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Entanglement is studied in the framework of Dyson’s S-matrix theory in relativistic quantum field
theory, which leads to a natural definition of entangled states of a particle-antiparticle pair and the spin
operator from a Noether current. As an explicit example, the decay of a massive pseudo-scalar particle into
a pair of electron and positron is analyzed. Two spin operators are extracted from the Noether current. The
Wigner spin operator characterizes spin states at the rest frame of each fermion and, although not
measurable in the laboratory, gives rise to a straightforward generalization of low-energy analysis of
entanglement to the ultrarelativistic domain. In contrast, if one adopts a (modified) Dirac spin operator,
the entanglement measured by spin correlation becomes maximal near the threshold of the decay, while the
entanglement is replaced by the classical correlation for the ultrarelativistic electron-positron pair by
analogy to the case of neutrinos, for which a hidden-variables type of description is possible. Chiral
symmetry differentiates the spin angular momentum and the magnetic moment. The use of weak
interaction that can measure helicity is suggested in the analysis of entanglement at high energies instead of
a Stern-Gerlach apparatus, which is useless for the electron. A difference between the electron spin at high
energies and the photon linear polarization is also noted. The Standard Model can describe all of the
observable properties of leptons.
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I. INTRODUCTION

Starting with the analysis of Einstein et al. [1], the
entanglement in nonrelativistic quantum mechanics has
been much discussed, in particular, in connection with
hidden-variables models [2–4]. Also, the basic issues such
as nonlocality and causality have been deliberated. It is,
however, clear that the issues related to relativity are better
treated in a fully relativistic formulation. There exists ample
literature on this subject, but we just mention some of them
[5–16] where further references are found. We are mainly
interested in the basic issues such as the natural definition
of entangled states and spin operators, the possible energy
dependence of entanglement measured by spin correlation,
and nonlocality and causality. We formulate the entangle-
ment in the framework of relativistic quantum field theory,
to be precise, in the S-matrix theory defined by Dyson [17].
In S-matrix theory, we treat only asymptotic states, which
contain particles far apart from each other. As a concrete
example, we present such a formulation by studying the
decay of a massive pseudoscalar particle into a pair of
electron and positron [18]. The decay of a pseudoscalar
particle itself has been discussed in [13], but we present a
fully field theoretical formulation and emphasize many
different aspects of the problem, including experimental
measurements. Our formulation is very simple and straight-
forward, and we recognize several novel features of
quantum mechanical entanglement.
To be specific, we show novel aspects related to, for

example, the derivation of two kinds of spin operators, where

one of them is directly measurable at the laboratory and the
other is not, startingwith theNoether current, and the energy-
scale dependence of entanglement of two-spin systems
depending on the choice of spin operators thus constructed.
Quite independently of a specific choice of the spin operator,
an entangled state is constructed by a local and causal
interaction in the S-matrix theory in a manner perfectly
consistentwith the uncertainty principle.Other novel features
are the crucial role of chiral symmetry, which is not clearly
recognized in the first quantization, in the analysis of spin-
related freedom of fermions, in particular, to distinguish spin
operators from themagneticmoment, and a unified treatment
of electrons and neutrinos. We also discuss the use of parity
violating weak interactions to test the spin entanglement of
high-energy electrons and clarify the difference in the energy
dependence of the electron spin and the linear polarization of
the photon. We present a view that the Standard Model can
describe all of the observable properties of leptons.

II. MASSIVE PSEUDOSCALAR PARTICLE DECAY

We consider the decay of a very massive pseudoscalar
particle P into a pair of electron and positron described by
the free Lagrangian (in the natural units c ¼ ℏ ¼ 1) [19],

L0¼ ψ̄ðxÞ½iγμ∂μ−m�ψðxÞþ1

2
½∂μPðxÞ∂μPðxÞ−M2PðxÞ2�;

ð1Þ

and an (effective) interaction Lagrangian or Hamiltonian,
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HIðtÞ ¼ g
Z

d3x∶PðxÞψ̄ðxÞiγ5ψðxÞ; ð2Þ

with a coupling constant g. The Dyson formula for the S
matrix [17,19,20], S ¼ 1 − i

R
dtHIðtÞ þ � � �, shows that

the final state of the decay of the heavy particle P at rest is

described by Ψ ¼ SjPð~0Þi, namely, by ignoring the for-
ward amplitude,

Ψ ¼ −ig
Z

d4x∶PðxÞψ̄ðxÞiγ5ψðxÞ∶jPð~0Þi; ð3Þ

where we assume a small g. We expand the free fields in the
interaction picture

ψðxÞ ¼
Z

d3p

ð2πÞ3=2
X
s

½að~p; sÞuð~p; sÞe−ipx

þ b†ð~p; sÞvð~p; sÞeipx�;

