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Black holes in A/ = 8 supergravity from SO(4,4) hidden symmetries
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We detail the construction of the most general asymptotically flat, stationary, rotating, nonextremal,
dyonic black hole of the four-dimensional N = 2 supergravity coupled to 3 vector multiplets that describes
the STU model. It generates through U dualities the most general asymptotically flat, stationary black hole
of A/ = 8 supergravity. We develop the solution generating technique based on SO(4,4)/SL(2, R)* coset
model symmetries, with an emphasis on the 4-fold permutation symmetry of the gauge fields. We indicate
how previously known nonextremal and extremal solutions of the STU model are recovered as limiting
cases. Several properties of the general black hole solution are discussed, including its thermodynamics, the
quadratic mass formula, the Bogomolny-Prasad-Sommerfield limit, the slow and fast extremal rotating
limits, its properties in regards to the Kerr/conformal field theory correspondence, its Killing tensors and
the separability of geodesic motion and probe scalars.
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I. INTRODUCTION

Black holes are some of the most important nonpertur-
bative objects of quantum gravity. To understand their
fundamental properties, such as their microscopic descrip-
tion, it is essential to have explicit black hole solutions and
understand all their classical properties, such as their
thermodynamics. In four-dimensional Einstein-Maxwell
theory, the Kerr-Newman solution represents a general
stationary, asymptotically flat black hole. More general
theories, such as those arising from string theory, admit
more general families of black hole solutions. One of the
most studied string theory compactifications down to 4
dimensions is the reduction of M theory on 7”7, which is
described in the low-energy regime by maximal N = 8
supergravity [1,2]. The bosonic sector, which is relevant for
classical solutions, includes Einstein-Maxwell theory as a
truncation, and also includes several other well-studied
theories of gravity coupled to vectors and scalars. A
number of black hole solutions of N = 8 supergravity
and its truncations have been discovered over the last
35 years, but the most general family had proved elusive. In
this paper, we give a derivation of the most general
stationary, asymptotically flat black hole of N' = 8 super-
gravity in a specific U-duality frame, as announced in [3].

N = 8 supergravity admits a consistent truncation to an
N =2 supergravity coupled to three vector multiplets,
which is known as the STU model [4,5] (S, T and U are
sometimes used to denote its three complex scalar fields).
The STU supergravity is particularly useful because a
suitable 5-charge solution of STU supergravity suffices to
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generate the general black hole of N =8 supergravity
through U dualities [6,7]. Solutions of STU supergravity
can also be used to generate solutions of pure N > 2
supergravities and heterotic supergravity [7]. Such U
dualities only act on the matter fields, while leaving the
four-dimensional metric invariant.

While N = 8 supergravity admits an E;(;)(R) symmetry
of its field equations, the STU supergravity action has an
SL(2, R)? symmetry, and also symmetry under permutations
of the three SL(2, R) factors, which is commonly referred to
as the “S-7-U” triality symmetry [5]. Upon dimensional
reduction along time, the classical symmetry of the action
enhances to SO(4,4), which contains an SL(2,R)* sub-
group. The extra SL(2,R) is associated with the Ehlers
SL(2, R) that arises from reduction of Einstein gravity [8,9].

N = 8 supergravity has been of considerable interest
recently thanks to the identification of elegant ultraviolet
cancellations in perturbation theory, see e.g. [10]. Using
Kawai-Lewellen-Tye relations [11], amplitudes in N/ = 8
supergravity are related to amplitudes in A/ = 4 super-
Yang-Mills theory. The latter theory is finite [12,13],
prompting speculation that A/ = 8 supergravity might be
finite. However, pure N =8 supergravity cannot be
decoupled from string theory [14], contrary to N =4
super-Yang-Mills theory [15].

The entropy of extremal black holes in N = 8 super-
gravity is related to qubit entanglement measures in
quantum information systems, as reviewed in [16,17].
There have been in particular studies of the STU super-
gravity, which corresponds to entanglement of three qubits
[18-20] and four qubits [21-23]. More generally, extremal
black hole entropy in A/ = 8 supergravity corresponds to
tripartite entanglement of seven qubits [24].
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Ungauged A = 8 supergravity can be generalized to
gauged N =8 supergravities. Whereas the ungauged
theory admits a Minkowski vacuum solution, the gauged
theories admit anti—de Sitter (AdS) vacuum solutions, so
are relevant for studying the AdS/CFT correspondence
[15]. The gauged theories have attracted recent interest
because the original N' =8, SO(8) gauged supergravity
[25,26], previously thought to be unique, has been gener-
alized to a one-parameter family of A/ = 8 gauged super-
gravities [27]. Black holes in the ungauged N =8
supergravity provide a starting point for finding black
holes of the gauged N =8 supergravity. Systematic
solution generating techniques, which work for the unga-
uged theory, fail for the gauged theories. Therefore, finding
solutions of the gauged theory requires guesswork based on
solutions of the ungauged theory. For some recent results in
this direction, see [28-30] and references therein.

It is conceptually straightforward to find complicated
charged black hole solutions of interest, such as the most
general black hole of AN =8 supergravity, given the
existence of well-known algorithms and suitable uncharged
black hole solutions, but it can be a difficult algebraic task.
A common method of generating charged, stationary black
holes is to dimensionally reduce the theory on the time
coordinate to give Euclidean 3-dimensional gravity
coupled to matter. After Hodge dualizing three-dimensional
vectors to scalars, the resulting bosonic matter Lagrangian
typically consists of a coset model of scalar fields, which
admits symmetries forming a real Lie algebra. A solution
can then be generated starting from an initial seed solution
and acting on it with coset model symmetries. In this
paper we will detail the coset model based on SO(4,4)
symmetries and use it to obtain general black holes. The
four-dimensional STU supergravity has four gauge fields
on an equal footing. In this paper, we will present a formula-
tion of the SO(4,4) coset model that keeps the permutation
symmetry between the four gauge fields manifest.

The conceptual foundations of coset model symmetries
have been known for years [31,32]. The main interest of
such symmetries, when considering spacelike reductions
down to 4 dimensions only, is their role as symmetries of
string theory after quantization [33] (see e.g. [34-37] for
reviews). Attempts have been made to similarly understand
symmetries appearing in timelike reductions, which led to
string theories in mixed time signatures [38,39], but it is not
clear if such theories can be quantized. In the case of
reductions down to 3 dimensions, it has been conjectured
that the classical symmetry group is quantized in string
theory [40,41] but only partial indications have been
obtained in this direction [42,43]. In this paper we will
only treat symmetries classically as a solution generating
technique. A classification of the symmetries appearing in
torus reductions of various maximal supergravities (on both
space and time) has been performed [44-47]. Explicit
algorithms for particular cosets have been developed
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extensively over the years, starting from the pioneering
work on Einstein gravity [8,9], understood in terms of an
SL(2,R) coset [48], and on Einstein-Maxwell theory [49],
understood in terms of an SU(2, 1) coset [50-53]. Other
theories considered are Kaluza-Klein theory, understood in
terms of an SL(3,R) coset [54]; the particular Einstein-
Maxwell-dilaton-axion theory used for generating solutions
of N' = 4 supergravity written in terms of a Sp(4, R) coset
[55-62]; 5d minimal supergravity, which admits G2(2)
symmetries in [47,63—70]; and STU supergravity in 4
and 5 dimensions, which admits SO(4,4) symmetries
[71-75]. For the full /' = 8 supergravity, reduction to 3
Euclidean dimensions gives the maximal A = 16 super-
gravity theory [31] with 128 scalars parametrizing the coset
Eg(s)/S07(16) [32,76,77].

The stationary asymptotically flat black hole which
generates, under U dualities, all single-centered, stationary
black holes of N = 8 supergravity has been presented in
[3]. The main purpose of this article is to present the details
of the solution and its generation from SO(4,4) hidden
symmetries. The solution generalizes previously known
subcases [55,71,78-87]; see also [88-96] for extremal
branches. It admits 8 independent electromagnetic charges
(4 electric and 4 magnetic), in addition to mass and angular
momentum [the generalization with Newman-Unti-
Tamburino (NUT) charge is considered as well]. Since
there are 4 gauge fields on an equal footing, it is simpler to
present explicitly the more general solution with 8 inde-
pendent charges rather than a 5-charge solution. Moreover,
keeping the NUT charge on the same footing as the mass
allows for a simplifying SO(2) symmetry that can be
broken as a final step to specialize to asymptotically flat
black holes.

Many physical properties of the general solution are as
expected from its known subcases, such as the Kerr-
Newman black hole. There are generically two horizons.
The asymptotically flat solution obeys the first law of
thermodynamics and the Smarr relation. The formal first
law of thermodynamics and Smarr relation at the inner
horizon also hold. The product of areas of the outer and
inner horizons is quantized, i.e. independent of the mass.
This product is proportional to the sum of the angular
momentum squared and the Cayley hyperdeterminant,
which is a quartic invariant of the electromagnetic charges.
Rotating extremal limits exist, with both fast and slow
rotation. The black hole entropy takes the expected chiral
Cardy form in these extremal cases and the near-horizon
limits have the expected SL(2,R) enhanced symmetry.
Supersymmetric black holes with finite horizon area are
recovered in a specific nonrotating extremal limit.

We show that in a different conformal frame, the metric
belongs to a class of spacetimes admitting a Killing-Stickel
tensor, similar to all other known charged generalizations of
the Kerr black hole [97]. Consequently, the geodesics of the
conformally related metric are completely integrable, and
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the null geodesics in FEinstein frame are completely
integrable. The massless Klein-Gordon equation is sepa-
rable around the general stationary asymptotically flat
black hole of N =8 supergravity obtained from our
solution by U dualities.

The entropy of extremal black holes in A/ = 8 super-
gravity is known to have a simple expression [98] in terms
of the Cartan-Cremmer-Julia quartic E;(7) invariant, which
is constructed solely from the electromagnetic charges.
Here, we derive the formula for entropy of the nonextremal
black hole, and show that it cannot be expressed as a
function of the usual E;(7) invariants, namely the quartic
invariant, the mass and angular momentum. Instead, the
entropy of the generic nonextremal stationary asymptoti-
cally flat black hole of A/ = 8 supergravity depends upon
an additional E;(7) invariant that remains to be understood.
We identify this quantity for black holes in the U-duality
frame of the STU model in terms of auxiliary parameters
that are also used to parametrize the conserved charges of
the black hole. In specific subcases including the dyonic
Kerr-Newman black hole and the dyonic, rotating Kaluza-
Klein black hole, we are able to provide the explicit
expression for the invariant and therefore the entropy in
terms of conserved charges.

The rest of the paper is organized as follows. We present
the relevant supergravity theories in Sec. II. We outline the
solution generating technique based on SO(4,4) sym-
metries in Sec. III, and then apply it to the particular case
of a Kerr-Taub-NUT seed solution in Sec. IV. We sum-
marize the general resulting solution in Sec. V, and present
its physical properties in Sec. VI. Then we discuss
particular limits of the general solution, recovering known
nonextremal solutions in Sec. VII and finding some
extremal limits in Sec. VIII. In Sec. IX, we consider a
more general class of metrics, discuss Killing tensors and
the separability of geodesic motion and the Klein-Gordon
equation. We conclude in Sec. X.

II. STU SUPERGRAVITY

Four-dimensional maximal A/ = 8 supergravity can be
obtained from 77 reduction of 11-dimensional supergrav-
ity, via 10-dimensional type IIA supergravity. The bosonic
fields of A/ = 8 supergravity are the metric, 28 U(1) gauge
fields, and 70 scalar fields parametrizing E;(7)/SU(8). To
obtain a generating solution for the most general black hole
of N =8 supergravity, global symmetries of the field
equations (classical U dualities) imply that it suffices to
truncate to a theory with only 4 gauge fields [7]. The
relevant supergravity theory, sometimes called the STU
model, is an N =2 supergravity coupled to 3 vector
multiplets. Each vector multiplet contains a gauge field,
a dilaton, and an axion. The fourth gauge field belongs to
the A/ = 2 supergravity multiplet. Together, the bosonic
fields are the metric, four U(1) gauge fields A/, three
dilatons ¢; and three axions y;. We label the gauge fields by

PHYSICAL REVIEW D 90, 025029 (2014)

I =1,2,3, 4, and label the dilatons and axions by i = 1, 2,
3. It is convenient to denote’

Xi =Xi yi=e", (21)
which can be united as a complex scalar
Z; = Xx; +1y;. (2.2)

The scalars parametrize (SL(2,R)/U(1))?. These complex
scalars are sometimes denoted S,7, U, hence the name
“STU supergravity.”

Since we are in 4 dimensions, the gauge fields A’ may be
duallzed to dual gauge fields A;. The field strengths are

= dA’ and the dual field strengths are F ; = dA;. We use
the terminology “electric and magnetic according to the
nature of the gauge fields A’. Note that other literature often
uses the terms electric and magnetic differently, depending
on the choice of duality frame.

We choose a duality frame so that there is a 4-fold
symmetry of the gauge fields A’. One way to understand
this is that the original gauged generalization of the theory,
the original maximal A/ = 8, SO(8) gauged supergravity,
arises from S’ reduction of 11-dimensional supergravity
[26]. An Abelian truncation then gives N =2, U(1)*
gauged supergravity [100]. The four U(1) gauge fields
originate from the U(1)* Cartan subgroup of the full SO(8)
gauge group, explaining why the four gauge fields A’ are
on an equal footing. Taking the ungauged limit then gives
the STU supergravity. Furthermore, setting all the gauge
fields equal as A' = A% = A3 = A%, with vanishing scalars,
recovers Einstein-Maxwell theory

The Lagrangian in terms of (A', A,, A5, A%) is relatively
short,

’;
= Rx1 — Ez:: *dp; A dg; + e*ixdy; A dy;)

1 B _
— Ee_(ﬂl (e‘/72+{l73 *fl A fl + e’l’Z_‘ﬁS *fz A fZ’

+ et 0w Fy A Fy + e Bx FAA FH)

+}(1(F1/\ F4+F2/\F3), (23)

where F! and F, are field strengths modified by “trans-
gression” terms, given by

F' = F' + y3Fy + o F5 — o3 F*, Ft=F*,
ﬁQIFQ—X2F4, ﬁg;:ﬁg—)(:;F“. (24)

Note that the parity-odd terms can also be written as
21 (F' A F*+ F, A F3). After relabeling and changing

"The literature has various conventions; our previous papers
[3,28] stated x; = —y;, but used only y;. The convention in [99] is

X = ~Xi-
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the signs of some axions, this matches the Lagrangian of
[71,100].2 A further advantage of this formulation is that it
comes directly from 7?2 reduction of a 6-dimensional
supergravity, given in Sec. IIE 2.

It is also useful to write the Lagrangian (2.3) in the
general form

= d4x\/:§ R — %fAB(‘I))aﬂCI)Aa”(I)B

1 1
_ZkIJ((I))F{tvFJMD+ZhIJ( ) ”W”FﬁyF/Jm . (25)
where &4 = (¢, ¢,. ¢3 X1.X2.x3) are the scalar fields,

and A = (A!,A,, A3, A*) are the U(1) gauge fields, with
field strengths F/ = dA’. The kinetic coefficients are

fap = diag(1, 1, 1,1, 22, e273),

00 0 1
nlo o 10

hy, = =2~ , 2.6

1 210 1 0 0 (26)
1 000

and k;; is a longer expression that can be easily deduced
from the Lagrangian (2.3).

A. Symmetries: SL(2,R) and triality

We define the three matrices of scalars M; as (see
e.g. [5])

1 1 x,- e‘”"
M"—;<xi x%+y%) = <}(

The scalar matrix M; transforms under the classical
SL(2,R), x SL(2,R), x SL(2,R); U dualities in the triv-
ial representation for two out of the three SL(2, R) groups.
For the nontrivial corresponding SL(2, R); group, it trans-
forms as

xie”
e ?i —+ ){%e(/’i :

(2.7)

M,’ - a),»T./\/liaJ,-, (28)
where @; € SL(2,R);, given by
d b
w; = , ad—bc = 1. (2.9)
c a

In the quantum theory, a, b, ¢, d are integers. The scalar
kinetic terms of the Lagrangian may be written as

*Our field strengths are related to the hatted ﬁeld strengths of
[711by F! = Fy, Fy = Fy, Fy = F', F* = F? and the signs of
1 and y5 are flipped while the one of y, is kept fixed.
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3

1
_EZ(*dq’i A dg; +e*ixdy; A dy;)
=1

1 317

which is manifestly invariant under SL(2,R)* and
under permutation of the three pairs of scalars. Note that
if the scalars (¢;,x;), i =1, 2, 3 vanish at infinity,
then M; =1+ O(1/r).

