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We discuss the dynamics of intersecting p-branes with cosmological constants in the higher-dimensional
gravity theories. For the delocalized brane case, these solutions describe an asymptotically de Sitter or
power-law expanding universe, while for the partially localized intersecting branes, they describe
homogeneous and isotropic universes at each position of the overall transverse space. We then apply
these time-dependent branes to the study on the collision of two 0-branes and show that the 0 — 8-brane
system or the smeared O — p;-brane system can provide an example of colliding branes if they have the
same brane charges and only one overall transverse space. Finally, we argue some applications of the

solutions in supergravity models.
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I. INTRODUCTION

In many recent developments involving cosmological
models and brane collisions in higher-dimensional gravity
theories [1-33], the dynamical p-branes carrying charges
have played important roles. In the classical solution of a
single p-brane, the coupling of the dilaton to the field
strength includes the parameter N. Since these brane
solutions with N = 4 are related to well-known D-branes
and M-branes in supergravity theories, they certainly
exhibit many attractive properties in the higher-dimensional
spacetime. Some static solutions with N # 4 also have
supersymmetry after dimensional reductions to lower-
dimensional theory [34,35]. The time-dependent general-
izations of these solutions are thus important examples of
higher-dimensional gravity theories. The dynamical brane
solution with the cosmological constant can be obtained by
choosing the coupling constant appropriately [20,21,24].
For a single 2-form field strength and a nontrivial dilaton,
we have found that the dynamical single O-brane solution
describes the Milne universe [21,24]. The field equations
give an asymptotically de Sitter solution if the scalar field
is trivial [24], which is a generalization of the Kastor-
Traschen solution in the four-dimensional Einstein-
Maxwell theory [36,37]. The construction of intersecting
branes with a cosmological constant is a natural generali-
zation of the single cosmological brane solutions. The
time-dependent intersecting branes we have mainly dis-
cussed are localized only along the relative or overall
transverse directions in a higher-dimensional background,
which are delocalized intersecting brane systems. However,
in the higher-dimensional gravity theories, one of the
branes is localized along the relative transverse directions
but delocalized along the overall transverse directions,
which are partially localized branes solutions. If the back-
ground has the cosmological constant, there is little known
about the dynamics of the intersecting brane system for
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not only the delocalized case but also the partially local-
ized one.

In the present paper, we will explore the possible
generalization of these solutions to the case of the inter-
secting brane systems with cosmological constants,
although similar single brane solutions have been analyzed
in Ref. [24]. We recall these arguments for constructions of
the solution and modify the ansatz of the fields. A brane
configuration has to satisfy an intersection rule which is an
algebraic equation that relates the coupling of the dilaton
to the dimensionality of the branes. The intersection rule
implies that only the O-brane can depend on time and the
dynamical O-brane commutes with the static p-branes.
We will study the dynamical intersecting brane solutions
for not only the delocalized case but also the partially
localized one.

The paper is constructed as follows: In Secs. II and III,
we derive the dynamical intersecting brane solutions with
cosmological constants in a D-dimensional theory follow-
ing the approach developed in Ref. [24]. We then illustrate
how the dynamical solution of two or n intersecting branes
arise under the condition of N # 4 in the D-dimensional
theory. The spacetime starts with the structure of the
combined O-branes. If they do not have the same charges,
a singularity hypersurface appears before they meet as the
time decreases for D > 4. We then discuss the dynamics of
two O-branes with static p-branes (or the dynamics of two
black holes) in Sec. IV. If there exists one uncompactified
extra dimension [0 — 8-brane system or 0 — (D — 1)-brane
systems (p <7)] and two brane systems have the same
brane charges, the solution describes a collision of two
branes (or two black holes), which is similar to the result in
Refs. [3,21,28]. In Sec. V, applications of these solutions to
five- or six-dimensional supergravity models are discussed.
We consider in detail the construction yielding the dynami-
cal 0- or 1-brane in the Nishino-Salam-Sezgin model. We
also provide brief discussions for a time-dependent brane
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system in Romans’ supergravity model. We describe how
our Universe could be represented in the present formu-
lation via an appropriate compactification and give the
application to cosmology. We show that there exists no
accelerating expansion of our Universe, although the
conventional power-law expansion of the Universe is
possible. We then discuss the dynamics of two 0- or
1-branes with smeared branes. If two brane systems have
the same brane charges with smearing some dimensions,
the solution describes a collision of two brane backgrounds.

There is a curvature singularity in the dynamical brane
background if we set a particular value for the constant
parameters. Then the solution implies that the presence of
the singularities is signaling possible instabilities, making
the solutions sick or unphysical. We study the classical
stability of the solutions in Sec. VI. Our preliminary
analysis will present that the energy of Klein-Gordon
scalar fields in the dynamical brane background grows
with time for inertial observers approaching the singularity.
In terms of using the preliminary analysis performed in
Refs. [38—41], the Klein-Gordon modes will be studied,
arriving at the preliminary conclusion of instability.
Section VII will be devoted to the summary and
conclusions.

II. DYNAMICAL PARTIALLY LOCALIZED
INTERSECTING BRANE BACKGROUNDS
WITH COSMOLOGICAL CONSTANTS

In this section, we will construct the partially localized
time-dependent brane systems in D dimensions with
cosmological constants.