PðxÞ ¼
Z

d3p

ð2πÞ3=2
ffiffiffiffiffiffi
1

2E

r
½cð~pÞe−ipx þ c†ð~pÞeipx�; ð4Þ

where the solutions of the free Dirac equation are given
by [19]

uð~p; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2E

r  
ξðsÞ

~σ·~p
Eþm ξðsÞ

!
;

vð~p; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2E

r  
~σ·~p
Eþm ξð−sÞ
ξð−sÞ

!
; ð5Þ

with ~σ standing for Pauli matrices. The two-component
spinor ξð�sÞ for a fixed unit spin vector ~s (at the rest frame
of the electron or positron) satisfies

~s · ~σξð�sÞ ¼ �ξð�sÞ; ξ†ðsÞξðs0Þ ¼ δs;s0 ; ð6Þ

and the expressions (5) are obtained by Lorentz boosting to
the direction of momentum. For example, for ~s ¼ ~p=j~pj, s
agrees with helicity eigenvalues hξð�sÞ≡ ð~p · ~σÞξð�sÞ=
j~pj ¼ �ξð�sÞ, which is actually twice of the conventional
definition of helicity. The commutation relations in the
continuum notation are ½cð~p0Þ; c†ð~pÞ� ¼ δ3ð~p0 − ~pÞ and
fað~p0;s0Þ;a†ð~p;sÞg¼fbð~p0;s0Þ;b†ð~p;sÞg¼ δs;s0δ

3ð~p0− ~pÞ,
and all others are vanishing.
The final asymptotic state (3) has the structure (using

jPð~0Þi ¼ c†ð~0Þj0i)

Ψ ¼ gffiffiffiffiffiffiffiffiffiffi
4πM

p
Z

d3pd3p0δ4ðpþ p0 − PÞ

×
X
s;s0

½ūð~p; sÞγ5vð−~p; s0Þ�a†ð~p; sÞb†ð−~p; s0Þj0i; ð7Þ

with P ¼ ð~0;MÞ. We thus define for the fixed momentum
direction of the electron,

Ψð~pÞ≡ 1ffiffiffi
2

p ½a†ð~p; sÞb†ð−~p;−sÞ þ a†ð~p;−sÞb†ð−~p; sÞ�j0i;

ð8Þ

which is valid for any choice of the spin vector ~s by noting
ūð~p; sÞγ5vð−~p; s0Þ ¼ δs;−s0 . [Actually, s ¼ 1 in the expres-
sion of (8), but we keep s to indicate the direction
of ~s]. This shows a way to prepare a desired state in the
framework of local and causal relativistic field theory. All
of the properties of the asymptotic state (8) are accounted
for in the framework, which is consistent with locality,
causality, and the uncertainty principle, as is discussed
further later; in particular, it is important to recognize that
we integrate over the entire Minkowski space in (3);
namely, we have no information about when and where
the particle decayed. In passing, we mention that a scalar
particle decay, instead of a pseudoscalar, is also naturally
described by field theory, and the result is obtained by
replacing ūð~p; sÞγ5vð−~p; s0Þ by ūð~p; sÞvð−~p; s0Þ in (7);
however, the final result is more involved due to the
opposite intrinsic parity of a fermion and an antifermion.
In the following analysis, it is convenient to imagine

a very large three-dimensional box with a volume L3

and impose periodic boundary conditions so that we
have discretized momentum ~p and fað~p; sÞ; a†ð~p0; s0Þg ¼
δs; s0δ~p;~p0 ðL=2πÞ3, for example, and the replacementR
d3p → ð2π=LÞ3P~p. Various formulas become simple

if one sets 2π=L≡mL ¼ 1 by choosing a suitable unit of
mass; for example, h0jað~p; sÞa†ð~p; s0Þj0i ¼ δs; s0. Note
that we have the relation 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
¼ 2E ¼ M in (8).

A. Noether charge

The conserved angular momentum operator (Noether
charge) that generates the rotational symmetry of the Dirac
action is given by1

~̂J ¼
Z

d3x∶ψ†ðxÞ½~Lþ ~S�ψðxÞ; ð9Þ

with the orbital part ~L ¼ ~x × ð−i ~∇Þ ¼ ~p × ð−i ~∇pÞ and the
spin part

1It is confirmed that the free Dirac action S ¼R
d4xψ̄ðxÞ½iγμ∂μ −m�ψðxÞ is invariant under an infinitesimal

global rotation of the field ψ 0ðxÞ¼expf−i ~ω½~Lþ~S�gψðxÞ with
an infinitesimal constant ~ω. By making ~ω time-dependent
~ωðtÞ, one obtains S0 ¼ R d4xψ̄ 0ðxÞ½iγμ∂μ −m�ψ 0ðxÞ ¼ SþR
dt
R
d3x∂0 ~ωðtÞψ†ðxÞ½~Lþ ~S�ψðxÞ, which defines the Noether

charge ~J ¼ R d3xψ†ðxÞ½~Lþ ~S�ψðxÞ. This is the most general
procedure to define the Noether current (and charge) in path
integral (see, for example, [21]).
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~S ¼ 1