More generally, one can show that the equations of
motion of the Lagrangian (2.3) can be written in a form
manifestly invariant under SL(2,R)? and under permuta-
tion of the three copies of SL(2,R). The symmetry is
however not manifest in the action (2.3). However, there
exist three actions that each make manifest a pair of
SL(2,R) symmetries and that only differ by dualizations
of gauge fields [5]. In this sense, the theory described by
(2.3) admits a triality symmetry.

Escalar =

(xd M1 A dM,). (2.10)

B. Dualization

There are several other formulations of STU super-
gravity that appear in the literature, corresponding to
different duality frames. To obtain these, we need relations
between gauge fields F! and dual gauge fields F 1, for each
I. We introduce the dual gauge potential as a Lagrange
multiplier to enforce the Bianchi identity for the original
gauge field strength, and then vary with respect to the
original field strength. To dualize F! to F;, we add to the
Lagrangian (2.3) an extra term

—A; AdF' = —F, A F' +d(A; A FY). (2.11)
Varying the modified Lagrangian with respect to F!, we see
that F! and F' are related by

Fy—y F* = —e0rtotos FL (2.12)
Similarly, F* and F, are related by
F4 _)(lFl — e (_e—(ﬁz—% * F4 + yoye?2t s * F1

+ e Ty o+ ye 0 Fy). (2.13)

To dualize F , to F2, we instead add to the Lagrangian (2.3)
an extra term

A2 AdF, = F2AFy—d(A2 A Fy),  (2.14)

and similarly for dualizing F5 to F>. We see that F? and F?
are related to F, and F5 by
F? +;(11~73 =e Ntr(e *.7}2 + y3e” % F),

F3 +)(]}~?‘2 — e_(ﬁl+(ﬂ3 (e_(ﬁZ*‘i::i _|_)(26(P2 *fl)' (215)
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To obtain a dual Lagrangian, we take the original Lagrangian modified by adding the extra term, and then substitute in the
algebraic relation between a gauge field strength and its dual. Applying the procedure to replace F! in favor of F;, we obtain

the Lagrangian in terms of (AI,A2,A3,A ),

—

3
1
L4 =Rxl—= E (xdg; A do; + e*?ixdy; A dy;) — 56_¢1_¢2_¢3*F4 A F4
=1

2 i

1< -
-5 Z 20002014 (F; — 3, F4) A
=1

- ()(1){2i73 + 1o F) +)(3)(11~72) AF* 4 Fy A Fy+ yaF3 AFy + y3F) A Fs.

(Fi_)(i

F4Y + yixosFH A F*

(2.16)

An advantage of this Lagrangian is that there is a manifest symmetry between 3 gauge fields, and it fits into a more general
prepotential formalism for N = 2 supergravity coupled to vector multiplets, as discussed later in Sec. I1 C.
The Lagrangian (2.16) gives duality relations involving (F;, F», F3, F*), namely

e(ﬂl_wz_(/}}*(ﬁ'l _)(IF4)
eP2—P3=¢ *(FZ _)(ZF“)
e¢3_¢1_¢2*(i73 — x5 FY

and

i=1

— (oasFy + xani Fa + x1ixaFs).

Alternatively, these can be obtained from the duality
relations involving (F', F,, F5, F*) that arise from the first
Lagrangian (2.3).

C. Prepotential formalism

Any N = 2 supergravity coupled to vector multiplets
can be derived from a prepotential in a certain duality
frame. We first define the gauge field and dual gauge field

A'=_—A, A, =A% (2.19)
In this formalism, STU supergravity has complex scalars
XA, A =0,1,2, 3 and gauge fields Fy, = dA, for A =0, 1,
2, 3. The Lagrangian is

. - 1 ~
Ly =Rl = 2g%dX' A dXT 4+ Fy A G, (220
where g;; = 0;0;K i 1s a Kahler metric derived from a Kihler
potential K, and G* depends on F A and its dual. The
prepotential is

X'x2x3

F(X) = =55

(2.21)
One may define complex scalars z; = X'/X?, fix the gauge
X% =1, and relate z; = x; +iy; = y; +ie~*. For more
details, see e.g. [99].

= F' + y3F) + 12 F3 — yoxs F*,
= F? + 1\ F5y + 13 F)
= F> + oF ) + 01 Fy — pi P,

-y F*,
(2.17)

3
Fy=—en=n0yF4 4 Z 000203y x (F; — 3 F*) + 2010003 F*

(2.18)

D. Truncations

Some special cases of our general black hole solutions
are already known in the literature. Most of these are
solutions of theories that are consistent bosonic truncations
of the STU model, and some of these are bosonic
truncations of other supergravity theories. We therefore
review these truncations (see also [101]). The relationships
between these truncations are indicated in Fig. 1.

1. ST? supergravity

There is a consistent truncation of STU supergravity to
an N = 2 supergravity coupled to two vector multiplets.
We refer to it as ST? supergravity, since it involves setting
the complex scalars T = U in STU supergravity. There are
3 independent gauge fields, 2 dilatons and 2 axions. It is
obtained by setting A> = A%, ¢, = @3 and y, = y3, which
implies that A, = A;. The theory can be obtained by
reduction of 5-dimensional supergravity coupled to a vector
multiplet, as discussed in Sec. IIE 1. This theory admits
SO(2,2) ~SL(2,R) x SL(2,R) symmetries which get
enhanced to SO(4,3) upon dimensional reduction to 3
dimensions [101,102].

2. 83 supergravity

There is a consistent truncation of STU supergravity to
an N = 2 supergravity coupled to one vector multiplet.
This is sometimes known as S° supergravity (or 73
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N =38
supergravity
U-duality

STU supergravity

A2

= A3

ST? supergravity
(reduction of 6d
minimal supergravity)

=A% = / \ At A2 = AP

S3 supergravity
(reduction of 5d
minimal supergravity)

—iX%X?! supergravity
(tluncatlon of
= 4 supergravity)

=A% = At / \AI / \ AL A2= A =0

Kaluza—Klein theory

Einstein—
Maxwell theory
(N = 2 supergravity)

Einstein—-Maxwell—
dilaton—axion theory

FIG. 1.

supergravity), since the truncation of the ST U supergravity
includes setting the three complex scalars equal,
S =T = U. There are 2 independent gauge fields, 1 dilaton
and 1 axion. It is obtained by setting equal the fields in each
|

1 1 1 -
Ly = Rx1 _E*d(p A dop —Eez‘/’/‘/g*d;( A d)(—ie“/’/\/g*(F—;(F“) A

1
- 5e—@w4 AF 42

Vi

It can be obtained by reduction of 5-dimensional minimal
supergravity, as discussed in Sec. Il E 1. The 3-dimensional
action obtained by dimensional reduction has Gy,
symmetries.

3. Kaluza-Klein theory

A further consistent bosonic truncation of S* super-
gravity is Kaluza-Klein theory, i.e. the reduction to 4
dimensions of 5-dimensional Einstein gravity. This comes
from (2.22) by taking A =0 and y = 0. Relabeling

A* — A, the Lagrangian is

1 1
Ly =Rl =5 xdg Adp— 5e-ﬁfmv AF.  (2.23)

The symmetry group obtained upon dimensional reduction
to 3 dimensions is SL(3,R).

2
(FAF—;(FAF‘UF%F“AF“).

Bosonic truncations of N = § supergravity.

of the three vector multiplets of STU supergravity,
namely A/V3=A'=A2=A% ¢/\V3=0p =¢p,=0;
and y/\3=y,=y>=y;. The (A;,A,,A;, A% Lagranglan
(2.16) becomes

(F —xF*)

(2.22)

I
4. —iX°X"! supergravity

A different set of consistent truncations from STU super-
gravity comes from setting the 4 gauge fields pairwise equal.

From the Lagrangian (2.3), we set Al = A* A, = A5, and
@2 = @3 = y» = y3 = 0, giving the Lagrangian
1 1,
L, = Rx1 —E*d(p A dq)—ie Pxdy A dy
—e(xF' A F' 4+ %Fy A F,)
+y(F* AF' 4 Fy, AF,), (2.24)

where ¢ = ¢, and y = y,. This is the bosonic truncation of an
N =2 supergravity coupled to one vector mutiplet. This
theory is also known in the literature as the EM,DA theory
[59,61]. An important use is to generate solutions of N' = 4
supergravity, since it is a truncation of the SU(4) formulation
of N = 4 supergravity [103]. By dualizing F, to F?, or
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equivalently making a symplectic transformation, the theory is
equivalent to that obtained from a prepotential F(X) =
—iX°X"' [104]. A truncation of the SO(4) formulation of
N = 4 supergravity [105,106] corresponds to the dual for-
mulation [107]. Upon dimensional reduction to 3 dimensions,
the theory admits SU(2, 2) ~ SO(4, 2) symmetries.

5. Einstein-Maxwell-dilaton-axion theory

A further consistent bosonic truncation of the —iX°X'
supergravity has just one gauge field. We take A, =0 in
(2.24), so the Lagrangian is

1 1
L, = Rx1 —E*drp A dqo—iez‘”*d)( A dy

—e?’«FANF+yFAF, (2.25)
where F = F!. This is sometimes known as Einstein-
Maxwell-dilaton-axion (EMDA) theory or dilaton-axion
gravity. Again, the theory is used when generating sol-
utions of N = 4 supergravity. Upon dimensional reduction
to 3 dimensions, the theory admits Sp(4,R) ~ SO(3,2)
symmetries.

6. Einstein-Maxwell theory

Einstein-Maxwell theory corresponds to setting the
gauge fields equal, A =A! = A2 =A% = A% and the
scalars trivial, @; = y; = 0. The Lagrangian is

Ly =Rx1—-2xF A F. (2.26)
It is the bosonic sector of pure ' = 2 supergravity. Upon

dimensional reduction to 3 dimensions, the theory admits
SU(2,1) symmetries.

E. Oxidation to higher dimensions

Some special cases of our general black hole solutions have
been discussed in the literature with a higher-dimensional
interpretation. For example, a 4-dimensional black hole can
be regarded as a 5-dimensional homogeneous black string.
Also, the embedding in 10-dimensional or 11-dimensional
supergravity allows for a microscopic interpretation of black
holes in terms of string theory or M theory and its web
of dual theories. We therefore quickly review several
oxidations of 4-dimensional STU supergravity into higher-
dimensional theories. A review of the lift to 5 and 6
dimensions, including truncations and a generalization to
an SO(5, 4) coset model, is [101].

1. Uplift to 5 dimensions

The Lagrangian (2.16) has a direct uplift to a 5-dimensional
N =2 supergravity coupled to 2 vector multiplets, also
known as the STU model or 5-dimensional U(1)* super-
gravity [4,5]. This 5-dimensional theory has 3 gauge fields
A;, i =1, 2,3 on an equal footing. The Lagrangian is

PHYSICAL REVIEW D 90, 025029 (2014)
1< -
Ls=Rxl-— EZ h72(xdh; A dh; + xF; A F))
i=1

+Fy AFy A As, (2.27)

subject to the constraint that ;4,73 = 1. A common para-
metrization of the scalars is

hy = e“/’/l/\/(."‘/’/z/‘/i, h, = e—w’./ﬁﬂo’z/ﬁ’

hy = e201/V6, (2.28)

Another parametrization of the scalars, which is useful for
lifting to 6 dimensions, is

hl — 62(/’2/\/6’ h2 — e‘/’/\/i_d’z/\/é’ h3 — e_d’/\/z_d’z/\/é‘

(2.29)

The scalar kinetic terms with these parametrizations are

1

1 3 2
5 > hxdh; A dhy =2 *dg) A dg)
i=1 i=1

N

1

(*dp A dp + xdpy A dghy).
(2.30)

N

We may dualize the third gauge field A5 to a 2-form
potential B. The usual dualization procedure gives
F3 =dA; = —h{2h5*xH, where dH = —F; A F,, and
the Lagrangian is

1 3
— __ -2 . .
Ls = Rx1 3 E:] h7**dh; A dh;

1

1< -
_EZ 2w Fy A F =P sHA M. (231)
i=1

The Kaluza-Klein reduction ansatz is

ds? = f71ds? + f2(dzs — A*)?,

A(say = A; + xi(dzs — A%). (2.32)
Three of the four gauge fields Ai are manifestly on an equal
footing; the fourth gauge field A* is the graviphoton.
Redefining fh; = e™%i, the Lagrangian (2.16) is recovered.
_ There are some notable consistent truncations. Setting
A, = Ay and h, = h3 gives an N/ = 2 supergravity coupled
to 1 vector multiplet. If we set i, = ¢*/V® then the
Lagrangian is

1 1 - -
L5 = Rx1 —E*d(p A dgo—ze_“"’/\/g*Fl A Fy

—624’/\/5*I:"2AF2+F2/\F2 NA;. (2.33)
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Reduction to 4 dimensions gives the ST? supergravity. A
further consistent truncation is to set all gauge fields equal,
A; = A, and trivial scalars h; = 1. This gives the minimal
pure N = 2 supergravity, whose bosonic Lagrangian is

3 . - - - ~
[,5=R*1—§*F/\F+F/\F/\A. (2.34)

Reduction to 4 dimensions gives the S3 supergravity (2.22).

2. Uplift to 6 dimensions

The 4-dimensional theory (2.3) has a higher-dimensional
origin in minimal 6-dimensional A/ = (2,0) supergravity
coupled to a tensor multiplet. The Lagrangian is

1 1
Lo =Rl = xdp A dip~ Ee‘ﬁ‘/’*H AH, (2.35)

where H = dB is a 3-form field strength.

Directly reducing L on T2, and then dualizing the 4-
dimensional 2-form potential B to an axion y leads to the
(A',A,, A5, A*) Lagrangian (2.3). If instead the 2-form B is
dualized to a vector in 5 dimensions, and then reduced to
4 dimensions, then we obtain the (AI,AZ,A3,A4)
Lagrangian (2.16). Either way, there is the same inter-
mediate 5-dimensional STU supergravity theory in some
duality frame.

Kaluza-Klein reduction of the 6-dimensional theory
(2.35) directly gives the Lagrangian in terms of
(A}, A,, H). We make the reduction ansatz (see e.g. [108])

ds%6d) — 64)2/\/6(15‘2 + e—3¢2/\/6(dz6 + A1)27
B(6d) =B+ Az AN (dZ6 + A]), (236)
decomposing the field strengths as
H(6d) =H +F2 A (dZ6 +A1),
H=dB—A, AF,, F;=dA. (2.37)

This gives 5-dimensional STU supergravity in the form
(2.31). The 5-dimensional fields F; and ¢, come from
reduction of the Einstein-Hilbert term; H and F, come
from reduction of the 6-dimensional H.

There is a consistent truncation of the 6-dimensional
theory (2.35) to the minimal pure N' = (2,0) supergravity
by setting ¢» = 0 and imposing the constraint that H is
self-dual,

H = %H. (2.38)
The theory is obtained from the Lagrangian
1
56:R*1—§*H/\H, (2.39)

PHYSICAL REVIEW D 90, 025029 (2014)

with the self-duality condition imposed on the resulting
field equations. Upon dimensional reduction to 5 dimen-
sions, the latter condition is equivalent to A, = A3 and
h, = hs. The resulting 5-dimensional theory is therefore
given by (2.33).