We consider a D-dimensional theory composed of the
metric gy, the scalar field ¢, cosmological constants
A;(I =r,s), and two antisymmetric tensor field strengths

|
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of rank (p, + 2) and (p, + 2). The action in D dimensions
is given by

1 1
S::Ii/nBR—ZMWAT—zyﬁAQ*ID_E*d¢Am¢
K

.t
2(p, +2)!
11

_E(ps+2)!

err? % F(p 10)AF (5, 42)

(1)

P % F(, ) AF (42|

where R denotes the Ricci scalar constructed from the
D-dimensional metric gy, a;(I = r,s) are constants, k>
denotes the D-dimensional gravitational constant, * is the
Hodge operator in the D-dimensional spacetime, and
F(y,42) and F(, 5 are (p, +2) and (p, + 2)-form field
strengths, respectively. The constant parameters c; and
€;(I = r,s) are defined by

2(p;+1)(D = p; = 3)

=N - D_2 , (2a)
{ + if the p;-brane is electric, (2b)
€ =
! — if the p;-brane is magnetic,

respectively. Here N; is constant. The (p, + 2)-form and
(py +2)-form field strengths F(, |, and F,, . are given
by the (p, + 1)-form and (p,; + 1)-form gauge potentials
A(p,+1) and A(, 1), respectively:

(3)

Fpia) = dAp 41y Fpga) = dAg 1)

For the D-dimensional action (1), the field equations read

a,.Qp a.p 1 1 eerc,d) A A . + 1
RMN = D—2 (e "/Ar +e .\‘/AS)QMN + §8M¢8N¢ + Em |:(pr + 2)FMA2...A(W+2)FN 2+ A(pp2) D5 IuN 2 A2)
1 eesquﬁ s + 1
+ Em (pg + Z)FMA2~"A(plﬁg)FNAz'”A(pJJrz) — ) gMNF%plY+2):| s (43)
1 e€.c 1 e.c
L D ST e 2 _ appN N -
2o ey T, o ey T 20, 20,670, =0, (4b)
d[eercr(/) * F(Pr+2)] =0, (40)
d[eesc.y(/) * F(ps+2)] =0, (4d)

where A denotes the Laplace operator with respect to the D-dimensional metric g,y -
The D-dimensional metric involving the intersecting branes with a cosmological constant can be put in the general form

ds® = b (x.y, )W (x, v, 2) g, (X)dxtdx* + hy (x,y. 2)h$ (x, v, 2)y;; (Y1)dy'dy/
R (x,y, 2)RY (3, 0, 2) W (Y2 )dv™dv™ + BY (x,y, 2)BY (x, 0, 2) 1y (Z)dzd2?,

(5)
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Intersections of p, — p,-branes in the metric (5), where p’ = p, + p, — p.

Case 0 1 p p+1 Ds ps+1 p p+1 D-1

pr o (e} o] (o] e} [e] (0]
pr —_ pX pX o] (o} o o (o] (0] (0]

XN ¢ x! e xP y! yPsP m . PP 7! e ZP-r'-1
where g, is the (p 4 1)-dimensional metric depending Q(X) = /=qdx"Adx'A - - - NdxP, (8a)
only on the (p + 1)-dimensional coordinates x*, y;; is
the (p,—p)-dimensional metric depending only on the QIY) = rdvi AdVA - - - AdyPs—P gh
(ps — p)-dimensional coordinates y', w,,, is the (p, — p)- (Y1) = Vydy Ady A ndyP=7, (8b)
dimensional metric depending only on the (p,— p)-
dimensional ~ coordinates »”, and u,, is the Q(Y,) = Vwdv' Adv>A - - - AdvPrP, (8¢)

(D+ p - p,— py — 1)-dimensional metric depending only
on the (D + p — p, — p, — 1)-dimensional coordinates z*.
Here we assume that the parameters a;(I =r,s) and
b;(I = r,s) in the metric (5) are given by

4(D —p;—3)
N;(D=-2)

4(p;+1)

"= ND-2)

(6)

a; = —

The brane configuration is illustrated in Table I.

The dynamical brane solutions are characterized
by two warp factors &, and h,, depending on the (D + p—
p, — ps — 1)-dimensional coordinates transverse to the
corresponding brane as well as the (p + 1)-dimensional
world-volume coordinate. In the case of intersection
involving two branes, the powers of warp factors have
to obey the intersection rule and then split the coordinates
in four parts [42—44]. One is coordinates of the world-
volume spacetime, x*, which are common to the p,-, p,-
branes. The others are coordinates of the overall transverse
space z% and coordinates of the relative transverse y’ and
v™, which are transverse to only one of the p,-, p,-branes.
In this section, we consider the intersections of a p,- and a
ps-brane with the following conditions in D dimensions.
We assume that the functions 4, and &, depend not only on
overall transverse coordinates but also on the correspond-
ing relative coordinates and world-volume coordinates. We
therefore may write h, = h,(x,y,z), hy = hy(x, v, 2).

We give the expression for the field strengths F(,, ,,) and
F(p.+2) and scalar field ¢ of a p,-brane intersecting with a
ps-brane over a p-brane configuration:

e(/) _ h%e,c,/N,.hAZ“el\.cl\./N\., (7&)
2 -1

Flp12) = \/TTd[hr (%, . 2)IANQX)AQ(Y,),  (7b)
2 -1

Fipio) = \/_N.d[hs (x, v, 2)]AQX)AQ(Y,),  (7c)

where Q(X), Q(Y), and Q(Y,) are the volume (p + 1)-
form, (p, — p)-form, and (p, — p)-form, respectively:

Here, g, y, and w denote the determinants of the metrics g,,,,
vij» and w,,,, respectively.

A. Power-law expanding universe

In this subsection, we consider the field equations (7)
with ¢;(I =r,s) #0. The parameters a;(I =r,s) are
assumed to be
)

a, = —€,c,, oy = —€,Cq.