2

�
~σ 0

0 ~σ

�
: ð10Þ

The angular momentum operator ~̂J generates the
transformation

½~̂J;ψðxÞ� ¼ ½~Lþ ~S�ψðxÞ; ð11Þ
and it is written as

~̂J¼
Z

d3p
X
s;s0

f½u†ð~p;s0Þð~Lþ ~SÞuð~p;sÞ�a†ð~p;s0Það~p;sÞ

− ½v†ð~p;sÞð~Lþ ~SÞvð~p;s0Þ�b†ð~p;s0Þbð~p;sÞg

þ
Z

d3p
X
s

fa†ð~p;sÞð~Lað~p;sÞÞþb†ð~p;sÞð~Lbð~p;sÞÞg:

ð12Þ
It is natural to define the first term in (12) as spin part of the
angular momentum operator ~̂JS, which is rewritten as

~̂JS ≡
Z

d3p
X
s;s0

f½u†ð~p; s0Þð~Lþ ~SÞuð~p; sÞ�a†ð~p; s0Það~p; sÞ

− ½v†ð~p; sÞð~Lþ ~SÞvð~p; s0Þ�b†ð~p; s0Þbð~p; sÞg

¼
Z

d3p
X
s;s0

1

2
fξðs0Þ†~σξðsÞa†ð~p; s0Það~p; sÞ

− ξ†ð−sÞ~σξð−s0Þb†ð~p; s0Þbð~p; sÞg; ð13Þ

and it depends only on ~σ. The second term in (12) may be
defined as an orbital part of the angular momentum

operator ~̂JL. Using this expression of ~̂JS, one can confirm

½~̂JL; ~̂JS� ¼ 0 and the SOð3Þ [to be precise SUð2Þ] algebras
½ĴaS; ĴbS� ¼ iϵabcĴcS and ½Ĵa; Ĵb� ¼ iϵabcĴc which constrain
the eigenvalues of ĴaS and Ĵb to be half odd integers.

One can confirm ~̂JSΨð~pÞ ¼ 0 for the state in (8) with

fixed momentum; namely, ~̂JS does not rotate the momen-
tum direction, and the state Ψð~pÞ is a singlet under the spin
rotation. The amplitude and the spin part of the angular
momentum operator are the direct generalizations of
common nonrelativistic expressions for the singlet state
ψ singlet ¼ jþij−i − j−ijþi for any chosen direction ~s of the
spin vector. The operator ~̂JS in (13) generates the group
SOð3Þ, which is basically the spin rotation at the rest frame
of each particle (Wigner spin in [9]), for any value of
momentum independently of the magnitude of mass. The

operator ~̂JS in (13) characterizes the spin states of the
fermion, and all of the familiar analyses of entanglement at
low energies are formally generalized to the ultrarelativistic

domain if one adopts the spin operator ~̂JS. Note, however,
that the expectation value of spin in the laboratory frame

h0jað~p; sÞ~̂JSa†ð~p; sÞj0i ¼ ð1=2ÞξðsÞ†~σξðsÞ ð14Þ

holds independently of the value of electron momentum ~p
for any direction of the spin vector ~s defined at its rest
frame. Experimentally, this property is not associated with
the spin operator [see the spin angular momentum in (A.5)
in [22] and the references therein].

The operator ~̂JS in (13) does not explicitly incorporate
the fact that the proper part of spin rotation is violated by
fixed ~p in the Dirac equation in the laboratory frame. It may
also be desirable to define the notion of spin by incorpo-
rating Wigner’s little group, SOð3Þ [to be precise SUð2Þ]
for a massive particle and Eð2Þ for a massless particle [20]
and possibly a smooth transition of the (effective) little
group for the electron from SOð3Þ to Eð2Þ depending on its
energy [23] in a massive particle decay. The Lorentz factor
we have in mind is of the order m=E≃ 1=140 for the
neutral pion decay and m=E ∼ 10−5 for a possible pseu-
doscalar Higgs-like particle by recalling E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
¼

M=2 in our problem.

B. Modified Dirac spin operator

We thus examine an alternative definition of the spin
operator using the proper spin part of the angular momen-

tum operator ~̂JSð~pÞ ¼ ~̂Sð~pÞ þ ~̂Lð~pÞ in (13), namely,

~̂Sð~pÞ≡X
s;s0

f½u†ð~p; s0Þ~Suð~p; sÞ�a†ð~p; s0Það~p; sÞ

− ½v†ð−~p; sÞ~Svð−~p; s0Þ�b†ð−~p; s0Þbð−~p; sÞg

¼
X
s;s0

��
1

2

m
E
ξ†ðs0Þ~σTξðsÞ þ

1

2
p̂ξ†ðs0Þð~σ · p̂ÞξðsÞ

�

× a†ð~p; s0Það~p; sÞ

−
�
1

2

m
E
ξ†ð−sÞ~σTξð−s0Þ þ

1

2
p̂ξ†ð−sÞð~σ · p̂Þξð−s0Þ

�

× b†ð−~p; s0Þbð−~p; sÞ
�
; ð15Þ

where we consider for simplicity the fixed momentum
sector that is relevant to our problem; p̂ stands for a unit
vector in the direction of ~p, and ~σT stands for the transverse
components. The use of this spin operator is analogous
to the use of the transverse field components of the
photon; it is not manifestly Lorentz (and rotation) invariant
by itself, but for the given invariant expression (12) at any
frame, one can uniquely identify the spin operator. [Note thatR
d3x∶ψ†ðxÞ~SψðxÞ∶ in (9), which is referred to as “Dirac