3. Uplift to 10 dimensions

The 6-dimensional supergravity action (2.35) naturally
uplifts to a consistent truncation of type IIB supergravity on
T*. The nontrivial 10-dimensional fields are the metric >
the Ramond-Ramond two-form C and the dilaton ®. The
reduction ansatz is

ds?, = ds2 + e#/V2(dX? + dX2 + dX2 + dX2),

=2

C=B.
V2

(2.40)

4. Uplift to 11 dimensions

The 5-dimensional STU supergravity can be embedded
in 11-dimensional supergravity as follows. The action of
11-dimensional supergravity is

ﬁ]]ZR*l—%*f/\f—éf/\f/\A, (241)

where A is the 3-form and F = dA its 4-form field
strength. We Kaluza-Klein reduce on 7° as (see e.g. [109])

ds?, = ds2 + iy (dX? + dX3) + hy(dX3 + dX3)
+ h3(dX2 + dX32),
A=A; AdX, AdX, + Ay A dXs A dX

+ A3 A dXs A dX, (2.42)
with the constraint that h;hyh; = 1 in order that T° has
constant volume. The 11-dimensional action (2.41) then
reduces to the 5-dimensional action (2.27).

III. GENERATING TECHNIQUE

Ungauged supergravity theories have global symmetries
that can be used for solution generating techniques. When
considering solutions with Killing vectors, one may dimen-
sionally reduce the theories, leading to enhanced sym-
metries. If a 4-dimensional solution has a timelike Killing
vector field, then we may perform a timelike dimensional
reduction to a 3-dimensional theory. It has been generally
shown that, if the 4-dimensional theory is gravity coupled
to scalars parametrizing a symmetric space G/K (a feature
of all supergravity theories with enough supersymmetry)
and vectors transforming in a representation of G, then the
3-dimensional theory is a theory of gravity coupled
to scalars that parametrize a larger symmetric space
G/K [32]. In particular, the 3-dimensional symmetric
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space is SO(4,4)/SL(2,R)* for the STU model. These
coset model techniques are described in for example
[32,110,111], and in the particular case of SO(4,4) in
[71,72,74]. The reduction down to three dimensions was
already worked out explicitly for the STU model in terms
of the so called ¢* map, as done for example in [112].

There are other solution generating techniques available,
but the reduction to 3 dimensions is particularly efficient.
For example, an alternative method is to lift to higher
dimensions, perform boosts to add charges, reduce back
to 4 dimensions, apply permutations of gauge fields and
electromagnetic duality, and repeat, but this requires
multiple steps. Reduction to 3 dimensions is advantageous
because the solution generating technique is essentially a
one-step process once an appropriate group element has
been identified.

A. Reduction to 3 dimensions

After Hodge dualizing 3-dimensional vectors to scalars,
the 3-dimensional theory corresponding to the S7U model
|

PHYSICAL REVIEW D 90, 025029 (2014)

is a theory of Euclidean-signature gravity coupled to 16
scalars: a scalar U corresponding to g,,; a scalar ¢ dual to
the Kaluza-Klein vector; 8 electromagnetic scalars ¢ T and
{r; 3 dilatons y; = e™%i; and 3 axions x; = y;. The 8 scalars
{U,0,x;,y;} arising from the 4-dimensional metric and
scalars have the wusual positive sign Kkinetic terms,
whereas the 8 scalars {¢!,¢;} arising from the 4-
dimensional vectors have negative sign kinetic terms.
The scalars parametrize a symmetric space G/K =
SO(4,4)/SL(2,R)*.

Let us first present the 3-dimensional Lagrangian in
terms of the 16 scalars, before explaining the relationship to
4-dimensional fields. The set of 3-dimensional (pseudo)
scalar fields is ¢ = {U, o, x;,v;,¢!, ¢;}. They parametrize
the target space of the coset model whose Lagrangian is

£3 R*3 (31)

=G0, 0" @" ;1.

The 3-dimensional moduli space metric G, is of the form

dx? + dy3 —
sy e = yiy tadv? 4 S o <d6 + Z (&,de! - g’dg,))

i 1

YY,;Y
—e 22U <#d1dj
IZJ: L dedg

1J

{1

Xy is symmetric, X;; = X(;;), and obeys the “self-duality
conditions X12 = X34, X13 = X24, X23 = X14, with

x,, = Vi 3D +))

X1Xp
%, - VE TR
X1X3
1oy - VETRE T
X2X3
Xin=Xp=X3=Xyu=1 (3.3)
The remaining functions are
_ VX +y:
O D0+ y3) (3 + )]
Yy ==[(xf + D) (3 +33) (3 + )
x =%
Y1Y2Y3
Y — VT 0103 +3) (43 +Y3) (3.4)

Yiy2y3

dZ,dZ; + XX ’2d§1dc) (3.2)

XIJY Y, Y,

|
They obey the constraints

Y1Y2Y3Y4:—1, X2X12X13X14:Y2,
Y? Y?
XX XXy

From varying with respect to o, we have the field
equation

1 ( Y?
X \X*x3,

(3.6)

d [e_4U*3 (da + Z:(E,dgf - C’dg,)ﬂ —

We may therefore dualize the scalar ¢ in favor of a 1-form
potential @5 through the relation

da)3 =

- 5 5
B IRE (do—l—Z(CdeI —Cld§1)>- (3.7)
]

Similarly, we may dualize the electromagnetic scalars ¢’
and ¢; to 1-form potentials A€3 4) and Aj(3q) through
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Y ~ XX, Y
dAL = —¢ldw; + e 2Ux < i ’dc’),
() : 32,: X vy, Ty,
- - YY, Y XX, Y
dA ;3 = =¢;dws —e—ZU*gz(X”dcf ey, ) (3.8)
7 1J

The 4-dimensional fields of STU supergravity are reconstructed as follows. The metric is
ds? = —e?V(dt + w3)? + e72Vds?, (3.9)
and the gauge fields and dual gauge fields are
Al = {(di + w3) + ALy, Ap = &(dt + w3) + Ajag)- (3.10)
The dilatons ¢; and axions y; are the same in both 3 and 4 dimensions.
We have presented the 3-dimensional theory in a manner that emphasizes the 4-fold symmetry of the gauge fields. Other

treatments in the literature dualize various 4-dimensional gauge fields, so use different notations in 3 dimensions.
Consistently with (2.19), we define

==L, L= (3.11)
and ¢ = (£0,81,2.83), &y = (&0, &1.85.&3). Then the scalar metric G, takes the form (see e.g. [74,99])

2 ~ ~
dsg x = Zm +4dU? + 4 (da CAE) + Epd2h)? + e [(ImN)A2dE \dCs

i 1

+ ((ImA)~1) 5 (d2* — (ReN)ATdZr) (A2 — (ReN)*2dE, ). (3.12)

The period matrix A s is symmetric and given by (see e.g. [1 13))°

. x? X0y
—2x1X3%3 — 1)’1Y2Y3(1 +31 7) XoX3 + 1”2” X1 X3 + 1"2;;” XXy + 1WW2
i

X1)2y3 Y2)3
XpX3 ]2 —j2283 —X —X
N = 2%+ 7 3 . : (3.13)
X1 X3 + 1x2y;” —X3 —iy—;? —X
X1 X, —|—1x1y'y’ —X, —Xx| _i)‘lyz

y3

Note that if the scalars vanish at infinity, then N' = —il + O(1/r). As shown in [112], the pseudoscalar ¢ dual to ws is
given by

d(l)3 = — %6_41]*3((15 + EAdCA - CAd5A> (314)

The dualization relations for the 3-dimensional gauge fields and dual gauge fields are

Al = —¢Mdws - e—z%[(Imj\/)Azdé2 + (ReN)AT((ImA) ™) (dCT — (ReN)™AdE, )],
dA2(3d ~Cydwy +eUx; ((ImA) ") g (A - (R6N>A2dgz)- (3.15)
These dualities are equivalent to the dualities (3.7) and (3.8).

To match the notation of [71], which essentially dualizes two of the gauge fields, apply the previous changes of x; and y;,
and let

. fOu& con[\;elr;t]lons trlelates to the ones of [74,99] as ({4, CN™) = (=&, ¢ ). Also, with respect to our conventions y; and F are
efined in with an opposite sign.
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(51751) = (02, —y2), (52,52) = (y1,01),
(23.83) = (w3.03). (C*.84) = (4. —ya), (3.16)
and

o= 24— \C + 0+ 88 - L (3.17)

B. Parametrizing 30(4.,4)

We choose an explicit parametrization of the Lie algebra
80(4,4) as given in [74]. However, to make the 4-fold
permutation symmetry of the gauge fields manifest, we make
some notational changes. We have the 4 Cartan generators

Hy = E33 + Eyy — E77 — Egg,

H| = E33 — Eqy — E77 + Egs,
Hy, = Ey| + Ey — Es5 — Egg,
H3 = Ey — Ey — Ess + Egg, (3.18)
12 positive-root generators
Ey = E4 — E3s, E| = Eg; — E3y,
E, = E>s — Ejs, E; = E¢s — Eys,
E% = E;5 — Eyg, E% = Ey) — Eg;,
E® = E3s — E, E% = Ey — Ess,
E"" = Es; — Es), EP" = E45 — Eng,
EP = Eyp — Egy. EP' = Ey; - Ess, (3.19)
and 12 negative-root generators
Fo = Eq4 — Egs, Fi =E;3— Eg,
F, = Es5) — Egy, F3 = Ess — Eyy,
F& = Esq — Egy, F& = Ey; — Eg,
F& = Eg — Ep, F& = Ey4 — Egs,
FP' = E;s—E;3, FP = Eg — Eg,
FP' = Eyy — Eg, F?" = E; — Es;, (3.20)

where E;; is the 8 x 8 matrix with 1 in the (i, j) component,
and zeros elsewhere Our generators (E2r, EP', FOr FP') are
related to the generators (E, , E, F, , F ) of [74] by

|

PHYSICAL REVIEW D 90, 025029 (2014)

i . 4
(EgnEp) = (EP'.—E2),  (E,.Ep) = (E%, E™),
(F,,.F,)=(F",—F%), (Fyp Fro) = (FO, FP),
(3.21)

whilst we use the same notation for the generators H,, E,
and Fy.

The generalized transpose ff is defined to act on the
generators as

H\=H,, E\=F,  F,=E,, (322)
and

(E2)f = —FQi, (EF')t = —FF,

(FO)f = —E%,  (FM)P=—E". (3.23)
The following are elements of the eigenspace of the
involution 7(x) = —x* with eigenvalue +1:
ky=E\—F,, k% =E%+F% k" =E"+F";

(3.24)
and the following have eigenvalue —1:
pA:EA+FA9 le EQI FQI’ pPl:EP,—FPl‘
(3.25)

ky, p2 and p*' are compact, and p,, k2 and k”' are
noncompact. Equivalently, the generalized transpose §
adapted to the coset is

Al = pATy71, (3.26)

where the 8 x 8 matrix

n = diag(-1,-1,1,1,-1,-1,1,1) (3.27)
is the quadratic form preserved by 8[(2,R)* = 80(2,2)%
The explicit generators of the four commuting 8[(2, R)
subalgebras were detailed in [114,115].

The symmetric space G/K can then be parametrized by

the group element

V = exp(—UH,) exp( Z(p, ,) exp (_DiEi> exp {—Z(C’EQ’ + (:“IEPI)] exp (—%0E0>
T

i

= exp(—UH,) exp {—%Z(logy } exp< Zx E; > |:Z(—5AE{M T gAEPA)} exp <—%0E0>.

1

(3.28)
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The metric on G/K is then the right-invariant metric
obtained from the Maurer-Cartan 1-form 6 = dVV!,

dsgx = Tr(P,P,), P, = %(9 + 6F). (3.29)
Equivalently, one can define the matrix
M= VY (3.30)
and the coset Lagrangian is then given by
1 1 -
_EGubay(ﬂuaﬂq)h*?al = —§Tr[*3(./\/l 'dM)
A (M7TAM)). (3.31)

Either way, we recover the 3-dimensional moduli space of
(3.2).
A group element g acts as
VY — kVg (3.32)
where k € SL(2, R)* is a local compensator, depending on

the fields, defined to ensure that the coset element remains
|
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in Borel gauge, i.e. of the form (3.28). Since k*k = I, M
transforms as

M - ¢* My, (3.33)

which is simpler than working with V), because the
compensator is not required.

C. Extracting 3-dimensional fields

1. Scalars

The 3-dimensional scalars are determined from the
matrix M (3.28). For our choice of 80(4,4) parametriza-
tion, they can be extracted from M by inspection, using the
following formulas. The scalar U, which corresponds to the
g;, component of the metric, is given by

e U = M33M44 - M%4 (334)
The i = 1 dilaton and axion can be extracted from
M
x| = M—z;‘ vt = e M. (3.35)

The remaining dilatons and axions are obtained from

1
;})3 =M + e4U(M33M4211 + M44M§l - 2,/\/131_/\/(34_/\/141)’
X
ﬁ = M16 + e4U(M34M41M63 + M31M34M64 - M31M44M63 — M33M41M64),
X
ﬁ = M12 + e4U(M31M32M44 + M33M41M42 — M31M34M42 — M32M34M41)’
2 2 2 2
Vs M35 gy MMy = M3z My)
TR T - 336
Y2y 27 My, M (3.36)
The electromagnetic scalars ¢’ and ; are obtained from
e = MipMay = My M, e UE) = MgygMsz — Mgz My,
e = Mo May = MesMas. e HEy = MMy — MM,
et = My May = My M, e HVEy = MysMyy — MysMs,. (3.37)

The scalar o, dual to the Kaluza-Klein vector, is

2M3g C4U
c= +
M33 M33
. 2M3g

M —5454—C151 +C252 +C3Z’3+2x15253 —2x, ¢4
33

(MazsMis My + M3y Mz Mys +2 M3y M3y Mgy — M3z Muy Mgz — Mzy M3z Mgy =2 M3 M3y Msss)

(3.38)

With the exception of U, the scalars do not depend on the overall factor in M but only on ratios of entries of M, and in
calculations it can be more practical to rescale M by a convenient factor.
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2. Gauge fields

Three-dimensional gauge fields can be reconstructed
from the 3-dimensional scalars using the dualizations (3.7)
and (3.8). It is easier, however, to perform these dual-
izations initially in terms of the seed solution, and act with
the solution generating technique on the gauge fields
directly. This prevents the dualization of complicated
expressions. For STU supergravity, this approach was
noted in [73].

From (3.31), the coset matrix M obeys the equation of
motion d(M~'%3d M) = 0. Therefore, we can define the
matrix of one-forms N as

AN = M 'xd M. (3.39)
The coset transformations act on AN as
N = g 'Ng. (3.40)

The matrix M~'dM is a combination of all 28
80(4,4) generators with coefficients that depend on the
3-dimensional scalars. Some of these coefficients are
directly related to 1-form potentials. In particular, we
have

d./\[ - M_l *3dM
= da)3F0 + Z(dAéd)FPI - dA[(:;d)FQ’) +
1

= dw3F0 + Z(dAA(3d)Fp‘/\ + dAéd)Fq\) + ceey
A

(3.41)

where the Kaluza-Klein 1-form, gauge fields and dual
gauge fields are related to 3-dimensional scalars through
(3.7) and (3.8). The dots stands for the terms involving
the remaining generators, whose coefficients involve
more complicated dependence on the 3-dimensional
scalars. From (3.20), one can extract the Kaluza-Klein
1-form

w3 = N74, (342)
and the 3-dimensional electromagnetic 1-forms
A(l3d) = Nas, A%3d) = Nos, A?E»d) = Nas,
A?3d) = N1, A1(3d) = Ny, A2(3d) = N,
A3(3d) = N72» A4(3d) = Nss- (3-43)

D. Conserved charges

Consider solutions that are asymptotically flat, or more
generally asymptotically Taub-NUT, with vanishing sca-
lars at infinity. Taub-NUT spacetime is asymptotically flat

PHYSICAL REVIEW D 90, 025029 (2014)

at spatial infinity, in the sense that its metric has the
appropriate falloff, so charges may be defined at spatial
infinity. For the metric ansatz, we assume that ds% is
asymptotically Euclidean, and take r to be the usual
radial coordinate. More precisely, we assume that

ds3 = dr? + (r* = 2mr)(d6? + sin®0d¢?) + O(r=2)dr?
+ O(Vo)d92 + O(FO)d¢2, (3.44)

where m is a constant. The asymptotic behavior of a
solution gives 10 independent conserved charges at first
order in the asymptotic radial expansion around
Minkowski: mass M, NUT charge N, 4 electric charges
Q;, and 4 magnetic charges P!. There is also the angular
momentum J defined at second order in the radial
expansion. We define Q; and P’ to be associated with
Al There are also 6 scalar charges, dilaton charges X,
and axion charges Z;, but they are not independent for
the solutions that we consider. These 16 charges are
encoded in the first-order asymptotic behavior of the 16
3-dimensional scalars {U,0,¢', ¢}, x;,y;}, using the
reduction Ansdtze and dualizations of Sec. III A. The
angular momentum J appears in the second-order asymp-
totic behavior of o.