Let us first consider the gauge field equations (4c) and
(4d). Using the assumptions (5) and (7), we have

RN, (vy, dy ) AQU(Z)

+ N9, (+,dz ) AQ(Y,)] = 0, (10a)
[N G b (s, d™) AQ(Z)
+ BN by (+,dz)AQ(Y,)] = 0, (10b)

where xy , xy,, and *; denote the Hodge operator on Y,
Y,, and Z, respectively, and y is given by

1 1 1
D

y=p+1- (11)

In the following, we discuss the case of y = 0, because the
relation y = 0 is consistent with the intersection rule which
has been found in Refs. [11,15,22,24,45-60].

Setting y = 0, Eq. (10a) gives

4
8ﬂaihr =+ ﬁaﬂ In hsﬁih, = O,

N

hSAYI I’lr —|— Azhr == O,

0,0,h, =0, (12)

where Ay, and Ay are the Laplace operators on the space of
Y, and Z, respectively.
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On the other hand, Eq. (10b) leads to where we used Eq. (11) and Ay, is the Laplace operators on
4 the space of Y,.
h.ay, b+ 870 =0, 0,0,,h +Faﬂ Inh,0,h; =0, Now we consider the Einstein equation (4a). Using
! the ansatz (5) and (7) and the intersection rule y =0,
9u0ahs =0, (13) the Einstein equations become
J
4 4
R, (X)— N—rh, D,D,h, — N—shs D,D,h + 8 Inh, 0, Inh, — N—X(')l, In Ay
2 4
Fa ll’lh |:< F) ay In hs a Inh :| h—2+arp,has —2¢,€5¢,c5/ Ny + A ha,—ZS e, ¢/N, h—2+asps)qm/
1 -
=5 @uhr N a g (N a By + aghy) + aghT (B “/NVAY h+ azh)]
1
— 5% {a,h,‘lAXh, —a,q"°9d, Inh { < )8 Inh, — 8 Inh }
. 4
+ashs axhg — a,q”°0, Inh Oy Inhy — 8 Inh, ;| =0, (14a)
4 4 4 4
h:*( 0,0:h, + ﬁaﬂ Inh,0;h, | =0, hi' 0,0,hs + Faﬂ Inh,0,,h, | =0, (14b)
2, 2,
ﬁhr aﬂaah, + Vhs Qﬁahs = O, (14(3)

1 4 4
Ri(Y1) =5 1wy {b,h;leh, ~b,q’8,In h,{ (1 - F) Dy Inhy =0 In hs}

4 4
+a,hy' axhy — a,q7°9, In hs{ (1 - ﬁ> 9, Inh, — F,a" In h}]

N

1

=51 b (™ vy by aghy) + ahT (B Ay + azh)}

2 - a Ay—LELE€,C,C a,—2(€,€,C . Cy— - a
-5 [Arhr2+ ”’f*“/th; 2¢,€5¢,¢4/ N + AhY 2(e,e5c,Cy 2)/ths 2+ “p“}%j -0, (14d)
NN.(D=2) [(pr+ D (ps +1) = (D =2)(p, + ps +2)]0; Inh,0,, Inh; =0, (14e)

1 4 4
R, (Y5) — zh?/N“‘wmn [a,h,‘leh, —a,q"°9, In h,{ <1 - F) 0, Inh, — ﬁ(‘){, In hs}

N

4 4
+bshs_1AXh’s - bsq”"ap In hs{ <1 - E) 86 In hs - Frag In hr}:|
1 _
=Wty {a b (™ vy by aghy) 4 DS EY Ay y + azh)}

_ D3 [Arh;2+arprh?.\‘ 2(ere5crc=2)/ N + Ash?r_zerescrcs/Nrhs_2+axpx+4/Nx}wmn =0, (14f)
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1 4 4
Ra(Z) =5 hyYNend Ny, [b,h,‘leh, —b,q’°d, In h,{ <1 - N—) Oy Inhy =0, In hs}

N

i ) 4 4
+bshi! axh, — b0, lnhs{ (1 —ﬁ>8g Inh, — Fraa lnh,H

1
— 5 ttap b, h7 (™ vy 4 dghy) + by (B Ay by + agh)]

5 5 [Arh:2+arpr+4/Nr h?s—2<€r€scrc.&_2)/Ns + ASh?r_2<€r6.scrcs_2)/Nrh;2+axp‘v+4/Nx]uab = O’ (14g)

|
where D, is the covariant derivative constructed from the
metric q,,, Ax, Ay,, Ay,, and Az are the Laplace operators h,=h,(y.2),  hy=ko(x)+k(v.2), forJ,h, =0.
on X, Yy, Y,, and Z, respectively, and R, (X), R;;(Y;), (15b)
R,..(Y>), and R,,(Z) are the Ricci tensors with respect
to the metrics q,,(X), 7;;(Y1), Wua(Y2), and u,,(Z),
respectively.
From Egs. (14b) and (14c), the warp factors 4, and A,
can be expressed as Ouhy =0, p=p,=0, Ay =0, x =0,

If we require that the background satisfies

h, = ho(x) + hy(y,2), hy = hy(v,z), for 0,h; =0,

(15a) the Einstein equations (14) reduce to
|

2 dzh 4
—— | 2h; ! 1-—— Inh,)? —Ah -2
Nr[ ar ( Nr>(a’ uk;) ] b2

_ _ 1 d*h 4
+2h N a7 (0 Ay Agh) + aghs agh] - S a, {h: - (1 —ﬁ) (0, lnhﬂ =0, (17a)