spin operator” in [9], is not time independent by itself. Our
construction is to first define the time-independent momen-

tum space expression (13) and then extract ~̂Sð~pÞ in (15).
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Our operator is thus a variant of the Dirac spin operator,
and we tentatively call it “modified Dirac spin operator.”]
Our proposal in (15), which defines the spin of the
moving electron observed at the laboratory frame, is
related to the classical construction using the center of
mass coordinate [5,6] and the use of the Pauli-Lubanski

vector in the first quantization [7], while ~̂JS in (13) is related
to the definition of the spin operator used in the first
quantization [8,9,13].
We start with an analysis near the threshold of the decay

~p≃ 0 (M ≃ 2m), namely, for the extremely nonrelativistic
electron and positron for which the momentum is negli-
gibly small compared to the rest mass. We then have

~̂Sð~0Þ ¼
X
s;s0

1

2
fξðs0Þ†~σξðsÞa†ð~0; s0Það~0; sÞ

− ξ†ð−sÞ~σξð−s0Þb†ð~0; s0Þbð~0; sÞg; ð16Þ
which agrees with the angular momentum operator

~̂JSð~0Þð¼ ~̂Jð~0ÞÞ and the asymptotic state becomes a non-
relativistic one

Ψð~0Þ¼ 1ffiffiffi
2

p ½a†ð~0;sÞb†ð~0;−sÞþa†ð~0;−sÞb†ð~0;sÞ�j0i; ð17Þ

where s stands for the spin component specified by the spin
vector ~s at the rest frame of the electron or positron, which
coincides with the center of mass and also the laboratory
frame. Namely, the amplitude and spin operator are the
same as the common nonrelativistic expressions for a
singlet state ψ singlet ¼ jþij−i − j−ijþi for any chosen
direction ~s of the spin. The relative plus sign for a singlet

state in (17) is confirmed to be consistent by operating ~̂Sð~0Þ
on the state ~̂Sð~0ÞΨð~0Þ ¼ 0.
We now analyze the non-negligible momentum sector.

We first note the relation

u†ð~p; s0ÞSmuð~p; sÞ ¼ 1

2
ūð~p; s0Þγmγ5uð~p; sÞ ð18Þ

in our convention. Namely, our spin operator is formally
regarded as an axial-vector quantity under the boost, and
the enhancement of the longitudinal component relative to
transverse components in (15) is an analogue of the Lorentz
“contraction”; the time component vanishes at the rest

frame ūð~0; s0Þγ0γ5uð~0; sÞ ¼ 0, and thus, the longitudinal
component is minimum at the rest frame if one remembers
the Lorentz invariant quantity ðūγmγ5uÞ2 − ðūγ0γ5uÞ2 after
correcting the factor m=E [19].
The longitudinal component parallel to the momentum p̂

in ~̂Sð~pÞ agrees with the longitudinal component of the
angular momentum operator (13), and it gives the helicity
generated by ~σ · p̂, which is also a generator of the little
group Eð2Þ of a massless particle. For the helicity basis, the

longitudinal component ĥ ¼ ~p · ~̂Sð~pÞ=j~pj ¼ ~p · ~̂Jð~pÞ=j~pj
gives the helicity operator

ĥð~pÞ ¼ 1

2

X
h¼�

½ha†ð~p; hÞað~p; hÞ − hb†ð−~p; hÞbð−~p; hÞ�

ð19Þ

for the asymptotic state (8) written as

Ψð~pÞ ¼ 1ffiffiffi
2

p ½a†ð~p;þÞb†ð−~p;þÞ þ a†ð~p;−Þb†ð−~p;−Þ�j0i;

ð20Þ

where � stand for the (twice of) helicity h≡ 2×
ð1=2Þ~p · ~σ=j~pj. We note that the combinationP

sað~p; sÞξðsÞ, for example, has an invariant meaning
with respect to the choice of the spin vector ~s, and in
particular, the relations

