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When the full connection of Weyl conformal gravity is varied instead of just the metric, the resulting
vacuum field equations reduce to the vacuum Einstein equation, up to the choice of local units, if and only if
the torsion vanishes. This result differs strongly from the usual fourth-order formulation of Weyl gravity.
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I. INTRODUCTION

General relativity accounts in exquisite detail for nearly
all gravitational phenomena. Thorough tests of its predic-
tions have met with repeated success, as alternative theories
have required modification or abandonment. Still, some
alternative theories survive and provide, at the very least,
further tests of our understanding. From the introduction of
the equivalence principle in 1908 through the presentation
of the final field equations in 1915, development of general
relativity was rapid [1], yet no faster than the introduction
of a second relativistic theory of gravity byWeyl, Bach, and
others in the years from 1918 to 1924. This second theory,
called conformal gravity or Weyl gravity, remains a topic of
active discussion despite its higher-order field equations.
We hope to clarify the reason why it has been difficult to
distinguish these first two relativistic gravity theories.
Specifically, we show that the when all of the connection
fields of conformal gravity are varied independently instead
of the usual fourth-order, metric-only variation, the torsion-
free solutions of the two theories differ only in that the field
equations of conformal gravity are unchanged by the use of
arbitrary local choices of units.
Beginning in 1918, Weyl [2], [3] and Bach [4] developed

a theory of gravity based on the conformally invariant Weyl
action

S ¼ α

Z
CabcdCabcd ffiffiffiffiffiffi

−g
p

d4x: ð1Þ

Bach adds to this a second term quadratic in the dilatational
curvature. Variation leads to the Bach equation,

DαDβCμανβ −
1

2
CμανβRαβ ¼ 0: ð2Þ

An alternate approach [4] makes use of the Gauss–Bonnet
integral for the Euler character [5] to write the equivalent
action, S0 ¼ 2α

R ðRabRab − 1
3
R2Þ ffiffiffiffiffiffi−gp

d4x, and field equa-
tions depending only on the Ricci tensor and its derivatives.

From the point of view of quantum theory, Weyl
conformal gravity has an important advantage and an
equally important disadvantage. Power counting suggests
that the curvature-quadratic action, Eq. (1), is renormaliz-
able. However, the presence of fourth-order derivatives in
the field equations, Eq. (2), is generally associated with
nonunitarity. Rather than entering into the controversy
surrounding these observations (see, e.g., Refs. [6] and
[7]), we propose a full connection variation of Eq. (1). We
show that torsion-free solutions to the resulting field
equations lead purely to the second-order field equation
of general relativity, modified to have local dilatational
covariance. Within this alternative approach, the debate
over unitarity becomes moot.
Discussion also surrounds certain solutions to the Bach

equation. Bach’s generalization of the Schwarzschild sol-
ution [4], for example, has been developed into a model to
explain galactic rotation curves [8], but may fail at solar
system scales [9], [10]. This discussion has faded in
importance as many more independent consequences and
tests of dark matter have emerged. Again, within our
current presentation, these considerations do not apply.
It is interesting to speculate that conformal gravity with

full connection variation, having a dimensionless action,
might give rise to a renormalizable quantization of general
relativity or contribute to a deeper understanding of the
relevance of twistor string theory [11].
Solutions for the metric in conformal gravity are deter-

mined only up to an overall multiple, forming elements of
conformal equivalence classes, gαβ ∈ fe2φgαβ∣allφðxμÞg.
As long as the dilatational potential, the Weyl vector, is a
pure gradient, it is consistent to regard this factor as a
choice of local units. Given this requirement for conformal
equivalence classes of solutions, it becomes necessary to
ask when a given metric is conformal to a metric satisfying
the Einstein equation. This question was first addressed in
1924 by Brinkmann [12], who found a set of necessary and
sufficient conditions for a space to satisfy the vacuum
Einstein equation up to a conformal transformation. These
expressions have the disadvantage of depending on the
conformal transformation itself, so that one simultaneously
checks for the existence of a suitable transformation and*jim.wheeler@usu.edu
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finds it. In 1963, Szekeres [13] used spinor techniques to
separate the existence of a conformal transformation to an
Einstein space from the problem of finding that trans-
formation. As expected from the fact that a conformal
transformation changes the Ricci tensor by terms involving
the second derivative of the conformal factor, there are two
integrability conditions. Subsequent work refines or gives
different expression to these results [14].
It is crucial to the present investigation that the Bach