1 d’h 4
Rij(Yl)“‘Ebrhi/N [h ! a’t20 <1 _F> (8,lnh,)2]

2 -2+ 1

B mA,h, Yij— EVijhs_MNs (6,17 (™ Ay by + Aazhy) + aghy azh] =0, (17b)

L. 4w, g, - d*hy 4 )
R e S [CALL Y

20,
D-2

o4k 4 1
By R g — =5 Uap[brhy HR™ ay by + Azhy) + byhi' aghy) = 0. (17¢)

Note that Eq. (14f) becomes trivial for p = p, = 0. By combining the above equations and setting p = p, = 0, the Einstein
equations for N, # 4 lead to

Rij(Y1) =0,  Ru(Z) =0, (18a)

h, = hy(t) + hy(y, 2), hy = hy(z), (18b)
N (1Y A —0. By by agh =0, (18¢)
di r N, r =Y, Y, 1 7z = c
Agh, = 0. (18d)
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Finally, we check the scalar field equation for the case of p = p, = 0. Substituting Eqgs. (7), (15), and (16) and the

intersection rule y = 0 into Eq. (4b), we have

N, dr’ N,

Hence the scalar field equation (19) reads

d2h0 dho 2 4 -1
=0, ZO0) 4N (1-—) A, =0,
=0 (@) (%)
W™ Ay by + Aghy =0, (20a)
Agh, = 0. (20b)

These are consistent with the Einstein equations (18). The
function A, can depend on the coordinate ¢ only if N, # 4.
For N, = 4, the scalar field equation leads to A, = 0.

We can find the solution in which the p,-brane part
depends on x#. For p=p, =0, A, =0, and 0,h, =0,
we have

Rmn (Y2> = O’ Rab (Z) = 07 (213)
hr = h,(Z), hs = k0<t) + kl(”? Z)? (21b)
d2k0 dk() 2 4\ -1
o, (%) yn(1-2) A =0,
w0 (@) (%)
W™ Ay ky + gk =0, (21¢)

It is clear that there is a solution for k() such as 0,k # 0
unless Ny =4. For N, =4, the field equations lead
to A, =0.

If F(,, 12 =0and F(, .5 = 0, the warp factors i; and
k, are trivial functions. Then the D-dimensional spacetime
is no longer warped [11]. Moreover, Egs. (18) and (21)
imply the two cases. First, p,-, p,-branes are delocalized.
These are localized only along the overall transverse
directions. Second, the O-brane is completely localized
on the p- (or p,-) brane which is localized only along the
overall transverse directions, which is a partially localized
p,—0 (or 0 — p,) brane system.

As an example, we set

p=p-=0,
hs - hs(z)’

Yij = 6ij» Uap = Oap, )

_ _ d’h 4
ErCr =b,A/N, j=b /N, [_h;l_ﬂJr <1 __> (0, 1nh,)2 +N, A =2 +%hr (hNeay by +Azhl)+€;\f‘9h§1Ath=0-

r A

(19)

where §,; and 6, are the p-and (D — p, — 1)-dimensional
Euclidean metrics, respectively. Equation (18c) gives

4 -1
ho(t) = cot + Ci, Co = Zl:\/N,, (N—— 1) Ar, (23)

where ¢, and ¢; are constants. Hence, solutions exist for
N, <4 if A, > 0 and vice versa.

If the functions h; and hj satisfy the coupled partial
differential equations

BN Ay by + azhy =0, aghy=0,  (24)

the harmonic function 4, that satisfies the equation in (18d)
takes the form

CR Y

where z¢ is the location of the Zth pg-brane and M, is
constant. Since we consider the case in which the p-branes
coincide at the same location in the overall transverse
directions, the harmonic function /4, can be written by the
following form [27,61,62]:

M
|2 = z§|P~P3”

hy(z) = (26)

where M is constant and the stack of p,-branes is located at
the same points z§ along the z directions. We can find
solutions for the harmonic function %, in the case where
each of the p-branes does not coincide at the same location
in the overall transverse directions.

If we set D — p, # 3 and 2 — 4N (D — p, —3) # 0 for
the overall transverse space, Eq. (24) can be solved as

025024-6



COLLIDING p-BRANES IN THE DYNAMICAL ...

PHYSICAL REVIEW D 90, 025024 (2014)

M,
y Z =1+ Z |y —yi |2 ffM“/Ns |Za _ Za|2—4N;1(D—pS—3)]§r ’ (27)
/" T N (b-p 7 0
where M, is constant and ¢, is given by
1 (2—4NHY(D - p,—3)+2

== -1 28

Hence, the functions &, and &, can be expressed as

M
hy(t.y.2) = cot o1 + Z 24 4M/Ns - a _ ,a|2=4N7 (D-p=3)15:° (292)
Iy = Yol + o tpp e & — 26 07
I
M In the case of D — p, = 5 and N, = 4, the functions #,
hy(z) = (29b) and &, can be written by

|2 = z§|P~Ps3”

where ¢, ¢, My, and M are constant parameters and y’
and z§ are constants representing the positions of the
branes. The curvature singularities appear at s, = 0 in
the D-dimensional metric (5). Moreover, there is also a
singularity at z% = z{ unless the scalar field is trivial.