P
sað~p; sÞξðsÞ ¼

P
hað~p; hÞξðhÞ

and
P

sb
†ð−~p; sÞξð−sÞ ¼Phb

†ð−~p; hÞξð−hÞ hold.
The expression (15) shows that the measured value h~e ·

~̂Sð~pÞi is half odd-integer (�1=2) for ~e ¼ ~s ¼ ~p=j~pj (of
which direction is common to the laboratory frame and the
electron or positron rest frame) for the helicity eigenstate
such as a†ð~p; hÞj0i, i.e., dispersion free by taking only

eigenvalues, while the measured value of h~e · ~̂Sð~pÞi for ~e ¼
~s⊥~p (which is also common to the laboratory frame and the
electron or positron rest frame) is away from half odd-
integer (�1=2) for the state such as a†ð~p; sÞj0i, i.e.,
dispersion full by taking values away from eigenvalues
for ~p ≠ 0. This expresses the fact that the spin components
perpendicular to the momentum cannot be diagonalized
simultaneously with the Hamiltonian for a fixed ~p ≠ 0 in
the Dirac equation, although the (rotation invariant) energy
eigenvalues are degenerate with respect to spin freedom.
Our spin operator corresponds to the average of the spin
angular momentum operator in the first quantization with
respect to (momentum space) spinor solutions at each
Lorentz frame. In particular, for the extremely relativistic
electron or positron with j~pj → ∞ (M=m → ∞), the
transverse component of the spin operator vanishes,

~e · ~̂Sð~pÞ → 0, for the vector ~e ¼ ~s⊥~p. This means that
the electron or positron state approaches the chirality (and
helicity) eigenstates defined by projection operators
ð1� γ5Þ=2, and thus, the transverse spin component of a
free fermion is completely indeterminate, 1=2 or −1=2
randomly, in each measurement at the laboratory; this also
means that the helicity flip is suppressed for the ultra-
relativistic case. The correlation between the spin index of
að~p; sÞ† appearing in the state vector (8) and the measured
spin at the laboratory is completely lost for ~e ¼ ~s⊥~p at
extreme high energies.
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C. Magnetic moment

We now mention the Pauli-type coupling

ðμ=2Þ
Z

d3xψ̄Fμνσ
μνψ ð21Þ

to the constant background magnetic field ~B (by writing only the particle-number conserving part),

μ~B ·
Z

d3p
X
s;s0

��
1

2
ξðs0Þ†~σTξðsÞ þ

1

2

m
E
p̂ξðs0Þ†ð~σ · p̂ÞξðsÞ

�
a†ð~p; s0Það~p; sÞ

þ
�
1

2
ξð−sÞ†~σTξð−s0Þ þ

1

2

m
E
p̂ξð−sÞ†ð~σ · p̂Þξð−s0Þ

�
b†ð~p; s0Þbð~p; sÞ

�
; ð22Þ

which shows the enhancement of the transverse spin
components ~σT for large j~pj in contrast to (15) since we

here deal with ψ̄ ~Sψ instead of ψ†~Sψ , and these two
operators have different chiral properties. In a review article

of electron polarization [22], ψ†~Sψ is called the “spin

angular momentum,” and ψ̄ ~Sψ is called the “magnetic
moment.” The Pauli coupling breaks chiral symmetry,
which is not recognized in the first quantization. For the
relatively weak transverse magnetic field, the Pauli cou-
pling induces a small energy splitting ∼� μB, which in
turn leads to the chirality (and helicity) flip of the
longitudinally polarized energetic fermion [24]; note that
a helicity eigenstate is always represented as a linear
superposition of transversely polarized states inside a
transverse magnetic field. Inside the strong transverse
magnetic field, the electron is no more free and tends to
be polarized in the direction of ~B. For example, inside a
high-energy synchrotron, electrons eventually become
transversely polarized by emitting radiation; such a state
will be represented by a superposition of helicity eigen-
states, which is no more the eigenstate of chirality. The
magnetic interaction breaks chiral symmetry.
We thus have three basic operators to describe the spin

freedom of fermions: Wigner spin operator (13), the
modified Dirac spin operator (15), and the magnetic
moment (22).

III. ENTANGLEMENT AND CORRELATION

We here argue that the asymptotic state (17) character-

ized by ~̂Sð~0Þ is maximally entangled in accord with
conventional analysis, but the asymptotic state (20) char-
acterized by the helicity operator (19) with vanishing

transverse component ~e · ~̂Sð~pÞ → 0 for ~e⊥~p and j~pj →
∞ is classically correlated.
One has a continuous number of spin projectors

Pað�s0Þ ¼ jað~0;�s0Þihað~0;�s0Þj ⊗ 1;

Pbð�s00Þ ¼ 1 ⊗ jbð~0;�s00Þihbð~0;�s00Þj ð23Þ

in (17) for a fixed nonrelativistic momentum ~p≃ 0with the
arbitrary directions of ~s0 and ~s00. Here we used a simplified

notation Pað�sÞ¼jað~0;�sÞihað~0;�sÞj⊗1 for Pað�sÞ ¼
a†ð~0;�sÞj0ih0jað~0;�sÞ ⊗ 1, for example. It is known that
the noncontextual (and local) hidden-variables representa-
tion that reproduces all of the properties of quantum
mechanics is not possible in this system, (17) and (23),
with the dimension of the Hilbert space d ¼ 2 × 2 ¼ 4
[25–27]. The inseparable asymptotic state (17) is thus
quantum mechanically entangled with respect to spin
variables, in agreement with the conventional analysis.2