equation (for which torsion is always assumed to vanish)
has solutions which are not solutions to the vacuum
Einstein equation. The need for equivalence classes of
metrics complicates this. It was not until 1984 that Schmidt
[15] showed conclusively the existence of solutions to
conformal gravity that are not conformally equivalent to
Einstein spaces (i.e., spaces for which the Ricci tensor
equals a constant times the metric). Subsequently, addi-
tional non-Einstein space solutions were found by
Nurowski and Plebanski [16] and six more solutions by
Liu, Lü, Pope, and Vázquez-Poritz [17]. The existence of
non-Einstein solutions to fourth-order conformal gravity
demonstrates that the stronger restrictions that we describe
here are not vacuous—our results below demonstrate a
distinct interpretation of Weyl gravity from the fourth-order
theory. Since our method is natural within the context of
conformal gauge theory, we will refer to conventional
conformal gravity as the fourth-order theory and the
method we employ as auxiliary conformal gauge theory.
The name stems from the way the special conformal gauge
fields act as auxiliary fields that turn the full curvature into
the Weyl curvature.
Conformal gauge theory was first written down in the

mid-1970s. Leading up to a conformal supergravity model,
Crispim-Romao, Ferber, and Freund [18] performed the
first gauging of the conformal group, Oð4; 2Þ, writing the
Weyl action in terms of the conformal curvatures. Kaku,
Townsend, and van Nieuwenhuizen [19] developed a
similar gauging. Both this group [20] and Crispim-
Romao [21] went on to write superconformal gravity
theories (for a review of superconformal gravity, see
Ref. [22]), and both show that the gauge field of the
special conformal transformations is the Schouten tensor
(equivalent to the Ricci tensor), hence auxiliary (see also
Ref. [23]). Within a few years, Ivanov and Niederle [24,25]
gave a more systematic treatment of gauge theories of
gravity, using techniques developed by Ne’eman and
Regge [26] based on the work of Cartan [27]. Their work
identifies two distinct conformal gaugings, now called the
auxiliary and biconformal [28], [29] gaugings.
We use these techniques in our formulation since they

have the advantage of treating each independent gauge field
on an equal footing. This makes variation of all 15 gauge
vectors natural, giving additional field equations beyond
the Bach equation. Half the equations are easily solved,
establishing the auxiliary field and showing the equivalence

to Weyl gravity. These results are well known. However,
the variation of the spin connection provides another field
equation, the vanishing divergence of the Weyl curvature.
Our central result is to show that this equation is an
integrability condition that reduces the theory to scale-
invariant general relativity. With this change from varying
only the metric to varying all of the connection fields, Weyl
gravity changes from a fourth-order theory into a theory of
conformal equivalence classes of solutions to ordinary
general relativity.
In the next section, we develop auxiliary conformal

gravity. Though our action is not initially invariant under
the full conformal group, it is well known that the field
equation of the special conformal transformation gauge
field reduces the action to Eq. (1). From the scale-invariant
action, we could perform either the fourth-order metric
variation by assuming the metric form of the connection or
the gauge theory approach in which each connection
component is independently varied. Writing the field
equations from the latter, we show that any torsion-free
solution of the new field equations solves the Bach
equation. Finally, we show that the new field equation is
the integrability condition that forces solutions to be
conformal equivalence classes of solutions to the vacuum
Einstein equation.

II. AUXILIARY CONFORMAL GAUGE THEORY

We briefly outline auxiliary conformal gauge theory,
culminating in the action and field equations. The basic
construction uses group quotients to construct a fiber
bundle with chosen symmetry, then modifies the base
manifold and connection to give curvature ([24–27]).
The advantage of the approach is that it keeps the
curvatures and action expressed in terms of the gauge
fields, making the variation straightforward. In the next
section, we consider solutions.
The conformal group of spacetime has 15 generators: 6

for Lorentz transformations, 4 translations, 4 special
conformal transformations, and 1 dilatation. For each of
these, we have a corresponding dual 1-form: ωA ∈
fωa

b; ea; fa;ωg called the spin connection, the solder
form, the gauge field of special conformal transformations,
and the Weyl vector, respectively. These, together with the
group structure constants, are substituted into the Maurer–
Cartan equation.
To recover Weyl gravity, we take the quotient of the