More precisely, we assume that we have the expansions
at infinity

oM
v 1M oy, g =2 o,
r r
Zi
$i=—T o(r?).
. 29
Wy = <2Ncos9 Ty 0(r‘2)>d¢,

~ I =

P =i
L= 4007, p=orT). (349)

Then M is the canonical Arnowitt-Deser-Misner mass and
J is the canonical angular momentum obtained by the
standard Komar integral. We have fixed the gauge so that { !
and {; vanish at infinity.

Our convention for the 3-dimensional and 4-dimensional
volume4 forms are €,y >0 and €4, >0, so that as
r— oo,

*31 ~r2sin@dr A dO A dg,

*x1 ~ r?sin@dt A dr A dO A dg. (3.46)

*The 4-dimensional orientation is the same as in [71], but the
opposite of [99].
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Dualizing w3, we have

2N 1 _/4J 0
xydwy = —5-dr —=d M +o(),
r 2 r

(3.47)

where ¢ is a constant. The duality relation (3.14) then
implies that

AN  4JcosO + ¢

Sk )]
¢ r+ r? +0(™)

(3.48)

Therefore, the charges are

M = —1lim (rU), Q; = lim (r¢h),

— 2N cos 0 1
J = tim (11250 = _ N v L iimpe.
r—oo 2sin-6@ r—oo
Pl =1im(rl), = lim(ry:). (3.49)

For comparison with other duality frames, it is useful to
define electromagnetic charges Q' and i’, corresponding to
F,, analogous to the electromagnetic charges Q; and P!
corresponding to F!. These electromagnetic charges are
related by

(QI,PI) = (_1317 QI) (3-50)
Charges for A” are related to charges for A* by
(Qo, P*) = (=0, =Py),  (Q°,Py) = (Qs, P*). (3.51)

E. Charge matrices

The charge matrix Q is defined by a 1/r expansion of the
matrix M as

Q Q

M=1+=+4 =5+ 0(7). (3.52)

Using the definition of M in terms of the 3-dimensional
scalars and the expansions (3.45) and (3.48), the charge
matrix is expressed in terms of physical charges as

Z; = lim (rg;).
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4
Q =2MH, +2Npy— Y (Q;p% + P'p™)

=1
+ Z(z H,

— OMH,y + 2N py + Z(—QAP,;A +P'py,)

+Z(2H

From Q alone, one may therefore read off the charges
without knowing full details of the solution. Since a group
element g acts as M — gf Mg, to preserve asymptotic
flatness at spatial infinity we should have g*g = I. For §°
supergravity, the charge matrix has been studied before
in [116].

Using the generators of (3.18), (3.19) and (3.20), we have

AM*+N*) =) [0

I=1

- ‘—‘lpl

- ‘—‘lpl (353)

~

Tr(Q?) = + (P1)?]

3

+) (22 +2D).

i=1

(3.54)

This quantity is invariant under transformations that pre-
serve asymptotic flatness at spatial infinity.

The angular momentum does not appear in the charge
matrix Q, since it enters the M expansion (3.52) in o
subleading order 1/r%. Using the expansions (3.45)—(3.48),
one can show that

Q@ = (=2Jcos@ + ay)py + ..., (3.55)
where ag is a constant and the dots are the other terms
proportional to the Cartan generators H, and the Lie
algebra generators p;, p, ., p,» which all have eigenvalue
—1 under the 7z involution.

In [117] (see also [118,119]), it was proposed to define
the charge matrix integral Q , as

— 3 -1 v
Qa(/’ = —5 Sgo (8¢)”M aDMd.X# AN d.X' . (356)
This may be written as
3 [= . 9 @)
Qy, = ~3), dfsin* 00,0 = =2Jpy + ..., (3.57)

where we used the 3-dimensional line element (3.44) at the
first step and (3.55) at the second step. The angular
momentum can therefore be extracted from Q) " The
quantity
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1 2y _ 2
—Tr(Qad))—J + ...

v (3.58)

contains the angular momentum square and is invariant
under the action of transformations that preserve asymp-
totic flatness at spatial infinity.

IV. CHARGING UP THE BLACK HOLES

We apply the solution generating technique to the
specific example of the Ricci-flat Kerr-Taub-NUT space-
time [78] to obtain dyonic rotating black holes. The
resulting solutions of supergravity will in general carry
11 independent parameters, consisting of mass, NUT
charge, angular momentum, 4 electric charges and 4
magnetic charges. It is convenient to keep the NUT charge
on the same footing as the mass, which allows for an SO(2)
symmetry that simplifies the solution. When discussing
asymptotically flat black holes, we are free to restrict the
solution to a 10 parameter family by solving the final zero
NUT charge constraint. This constraint is a linear equation
in terms of the NUT charge of the initial seed Kerr-Taub-
NUT black hole and is therefore straightforwardly solved.

A. Seed solutions

We present here the initial seed solutions used in the
solution generating technique.

1. Taub-NUT seed solution
Static solutions are obtained by starting with the Taub-
NUT spacetime, whose metric is

r? = 2mr — n?

r* +n?

r’+n? 2 2 1 2\ (d02 1 2O 2
mdr +(V +n)(d9 + sin 9d¢ ),

ds? = — (df + 2n cos Od¢)?

(4.1)

where m is the mass and # is the NUT charge. By Kaluza-
Klein reduction on the ¢ coordinate, it may be expressed in
terms of 3-dimensional fields as

o 24l
2 =2mr—n?’
ds3 = dr? + (r? = 2mr — n?)(d6? + sin?0d¢?).

e w3 = 2ncos 0dg,

(4.2)

By Hodge dualizing w5, using the orientation (3.46), we
obtain the 3-dimensional scalar

dn(r —m) ‘

r* + n? (43)

c=-

Since this is a Ricci-flat metric, all other 3-dimensional
scalars are trivial. It is convenient to define the rescaled
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matrix M = (r> = 2mr — n*) M, which has polynomial
entries.

2. Kerr-Taub-NUT seed solution

Our seed for rotating black holes is the Kerr-Taub-NUT
solution [78], which can be written as

=2 _ 2 \2
ds? = L<d;_“ udrﬁ)

2+ u? a

U _ r4a o2
—— | di - d
+r2—|—u2< a ¥

drr du?
2 2y (4 4 4.4
—|—(r+u)<R+U>, (4.4)
where’
R=r*+a®-2mr, U=a®—u*+2nu. (4.5)

Standard Boyer-Lindquist-like coordinates and parameters
come from defining the coordinates (z,0, ) by

(4.6)

u=n-+acosd,

SIASS
INVERSW

_ o 2n? .
E) t: + — ¢9
a

where the new angular parameter a and Kaluza-Klein 1-
form w5 are defined by

a2 =g?—n?,

dt + w3 = d7 + @;. (4.7)
To recover the Taub-NUT solution (4.1), then take a — 0.
Note that if @ = 0, then @*> = —n? leads to an imaginary
rotation parameter &, but this is not a physical feature since
it can be removed by the reparametrization (4.7). In Kaluza-
Klein form (3.9), the Kerr-Taub-NUT solution can be

written as

RU - dr?  du?
ds§:?d¢2+(R—U)(7+7>,
e-2U — 4

R-U"
By = (r? +512_)U— (@* - MZ)qu_b

a(R-"U)
2 R) -
_ 2mrU+ nuk) o (43)
a(R-"U)

By Hodge dualizing ws, using the orientation (3.46), we
obtain the 3-dimensional scalar

>The function U defined here should not be confused with U
defined in (3.9). It should be clear to the reader which definition is
valid depending on the context.
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4(mu — nr)
A 4.9
’ r? 4 u? (49)

The nontrivial 3-dimensional scalars are e 2V and . We also have ¢/ = Zf ;=0,for I =1,2,3,4,and x; =0, y; = 1, for
i =1, 2, 3. It is convenient to define, for the Kerr-Taub-NUT solution, the rescaled matrix

M=(R-UM, (4.10)

R-U O 0 0 0 0 0
0 R-U 0 0 0 0 0 0
0 0 r?+u? 0 0 0 0 2(mu —nr)
- 0 0 0 r?+u? 0 0 —2(mu — nr) 0
| o 0 0 0 R-U 0 0 0
0 0 0 0 0 R-U 0 0
0 0 0 —2(mu—nr) 0 0 (r—=2m)*+ (u—2n)? 0
0 0  2(mu-—nr) 0 0 0 0 (r—2m)*+ (u—2n)*
(4.11)
The static limit is obtained in the same way as discussed earlier.
The matrix of one-forms N takes the form N = N ,d¢. By definition, the components V', obey
R, U,
auN,,,:—EM oM, 8,/\/4,:5/\/1 9, M. (4.12)
These are solved by (up to a gauge choice)
4(m*U + n’R 2(muR — nru
Ny = w3,(Fo+ Ep) — ( ) 0+ (a(R—U) )HO. (4.13)

a(R-"U)

B. Addition of charges
We act on the Kerr-Taub-NUT matrix Mgy with the group element

g =exp (—Z:y,kf”) exp (—Z&,k@). (4.14)

The generators k2 and k” " are given in (3.24). §; are electric charge parameters, and y; are magnetic charge parameters. The
generator k is explicitly
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Cp1Cpa 0 S,1Cy4 0 Sy15.4 0 —Cy1Sp4 0

0 C72Cy3 0 —Cy2Sy3 0 S},zsyg 0 SJ,zC},3
Sy1Cy4 0 Cp1Cp4 0 Cy18y4 0 —Sy15y4 0
— 0 —Cy28,3 0 CnCp 0 —$,2C)3 0 —S$,25,3
Sy1Sy4 0 Cy1Sya 0 Cp1Cpa 0 —Sy1Cy4 0

0 5,28,3 0 —85,2C,3 0 CCp3 0 C2Sy3
—Cy1Sy4 0 —Sy15,4 0 —S,1Cy4 0 Cy1Cp4 0
0 5,0C,3 0 —5,25,3 0 CSy3 0 CCy3

Cs1Cs4 0 0 —Cs18s4  Ss1554 0 0 S51Cs4

0 C52Cs3  —550Cs3 0 0 S52553 C52553 0

0 —S52C53 C52Cs3 0 0 —C5S553  TS528s3 0

« —Cs51554 0 0 Cs1Cs4  —S51Cs4 0 0 —S51554 ‘ (4.15)

S51554 0 0 —S51Cs4  C51Cs4 0 0 Cs1554

0 52853  —Cs2Ss3 0 0 C52Cs3 $52€53 0

0 Cs28s3  —Ss528683 0 0 $52€s3 C52C53 0

S51Cs4 0 0 —Ss515s4  Cs1564 0 0 C51Cs4

We use the notation ss5; = sinh 6;, c5; = coshd;, ss; ;7 = Ss7.--Ss7, Cs1.. 7 = Cs1---Csy» and similarly for y instead of .

This choice of group element is motivated by the 4-fold symmetry of the gauge fields F/, and by examining the resulting
charge matrix when acting on a simple uncharged solution such as the Schwarzschild solution. Asymptotic flatness at
spatial infinity, which means that the scalars become trivial at infinity, implies that k*k = . The generators k; do not alter
the charge matrix of Schwarzschild, and furthermore leave the Schwarzschild solution invariant, up to a gauge
transformation. The generator k rotates the mass into a NUT charge; the group element k = e* gives the Taub-NUT
solution with mass M = m cos(2f3) and NUT charge N = m sin(2f3). This leaves the generators k¢’ and k” " that we use. The
new matrix

M - anKTNk’ (416)

with the generalized transpose  defined in (3.26), encodes the 16 3-dimensional scalars, which can be extracted using the
formulas of Sec. IIIC 1.

In particular, the O(r~!) part of M determines a new charge matrix Q, from which we can read off the asymptotic
charges. Since Taub-NUT and Kerr-Taub-NUT differ in M at order O(r~2), the rotating and nonrotating cases share the
same charge matrix.

We obtain the mass and NUT charge,

M = muy + ny,, N = mv, + nv,, (4.17)
where
sstsy L, I—, , Sy1 Cyi
pp =1+ Z T Sartu + EZS(SIS}/W Ha = Zsmcw 1234 = Sy1234 ) (4.18)
T 7 T i Syl
and

025029-17



DAVID D. K. CHOW AND GEOFFREY COMPERE

Ss1
V= Esylcyl< S51234 — 0—051234>, v,=1-D (4.19)
sl

PHYSICAL REVIEW D 90, 025029 (2014)
Equivalently,

Q; = mp} + np?, Pl = mn! + nxl, (4.23)
where
- 8510 CylJ where
L= C51234Cy1234 T 551234571234 + 20512347731/1234’
=7 Cs1J SylJ
Ss17 SylJ
D = c512348y1234 + 55123441234 + ZC51234——Cy1234 ph = 2% pr= %
1<J 517 Cy1 06, 06,
(420) I 81/1 81/2
al =-2—, al=-2-—"=, 4.24
For asymptotically flat solutions, we cancel the NUT
charge (4.17) by setting n = n, where . "
These explicit coefficients are
v
ny=—-m—-. (4.21)
L9
. , . pI = 2551Cs1 <1 — 57+ Z%%J) ;
The electric and magnetic charges admit elegant expres- T2
sions in terms of derivatives of the mass and NUT charge 5, e
with respect to &, pF=2(1+ 2s§,) LC],1234 - LSY1234 ) (4.25)
c]/] S71
oM ON
Qr=2--, =-2_—. (4.22)
96, a8, and
|
2l Ss1J Cs1g
7T1 = ley1(051234 - 551234 + ZschyJ C51234— - S51234— )
J#1 Cs1y Ss17
S C
1 ol ol
T = _2{(C}/1234 - Sy1234) <051234 — — S51234 —)
Cs1 Ss1
Sy1y [ Csy SsJ Cy1y [ Ss1 CsJ
+ z [ y1234 - <— S51234 — 051234> T Sp1234 = | T Cs1234 — — S51234 (4-26)
TZ Cy1y \SsJ Cs1 Sy \Cs7 Ss7

The angular momentum can be read from (3.55) and is

J = (vom —vyn)a, (4.27)

where v, v, are defined in (4.19).

C. Reconstruction of the 4d solution

We can determine the full 4-dimensional solution by
extracting the 3-dimensional scalars and gauge fields, using
the formulas of Secs. III C 1 and III C 2. The solution can
then be simplified after lengthy algebraic manipulations
and using the insights of previously known subcases. The
procedure of identifying patterns and relationships among
the various functions appearing in the solution is the most
nontrivial part of the solution generating process. Here, we
describe how to obtain the 4-dimensional fields, and then in
Sec. V we summarize the solutions in the simplest
presentation that we found.