Upon setting D — p, =3 and N, =4, the solutions
of Eq. (24) are given by

hy(1,y,2) = cot+c1+ Y My =yil> = p,M In|z ],
4
(31a)

M

SR

(31b)

The solutions (30) and (31) have a singular hypersurface at

M, infinity as well as at &, = 0, because the D-dimensional
h,(t.y,2) =cot+c, +Z [y =y P+ Mz —za]2 ] (otD)’ metric depends on the logarithmic function of the trans-
Y =e © % verse coordinates. These solutions also give a singularity at
(30a) @ = z¢ if the dilaton is nontrivial.
It is possible to find the solution for 0,4, =0 and
hy(z) = M In |z — Z8]. (30b) 0;hy #0 if the roles of Y, and Y, are exchanged.
The solution of the field equations for D — p, # 3 and
D — p, # 5 can be written by
M,
hy(t,v,2) = cot + ¢ + Z (o — o2 + AMAN |29 — a|2—4N;1(D—p,—3)]§.\-’ (32a)
A PRI e e
M
h,(z) = o ap (32b)
where ( is given by
1 2—4N;")YD-p,—-3)+2
Cs:_ pr_1+( )( br ) . (33)

2 —

4Nr_1(D_pr _3)

IfwesetD — p, =3,D — p, =35, and N, = 4, the harmonic functions %, and /, have logarithmic spatial dependence like

(30) and (31).

Assuming A, > 0 and introducing a new time coordinate 7 by

(N,=2)(D-2)+2

—:(COZ‘I'CI) N2 gy =

N,(D—Z)
“2)(D-2)+2]

co[(N
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we find the D-dimensional metric (5) as
2\~ — .
ds? — |:1 + (_) (Nr—z)(D-2>+zh1] h?“' [_d12+{ 1+ <_>
To To

Since h, does not approach constant in any region, the
whole spacetime cannot be homogeneous and isotropic.
But on each z = const slice the spacetime becomes a
homogeneous and isotropic universe. In the limit 7 — oo,
the function /; can be negligible in the warp factor. This is
guaranteed by a scalar field with the exponential potential.
The accelerating universe is obtained on each z¢ = const
slice if N, < 2, which corresponds to the case of a positive
cosmological constant. For 2(1;)__23 ) < N, < 2, the solution
provides a power-law inflationary universe, and for

N, > %, the scale factor diverges at 7 = 7., > 0, taking
the involution 7 — 7, — 7. Finally, for N, = 2(5__23)’ we

obtain a de Sitter universe which will be discussed in the
next subsection.

B. de Sitter universe

Next, we consider the solution with a dilaton which is
the case of ¢; = 0( = rors). In terms of ¢; = 0, Eq. (2a)
gives

2(D—-p;=3)(p;+1) .

N == (36)
If we assume
¢, =0, cg #0, p=p,=0,
) —%, o — —;Ve—‘; A =0, (37)
the field equations reduce to
R;(Y;) =0, Ru(Z) =0, (38a)
h(t,y,2) = ho(t) + hy(y,2),
2 _12)2
WY ay by + aghy =0, agzhy=0.  (38¢)
Then Eq. (38b) gives
hy = cot + ¢y, (39)

where c¢; is an integration constant and ¢, is given by

“Nr2)(D-2)+2

PHYSICAL REVIEW D 90, 025024 (2014)

ES 4
Ne [ T \ W, 20272
hy —
7o

Ny (D-2)

. . 4
<7/udy’dy’ +hy uabdZ“dzb>] :

(35)

cozi@_wwz(l)_l)m. 0

Thus there is no solution for A, < 0. If the metric u,;,(Z) is
assumed to be Eq. (22), the function #, is given by Eq. (27).
Now we introduce a new time coordinate 7 by
cor = Int, (41)
where we have set ¢y > 0 for simplicity. Then the
D-dimensional metric (5) can be expressed as

dS2 — h?s [_(1 + cale—corhl)—ZdTZ
+ (1 4 cale—coi’hl)Z/(D—S) (COGCOT)Z/(D—3)

<y (Y1) dy'dy + h™ uy,(Z)dz2dz}]. (42)
The function &, does not become constant in any region.
Then, the D-dimensional spacetime cannot be de Sitter
spacetime. However, the spacetime gives a homogeneous
and isotropic universe on each y’ = const, z¢ = const slice.
If we set hy, = const and i = h(z), Eq. (42) becomes
the solution which has been discussed by Refs. [63,64]
(see also [65]). Furthermore, for D =4 and by setting
hy = 1, the solution is the Kastor-Traschen one [36].

III. THE INTERSECTION INVOLVING
n BRANE BACKGROUNDS

The construction that we have analyzed in Sec. II is a
special case of a more general construction of intersecting
branes with a cosmological constant. In effect, we have
been studying the special case of intersections involving a
two-brane. The time-dependent brane with a cosmological
constant property is a O-brane, represented by a 2-form. To
describe more general intersections on a time-dependent
background, one simply incorporates additional branes in a
dynamical background. Without loss of the time depend-
ence, it is possible to also add n delocalized branes. This
also has one important further refinement. Instead of
power-law expansion, the support of a O-brane might be
accelerated expansion, where D-dimensional geometry is
an asymptotically de Sitter spacetime. The n intersection
allows the time dependence of only O-branes but not of the
p-branes (p # 0). The reason for this is that the time-
dependent brane we have obtained can be performed in the
case of y = 0, where y is defined by (11). So the coefficient
of the time dependence is simply proportional to the

025024-8
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cosmological constant that we have explored in Sec. II: the
Einstein equations give p = 0.