conformal group by the inhomogeneous Weyl subgroup,
IW, generated by Lorentz transformations, special con-
formal transformations, and dilatations. This quotient is a
homogeneous, 4-dimensional manifold, and the 1-forms
above provide its connection. Next, we modify this
structure by generalizing the manifold and by changing
the connection. Changing the manifold has no effect on
the local structure, but changing the connection modifies
the Maurer–Cartan equation, resulting in the addition of
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curvature 2-forms, ΩA ∈ fΩa
b;Ta;Sa;Ωg. We place two

restrictions on these curvatures. First, we require the
curvatures to characterize the manifold only. In general,
an integral of the connection along a curve in the full space
gives a conformal transformation, with integrals around
closed loops equivalent to surface integrals of the curva-
tures. We require horizontality: these closed loop integrals
must be independent of the IW subgroup transformations,
which occurs if and only if the curvatures may be expanded
in terms of the solder forms,ΩA ¼ 1

2
ΩA

cdec∧ed, and not all
15 connection forms. Second, we require integrability of
the Cartan equations (i.e., these modified Maurer–Cartan
equations). This leads to Bianchi identities for the curva-
tures. The Cartan equations and Bianchi identities are given
in Appendix A.
The quotient construction describes only the geometry,

leading us to the form for the curvatures in terms of the
gauge fields, which agree with those found in Refs. [20],
[21], and [24], and providing the Bianchi identities. The
physical content arises solely from the field equations,
found by writing an action functional defined on the local
IW-invariant principal bundle. The action is constructible
from the available tensors, ec;ΩA

B, together with the
invariant metric and Levi-Civitá tensors, ηab; εabcd. Scale
invariance requires curvature-quadratic terms, and the most
general even parity, IW-invariant possibility is uniquely
determined (up to an overall multiple) to be

SIWauxiliary ¼ α

Z
ΩA

B∧�ΩB
A

¼ α

Z
ðΩa

b∧�Ωb
a þ 4Tc∧�Sc þ 2Ω∧�ΩÞ;

where ΩA
B is the full SOð4; 2Þ curvature 2-form. This does

not lead to Weyl gravity, as will be shown elsewhere, but
instead to a Weyl–Cartan geometry (i.e., one having non-
trivial dilatation and torsion). To achieve Weyl gravity on
the IW bundle, we need to break the special conformal
symmetry with our choice of the action. Since the curvature
has already broken the translational symmetry, we expect
both nondynamical torsion and nondynamical special
conformal curvature. Dropping the center term in
SIWauxiliary, we have the W-invariant Weyl–Bach action,

SWauxiliary ¼
Z

ðαΩa
b∧�Ωb

a þ βΩ∧�ΩÞ: ð3Þ

The equivalence between the first term and the original
conformal gravity action is established in Refs. [20] and
[24], while the vanishing of the second term is shown
below. Bach’s original action included both terms but with
the critical value of β ¼ 2α (in our notation). A detailed
discussion of these symmetries is provided in Appendix B.
Varying the entire Cartan connection gives the field

equations. This is where the difference between our

approach and the usual approach to Weyl gravity occurs.
To display the torsion dependence of the field equations
explicitly, we write the field equations in a coordinate basis,

DτΩ
μ λτ
ν þΩμ λα

ν Tτ
ατ þ

1

2
Ωμ ατ

ν Tλ
ατ ¼ 0 ð4Þ

DνΩμν þΩμαTν
αν þ

1

2
ΩανTμ

αν ¼ 0 ð5Þ

2αΩμ
αμβ þ βΩαβ ¼ 0 ð6Þ

2αfμνΩμανβ þ βfαμΩβμ ¼ −αΘαβ − βQαβ; ð7Þ

where Eq. (4) arises from the variation of ωa
b, Eq. (5) from

ω, Eq. (6) from fa, and Eq. (7) from ea. All occurrences of
the torsion arise from derivatives of the solder form. The
sources for the solder form equation are given by

Θαβ ≡ −ΩμνραΩμνρ
β þ 1

4
ΩμνρσΩμνρσgαβ ð8Þ

Qαβ ≡ΩμαΩμ
β −

1

4
ΩμνΩμνgαβ: ð9Þ

These sources arise because the Hodge dual is a nonlinear
function of the solder form. The covariant derivatives are
taken using the torsionful, Weyl-covariant, metric compat-
ible connection

~Γβ
μν ≡ Γβ

μν − ðδβμWν þ δβνWμ − gαβgνμWαÞ

þ 1

2
ðTμ

β
ν þ Tν

β
μ − Tβ

μνÞ;

where Γβ
μν is the usual Christoffel connection. The

derivation of this and other useful relations is described
in Appendix C.
Having expressed the field equations in terms of covar-

iant derivatives satisfying Dαeβa ¼ 0, we may freely
interchange between coordinate (Greek) and orthonormal
(Latin) indices.