[
1. Nonrotating, no NUT

For the static case with no NUT charge, the solution
generating technique gives a 4-dimensional spherically
symmetric metric of the form

2 =2mr — n?

ds? = — %ds?
Wo

dr? 5 )
+ W, 72+d9 + sin? 0dg
2 —2m mr — ng

(4.28)
W32(r) is a quartic polynomial in r that can be written

down concisely from the components of M using (3.34),
namely

W%(”) = MMy, - /\_/@4‘ (4.29)

The electromagnetic scalars ¢/ and 5 ; of (3.37) encode
the gauge fields A’. The scalars ¢/ are related by
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appropriate permutation of the indices / = 1,2, 3,4, and
similarly for ;. We dualize the 3-dimensional scalars
o, ¢! and ¢, to 3-dimensional vectors, using  (3.7)
and (3.8), to obtain the d¢ coefficients of A/, A, and
;3. This is straightforward for spherically symmetric solu-
tions with no NUT charge. In this case, w3 =0 and
g only depend on r. Therefore, Eq. (3.15) implies
that dA;;3q) = P;(r)sin0df A d¢ for some functions
P;(r). Integrability implies that F; are constants,
which implies that A;sq) are given in terms of the
magnetic charges as A;3q) = P;cos 8d¢. The gauge fields
A€3 q) are then most easily obtained by electromagnetic
duality.

The 4-dimensional dilatons and axions are simply the 3-
dimensional scalars derived from (3.36). The scalar fields
X;,y;, are obtained from (3.35) and (3.36). The easiest way
to obtain them is to read off x; and y, from (3.35), and then,
from symmetry arguments, obtain x,, x3, y, and y; by
permutation of indices.

2. General rotating

In the general rotating case, the solution generating
technique will give a 4-dimensional metric of the form

R-U
ds? = — T (dl + 0)3¢d¢)2

drr  du? RU
+W(—+—+

=t )d¢2>, (4.30)

a*(R-U
where R(r) and U(u) are defined in (4.5) and W2(r, u)
is a quartic polynomial in r and u that can be obtained
from

W2(r, I/t) = ./\_/133./\_/144 - ./\_/@4 (431)
Here we define a> = a*> 4 n? as in (4.7). The Kaluza-Klein
1-form w5 can be obtained from (3.42). The scalars can be
obtained from the same procedure as in the static
case. Rather than dualizing_electromagnetic scalars, the
4-dimensional gauge fields A,, and A* are more conven-
iently obtained from the matrix N as (3.43) and (3.10). The
other gauge fields A,, A5, A, and A', A%, A® can then be
obtained by appropriate permutation of indices.

V. SUMMARY OF GENERAL CHARGED
BLACK HOLES

In this section, we summarize the explicit expressions
for the general black hole solutions that we have
constructed.

A. Static black hole

A general asymptotically flat, static generating solution
for N' = 8 supergravity was obtained in [80]. It is para-
metrized by a mass and 5 independent electromagnetic

PHYSICAL REVIEW D 90, 025029 (2014)

parameters, which are 6 electromagnetic charges with one
constraint in order to cancel the NUT charge. Here, we
present an 9-parameter asymptotically flat, static solution
with 4 independent electric and 4 independent magnetic
charges, including the explicit matter fields, which general-
izes the seed solution of [80]. A NUT charge can also be
included. Starting from this seed solution, one may then
follow the procedure of [80] and generate, using U dual-
ities, the static asymptotically flat solution of AN =8
supergravity with 56 electromagnetic parameters.
Extreme, asymptotically flat, static black holes were
studied in [88,89,91-93,95,96].

Including NUT charge, the solution is parametrized by
10 constants: mass parameter m, NUT parameter n, electric
charge parameters J; and magnetic charge parameters y;,
for I = 1,2,3,4. The mass and NUT charges are defined in
(4.17) and the NUT charge can be canceled by fixing
n = ny defined in (4.21). The electric charges Q; and
magnetic charges P’ are given by (4.23). The orientation is
given by (3.46).

1. Metric

The metric can be written as

Ry(r)

ds? = ——~2(dt + 2N cos Od¢p)?
W(r) )
o) (2 467 + sin0ag? (5.1)
r i , )
I\ R(r)
where

Ry(r) = r? = 2mr — n?,

W3(r) = R%(r) + 2Ro(r)(2Mr + V) + (L(r) + 2Nn)>.
(5.2)

Here M, N are the mass and NUT charge defined earlier
in (4.17),

L(r) = Mr+4 (5.3)

is a linear function in r, and the three remaining constants
Ao, A1, V are

A = 2(my, — nvy), Ao = 4(m* + n?)D,

V = 2(—pym + pyn)n + 2(m? + n?)C, (5.4)

where all quantities have been defined earlier in (4.18) and
(4.19), except C, given by
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C=1+ Z S31Co1 + S71¢5) + Z S5+ Sp1) + Zsalsyj + Z Z 31570k + $7155x)

1<J I#J J<K
Sy17 CylJ 5211
y 2 % 2 2 2 2
+2 E <551234051234 ———— + S51034 5 T Se1sSy1sCs15Cy1y + S&lﬂm) -V U (5.5)
=7 Cs11 Ss1J S510

The metric is asymptotically flat when n = n, given in (4.21), which cancels the NUT charge N = 0. A global coordinate
system is then achieved when the angular coordinates have the standard ranges 6 € [0, z], ¢ ~ ¢ + 2x.

2. Gauge fields
The gauge fields and dual gauge fields are

AT = 1(r)(df 4 2N cos 0dg) + P cosOdp, A, = &;(r)(dt + 2N cos Odgp) — Q; cos Odp, (5.6)

where it turns out that one can write the scalars {/(r) in terms of the master function Wy (r) as

o 2;/% %V(SV]%) _ ng(r) [R(r) <Q,r + g—;) +(L(r) + 2Nn) (agg) - anﬂ . (5.7)

In the case without NUT charge, one needs to take the derivative with generic n first, then set n = n in the result. The dual
scalars &;(r) are

7 R(r)(P'r + V) + (L(r) + 2Nn)(L,(r) + Qsn)

- W3 () | o
where L,(r) is a linear function and V; a constant, given by
L(r) = (mp} — np})r — 4(m® 4+ n?)Dy, V= (nal — mab)n +2(m? + n?)C,, (5.9)
with
1= Zj 71234S§1 - j_};sy1234c(%]’
Cr = (551234 — Co1234)Crr + 25,1Cy1851234 <2 + Zsyl(> + Z <051234 % — S51234 %) Ciy

J#I

Ss10 Cs1 >
+2 E S,Cyy <— Cs1234 (871 + 577) = S Se1234 2 Syk |
J# Cs11 o1y K#1,J

- 1 Cyy 1234
Cry = 2(1 + 253)5,1234 KZ + E 3 ) Sy1234 —(1+2s7)) o ] + 2858,1Cp0 (1 + E S;%K)' (5.10)
yJ

K#J °rK SysCya

3. Scalar fields

The scalar fields are

rr+n?+yg fi
o tnte o i 5.11
(& W /Yl r2+n2+gi ( )

where

fi=2(mr 4+ n*)& 4 2n(m — n)ép + 4(m* 4+ n?)és,
gi = 2(mr 4+ n*)n;y + 2n(m — n)nyn + 4(m* + n?)n;3. (5.12)
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The coefficients &;y, &, and &3 for i =1 are

PHYSICAL REVIEW D 90, 025029 (2014)

S11 = [(S5123Cs8 — C5123564) 8y, ¢y, + (14)] = ((1,4)<>(2,3)),

1
o= 5(0523%14 + €y14553) (C514C123 + 5,235514) + 5515,4C54C1 (5528,0C53C,3 +8535,3C5C10) + (14) | = ((1,4)<(2.3)),
&13 = [(Ss134C52C75 + Co134552572) 8y, €y, + (23)] = ((1,4)>(2,3)), (5.13)

and the coefficients #;;, #;,, and n;; for i = 1 are

My = S5 + 85+ 57+ 57+ (55 +55) (57

M2 = 2S62C§2(C}/2s}/134 - syZCy134) + (293>,

+574) + (55,

- S§3)<s;%3 - 352)7

2 2 V(242
M3 = 25523¢a23(5,23¢,23 + Sy14€518) + 553 < +) :3/1) (552 + 535 + 2553) (5714 + 5703)

2 2 2 2 2
+ 5525, + 55353 + S,14

The results for i = 2 and i = 3 are obtained by respectively
interchanging indices 1<>2 and 1<>3.

B. Rotating black hole

The general rotating solution depends on 11 independent
parameters: the mass, NUT and rotation parameters (m, n,
a); and electric (6;) and magnetic (y;) charge parameters.
The mass and NUT charges are defined in (4.17) and the
NUT charge can be canceled by fixing n = n defined in
(4.21). The electric charges Q; and magnetic charges P! are
given by (4.23) and the angular momentum is given in
(4.27). The orientation is given by (3.46).

1. Metric

The metric of the general solution is

R-U
dSzZ—T(dZ‘I‘O):;)
drr  du? RU
W|—4—+————d¢? ), 5.15
* (R+U+a2(R—U)¢> (5:15)

where R and U are the quadratic functions

R(r)=r*=2mr+a*-n*,  Uu)=da* - (u—n)

(5.16)

The master function W and the Kaluza-Klein 1-form w5 can
be expressed as

W2 =(R-U)*+ (2Nu+L)*>+2(R-U)(2Mr + V),
~ 2N(u—n)R+ U(L +2Nn)
N a(R-U)

dep (5.17)

in terms of R(r), U(u) and two linear functions L(r) and
V(u) given by

(5.14)

L(r) = 2(=nv; + mvy)r + 4(m? + n?)D,
V(u) = 2(nu; — mus)u + 2(m? + n?)C,

where vy, v, yy, pt, and D have been defined in (4.18) and
(4.19) and C has been defined in (5.5). The static limit is
obtained by setting u =n+ acosf and taking a — 0.
Then w; = 2N cos0d¢, and the solution reduces to the
static solution presented previously. The expression of W
and w; solely in terms of R, U and linear functions gives an
elegant form of the metric.

(5.18)

2. Gauge fields
Astonishingly, the gauge fields can be expressed in the

elegant form
AI _ —Wi dr + [OF]
06, w ’

which makes manifest that the gauge fields A’ can be built
solely from functions already appearing in the metric. In
terms of 3-dimensional fields, we have the equivalent
relations

(5.19)

Al = ¢1(dt + w3) +A€3d>, (5.20)
where
1 0 1 ov
1~ Y oun
= s V) = | (®-0) (2457 )

oL
+(L+2Nu)<a—6I—Pu)],
I P N A do.
(3a) = a@ag-{P(u n)—l—R_U(Pu 851>]

(5.21)
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The dual gauge fields are

A =Ci(dt+ w3) + A1(3d), (5.22)
where
i U(Qu+Ly)\dgp
A =— — —= =
1(3d) <Q1(’4 n)+ R_U P
-1 . -
§1=W((R—U)(PI”+V1)+(L+2N”)(L1+Q1M))»
(5.23)
where L;(r), V;(u) are the linear functions
Ly(r) = (mpj = np})r — 4(m* +n*)Dy,
Vi (u) = (nah — mzh)u +2(m? + n?)C,. (5.24)

The coefficients p}, p?, #} and #} are defined in (4.25) and
(4.26). The coefficients D,, 6‘, are defined in (5.10). We
have not found an elegant expression for A; analogous to

(5.19). The asymmetry between A’ and A ; originates from
the choice of SO(4,4) group element (4.14), which does not
have symmetry under interchange of §; and y;.

3. Scalar fields

The scalar fields are

r2+u2—|—g,~ o f,‘
W ’ Il_r2+u2+gl

e‘/’i —

. (525)

where

fi=2(mr 4 nu)é; + 2(mu — nr)ép + 4(m? + n*)és,
gi = 2(mr + nu)n; + 2(mu — nr)ny + 4(m* + n?)n;,
(5.26)

and the coefficients &;1, &, &i3. 11, M2, 1i3 are the same as
the static coefficients (5.13) and (5.14).

VI. PHYSICAL QUANTITIES

In this section, we restrict to asymptotically flat sol-
utions, which have vanishing NUT charge, N =0, by
setting n = ny given by (4.21), unless otherwise stated.
Note that derivatives with respect to §; must be done before
setting n = ny.

A. Thermodynamics

In this subsection, we explicitly reinstate the 4-
dimensional Newton constant G. Recall from Sec. IV B
that the charge matrix provides the mass M in (4.17), and
electric charges Q; and magnetic charges P! in (4.23). We
normalize the electromagnetic charges as

PHYSICAL REVIEW D 90, 025029 (2014)

- 1 - 1

Q[:EQI’ PI:EPI' (6.1)
The angular momentum J is obtained from another charge
matrix in (4.27). Canonical methods then associate the
mass to @,, the angular momentum to —d,, the electric
charges Q; associated with A; to the gauge parameter
A; = —1, and similarly magnetic charges P’ associated

with A;. To recapitulate, we have

_m (O Ok
2G 851 Uy 851 ’

pr_Mm (Lo _on
2G %) 651 651 ’

where p;, 4, vy and v, are given in (4.18) and (4.19).
The black hole has outer and inner horizons at r = r_,

the roots of the radial function R(r). The angular velocity
€ at the outer horizon is determined by the Killing vector

(6.2)

&0, =0,+Q,0, (6.3)
that becomes null at the horizon, and is
a
Q, = , 6.4
F L) o4

where L is given in (5.3). The entropy and temperature are

b3 R'(r,) ry—m
S, ==L , T, = = .
+ =gt T 4xL(r.)  22L(r,)

(6.5)

In the static case, the function W(r,, u) defined in (5.17)
reduces to L(r, ), and so these quantities can be expressed
in terms of W. The electric potential &/ = & A/ and
magnetic potential U, = & A;, at the horizon are

1 /OL
O = QAL ,(r) = I (86, - "0P1>

, (6.6)

where L ; 1s given in (5.9). These quantities obey the first
law of thermodynamics
oM =T8S, +Q.58] + ®L5Q, + V)P, (6.7)

and the Smarr relation
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M=2T.S, +2Q.J+® 0, +V/P. (68)
Technically, the Smarr relation follows from nontrivial
identities obeyed by the parameters,

Z(/’%”{ —pi#s) = 8(p1vy — povy — 1= D),
1

oD ~
5>(0155 ~P'D1) = 4D + 1
Ji 1

+ (4D, + 2uy)ny. (6.9)

B. Cayley hyperdeterminant

For regular, static, extremal black holes of N =8
supergravity, the entropy is expressed in terms of the
electromagnetic charges as [981°

S, =2m/|o],

where ¢ is the Cartan-Cremmer-Julia E;(7) quartic invari-
ant. See [120] for further details of the definitions of ©.
Specializing to STU supergravity, the E;7) quartic invari-
ant ¢ reduces to an SL(2,R)* invariant, the Cayley
hyperdeterminant A. Consequently, the entropy reduces
to (see e.g. [18])

(6.10)

S, =2m\/|Al (6.11)
where the hyperdeterminant is
1
A(Q. P) = T3 (4(Q10,0504 + P P2P3PY)
+2) 0,0kP'PK = (0))*(P')?).
J<K J
(6.12)

Some special cases of A are: all gauge fields equal
(Q; =0, Pl =P), with A =;(0*+ P?)% only electric
charges (P! = 0), with A = ‘—1‘Q 10,050,; only one non-
vanishing gauge field (Q; =P/ =0 for I=2,3,4),
with A =—7(0,)*(P")? and pairwise equal gauge
fields [(Ql,Pl) = (Q4,P4) and (Qz,PZ) = (Q3,P3)],
Wlth A= %(Qle + P1P2)2.

The hyperdeterminant is invariant under permutations of
the four gauge fields. It is also manifestly invariant under
SL(2,R)? upon rewriting as

1
_ ab .cd a'b' J'd a"c" L b"d"
A= 3_26 ere e e € Yad' a"Yob'v"Y ec'¢"Ydd' d" s

(6.13)

®Qur convention for the normalization of < differs by a factor
of 4 from [98].
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where ¢?? = €l], 0" = 1, and the components y,,,» are

(voo1-7110) = (P2, Q2),
(70117}’100) = (Q4,P4)-
(6.14)

(7000-7111) = —(Q1., PY),
(vo10-7101) = (P2, Q3),

The sets of indices (a,b,c,d), (d',b',c',d) and
(@",b",c",d") each correspond to different copies of
SL(2,R). Using Schouten identities such as e“?¢°d = 0,
the hyperdeterminant may be rewritten as

r
_ abv' d a"'b" "d" ac bd
A= 3¢ € € € € VaadVorp VeV ad'd’

1 N U U ! gl
= ﬁea b € d €ab€cd€a ¢ €b d Yad d"Vbb'b"Y cc' "V dd'd” »

(6.15)

so the hyperdeterminant is invariant when the three copies
of SL(2,R) are cycled. Since each expression is also
manifestly invariant under interchange of two copies of
SL(2,R), the hyperdeterminant is invariant under the
triality symmetry of permuting the three copies
of SL(2,R).