In this section, we discuss the intersection of the
delocalized n branes in the higher-dimensional gravity
theory with the cosmological constants. The general action
describing the intersection involving the n brane system is
given by

1
S=53 / KR - 2§I:e“"/’A,> *

1 ecicid

1
P35 * dpAdg

e P a— N 2 43
22 (o o <p,+2)} (43)

where k? denotes the D-dimensional gravitational constant,
R is the D-dimensional Ricci scalar constructed from the
D-dimensional metric gy, ¢ is a scalar field, F(, ) is the
antisymmetric tensor fields of rank (p; + 2), * is the Hodge
dual operator in the D-dimensional spacetime, and c¢; and
€; are constants defined by

2(p;+1)(D = p; = 3)

2N, - 44
=N, D_2 , (44a)
+ for the electric brane,
€ = ) (44b)
— for the magnetic brane.

Here I denotes the type of the corresponding branes.
The D-dimensional action (43) gives the field equations

2 1
Ryy = mz}:e‘*"ﬁ/\zgm + 58M¢3N¢

1 1
LV (A LTt
I 1 :

pr+ 1
~ 9w F %p,+2):| ; (45a)
A¢ — Zzaleal(/)[\[ — l ZL 61L1¢F% L) = — 0’
1 2 Ji (pl + 2) b
(45b)
d[eelcl‘ﬁ * F(p,+2)] =0, (450)

where A denotes the Laplace operator with respect to the
D-dimensional metric gy .

We adopt the ansatz that the D-dimensional metric can
be written by

ds? tzdtz—i—ZB

a=1

(Z)dz%dzb, (46)

(t,7)(dx%)?

+ C(t, Z)Mab

PHYSICAL REVIEW D 90, 025024 (2014)

where u,;,(Z) denotes the metric of the (D —p—1)-
dimensional Z space which depends only on the
(D — p — 1)-dimensional coordinates z“. Concerning the
functions A, B, and C, we assume

A= H[l’ll(l, Z)]m Bl — H[h](t, Z)]‘S;u),

1 1

¢ = [Timi ez

1

(47)

(a)

where the constants a;, by, and 6, are given, respectively,

by
4 = _AD=p =3 p = Apr 1)
! Ni(D-2) ° " N(D-2)
forael,
i = {5 e (48)
b; for a¢l.

The function £,(t, z) is a straightforward generalization of
the static solution associated with the brane / in an
intersecting brane system [54,55] to the dynamical one.

We further require that the dilaton ¢ and the form fields
F (1) satisfy the following conditions:

erc/Ny 2 —
e = H/ﬁ e, Fpr2) = d(hy")AQU(X).
]

VN
(49)

where X; is the space associated with the brane 7, and the
volume (p; + 1)-form Q(X;) is written by

Q(X;) = dtAdxPIA - - - AdxP! (50)

A. Power-law expanding universe
Firstly, we consider the Einstein equations (45a) with
c;#0(I=0,...,n—1). We assume that the parameters
a;(I =0,...,n—1) are given by

ap = —€;Cy. (51)

We impose the condition with respect to the components
of D-dimensional metric [55]

A(D=p-3) Bla 1, A- IH lecrerdp — ]’l%

1 ael
(52)

14

a:

The Einstein equations (45a) become

025024-9
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2
Z(an/ - M"/>(9, In h,a, In h]/
N,

LI

+= Zb,K —)a Inh, — Zﬁ

PHYSICAL REVIEW D 90, 025024 (2014)

2&'[ epercy

ZA h—2+a1171 Hh Ny

I'#]

1 4 Lyr. —4/n,
9, In h,/] O nhy = > <N + b,> hy'02h; + 5 Hh,,4/ Ni > aihitagh; =0,
I 1 I )i

T2 VT
(53a)
Z —h, 0,0, +> (M,,/ - 5,,,) 9, Inh,;0, Inhy =0, (53b)
1 1 1/ 1/
—a, (r) 4
[l ST S [h,—lazh, - { <1 - ﬁ> 0 mh=Y 0, }a In h,]
y 7 1 I'#]
”) 244 s Ky
STD ST S w5 om0 (530
y J I I'#1
1 4/N,; -192 4 4
Ru(Z) +5 wap | [R7™ bi|hr 02y =< (1= ¥ OpInh; =" N—Fa, Inhy 38, Inh,
J I I'#1
1 2 ot i 2egeperep=2)
_ arpr T T
-5 gy brhitazhy =Y — N (M,,/ - 5,,/> O, Inhydy Inhy ———— ZA, v Hh,, Uy, =0,
I r I'#1
(53d)

where R,;,(Z) is the Ricci tensor with respect to the metric
uq,(Z) and M,y is defined by

1 a a
M= 4 |:ala1’ + za:‘sg )5§’> +(D-p- 3)b1b1’}

+

NINI, €€pciCy. (54)

Equation (53b) can be rewritten as

> [M,,,

2 9,0, Inh;

_ G M5 Inhy = 0.
N, 2 B o, 1nhjaf 0y Inhy =0

(55)
One can find that Eq. (55) is equivalent to satisfying that

a,aa In h[

9, nh0, nh, (56)

Then we have
2
M[I’ + _k1511! = 0 (57)
N;

Equations (44a), (48), and (55) give

1 2
My =3 (pr-+Dai +(p=pp)bi+ (D=p=3)b7]+ 5cf
2
:—' 58
- (58)

By combining (58) with (57), the constant k; in (57) is
k; = —1, which implies

2
My = N—I,511’- (59)

By taking account of these results, Eq. (53b) yields
0,0,41h;(t,2)] = 0. (60)
Hence we find
h(t,z) =

Ki(1) + H,(2). (61)

For I # 1, (59) provides the intersection rule on the
dimension p of the intersection for each pair of branes / and
I' (p < pp.pr) [57,58]:
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__(pr+1)(pr+1) 1
p=-1 D—21 —1—5616161161/. (62)

Under the assumptions given above, we next reduce
the gauge field equations. In terms of the ansatz (49), the
Bianchi identity dF , 5y = 0 is automatically satisfied:

hl_l (280 In hlab In h[ + h;laaabhl)dzaAdszQ(Xl) =0.
(63)

By utilizing (49), the gauge field equation becomes

d[0.H (x7dz")A xx Q(X;)] = 0, (64)

I

+ [In Z

I’

h Ye,c;a,H; = 0.