III. SOLVING THE FIELD EQUATIONS

The system to be solved now consists of Eqs. (4)–(9)
with the form of the curvatures dictated by the conformal
group. Our central result is to show that the solution is
scale-invariant general relativity if and only if the torsion
vanishes. Of course, if the torsion does not vanish, we do
not have general relativity. To complete the result, we must
show that when we set the torsion to zero, Tμ

αβ ¼ 0,
Eqs. (4)–(7) describe dilatationally covariant general
relativity.
First, we show that the dilatational curvature, Ωab,

generically vanishes. We simplify the special conformal
field equation, Eq. (6), using the torsion-free Bianchi
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identity (see Appendix A) of the solder form,
Ωa½bcd� ¼ δa½bΩcd�. Combining its trace, Ωa

bac − Ωa
cab ¼

−2Ωbc, with the antisymmetric part of field equation,
Eq. (6), leads to

ð2α − βÞΩab ¼ 0:

Unless the arbitrary constants in the action are related by
β ¼ 2α, the dilatation vanishes, Ωab ¼ 0, and there is no
physically measurable size change. Equation (5) is now
satisfied.
Next, we find the special conformal gauge field, fab.

With vanishing dilatational curvature, Eq. (6) reduces to
Ωb

abc ¼ 0. Defining the Riemann curvature of the spin
connection

Ra
b ≡ dωa

b − ωc
b∧ωa

c;

the Lorentz curvature becomes Ωa
bcd ¼ Ra

bcd þ δacfbd−
δadfbc þ facηbd − fadηbc. Substituting into the field equa-
tion, we readily solve

fab ¼ −
1

2

�
Rbd −

1

6
Rηab

�
≡ −Rab;

where the Schouten tensor Rab may be used interchange-
ably with the Ricci tensor, since Rab ¼ 2Rab þ ηabR. This
result is well known ([20], [21], [23]), and it eliminates fab
from the problem. Substituting into the Lorentz curvature
yields the Weyl curvature, Ωa

bcd ¼ Ca
bcd, so the “aux-

iliary” field, fab, systematically enforces the conformal
structure. Also, substituting fab ¼ −Rab ¼ fðabÞ into the
expression for the dilatation in terms of the connection,
Ωab ¼ f½ab� þ ω½a;b�, shows that the Weyl vector ωa is a
pure gradient.
These considerations show the equivalence of the aux-

iliary and Weyl actions, so the Bach equation must be
satisfied. To see how, first observe that Θab, Eq. (8),
becomes the energy-momentum tensor of the Weyl curva-
ture and therefore vanishes identically in 4 dimensions.
This identity, Θab ¼ 0, was first shown by Lanczos [30]
(but see also Refs. [31] and [32]). Vanishing dilatation gives
Qαβ ¼ 0 in Eq. (9), reducing the right side of Eq. (7) to
zero. Finally, replacing Ωabcd ¼ Cabcd and fab ¼ −Rab in
Eq. (7) gives RcdCcadb ¼ 0, which, combined with the
covariant divergence of Eq. (4), reproduces the Bach
equation.
We conclude that all solutions to torsion-free auxiliary

conformal gauge theory are also solutions to fourth-order
field Weyl gravity. The converse, however, is not true. We
now show that the class of solutions is equal to the set of
conformal equivalence classes of Ricci-flat spacetimes.
The calculation centers on the vanishing divergence of

the Weyl curvature, DaCabcd ¼ 0, the torsion-free version
of Eq. (4). Clearly, this field equation distinguishes the two

approaches to Weyl gravity. Without this, we would only
have vanishing dilatation, a gauge with vanishing Weyl
vector, and fμν ¼ −Rμν turning the curvature into the Weyl
curvature, all of which reduce the problem to the usual
Weyl curvature squared action together with the metric
variation that gives the Bach equation. The remarkable
thing is that the vanishing divergence is an integrability
condition that reduces the fourth-order theory to a second-
order theory. To see this, we choose the conformal gauge so
that the Weyl vector vanishes. This makes the geometry
appear Riemannian. The field equations reduce to Eq. (4)
and, from Eq. (7) the condition RabCacbd ¼ 0. The latter
expresses the vanishing energy-momentum of the Schouten
tensor [32].
Expanding the second Bianchi identity, Ra