The d ¼ 4 hidden-variables model used by Bell in his
original paper [2] is classified as noncontextual and local
(i.e., applied to only far apart systems) [30], and thus, his
model and his inequality cannot describe entanglement [see
Eq. (30) later for a more explicit analysis].
On the other hand, for the asymptotic state (20) with a

fixed direction of ~p and j~pj → ∞, we have a very limited
number of effective spin projection operators available,
since the helicity flip is suppressed in (15) and we have only

Pað�Þ ¼ jað~p;�Þihað~p;�Þj ⊗ 1;

Pbð�Þ ¼ 1 ⊗ jbð~p;�Þihbð~p;�Þj; ð24Þ

with PaðþÞ þ Pað−Þ ¼ 1; PaðþÞPað−Þ ¼ 0 and PbðþÞ þ
Pbð−Þ ¼ 1; PbðþÞPbð−Þ ¼ 0. Here � stand for helicity
indices. (One may recall the neutrinos that are described by
their helicity, even though the neutrinos are considered to have
small but nonvanishing masses [18].) The actual observables
are given by the helicity operator in (19), for example,

2The possible nonlocality associated with entanglement is
usually discussed in the context of local realism represented by
hidden-variables models [2,3]. We here follow Gisin in under-
standing the Clauser-Horne-Shimony-Holt (CHSH) inequality
[3]; namely, it gives a necessary and sufficient separability
condition of pure quantum mechanical states without direct
reference to nonlocality (although no interactions among two
parties are assumed) [28,29]; in this proof of Gisin’s theorem, it is
important to take all of the possible combinations of projection
operators into consideration. Our analysis here is performed in
this spirit.
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hPaðþÞĥð~pÞaPaðþÞPbðþÞĥð~pÞbPbðþÞi: ð25Þ

It is thus possible to have a consistent noncontextual and
local hidden-variables type of representation for (24) [27]:
One may define classical variables Uaðψ ; λÞ and Daðψ ; λÞ
corresponding to PaðþÞ and Pað−Þ, respectively, with

Uaðψ ;λÞþDaðψ ;λÞ¼ 1; Uaðψ ;λÞDaðψ ;λÞ¼ 0; ð26Þ

where Uaðψ ; λÞ and Daðψ ; λÞ assume the eigenvalues of 1
or 0 of projection operators depending on the hidden
variables λ. Similarly one may define Ubðψ ; λÞ and
Dbðψ ; λÞ and may impose the subsidiary conditions
Uaðψ ; λÞ ¼ Ubðψ ; λÞ and Daðψ ; λÞ ¼ Dbðψ ; λÞ. One can
then confirm that it is possible to reproduce all of the
correlations with fixed ~p, by choosing suitable functions U
and D for the specific state in (20) and helicity operators in
(19), for example,

hPað−ÞPbðþÞi ¼
Z

dλρðλÞDaðψ ; λÞUbðψ ; λÞ ¼ 0;

hPaðþÞPbðþÞi
hPbðþÞi ¼

R
dλρðλÞUaðψ ; λÞUbðψ ; λÞR

dλρðλÞUbðψ ; λÞ
¼ 1; ð27Þ

using a suitable nonnegative normalized weight function
ρðλÞ, together with the relationsZ

dλρðλÞUaðψ ; λÞ ¼
Z

dλρðλÞDaðψ ; λÞ ¼ 1=2;
Z

dλρðλÞUbðψ ; λÞ ¼
Z

dλρðλÞDbðψ ; λÞ ¼ 1=2; ð28Þ

implied by hPaðþÞi ¼ hPað−Þi ¼ hPbðþÞi ¼ hPbð−Þi ¼
1=2. These relations show that the spin (helicity) correla-
tion in the limit j~pj → ∞ is consistently described by
noncontextual and local hidden-variables models and is
thus “classically correlated,” although the asymptotic state
(20) itself is not separable. This situation is analogous to the
case where one can measure only the electric charges but
not spin polarizations of the electron-positron pair in the
decay, and the use of the term “classical correlation” may
be natural.
If one uses the modified Dirac spin operator (15), the

entanglement measured by spin correlation becomes a
notion that depends on the energy scale involved (or the
boost of two particles in opposite directions) in relativistic
quantum field theory, at least in the present specific
example of spin 1=2 particles. This may imply that fermion
spin measured at the laboratory is not an ideal means to
describe entanglement. In contrast, if one adopts the spin
operator defined in (13) (Wigner spin) for the asymptotic
state in (8), which characterizes the spin states at the rest
frame of each particle and thus such spins of two moving
particles are not simultaneously measured at any fixed
Lorentz frame, the entanglement (as a theoretical charac-
terization of quantum states) has an invariant meaning
independently of the energy scale. The energy dependence
of entanglement measured by fermion spin correlation as
we have argued, which is related to Lorentz contraction, is
somewhat analogous to the energy dependence of the
lifetime of an unstable particle; the lifetime of a particle
has an invariant meaning at its rest frame, but the measured
lifetime in the laboratory depends on its velocity.