For the general NUT-free, nonextremal black hole
solution that we derived, the hyperdeterminant can be
expressed in terms of the parameters m, d; and y; as

m*(V2 + 13)? (4D — 17)

4 El
L2

A =

(6.16)

where vy, 15, 1 and D are given in (4.19).

C. Inner horizon thermodynamics

Associating thermodynamic quantities to the inner hori-
zon of a black hole is an old idea [121-123], but the
physical interpretation of these quantities remains unclear.
Two particularly interesting inner horizon quantities are the
“temperature” 7'_ and “entropy” S_ which are defined from
geometrical quantities at the horizon, through S_ = A_/4
and T = «x_/2x, where A_ is the area of the inner horizon
(defined with a particular orientation) and x_ is the surface
gravity corresponding to the null generator &0, = 0, +
Q_0, of the inner horizon. All inner horizon thermody-
namic quantities 7_, S_, Q_, ®/ and ¥; are those defined
at the outer horizon, but with r replaced by r_. It is then
easy to see that

S_T_<0, (6.17)

which makes the physical interpretation of 7_ and S_
unclear. We emphasize that
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S =21(r)

- (6.18)

is not necessarily non-negative, and therefore whether the
negative sign in S_7_ comes from 7"_ or S_ depends on the
particular solution.

The inner horizon thermodynamic quantities also obey
the first law of thermodynamics and the Smarr relation,

M = T_8S_ + Q_5J + ®L.50, + V7P,

M =2T_S_+2Q_J+®.Q, + U; P (6.19)
There are relations between the outer and inner entropies,
temperatures and angular velocities,

ST, Q

S, -T_ Q_

(6.20)

generalizing formulas known for the Kerr solution [123].
We also notice the relations

S 7 —2T_ 7 —2T_ p =2T_

=—Ccj———=—Cp ————F =—Cpl—————,

T3 Va o 37 %el—ol 3 P oy —w)
(6.21)

for each 1 =1,2,3,4, where we define the ‘“central
charges”

B ) VIR VA 1
Y Y T -
(6.22)
and
A=A+ J% (6.23)

The quantities (6.22) can be obtained as central charges
of a Virasoro algebra for the class of extremal fast and
slow rotating black holes, as discussed in Secs. VIII B and
VIIC. In the case of general nonextremal black holes,
there is no known derivation of these central charges from a
Virasoro algebra. The first relation in (6.21) can also be
written using (6.20) as

) 11
SJTJ:Q+S+ T—+T— .
+ —

The thermodynamics of the inner horizon has been con-
sidered in higher-derivative theories in [124].

(6.24)

D. Product of horizon areas

The product of the two horizon areas is independent of
the mass and quantized in terms of the angular momentum
and electromagnetic charges as

PHYSICAL REVIEW D 90, 025029 (2014)
ALA
647%G?

=J2+A(Q;,P") = A, (6.25)
Some special cases have been considered previously: the 4-
charge Cvetic-Youm black hole [125]; the dyonic Kerr-
Newman black hole [126] and the dyonic black hole of
Kaluza-Klein theory [127]. Since the metric is unaltered by
U dualities, this result generalizes to black holes of N =38
supergravity with 28 electric and 28 magnetic charges by
replacing the hyperdeterminant A with the quartic E;)
invariant ¢.

A natural interpretation of the product of areas formula is
given in terms of auxiliary left and right “entropies”

1
Sp=5(8,—8),

S, =2(s, +5.)
L_2 + -/ 2

(6.26)
which are clearly non-negative. The cases where S_ <0
are then rephrased as cases where S > S;. The product
formula becomes a level-matching condition,
S — 8% =d4z*(J? + A). (6.27)
Generalizing a result of Einstein gravity [128], in
Einstein-Maxwell theory, it has been shown [129,130]
(see [131] for a review) that universally
A A_ = (87J)* + (470%)?, (6.28)
for any electrically charged stationary axisymmetric
black hole with surrounding matter. Furthermore, there
are inequalities involving the area A of a smooth
stable axisymmetric marginally outer trapped surface
[132-134], for example
A% > (87J)? + (47 0%)>. (6.29)
These types of inequalities are reviewed in [135]. The
inequalities can generalize to FEinstein-Maxwell-dilaton
theory, in particular to Kaluza-Klein theory [136]. We
expect that these results further generalize using the
appropriate quartic invariant in the charges, to the STU
model as
A A_ = (87J)* + (87)%A, A% > (8nJ)% + (87)°A,
(6.30)

and to A = 8§ supergravity as

AL A_ = (87J)* + (8n)0, A% > (87J)% + (87)%0.

(6.31)

E. Nonextremal entropy and F invariant

The nonextremal black hole entropy can be rewritten in
the Cardy form [81,137,138]
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S, =2a(VA+F+\V-J*+F), (6.32)
where
40,2 2\3
F(M, 0, P!y = " F 1) (6.33)

v
Indeed, the equality Q, /T, = —Q_/T_ (6.20) implies that
0S;/0J = 0 after using the first law at the outer and inner
horizons and the definition of §; in (6.26). Differentiating
(6.27) with respect to J, one has 9(5%)/dJ = —8x>J. Then
integrating gives Sg =27V —J*> + F. The constant of
integration F is fixed by the actual value of Si to be
(6.33). Using (6.27), we deduce that S; = 27zv/A + F. The
result for S, = S; + Sy follows.

Since the entropy, the quartic invariant and J are all E; (7,
invariant, F admits an E;@)-invariant generalization,
depending also on the moduli. We will therefore refer to
F defined in (6.33) as the F invariant.

F. BPS bound

For the general rotating black hole, from (2.8) we have
1 <r2 +u+yg;

B fi
Miray = (W2+f%)/(r2+u2+g,-))'
(6.34)

At infinity, we find the identity since all scalar moduli are
trivial,
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In generality, we define the moduli-dependent SL(2, R)?
invariant

1 11! N
My = Jetaaa (M) (MG (MGT)T?

— (Ml—l)ubea’b’ea”h” — b (M;l)a’h’ea”b”

— et (Ms_l )auh”]}’bb’b% (6.36)

which, for trivial moduli evaluated at infinity, is

1
M =

!5/ uani AN N
Eyaa'a” (5ab5a b 5¢ b _ 5ab€a b e b

Ny ANl !/ VAN
_ €ab5a b P b _ €ab€a b 54 b )7bb’b”

1
- RZ(Q,QJ + PIPY). (6.37)
1.J

The quantity ML = |Z(P, Q, z4)|? is also the modulus of
the central charge of the N' = 2 algebra [139]

2(P,0.2,7) = %ema/%x%z)m —FA(x)PY) (6.38)

where K = —log (—8y,y,y3) is the Kihler potential of the
STU model and Fy = 0,F. We have the Bogomolny
bound on the square mass,

M? > M. (6.39)

G. Quadratic mass formula

We define the moduli-dependent symplectic invari-

M;=1+0(r"). (6.35)  ants [139]
|
1 -y =  (ImN +ReN(ImN)"'ReN —ReN(ImN)~1Y / PA
Balr.w) __Z(PA’QA)< - IITL/\/'(‘lRi\/ e elmi\/ —1) )( )
( )™'Re. ( ) Ox
1oy - (ImF + ReF(ImF)~'ReF —ReF(ImF)")(i’A>
Jolru) =7 (P ’QA)< —(ImF)~'ReF (ImF)~! 0/ (640)

where Fyy = 0,0sF and F = —X'X?X3/X" is the prepotential of the STU model. Here, asymptotic flatness at spatial
infinity fixes the scalar moduli at infinity as x; = 0, y; = 1, at r = co. The invariants read at infinity

I = h(oo,u) =, STUQ + (P, U5 = daloou) = ; S + (P =g S (PiPs +0,0,),

where we used (3.51).
For any A = 2 model,
ZP |z =1, —|ZP 4|z =T, (642)
where Z is the central charge and Z; = D;Z is the Kihler
derivative of the central charge. Therefore, J$° can simply
be expressed as J3° = I —2M°.

(6.41)
1.7
|
It is useful to define the invariant
0 1 A B
SQ — ZGABar¢ 3,@ |r:oo‘ (643)

For the STU model, we have
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1 -
S = ZZ(Z? +22). (6.44)
It was observed by Gibbons [140] that for static
configurations, the black hole mass obeys the condition
M? + N? + S =1 +482T2. (6.45)
This relation was interpreted in [141] as the statement that
the total self-force on the black hole due to the attractive
self-force of gravity and the scalar fields is not exceeded by
the repulsive self-force due to the gauge fields, and
vanishes only at extremality. For static black holes of
Einstein-Maxwell theory and the Einstein-Maxwell-
dilaton-axion theory (2.25), similar relations were derived
using the 3-dimensional coset model in [142], and further
generalized in [46].
We find that when rotation is present, the relation
generalizes to

QZ
M? + N* 4 S = I + 45% (T2+ + —*) (6.46)

472

The angular velocity leads to an additional repulsive
centrifugal force.

In fact, the last term on the right-hand side can also be
written in terms of seed parameters m,n or quantities
defined at the inner horizon as

2

1628 (12 + 25 o e —acisr (12 1 E.
Ut 42 4n?

(6.47)

Using the latter relation, the identity (6.46) amounts to the
statement that the quantity 7r(Q?) defined in (3.54) is
invariant under coset model transformations and therefore
has the same value on the seed and final solutions. The
identity therefore follows from a conservation law asso-
ciated with the 3d coset model.

VII. NONEXTREMAL SPECIAL CASES

The general solution that we have constructed unifies
many solutions in the literature. We now show how these
are special cases of our general solution. We first describe
nonextremal special solutions while some extremal limits
will be discussed in Sec. VIII. In all cases, the black hole
entropy is given by (6.32) in terms of the angular
momentum, the quartic invariant A (6.12) and the F
invariant (6.33).

A. Dyonic Kerr-Newman-Taub-NUT

If 6; = y; = 0, then all electromagnetic charges vanish.
This gives the Ricci-flat Kerr-Taub-NUT solution, which
we used as the starting point of the solution generating
technique.
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More generally, if §; = d and y; = y for all gauge fields,
then all electric charges are equal and all magnetic charges
are equal. This gives the dyonic Kerr-Newman-Taub-NUT
solution [78] of Einstein-Maxwell theory (2.26). The
conserved charges are

M = m cosh(26) cosh(2y) + n sinh(26) sinh
N = ncosh(268) cosh(2y) — m sinh(28) sinh
Q0 = Q; = msinh(25) cosh(2y) + n sinh(2y) cosh(25),
P = P! = msinh(2y) cosh(25) — n sinh(268) cosh(2y),
J=aM, (7.1)

and the quartic invariant is

A=—(Q*+ P (7.2)

B—

Specializing to the dyonic Kerr-Newman solution, we set
n = ng, so that N = 0. Then the F invariant is

F = M*(M? - Q%> - P?). (7.3)

B. Kaluza-Klein black hole

Ifo;,=y;=0for I =2,3,4and N = 0, then we have
the asymptotically flat, dyonic, rotating black hole
[79,82,83] (see also [143]) of Kaluza-Klein theory
(2.23). The conserved charges are

1 2msg (c3 + s3,5%)
M = —m(c}c3 - 1), = =,
2m(calcy1 ) 0, o
mac,,; (c2 —|—s2 52
7= }/1( 51 51 yl)’ N=o.
Cs1
, 2ms,cp

The quartic invariant and F invariant are

2
c

_ 42 2 21\3
F=m c4 (C61+Sﬁlsﬁ)’

1
A= —E(Ql)z(Pl)z’ ¢

(7.5)
but the F invariant is not easily expressed in terms of the

conserved charges. For this purpose, we define the mon-
otonic function

H(y) =2cosycos(y/3) + 6sinysin(y/3) -2, (7.6)

where 0 <y < 7/2. We take
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54M°((Q1)° = (P'))

P 1y
Sy (M0 P = ey (07 + (P

(7.7)

which satisfies 0 < w < z/2 for regular black hole con-
figurations obeying 4M > [(Q,)*? + (P')?/3]3/2. Then,
after some lengthly algebra, we obtain

F= {MZ —%(QI)Q} [MZ —%(P’)Z}

syl + @ oo, p))

(7.8)

For this class of solutions, the triality invariance reduces to
the Z, invariance Q; — P!, P! — —(Q,, under which F is
manifestly invariant. The function H(y) was found by first
expanding F in terms of the sum and difference of squares
of electric and magnetic charges in a perturbation series.
The Taylor coefficients of the function H(y) were then
recognized as belonging to a hypergeometric series using
an algorithm for integer sequence recognition,’ then sim-
plified in terms of trigonometric functions. The final result
was then tested numerically. Finally, note that when P! = 0
we have

F = o 52U — 400, - (0"
+4M(4M?* +2(0,)?)%2]. (7.9)

We therefore obtained a novel expression for the entropy of
the Kaluza-Klein black hole

S, = Zn(\/F—116(Q1)2(P1)2 + F—J2> (7.10)

where F is given in (7.8), which could be used to study its
thermodynamics further.

C. Four electric charges (Cvetic-Youm)

If y; =0 and n =0, then the NUT charge vanishes,
N =0, and we have the asymptotically flat, 4-charge
Cveti¢-Youm solution [81]. The full explicit solution,
including expressions for the gauge fields, was given in
[71]. If we include nonvanishing n, then we recover the
Kerr—Tagb—NUT solution with 4 electric charges given
in [71].

"The algorithm can be found at http://www.oeis.org.

'We swap parameters §; and &, and correct a typographical
error in the sign of y, for the solution with NUT charge presented
there.
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In our parametrization, p, =v; =0. The conserved
charges are

m
M= Zz}:cosh(Zé,), N = n(csi34 = S51234)

Q; = msinh(26;), P = 2n(cs185034 — S51C5034)-

(7.11)

The NUT charge can be set to zero by setting n = 0, which
we assume from now on. The angular momentum is then
J = ma(csipzs = Ss1234)- (7.12)

The quartic invariant (6.12) and F invariant (6.33) are

1
A=7010:0:0s
1
F:§<m4—4A+1;[\/m2+Q%
+m22 \/m2 + 07 \/m2 +Q3>. (7.13)

1<J

We have not found a closed form expression for the F
invariant in terms of physical charges only.

Let us also present the metric in our notation. The master
function (5.17) takes the almost factorized form

W2(r,u) = (r? = 2mr + u?)(r* + 2(2M — m)r + u?)

+ 43m*r. (7.14)
The metric is then given by
2 =2mr + u?
ds2 = —W(dt‘f' 603)2 + W(r, Lt)
dr? du? R(r)(a® — u?)
d¢? ),
) (R( It et e —omrr )™ )
(7.15)

where R(r) = r?> = 2mr + a? and the Kaluza-Klein 1-form
is

2uym(a® — u*)r

= de.

a(r* =2mr + u?)

3 (7.16)

D. —iX°X' supergravity black hole
If we set the electric and magnetic charges pairwise
equal, which is equivalent to (&;,7;) = (64,74) and
(65,72) = (83,73), then we have the dyonic rotating
black hole [84] of —iX°X' supergravity (2.24). The dyonic
Kerr-Newman-Taub-NUT is recovered upon setting
0,=0,. P =P
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The solution is substantially simpler in this truncation.