b½cd;e� ¼ 0, in
terms of the Weyl and Schouten parts then taking a trace
relates the divergence of theWeyl curvature to the Schouten
tensor. Using the identityR;d ¼ Ra

d;a, from a second trace,
the Bianchi identity becomes

Ca
bcd;a þ ðn − 3ÞðRbc;d −Rbd;cÞ ¼ 0

(in n dimensions) so the field equation may be written as

Rb½c;d� ¼ 0: ð10Þ

This is not the well-known integrability condition,

Rbc;d −Rbd;c þ φaCa
bcd ¼ 0; ð11Þ

for the existence of a gauge in which the vacuum Einstein
equation holds ([12], [13]). The problem is that we are in
the wrong basis to see the integrability condition. Staying in
the Riemannian gauge, we define a new basis,

~ea ¼ eχea;

and require the same relations between ~ea, ~ωa
b, and ~Ra

b as
hold between ea, ωa

b, and Ra
b. The Bianchi identity

remains the same, ~Ca
bcd;a þ ðn − 3Þð ~Rbc;d − ~Rbd;cÞ ¼ 0,

but the field equation differs. With the new connection
given by

~ωa
b ¼ ωa

b þ 2Δac
dbχce

d;

we find the well-known change in the Schouten tensor [33],
with the Weyl curvature unchanged. The divergence
of the Weyl curvature, however, is related to the old by
DðωÞ

a Ca
bcd ¼ e2χð ~Da

~Ca
bcd − ðn − 3Þχe ~Ce

bcdÞ ¼ 0. Com-
bining this with the Bianchi identity, the field equation
is now

~Rbc;d − ~Rbd;c þ χe ~C
e
bcd ¼ 0; ð12Þ

and this is the integrability condition. Therefore, there
exists a gauge, χ, that takes ~ea to a Ricci-flat basis.
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Some care is now required. The integrability condition,
Eq. (11), tells us that ~ea is conformal to a basis in which the
spacetime has vanishing Ricci tensor. Let this basis be
êa ¼ eξ ~ea for some function ξ. Then, since ~ea ¼ eχea, we
have êa ¼ eξþχea. This means that the original basis is
conformal to a Ricci-flat basis, and therefore the integra-
bility condition must hold there as well,

Rbc;d −Rbd;c þ ζeCe
bcd ¼ 0;

where ζ ¼ ξþ χ. However, since we know that Rbc;d −
Rbd;c ¼ 0 by the field equation, we must also have

ζeCe
bcd ¼ 0

in the original basis. For spacetimes other than Petrov types
O or N, this only happens if

ζa ≡ eaμ∂μζ ¼ 0;

so ζ ¼ ζ0 is at most a constant and êa ¼ eζ0ea. A constant
multiplying the basis preserves the vanishing Ricci tensor,
so the Ricci tensor vanishes in the original basis. While
Petrov type O and N spaces are conformally Ricci flat, the
Ricci tensor may not vanish in Riemannian gauge. It is
worth noting that a number of the non-Einstein solutions in
Ref. [17] are wavelike solutions of type N. These special
cases warrant further study; type N spaces are the same
ones Szekeres found to be exceptional [13].
We see that the Riemannian gauge is doubly special

(except possibly in type O or N spaces): both the Weyl
vector and the Ricci tensor vanish in that gauge. This is part
of the reason the integrability was not seen earlier. There is
another reason as well, stemming from the fact that the
special form Rbc;d −Rbd;c ¼ 0 admits Einstein spaces as
solutions. We now clarify this issue.
Equation (10) is solved by any Einstein space,

Rab ¼ 1
6
Ληab, for constant Λ. This seems to contradict

our result above. The problem is resolved if we recall that
solutions are conformal equivalence classes of metrics,
fe2φgαβ∣allφg. Above, we showed that metrics conformal
to Ricci-flat metrics comprise such a class. If we compute
the condition for a space to be conformal to an Einstein
space, however, Eq. (11) gains a new term,

Ra½b;c� þ χdCd
abc þ

1

3
Ληa½bχc� ¼ 0:

Since the field equation requires Ra½b;c� þ χdCd
abc ¼ 0, a

conformal equivalence class with cosmological constant
also requires

1

3
Ληa½bχc� ¼ 0:

Since χ is arbitrary, the cosmological constant must vanish,
Λ ¼ 0. We conclude that, while all Einstein spaces satisfy

Eq. (10), the only conformal equivalence class of Einstein
spaces satisfying Eq. (10) when expressed in the
Riemannian gauge is the class with Λ ¼ 0 and therefore
the Ricci-flat equivalence class.
Finally, we return to the field equations in an arbitrary

gauge, so the Weyl vector is no longer zero. The Schouten
tensor becomes

Rab ¼ RðαÞ
ab − ωða;bÞ − ωaωb þ

1

2
ω2ηab; ð13Þ

where RðαÞ
ab is the Schouten tensor in Riemannian gauge.

ButRab is covariant under conformal transformations, with
Rab → e−2χRab. We may therefore evaluate it in any
convenient gauge and immediately know it in any other.
Now we see the importance of generically having both a
vanishing Weyl vector and vanishing Ricci tensor in the
Riemannian gauge—evaluating Eq. (13) in the Riemannian
gauge now shows that

Rab ¼ 0

in every gauge.
In conclusion, we have shown that when all connection

fields of conformal gravity are varied independently,
solutions are conformal equivalence classes of solutions
to the vacuum Einstein equation. Quantization of con-
formal gravity may therefore be renormalizable, ghost free,
and essentially equivalent to general relativity. Investi-
gations along these lines are ongoing. In Petrov type O
or N spaces, the Weyl vector and Ricci tensor may vanish in
different gauges; the dilatational curvature may not vanish
when the original gauge theory action has β ¼ 2α.
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APPENDIX A: STRUCTURE EQUATIONS
AND BIANCHI IDENTITIES

The curvature 2-forms are given in terms of the con-
nection by of the Cartan equations for the conformal group,

Ωa
b ¼ dωa

b − ωc
b∧ωa

c − 2Δac
dbfc∧ed ðA1Þ

Ta ¼ dea − eb∧ωa
b − ω∧ea ðA2Þ

Sa ¼ dfa − ωb
a∧fb þω∧fa ðA3Þ

Ω ¼ dω − ea∧fa; ðA4Þ

where the principal bundle structure allows each curvature
to be expanded quadratically in the solder forms, e.g.,
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Ωa
b ¼

1

2
Ωa

bcdec∧ed:

Each of the 15 Cartan equations has an integrability
condition arising from the Poincaré lemma, d2 ≡ 0. For
example, the exterior derivative of the torsion is

dTa ¼ d2ea − deb∧ωa
b þ eb∧dωa

b − dω∧ea þω∧dea:

Using the Poincaré lemma to set d2ea ≡ 0, and substituting
from Eqs. (A1), (A2), and (A4), all terms except those
linear in curvatures cancel, leaving

dTa ¼ −Tb∧ωa
b þω∧Ta þ eb∧Ωa

b − Ω∧ea:
Carrying out similar calculations for the remaining Cartan
equations, Eqs. (A1), (A3), and (A4), we find

0 ¼ DΩa
b þ 2Δac

dbðΩc∧ed − fc∧ΩdÞ ðA5Þ

0 ¼ DTa − eb∧Ωa
b þ Ω∧ea ðA6Þ

0 ¼ DSa þΩb
a∧fb − fa∧Ω ðA7Þ

0 ¼ DΩþ Ta∧fa − ea∧Sa; ðA8Þ

where D is the Weyl covariant derivative,

DΩa
b ¼ dΩa

b þ Ωc
b∧ωa

c −Ωa
c∧ωc

b

DTa ¼ dTa þ Tb∧ωa
b − ω∧Ta

DSa ¼ dSa − ωb
a∧Sb þ Sa∧ω

DΩ ¼ dΩ:

When one of the curvature 2-forms is zero, the Bianchi
identities give algebraic relations. Thus, with vanishing
torsion, Ta ¼ 0, Eq. (A6) becomes

0 ¼ −eb∧Ωa
b þ Ω∧ea

¼ −
1

2
Ωa

bcdeb∧ec∧ed þ 1

2
Ωcdea∧ec∧ed

¼ 1

2
ð−Ωa

bcd þ δabΩcdÞeb∧ec∧ed

so that

Ωa½bcd� ¼ δa½bΩcd�:

APPENDIX B: HOMOGENEOUS WEYL
INVARIANCE OF THE ACTION

In the linear SOð4; 2Þ representation, an infinitesmial
conformal transformation takes the form

gAB ¼ δAB þ ΛA
B;

where A; B ¼ 0; 1;…5. With a; b ¼ 0; 1; 2; 3, we let
Λa

b be an infinitesimal local Lorentz transformation,
Λa ≡ Λa

4 a local translation, Λa ≡ Λ4
a a local special

conformal transformation, and Λ≡ Λ4
4 a local dilatation.