IV. DISCUSSION AND CONCLUSION

As for the experimental test of the helicity structure
(20) with (19) and suppressed helicity flip, one may in
principle consider the weak interaction mediated by
charged currents, e → ν or eþ → ν̄, for which only the
left-handed currents take part in the interaction [20]. Note
the unification of electro and weak interactions at high
energies. Our interaction Hamiltonian (2) is written as

HIðtÞ ¼ g
Z

d3xPðxÞi½ψ̄LðxÞψRðxÞ − ψ̄RðxÞψLðxÞ�; ð29Þ

and thus, the chirality ψR;L ¼ ½ð1� γ5Þ=2�ψ is always
correlated; however, it becomes a good quantum number
only for the massless fermion. For the extremely relativistic
fermion, the chirality is identified with helicity, and the left-
handed fermion corresponds to a particle with helicity h ¼
−ð1=2Þ or an antiparticle with helicity h ¼ þð1=2Þ. Thus, if
one confirms the charged current weak interaction for the
electron in (20), the partner positron also has h ¼ −ð1=2Þ
(i.e., right handed) and thus no charged current weak
interaction. If one applies the strong transverse magnetic
field, one may observe the effect of spin rotation, which is
analogous to the spin rotation of a massive Dirac-type
neutrino [24]; the left-handed neutrino rotates in a magnetic
field to a right-handed neutrino, which has no charged
current weak interaction, and vice versa. Thus, both the
particle and antiparticle in our model can have the charged
current weak interaction inside the strong magnetic field; in
this way, one can confirm the entangled helicity in our
model. This use of weak interaction to analyze the spin
freedom of a charged electron at high energies replaces the
use of a Stern-Gerlach apparatus [31]. The Stern-Gerlach
apparatus is useless for the electron [22]: A well-known
argument going back to Bohr and Mott [32] shows that the
inhomogeneity of the magnetic field causes a spreading of a
charged electron beam (the particles of the Stern-Gerlach
experiment are electrically neutral), which is so large that the
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spreading arising from different orientations of themagnetic
moment in the inhomogeneous magnetic field is not detect-
able. In passing, we mention an interesting polarization
measurement related to strong interactions [33].
As for space-time nonlocality and causality, our formulas

in (1)–(4) are manifestly Lorentz invariant (if not covar-
iant); the locality in the Lagrangian level is manifest, and no
particles propagate faster than the light. Note that the
statements made in the center of mass frame of P are
Lorentz invariant. It is significant that we integrate over the
coordinates and time of the interaction point in Minkowski
space in defining (3). We do not specify when and where
the decay of the heavy particle took place. Our formula
provides no information about the relative space-time
coordinates of the electron and positron, which appear in
the asymptotic state (8); instead, we specify the energy and
momentum of each particle precisely, to be perfectly
consistent with the uncertainty principle. Dyson’s formula
tells us what we can talk about and what we cannot talk
about in the S-matrix theory of local relativistic quantum
field theory. The relative space-time coordinates of two
particles in the asymptotic state are completely indetermi-
nate (i.e., one cannot tell if they are spacelike or timelike) to
be consistent with the uncertainty relation, and in this
sense, the uncertainty principle and the possible nonlocality
issue associated with entanglement appear to be related.
As for the consistency with local realism represented by

noncontextual and local hidden-variables models [30], we
here mention the condition that does not appear to be
widely recognized; this condition states that noncontextual
and local hidden-variables models in the Hilbert space with
dimension d ¼ 4 consisting of two spin freedom (such as
the model used in the original paper of Bell [2]), for
example, can describe only separable pure states [34]. The
basic observation involved in deriving this condition is that
the noncontextual and local hidden-variables model in
d ¼ 4 is reduced to a factored product of two noncontextual
hidden-variables models in d ¼ 2 if one asks that the hidden
variables model gives CHSH inequality jhBij ≤ 2 [3,4]
uniquely, as one usually does in the name of Bell’s theorem.
This condition is a hidden-variables version of Gisin’s
theorem [28,29], which states that jhBij ≤ 2 implies pure
separable states; it is also consistent with Gleason’s theorem
[25], which excludes d ¼ 4 noncontextual hidden-variables
models but allows d ¼ 2 models. Noncontextual and local
hidden-variables models then imply the condition [34]