PHYSICAL REVIEW D 90, 025029 (2014)

To simplify the solution and physical quantities, it is convenient to define

Ar; = m[cosh(25;) cosh(2y,) — 1] + nsinh(26,) )
Ary = m[cosh(25,) cosh(2y;) — 1] + nsinh(25,) )
Auy = nfcosh(26;) cosh(2y,) — 1] — msinh(26; ) sinh(2y, ),

) )

[
[

sinh(2y,),

sinh

Au, = ncosh(26,) cosh(2y,) — 1] — m sinh(26,) sinh(2y,), (7.17)
and
ry=r-+ Ar, ry =1+ Ar,, u, = u+ Auy, U, = u + Au,. (7.18)
Then W = ryr, + uju, and the metric takes the simplified form
ds2:—£ dt_a2—u1u2—|—(Au1+n)(Au2+n)d¢ 2—|—Kdr2
w R
U 24 (A A 2w
U (gonnrat@urn)Antn) N W, (7.19)
w U
The gauge fields and duals are
Al — 0y (dt B a? — uyuy + (Auy + n)(Auy +n) d¢>
w a
Plu, riry +a® + (Auy + n)(Auy + n) (Auy + n) O(Auy)
- dr — d de, 7.20
w < a ?)+ 2a 06, ¢ (7.20)
and
i = Plr, <dt— a* —ujuy + (Auy + n)(Auy + n) df/’)
w a
O u, riry + a? + (Auy + n)(Auy +n) (Au; 4+ n)0(Ary)
dr — d d 7.21
+ w a )+ 2a 06, 4 (7.21)
I
with A2 and A, obtained by interchanging 1<>2. Here, the _Oin Plu,
partial derivatives with respect to §; are performed after At = w (d7 + uyuydyr) — W (dz = ryrydy),
setting (81,71) = (84,74) and (3,,72) = (33.73). Thenon- _ P'r, 0,1
trivial scalar fields are A = W (dr + uyurdy) + (dr — rirdy). (7.24)

Bt Uy — Iyl

e’ X1 =
w o 3+ u?

(7.22)

Using a linear coordinate transformation of the coordinates
t and ¢, and a gauge transformation, the metric and gauge
fields may be written in the simpler form

R U
dS2 = —W(d’[ + M]Mzdl//)z +W(d7 - rlr2dl//)2
drr  du?
% — . 7.23
+ <R + U) (7.23)
and

Guided by this simplified form of the solution, asymptoti-
cally AdS generalizations in gauged supergravity were
obtained in [28].

The parameters for the mass and NUT charge are

1
n=-p ==y [sinh(26;) sinh(2y,) + sinh(26,) sinh(2y,)],

1
=M=y [cosh(26,) cosh(2y;) 4 cosh(25,) cosh(2y)].
(7.25)

The conserved charges are therefore
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1
M:m+§(Arl+Ar2), N=n+1(Au; + Auy),

oM 19(Ary) . ON  10(Auy)
C =96 208 0 T T Tos T2 a5
oM 10(Ary) ., ON  10(Aw)
©=%, "2 05 U " 2 05
J = Ma. (7.26)

Since the gauge fields are set pairwise equal before taking
o; derivatives, there is a factor of 2 difference for the
electromagnetic charges compared with the general
formulas (4.22).

Setting the NUT charge to zero, we obtain the quartic
and F invariants

1 2

A= <§I§°_M§°> 21(Q1Q2+P1P2)2,
1 2

F= (M2—§I§°> —A=(M?—-MP)(M* + M - I)

(7.27)

in terms of other invariants defined in (6.37) and (6.41), and
which read here

I =100 + (P +(Qo) + (P2,
M3 = % [(Q1 +P')* + (0, + P?)]. (7.28)

If (81.71) = (84.74) and 6, =63 =y, =y3 =0, then
we have the Einstein-Maxwell-dilaton-axion solution of
[55], which is labeled by its conserved charges
Q..P'.M,J.

E. Reduction of the black string of minimal
5d supergravity

If 6, = 83 = 64,72 = y3 = y4 and P! = N = 0, then we
have the Kaluza-Klein reduction of the most general
asymptotically Kaluza-Klein homogeneous 5-dimensional
black string of minimal N' = 1 5d supergravity [87]. The
solution is labeled by its conserved charges M.J, Q;,
Q. P2. The charge Q, is the momentum along the string
in the Kaluza-Klein direction while Q, and P? are the 4-
dimensional electromagnetic charges.

F. One dyonic gauge field and two magnetic gauge fields

IfP*=Q, = Q3 = Q4 = 0and N = 0, then we have an
analytic continuation of the Kaluza-Klein black hole
solution with two additional magnetic charges of [85].
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VIII. EXTREMAL BLACK HOLES

An extremal black hole is characterized by the property
that its Hawking temperature vanishes. All extremal black
holes enjoy the attractor mechanism, which states that at the
horizon all scalar moduli reach an extremum value, which
is solely a function of the electromagnetic charges and
angular momentum carried by the black hole. In terms of 3-
dimensional coset models, extremal black holes lie on
nilpotent orbits of the symmetry algebra of the coset model.

There are a number of different extremal solutions that
may be obtained as limits of our general nonextremal
solution.” We will not attempt a classification but simply
present 3 extremal limits of general interest that lead to
black holes with finite area: the 1/8-Bogomolny-Prasad-
Sommerfield (BPS) static black hole, the extremal fast
rotating black hole and the extremal slow rotating black
hole which includes as a subcase the regular static extremal
non-BPS black hole.

A. Static 1/8-BPS limit

Supersymmetric black holes of A = 8 supergravity
which are 1/2-BPS or 1/4-BPS have zero area in the
supergravity regime, see e.g. [144]. Instead, the 1/8-BPS
black holes have finite area. Such black holes can be
generated through U dualities from a 1/8-BPS black hole
of the STU model, as constructed in [88,89,145,146]. In
this section, we will show how the 1/8-BPS black hole can
be obtained as a specific extremal limit of the nonextremal
solution.

In the static case a = 0, we take the limit ¢ — 0 while
scaling

0
51"’6,

me~ e, e ~el (8.1)
The solution admits 4 independent electric and 4 indepen-
dent magnetic charges. The mass saturates the BPS bound

M? = M (8.2)
where M5 is defined in (6.37), which indicates that the
solution is supersymmetric. The F invariant is zero in the
limit. The quartic invariant is non-negative, A > 0, and
the entropy (6.32) is

S, =2xVA, (8.3)

which reproduces the known entropy formula [18]. Since
the area is generically nonvanishing, the black hole is 1/8-
BPS. The scalar fields also obey the particular property

%See [118,119] for developments on a limiting procedure for
relating nonextremal to extremal coset orbits.
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S =1 -MP (8.4)
where these quantities have been defined in Sec. VI.
The metric (5.1) takes the isotropic form
ds? = =Wyl (r)de® + Wo(r)r=2(dr? + r2dQ?),  (8.5)

and the scalar fields admit a nontrivial radial profile
interpolating between the attractor values at the horizon
and trivial values at infinity, as imposed by asymptotic
flatness. dualities, the black hole is expected to reduce to
the one discussed in [88,89,145,146].

B. Extremal fast rotating solution

The extremal, fast rotating solution is achieved for
a = \/m?* + n}. The solution admits 4 independent electric
and 4 independent magnetic charges as well as angular
momentum. There is a degenerate horizon at r =
r, =r_=m. Using (6.46) and (6.47), the mass obeys
the remarkable formula

M? =19 — S +a’. (8.6)
In our parametrization, we have J/a = m(v} + 13)/vs.
Therefore, the F invariant can be evaluated as

F=J% (8.7)
The entropy (6.32) then becomes
S, =2xVA+J2 (8.8)

The entropy of the generic extremal rotating black hole is
therefore independent of scalar moduli in general, since it is
only a functional of the quartic invariant and the angular
momentum. This is a feature of the attractor mechanism.

Angular momentum breaks supersymmetry. In the BPS
limit (8.1), a =0 and J/a~¢€°, then J - 0 and all
conserved quantities coincide with those of Sec. VIII A.
Therefore, one can also consider the BPS limit as a special
limit of the extremal fast rotating solution.

The near-horizon limit is defined as

t = roA”lt, r—ro+ Argr, ¢ —> P+ Qi‘%_lrot,
(8.9)
and
Al AT =L a7, A - A=V A e,
(8.10)

where 1 — 0, Q%, ® W are the chemical potentials
at extremality and r is an overall constant that we choose

to be r3 = L(r..). The near-horizon metric is

PHYSICAL REVIEW D 90, 025029 (2014)

dr?  du?
ds? =W, (—rzdtz + A+ krdt)2> :
(8.11)
where W (1) = W(r,,u), and
L(ry)*U(u) 2
Fz(u):Wi(u)’ k:2(m1/2—n01/1)9+:§.
(8.12)
The near-horizon gauge fields are
I
e
AT = f1(dp + krdr) + —-dg,
A, = [1(dp + krdr) + %dqﬁ, (8.13)
where
L(ry) vl + vy7l
I _ + 1 141 2/tn
110 == (g + L),
e' =2(mvy — ngvy )@ — non! + mal,
o L(ry) (5 vip +vapg
Fiw = =20 (G -2,
ey = 2(muvy — novy )V} + nopj — mpj. (8.14)

The geometry has the expected enhanced SL(2, R) x U(1)
symmetry [147] and the expected functional form [148].
In the BPS Ilimit, k=0 and the geometry reduces
to Ad82 X S2.

Following the Kerr/conformal field theory (CFT) con-
jecture [149], the entropy is reproduced by Cardy’s formula

(8.15)

S+ - gﬂ'zc‘]T‘[

for a chiral sector of a CFT with central charge and
temperature

¢y =12J, (8.16)

We expect that boundary conditions exist when a Virasoro
algebra acts as asymptotic symmetry algebra, as in all
known subcases (see [150] for references). A distinct
description of the entropy is in terms of Cardy’s formula

1 2
Sy =37 CQITQ]

: (8.17)

for a chiral sector of a CFT with central charge and
temperature
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A 1
CQl = 24—a TQl =

: 8.18
20, (8.18)

2rel’

which generalizes [151,152]. More explicitly,

co, = 60,0504 + 3P (P20, + P3Q5 + P*Q, — P'Q)).
(8.19)

There are similar expressions corresponding to the other
electromagnetic charges.

C. Extremal slow rotating and non-BPS static limit

An extremal limit with slow rotation is defined as

2 ler (8.20)

m~e-m, n~en, a~ea, e’ ~e”
with € — 0 and the remaining parameters (y;, 73,74, 0;,
I =1,2,3,4)unscaled. The non-BPS static limit is defined
analogously but with @ = 0. There are four distinct limits
depending on the choice of y;, I = 1,2, 3,4 that is blown
up. By permutation symmetry, all limits lead to the same
metric. We expect that the four different limits are related
by field redefinitions of the charging parameters without
changing the physics. Since ny = O(¢), one can set the
NUT charge to zero by setting the final n = n,. Besides
angular momentum, the solution admits 4 independent
electric and 4 independent magnetic charges.

In the limit (8.20) the temperature 7, and angular
velocity €, vanish. The horizon is located at r = 0. In
the limiting procedure r, = —r_ + O(e?), which implies
that S_ = —§.. From (6.25), we deduce that JP+A<0,
the F invariant is F = —A and the entropy (6.32) becomes

S, =2zV-A-J2

Since A < 0, there are no BPS solutions with finite area in
this class. One can explicitly check that the mass obeys

(8.21)

M? =12 - 2, (8.22)
and, in particular, it does not depend upon the angular
momentum J. Upon setting to zero all magnetic charges,
the solution reduces to the extremal slow rotating four-
charge extremal solution studied in Sec. 5 of [86].lO

Regular extremal static non-BPS black holes with 8
independent electromagnetic charges are obtained by set-
ting J = 0. One such class of black holes labeled by 2
independent parameters was obtained in [94]. In that case,
we have the charge assignments 131 =1, 132 = f’3, 0, =
Q3 and P 4= 0.

Note that contrary to the claim of [86], at least five
independent electromagnetic charges are necessary to obtain a
generating solution.
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The general metric can be obtained by taking the limit
(8.20). It turns out that the functions L(r) and V() defined
in (5.18) blow up as L = O(e™!), V = O(e~2). Therefore,
the form of the W? and w5 functions is not adapted to the
description of the extremal slow rotating limit. However,
these functions are finite in the limit, and we find

W? = r* +4Mr? + (M?b, + b,J cos 0)r?
+ bsMPr — 4J%cos?0 — 4A,

w3 = 2—rjsin26’d¢, (8.23)
where b, b,, b3 only depend on the charging parameters
(61,71), 1 =1,2,3,4. We have by > 0, b3 > 0. The form of
w3 1s exceptionally simple and only depends on the
physical angular momentum. Since J> < —A, W? is indeed
positive near r = 0, which is the location of the extremal
horizon. Finally, the metric is

r2

~W(r.0)

W(r,0
+(rr2)

ds? =

2 2
(dt +H sin29d¢>
r

[dr? 4 r2(d6” + sin?0dg?)).

(8.24)

The matter fields can be obtained from the limit and we will
not display them here.
In the near-horizon limit, we replace

t—= gV =A - J?t, r— Aryr, (8.25)
and
Al = A —d(®L A gV A = JP1),
Ay = Ay —d(U 27 gV A = J21), (8.26)

and then take 4 — 0. For convenience, we fix ry = \@ for
convenience, we obtain

d 2
ds2 = W, <—r2dz2 + r—’; +d6? 4+ T2(dgp — krdt)2>

(8.27)
with
W, =2V"A- Peosts, k=T
VA+
= sin29_A__AJ_2£Sw (8.28)

The geometry only depends upon the quartic invariant and
the angular momentum and it admits the expected
enhanced SL(2,R) x U(1) symmetry [147]. The gauge
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fields in the near-horizon limit can be most easily obtained
by taking the extremal limit with slow rotation (8.20)
followed by the near-horizon limit (8.25) of the expression
(5.19). In order to evaluate the latter expression, we need to
keep n general, and take n = n, only after taking the
derivative with respect to &;. We first note that C = —13 +
O(e7?) and @', = 95, logr; + O(e). Then, we obtain after
the limit € — O,

W? = 4v3n*(n® — a*cos?0) + O(4),

2
w3 = — L Gin20dg + 0(20). (8.29)
ror
After using (4.22), we get ¢ = 05, logy;  and

Al = Pl cos 8d¢ — D5, log v w3, which results finally in

Al = £1(d¢p — krdt) — %qus,

o Pl(=A = J?) (7" + J cos 0) o — Pzl
J(=A — J?cos?0) ' A2
AT = F,(dp — krdr) — %dd),
J? _ Q(=A = J?)(p; = J cosb) o, — QiP1
! J(=A — J?cos*0) Ny
(8.30)

after performing the gauge transformation as indicated in
(8.26). After analysis, we find

oA
Q, 0P

1 0A
Al =—2———, D = 8.31
T P[ an pl ( )
Following the Kerr/CFT conjecture [149], the entropy is
reproduced by Cardy’s formula

1,
S, =zn°¢c,T,

: (8.32)

for a chiral sector of a CFT with central charge and
temperature

=12J T, = : (8.33)
c] - k) J — 2ﬂk' .
Eight other Cardy formulas hold,
1, 1,
S+ = gﬂ' CQ,TQ, = gﬂ' CPITPI, (834)

one for each electric or magnetic charge, with central
charges and temperatures
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6 0A 1
C = 00—, = —,
(] an 0 277.'61
0A 1
Cpl = _6W’ TPI = Fél (835)

1. Kaluza-Klein black hole

Let us present the details of the extremal slow rotating
solution in the case where the only nonzero electromagnetic
charges are Q = Q,, P = P!, corresponding to the charg-
ing parameters 6 = §; and y = y,. This is a 4-dimensional
solution of Kaluza-Klein theory, about by reduction of the
5-dimensional Einstein gravity [79,82,83] (see also [153]).

Extremality fixes the mass in terms of the electromag-
netic charges. In our parametrization, we find

me*cosh?s - me¥sinh®s - me*
M=, Q=" P=o
8 8coshé 8coshéd
(8.36)
which satisfy
M?3 = Q%3 + P23, (8.37)

Let us assume for simplicity and without loss of generality
that Q >0, P>0. Then we have the factorization
W2 = WoWp, where

Wo =12 +40%3,/0*3 + P?/3r
+8Q'3P~13(Q P—Jcos ),

Wp = 2+ 4P3\/ 03 + P23y
+8P3Q713(Q P +Jcos@).