Furthermore, (66) reads

d’K,
2 =0 (67a)
AZHI - 0, (67b)
4 4
S (1= o miy =300, i |
Ji NI NI I'#1 NI’
x O, Inh; + N,A,h,‘z} =0. (67¢)
From Eq. (67a), we obtain
K]:A]t+B], (68)

where A; and B; are constants.

1. The intersection involving the same brane

Let us first consider the case that all cosmological
constants become nonvanishing. If we set A; # 0, the field
equations imply that all functions are equal:

h](t,Z) N]:N]/EN.

(69)

=K(t,z) = Ko(1) + K, (2),

We can find the solutions if the function & and N satisfy

Ko(t)=At+B, A= i\/N,A,/Z<Ni— 1),
1

1

(70)

—an _ JZK, 4

PHYSICAL REVIEW D 90, 025024 (2014)

where we used Eqgs. (52) and (61) and =y, %, are the Hodge
dual operators on X(=U,;X;) and Z, respectively. Hence,
(64) gives (61), and we find

The roles of the Bianchi identity and field equations are
interchanged for the magnetic ansatz [55,57,58]. Then the
net result is the same.

In order to complete the system of equations, we must
also consider the scalar field equation. Substituting the
ansatz for fields (49) and the metric (46) and (61), the
equation of motion for the scalar field (45b) reduces to

}8 In h[ N]A[

(66)

where B denotes a constant. Then the remaining Einstein
equations (53) are

R,,(Z) = 0. (71)
Now we set
Ugp = 6ab’ (72)

where 6, is the (D — p — 1)-dimensional Euclidean met-
ric. In this case, the solution for /; can be obtained
explicitly as

M
K(Z,Z) :At+B+ZW’
k k

(73)
where M, ’s are constant parameters and z{ represents the
positions of the branes in Z space. If the functions h;
coincide, the locations of the p;-brane will also coincide.
In this case, all branes have the same total amount of charge
at the same position.

Let us consider the intersection rule in the D-dimensional
gravity theory. If weset p; = pforall p;, theintersectionrule

(62) leads to
N
p=p—— 74
P=Ph-%- (74)
Then, we find the intersection involving two p-branes:
- - . N
pp=p——. (75)

2

Since the number of intersections for p < 5
is no solution in these brane backgrounds

1s negative, there
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If we choose Ky = 0(A = B = 0), the metric describes
the known static and extremal multi-black-hole solution
with black hole charges M, [54,55,57,58].

2. A dynamical brane in the intersecting brane system

In the following, we consider the case that there is only
one function /; which depends on both z and 7. We denote
it with the subscript I, while other functions of I’ # I are
either dependent on z“ or constant. If we assume N;j # 4,
we have
0hy =0, Ap =0,

p;i =0, for I' £1.  (76)

We can find the solutions if the function /5 and Nj satisfy

hi(t,z) = K;j(t) + Hy(2).
-1 %
K;(t)::l:|:<i—]> N7A7:| t+ cy, Nj?é4,
Nj

(77)

where c; is constant. Then the remaining Einstein equa-
tions (53) are

R (Z) = 0. (78)
Now we set

Uap = Oaps (79)
where §,, is the (D — p—1)-dimensional Euclidean

metric. In this case, the solution for A; can be written
explicitly as

4 -1 7
/’l;(t,Z) = :|:|:<ﬁ— l) N;A;:| t+ E’]

" Z |% - |D P (802)
. My,
hp(z) =+ s zgiyb—H , (80b)
l

where ¢;, ¢;, M; ., and M ; are constant parameters and zj
and z{ denote the positions of the branes in Z space. N; < 4
leads to A; > 0 and vice versa. Since the functions #;
coincide, the locations of the p;-brane also coincide. This
physically means that all branes have the same total amount
of charge at the same position. Here we have discussed
the solution without compactification of Z space. If
we consider the case that ¢ dimensions of Z space are
smeared, we can find the different power of harmonics, i.e.,
|2 = 2|70 (g <D - p-2).

For K; =0(A =B =0), the solution describes the
known static and extremal multi-black-hole solution with
black hole charges M;, [55,57,58]. We can find the

PHYSICAL REVIEW D 90, 025024 (2014)

solution (80) for any N; # 4. If we choose N; =4, the
solutions have already discussed in Ref. [15].
Let us consider the intersection rule in the D-

dimensional gravity theory. If we choose p; = p = 0 for
all p; # py, the intersection rule (62) leads to

p ! + 1 1

[;_ 5~ 1 —5eiciercy = 0. (81)

Now we discuss the application of the time-dependent
solutions to study the cosmology. We assume an isotropic
and homogeneous three-space in the Friedmann-
Robertson-Walker (FRW) universe after compactification.