Antisymmetry of the generators allows us to write the
remaining ΛA

B in terms of these. Then the infinitesimal
gauge transformations of the conformal connection forms
are given by

δωa
b ¼ ðΛa

cωc
b − ωa

cΛc
bÞ þ ðΛafb − eaΛbÞ

þ ηacηbdðΛced − fcΛdÞ − dΛa
b

δea ¼ Λa
cec þ Λaω − ωa

cΛc − eaΛ − dΛa

δfb ¼ Λcωc
b þ Λfb − fcΛc

b − ωΛb − dΛb

δω ¼ Λcec − fcΛc − dΛ:

The auxiliary gauging breaks the translational symmetry.
Without the translations these reduce to

δωa
b ¼ Λa

cωc
b − ωa

cΛc
b − eaΛb þ ηacηbdΛcec − dΛa

b

δea ¼ Λa
cec − eaΛ

δfb ¼ Λcωc
b þ Λfb − fcΛc

b − ωΛb − dΛb

δω ¼ Λcec − dΛ;

showing that the solder form has become tensorial.
For the curvatures, the IW transformations are similar:

δΩa
b ¼ Λa

cΩc
b −Ωa

cΛc
b − TaΛb þ ηacηbdΛcTd

δTa ¼ Λa
cTc − TaΛ

δSb ¼ ΛcΩc
b þ ΛSb − ScΛc

b −ΩΛb

δΩ ¼ ΛcTc:

Notice that if we suppress special conformal transforma-
tions, Λa ¼ 0, both the Lorentz curvature and dilatational
curvature become separate tensors under the remaining W
transformations so the action, Eq. (3), is manifestly W
invariant. The translational symmetry has been replaced by
general coordinate invariance of the curved manifold [34].
For a full IW transformation of the action, we easily

show that

δSWauxiliary ¼ −4α
Z

ΛbTa∧�Ωb
a þ 2β

Z
ΛcTc∧�Ω:

Therefore, SWauxiliary is invariant if we perform no special
conformal transformations, Λb ¼ 0, or if the torsion van-
ishes, Ta ¼ 0.
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APPENDIX C: THE BASIS STRUCTURE
EQUATION AND THE CONNECTION

Various relations between the solder form, metric, and
connection are readily established from the basis structure
equation, Eq. (A2),

dea ¼ eb∧ωa
b þ ω∧ea þ Ta:

Equation (A2) gives the antisymmetric part of the
partial derivative of the solder form, so we must have

∂νeμa þ eμbωa
bν −Wνeμa þ

1

2
Ta

μν ¼ Σa
μν;

where Σa
μν is symmetric, Σa

μν ¼ Σa
νμ. Permuting indices

and combining to solve for Σa
μν in the usual way leads to

Σμαν ¼
1

2
ð∂νgαμ þ ∂αgμν − ∂μgναÞ

− ðgαμWν þ gμνWα − gναWμÞ þ
1

2
ðTαμν þ TνμαÞ;

and substituting back into the derivative of the solder form,
we have

Dνeμa ≡ ∂νeμa þ eμbωa
bν − eαa ~Γα

μν − eμaWν ¼ 0;

where we define the connection (for aWeyl geometry with
torsion) as

~Γβ
μν ≡ Γβ

μν − ðδβμWν þ δβνWμ − gαβgνμWαÞ

þ 1

2
ðTμ

β
ν þ Tν

β
μ − Tβ

μνÞ:

As expected,

~Γβ
μν − ~Γβ

νμ ¼ −Tβ
μν:

Contracting Dνeμa with a second solder form and sym-
metrizing, we have metric compatibility,

Dνgαμ ¼ ∂νgαμ − gαβ ~Γβ
μν − gμβ ~Γβ

αν ¼ 0;

and standard manipulations (e.g., Ref. [35]) show that

∂αð
ffiffiffiffiffiffi
−g

p Þ ¼ ffiffiffiffiffiffi
−g

p ~Γμ
μα:
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