:

(8.38)

Note that reversing the spacetime orientation would lead to
a change J — —J in W, and Wp as a consequence of the
equations of motion.

The coefficients in the gauge fields in the near-horizon
limit are given by

Al =p=vV-A=QP. (8.39)
At the horizon r = 0, the scalar moduli reduce to
1 P¥3(QP+JcosO
x; =0, Yo =DY3 =—"= -2/3(— = ) (840)
yi Q¥ (QP—Jcos0)

Introducing w ~y + 2z, one can reconstruct a 5-
dimensional Ricci-flat metric as
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Pr

ds? =20 |R,dy - ————

s =1 ){ ad QP —JcosO

G(9) r2
2700 {‘ G2(0)

2
(dt + Jsin29d¢> + Pcos 6’d¢]
r

J dr?
(dr + - sin0d¢)? + r—’; + do* + sin29d¢2} , (8.41)

where R, is arbitrary and

£(6) = (2) 3 (M) 1/2, G(0) = \/ Q*P? — J*cos?0. (8.42)

P QP +JcosO

The near-horizon metric is obtained by replacing r — Ar, t — ¢/, and then taking the limit A — 0; it falls into the
classification of [154]. The geometry of the horizon is globally S°. The metric can be put in the form

L, dr? 2 i }
ds? =T(0) <—r2dt2 o 4 de? + > 1as(0)(dgp — KA rdD)(dgp® — kBrdt)>, (8.43)
r AB=1

where 7= 1/(0?P* — J2)\/2, ¢! = ¢, ¢* = Ry,

P3P OP
- (Q _+Jcose), kl :__;, k2 :__Q—, (844)
2Q1/3 (Q2P2 _ J2>1/2 (Q2P2 _ J2)1/2
and
- 1 <Q2132—J2c0s2¢9+(QPCOSH—J)2 20(Q Pcost—J) ) (8.45)
748 =@ P+J cos O)? 20(0 Peos0 - J) 20(0 P —Jcos6)/P ) '
|
It admits an SL(2,R) x U(1)?> symmetry. The Killing IX. KILLING TENSORS AND SEPARABILITY

V T = = —_ N . . .
ectors £y = 0y, & = rd, — t0; and It is well known that the Kerr solution possesses various

X 1 ) types of Killing tensors. These tensors are related to the

11 = k k integrability of geodesic motion, and the separability of the
=(=5+= |0 —10, +—05+——0 8.46 g yors ; P Y

d (Zr2 + 2) A R,r " (8.46) Klein-Gordon equation and the Dirac equation. Black hole

solutions of N = 8 supergravity also involve metrics that

satisfy the SL(2,R) commutators [&), & ] = —&,  POssess various types of Killing tensors as we will now
(£, E_1] = £, and [E_1, &] = =&, demonstrate. Using (5.17), the metric (5.15) can be written
in the form

Following the Kerr/CFT conjecture [149], the entropy is
reproduced by either of Cardy’s formulas

R-U L,R+L.U
1, 1, ds* = — ap - LR T Ly )Zdtdqﬁ
S, =37 CJTJ:§JT coTy (8.47) w aWw
W2U — WiR dr*  du?
(’2—”)d¢2 + W(LJFL), (9.1)
for a chiral sector of CFTs with central charges and a-W R v
temperatures
where
1
c; =12J, T, = il (8.48) 2 i i
we W L,R+L.U
W2 = (R - U)( r __u> +M, (9.2)
== —6—_ N T = 3 8.49
T 0= a2 (8.49)
Its determinant is /—¢g = W. For the black hole solution,
as obtained in [155] (see also [156]). the functions R(r) and U(u) are given in (5.16), and
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L,(r) =L+ 2Nn,

Wi(r) = R* +4MrR + (L 4+ 2Nn)?,

L,(u) =2N(u—n),

Wii(u)

u) = U? =20V +4N?(u — n)?,

(9.3)

where L(r) and V(u) are given in (5.18).

Henceforth, in this section we consider a more general
class of metrics of the form (9.1). We generalize so that: R,
W, and L, are arbitrary functions of r; U, W, and L, are
arbitrary functions of u; and W satisfies (9.2). There are two
conformally related metrics of interest: the usual Einstein
frame metric ds?, and the string frame metric

2 2
- r-+u
ds? = ———ds?,

- (9.4)

whose inverse (9/05)? is given by

k0,0, =

It is generically irreducible, i.e. not a linear combination of
the metric and products of Killing vectors. In general, if a
metric d5? possesses a Killing-Stickel tensor K - then for
any conformally related metric ds® there is an induced
conformal Killing-Stickel tensor with components given
by O* = K", see e.g. [157]. In particular, the string frame
Killing-Stéckel tensor induces a conformal Killing-Stickel
tensor for the Einstein frame metric. Note that the existence
of a conformal frame admitting a Killing-Stickel tensor is a
more restrictive condition than the existence of a conformal
Killing-Stickel tensor in Einstein frame. This conformal
Killing-Stickel tensor was identified for the subcases with
4 electric charges in [97], and for the nonextremal rotating
Kaluza-Klein black hole in [158].

If we specialize to L, = W, and L, = W, then we can
write without loss of generality W = W, + W,,. Then the
Einstein frame metric is of the form

R 14 2
————(dt+—d
W,+Wu< * a ¢>

U w 2
— ([ dr——Ld
* W, + W, < a ('b)
dr? du2>

+(W,+Wu)<?+7

ds? =

(9.7)

This class of metrics has been studied in detail [28], and has
the property that both the string frame and Einstein frame
metrics possess Killing-Yano tensors with torsion. It

r’L, rrou?

1 u*w? n w2 P u’L, n
r* 4+ u? R U o R

PHYSICAL REVIEW D 90, 025029 (2014)

2 2 2
(r* +u?) <%> = RO; + U, + (W” —&> o7

U R

L L, 11
—a (E +ﬁ> 28t8¢ + a2 (E—E) 8@
(9.5)

Let us recall some definitions of Killing tensors. A (rank-
2) Killing-Stéckel tensor is a symmetric tensor K, = K,
that satisfies V(,K,,) = 0. A (rank-2) conformal Killing-
Stéickel tensor is a symmetric tensor Q,, = Q,, that
satisfies V(,0,,) = q(,9,,) for some g, given in 4 dimen-
sions by ¢, = £(9,0%, +2V,0%,).

For black hole solutions of supergravity, usually only the
string frame metric admits Killing tensors, whereas the
Einstein frame metric usually only admits conformal
Killing tensors [97]. Here we note that in general, the
string frame metric has a Killing-Stéckel tensor given by

(9.6)

|

implies that both the Einstein and string frame metrics
admit Killing-Stéckel tensors. The class of metrics includes
the general black hole metric truncated to —iX°X' super-
gravity, by setting the gauge fields pairwise equal, say
(61.71) = (04.74) and (83,72) = (83.73).

A. Geodesics

The Killing tensor in string frame guarantees the
complete integrability of geodesic motion in this frame,
which we now demonstrate explicitly. In string frame, the
Hamilton-Jacobi equation for geodesic motion is

95, Lowa,s0,5 =0,

a2 (9.8)

where § is Hamilton’s principal function, 9,§ = p, =
dx,/dA, p, are momenta conjugate to x*, and / is an affine
parameter. Consider the ansatz

s = %m CEt4Lp+S.(r) +S,).  (9.9)

The constants p, = —FE and pj, = L are momenta con-
jugate to the ignorable coordinates ¢ and ¢, related to
energy and angular momentum. The particle mass is g,
so that p#p, = —u*. The components (r? + u?)g* are
additively separable into functions of r and of u, and so
the Hamilton-Jacobi equation is additively separable.
Explicitly, we have
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w2 W2 L L 1 1 ds \? ds, \?
Do TV a4 T EL+ @ (= —— L2+ R[22 u 22 4 u2) =0 10
(U R) + a(R+U> +a (U R> + (dr) +U<du> + u*(r* + u?) . (9.10)

and so

dS,_l
dr R

\/WzE2 —2aL,EL + a*’L? — (C + i*r*)R,

s, 1
du U

\/—W3E2 —2alL,EL — a’L* + (C — p*u*)U,

(9.11)

where C is a separation constant. We then determine r(4) and u(4) by integrating

dr

a:g Pr=

R dS,
2+ u?dr’

Finally, we determine 7(4) and ¢(4) by integrating

E
al
r? + u?

=9t J'py =

w7
R

dAi

=3"p +3"py =

In Einstein frame, generically only the u = 0 massless
Hamilton-Jacobi equation separates.

B. Klein-Gordon equation

Separability of the massless Klein-Gordon equation
makes the analysis of [159] applicable to the general black
hole of A/ =8 supergravity, which will therefore admit
hidden conformal symmetries in the near-horizon region.

The massive Klein-Gordon equation for the Einstein
frame metric is

I
e

Consider the ansatz

od

9,(v=99"0,®) = *®.  (9.14)

O =D, (r)®,(u)elkd—n), (9.15)

Then the Klein-Gordon equation gives
_ @*W; - 2awkL, + a*k*
B R

*W?2 + 2awkL, + a*k*

U
qu)’ + U
dr

In the particular case where the Einstein metric takes the

form (9.7), such as for generic black holes of —iXyX;
supergravity, the u # 0 massive Klein-Gordon equation in

ww

1d
®,.dr

1d
d, du

do,
du

). (9.16)

W2

L,
(i

du

ﬁ = guupu =

v,
P24+ u?du’

Lr+LM
U P +u:\ R U)’

L, N a’L (1 1
U U R)
[

r* 4+ u?
Einstein frame separates. Generically, there is separation
only in the massless case ¢ = 0, leading to

(9.12)

al

(9.13)

d do, @*W? = 2awkL, + a’k*
E(Rdr>+< R +C><I>r=0,
d (qu)u) 3 (w2W3 + 2awkL,, + a*k* n C)@ —0
du du U ! ’
(9.17)

where C is an integration constant. Specializing to the black
hole solutions we constructed, the radial equation has
regular singular points at the locations of the horizons,
r = ry, and an irregular singular point at infinity, similar to
what happens for the Kerr solution. The solutions are Heun
functions. The angular equation involving u can be
analyzed similarly.

X. CONCLUSION AND FURTHER DIRECTIONS

We have constructed a generating solution for the most
general stationary, asymptotically flat black hole of N' = 8
supergravity. We checked that this black hole reduces in
specific subcases to all previously known solutions of the
STU model with 4 independent (combinations of) electro-
magnetic charges [71,81,84,85,87]. Unlike many other
treatments of STU supergravity, we have emphasized the
4-fold permutation symmetry of the gauge fields in the 3-
dimensional coset model, not just the triality symmetry. We
discussed several extremal limits of interest, but a com-
prehensive examination of all extremal limits of our
solution remains to be done. The generic black hole that
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we constructed admits a conformal Killing-Stéickel tensor,
and the massless Klein-Gordon equation separates, so we
can deduce the presence of hidden conformal symmetries in
the near-horizon region.

The solution generating technique that we detailed is
general and could be used for a wider class of stationary
seed solutions, beyond the Kerr-Taub-NUT solution that
we used. Different choices of group element can be used,
allowing for more general asymptotic behavior. One
example is the application to ‘“subtracted geometries”
[138,160,161], obtained by solution generating techniques
in [99,162]. Another example is obtaining charged black
holes in a magnetic Melvin universe [163]. The techniques
can also be applied to the various theories in 5 and 6
dimensions that we discussed.

The issue of black hole uniqueness has not been fully
addressed (see [164] for a recent review). It was shown in
[32] that, with certain assumptions, all charged black holes
in coset models lie in the orbit of the Kerr black hole. These
assumptions were clarified in [165] in the static case, where
it was shown that all scalar fields should be regular on the
horizon in order to apply the theorem of [32]. Clarifying the
theorem of [32] in the stationary case seems a natural step
to prove uniqueness.

Under general assumptions, stationary 4-dimensional
black holes are axisymmetric [166], so can be Kaluza-
Klein reduced to 2 spatial dimensions. For Einstein gravity
and Einstein-Maxwell theory, inverse scattering techniques
can then be used to generate solutions, as reviewed in [167].
These techniques can be generalized to certain theories of
gravity coupled to matter, in particular supergravities. They
have been developed for the S* supergravity in [168], and
more generally for the STU supergravity in [114]. One may
gain more insights into the algebraic structure of the general
black hole solution by deriving it using these techniques.

Inverting the relation between conserved charges and
auxiliary parameters that parametrize the 4-dimensional
fields would allow for expressing the entropy, or equiv-
alently the F invariant that we defined, in terms of physical
charges. Our formula for the entropy of a general non-
extremal black hole is not manifestly invariant under
SL(2,R)? or triality. We therefore are unable to provide
here a manifestly E;@-invariant entropy formula for
nonextremal black holes in N' = 8 supergravity. Even in
the simpler case of Kaluza-Klein theory, i.e. reduction of 5-
dimensional Einstein gravity, the F invariant for the dyonic
black hole takes an intricate form that we were able to
present. We leave this difficult algebraic problem for future
investigations.

We checked that the first law of thermodynamics closes
both at the outer and inner horizon and that the Smarr
formula holds at the outer and inner horizons. We derived a
generalization of the quadratic mass formula in the pres-
ence of rotation and NUT charge. We also presented some
relationships between physical charges defined at the outer
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and inner horizon that generalize previously known sub-
cases. A microscopic understanding of these relationships
remains to be uncovered.

Extremal black holes have been of interest recently with
regards to the Kerr/CFT conjecture and its generalizations.
The general black hole admits two distinct extremal
rotating limits, the fast and slow rotating cases. In each
case, similar to each subset of solutions that has been
previously studied under that viewpoint, we reproduced all
expected properties of extremal black holes, such as the
existence of an SL(2,R) x U(1) symmetric near-horizon
region and the Cardy form of the entropy. We noted the
property that the generic near-horizon metric of extremal
slow rotating black holes only depends upon the angular
momentum and the quartic invariant. These results, if
combined with a general asymptotic symmetry group
analysis, would allow a microscopic counting of these
extremal black holes.

Several avenues for microscopically accounting for the
entropy of specific nonextremal black holes in STU
supergravity have been proposed [159,169-171]. It would
be very interesting to try to unify these approaches and
propose a microscopic model for the general black hole.

We have given a generating solution for the most general
black hole of maximal supergravity in four dimensions.
Without the complication of magnetic charges and with
fewer gauge fields, the same had been done a long time ago
for black holes in maximal supergravity in five dimensions
[172] and higher dimensions [173]. Black rings are a
further class of exact solutions in five dimensions, and
are known in Einstein gravity with two independent
rotations [174]. Several charged generalizations are known;
see [175] for references. Using U dualities, a generating
black ring solution for maximal supergravity is expected to
involve 21 parameters, including mass, 2 angular momenta,
3 electric monopole charges, and 15 dipole charges [176].
Its construction would be a formidable task, and even its
truncation to the S-dimensional STU supergravity is
not known.

Partial generalizations to asymptotically AdS black holes
in the U(1)* truncation of maximal V' = 8, SO(8) gauged
supergravities (including the recently discovered one-
parameter family of w-deformed theories [27,30]) have
been found; see [28,29,177]. The asymptotically flat
solution presented here has been generalized in [28] to
two classes of asymptotically AdS solutions: static solu-
tions with 4 independent electric charges and 4 independent
magnetic charges; and rotating solutions with pairwise
equal gauge fields, generalizing the solution of —iX°X!
supergravity, which has 2 independent electric charges and
2 independent magnetic charges. However, they are diffi-
cult to find, since the solution generating techniques of
ungauged supergravity rely on hidden symmetries. These
symmetries of the bosonic theory are mostly broken in
gauged supergravity by a scalar potential, in STU
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supergravity from SL(2,R)® to SO(2)® [100] (see also
[177]). The most general AdS generalizations of our
ungauged solutions remain to be found. One guide to
finding these solutions is that they are expected to involve
metrics that allow separability. The class of metrics that we
defined that admit a Killing-Stickel tensor in string frame
might therefore be useful in this context.
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