Ψð~0Þ†Paðs0Þ ⊗ Pbðs00ÞΨð~0Þ
¼ Ψð~0Þ†Paðs0ÞΨð~0ÞΨð~0Þ†Pbðs00ÞΨð~0Þ ð30Þ

for any choice of the projection operators Paðs0Þ and Pbðs00Þ
in (23) for the asymptotic state Ψð~0Þ in (17). It is easy to
confirm that this relation does not hold for a suitable choice
of s0 and s00 such as s0 ¼ s00 ¼ s, which shows that local

realism is not consistentwith the state (17) in agreementwith
the more conventional analysis using CHSH inequality.
As for the entanglement of relativistic particles in general,

the photon associated with the electromagnetic field is
massless and always ultrarelativistic, but it has different
characteristics [14,20]. The electromagnetic field is a vector
field AμðxÞ and can be described not only by the circular
polarization (helicity) but also by the “transverse linear
polarization,” which is directly measured, namely, to stay
linearly polarized before and after the measurement and
thus characterized by a continuous number of projection
operators that are absent in the case of the spin 1=2 electron
described by the operator (15) in the ultrarelativistic limit.
From the point of view of a modified Dirac spin operator,
the suppression of the longitudinal linear polarization of the
photon is analogous to the Lorentz suppression of transverse
spin components of the ultrarelativistic electron in (15). The
possible suppression of entanglement measured by a modi-
fied Dirac spin operator in the ultrarelativistic limit we
argued does not happen for the entanglement of the
electromagnetic field, which is described by the two-photon
decay amplitude of the form

Ψ ¼
Z

d4xPðxÞ~EðxÞ · ~BðxÞjPð~0Þi; ð31Þ

if one uses the linear polarization.
Finally, we mention the closely related works on spin

operators in the past. The spin operators using the Pauli-
Lubanski vector both in relativistic quantummechanics and
in the first quantization level of Dirac equation have been
proposed in [7]. The transverse components of spin
operators thus defined are shown to be suppressed in the
ultrarelativistic limit, and this was illustrated for an
entangled pair of two fermions (not a fermion-antifermion
pair) propagating together in the same direction; this was
one of the early and pioneering treatments of relativistic
entanglement. Physically, this process is quite different
from our example of the asymptotic state (8); one can
always choose the rest frame of two fermions by a suitable
Lorentz transformation in the example of [7] (namely, the
Lorentz frame dependence of entanglement is analyzed
there), while we cannot choose a Lorentz frame where both
the electron and positron are at rest for the decay of a very
massive particle. In fact, we analyze the intrinsic Lorentz
frame independent property. The treatment of an antiparticle
is not given in the relativistic quantummechanics, nor is the
linear polarization of the photonmentioned in [7]. In the first
quantization, the notion of chirality is not explicit, and the
distinction between the spin operator and the magnetic
moment is not obvious. We know that the correct theory of
leptons and quarks, namely, the Standard Model, and our
field theoretical construction of states and spin operators is
straightforward and simpler without referring to the
Pauli-Lubanski vector. Our view is that the Standard
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Model can describe all of the observable properties of
leptons.
An elaborate construction of a spin operator using Pauli-

Lubanski vector is given in [13], but the final outcome is
essentially the same as our spin operator in (13) obtained
from the Noether current associated with rotational sym-
metry of the free Dirac action. The decay of a massive
pseudoscalar is then analyzed, but our construction of the
final asymptotic state of the decay of a massive pseudo-
scalar particle by Dyson’s formula is simpler, which takes
care of both electron and positron without any obvious
contradiction with locality, causality and the uncertainty
principle. One can confirm that the spin correlation in
Ref. [13] is obtained from the spin operator (13) (Wigner
spin) and the state (8) in the present paper. Physically, the
basic difference between the modified Dirac spin operator
we analyzed in detail and that in [13] is whether we can
measure the well-defined transverse polarization of an
ultrarelativistic free fermion at the laboratory frame.
We comment on the recent stimulating papers [35] that

criticize the use of most conventional spin operators. In [35],
the authors argue that the Pauli-Lubanski (or similar) spin
operators, which are related to our operator in (15), are not
suitable to describe measurements where spin couples to an
electromagnetic field in the measuring apparatus. This
assertion is partly related to the fact that the distinction
between the spin angular momentum and the magnetic
moment is not transparent in the first quantization they
use. In reality, a helicity eigenstate is represented as a linear

superposition of transversely polarized states when the
fermion with nonvanishing magnetic moment enters a trans-
verse magnetic field [24]. The Gordon decomposition [19]
may be useful in the analysis of electromagnetic interactions
of charged particles. In this connection, the experimental
review paper [22] which clearly distinguishes the spin
angular momentum and the magnetic moment of the
high-energy electron is valuable; this reference emphasizes
the fact that aStern-Gerlach apparatus, onwhich the argument
of [35] is based, is useless for the electronwe are interested in.
The weak interaction we discussed can, in principle, measure
the helicity of elementary particles directly.
We also mention that the critical reassessment of various

definitions of spin operators in the first quantization with an
emphasis on the Foldy-Wouthuysen mean-spin operator
[36] has been recently given both from a theoretical point of
view [37] and from a measurement point of view [38].
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