 independent magnetic charges. However, they are diffi-
cult to find, since the solution generating techniques of
ungauged supergravity rely on hidden symmetries. These
symmetries of the bosonic theory are mostly broken in
gauged supergravity by a scalar potential, in STU
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supergravity from SLð2;RÞ3 to SOð2Þ3 [100] (see also
[177]). The most general AdS generalizations of our
ungauged solutions remain to be found. One guide to
finding these solutions is that they are expected to involve
metrics that allow separability. The class of metrics that we
defined that admit a Killing-Stäckel tensor in string frame
might therefore be useful in this context.
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