We set the (D — p — 1)-dimensional Euclidean space
with u,;,(Z) = 6,,(Z) and consider the case that there is
only one function i; depending on both z¢ and #, which
we denote it with the subscript /, and other functions are
either dependent on z“ or constant. If we assume N;j # 4,
the D-dimensional metric can be expressed as

2 a;
=-T]ne |1 H;| e
+ 7 T

I#1

+ZHh

a I

@ 5@

ool

2b5

+ [T 1+ N (2 (Z)dz*dz
’Z'O I TO ab Z Z )

I#] (82)

where the function Hj is given by

le —ZIDP3’ (83)

and the cosmic time 7z defined by

T 2

— = (An)@t2)/2 Tog= ———. 84

7o (A1) 0 (a5 +2)A (84)
If we can regard the three-dimensional part of the overall
transverse space Z as our Universe, the power of the scale
factor in the fastest expanding case is expressed as

b; N; -1
L —D+3+2(D 2)|

for D > 2,
(85)

where we used the D-dimensional metric (82). Hence,
we cannot find the cosmological model which exhibits an
accelerating expansion of our Universe. On the other hand,
if our three-space is given by a three-dimensional subspace
in relative transverse space, the power of the scale factor in
the fastest expanding case is also given by (85).
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By taking 7 — 7, — 7, where 7, is constant, we have
accelerated expansion for 7z, > 7 and A < 0. This is
equivalent to

N; > 2, D>2-

N; -2

N;j<23<D<2- (86)

N; -2

for D > 3. However, the scale factor of our Universe
diverges at 7 = 7.

On the other hand, the power of the scale factor in the
fastest expanding case is automatically positive for D = 3
and N; > 0.

Next we discuss the cosmological solution in the
lower-dimensional effective theories. We compactify
d(=),d, + d,) dimensions to give our Universe, where
d, and d, denote the compactified dimensions with respect
to the relative and overall transverse space, respectively.
The D-dimensional metric (46) is written by

PHYSICAL REVIEW D 90, 025024 (2014)

where ds*(M) is a (D — d)-dimensional metric and ds*(N)
is a metric of compactified dimensions.

In order to discuss the dynamics of the (D —d)-
dimensional universe in the Einstein frame, we use the
conformal transformation

ds*(M) = b, ] [ i ds* (M), (88)

1#1

where B; and C; are expressed, respectively, as

b Luded ) + by
! D—-d-2 (89)
o S by
! D—d-2

The (D — d)-dimensional metric in the Einstein frame is

ds* = ds*(M) + ds*(N), (87)  thus given by
|
ds*(M) = h; Hh Cl[ hath“'dﬂ + Zh’ Hh d a’)%h?]‘[hf'éa,,,/(Z/)dz“’dz”’], (90)
J#I I#1 I#1 1#1

where x? denotes the coordinate of (p —
spaces.

d,)-dimensional relative transverse space and Z' is (D — p — 1 — d_)-dimensional

If we set K; = At, the (D — d)-dimensional metric (46) in the Einstein frame can be expressed as

ds?(M) = Hh_c’[ Hh“’{1+< ) _H,}
£ 2% %o

2(3’;+1)
I#1

Lo ;o
Wherg B.; is given by B'; =
cosmic time 7:

—Bj5 + a; and we define the

= (A)EHI2 g 2

% @ roa %Y

Hence, in the Einstein frame, the power of the scale factor
in the fastest expanding case is given by

B;+1

0<
B'j+2

<1, forD—-d-2>0. (93)

If the physical parameters satisfy (93), the solutions do
not give an accelerating expansion in our Universe. These
are the similar results with the case of the other partially

dr? +ZHh

T#]

) 245

- _Bi+6;a T 7£ L
{1+< ) BﬁzHi} (_) T g2
70 70

2 B+l f o\ =l
RS . =) s, (Z))dz d7 |, 91
+H { +(To> I} <To> ay (2)de" de D

|

localized and delocalized intersecting brane backgrounds.
Although we find the exact time-dependent brane solution,
the power exponent of the scale factor is too small.
Furthermore, in order to discuss a de Sitter solution in
an intersecting brane background, one has to consider the
trivial dilaton, which will be discussed in the next
subsection.

B. de Sitter universe

In this subsection, we consider the Einstein equations
(45a) with ¢; = 0. Equation (44a) gives

2(D-p;=3)(p; +1)
(D-2) '

N; =

025024-13
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If we assume

2(D -3)
p=p;=0, N;=7(D_2),
N/ ! ~
a,,:_zll, Ay =0, forl’#1, (95)
€I/CI/

the field equations reduce to

R (Z) =0, (96a)
hj(t,z) = K;(1) + Hj(2),
dK;\?  2(D-3)? B
(&) ~mooghi—o o™
AZH; =0, Azhpy = 0. (960)

PHYSICAL REVIEW D 90, 025024 (2014)
Then Eq. (96b) gives

K;(t) = cot + ¢, (97)

where ¢ is an integration constant and ¢, is given by

COZﬂD_WM@)_UAr 08

Thus, there is no solution for A; < 0. If the metric u,;,(Z)
is assumed to be Eq. (79), the function Hj is given by
Eq. (83). Now we introduce a new time coordinate 7 by

cor =Int. (99)

The D-dimensional metric (46) is then rewritten as

ds = T[Hs (2)(1 + cgle 0 Hy) 2de + (1 + e v Hy ) coetn )7

I'+1

x {Z [T 23 (@x? + T ()} uap(2)dzod? |

I'#1

a=1 p#]

The D-dimensional metric (100) implies that the spacetime
describes an isotropic and homogeneous universe if
H; = 0. In the region where the terms with H; are
negligible and %, approaches a constant, which is realized
in the limit 7 — oo and for ¢y > 0, the D-dimensional
spacetime becomes de Sitter universe. If we set h;(z) =
const and u,;, = J,,, Eq. (100) becomes the solution which
has been discussed by Ref. [63] (see also [65]). Further-
more, for D = 4 and by setting all 4y = 1, the solution is
the Kastor-Traschen one [36].

C. The behavior of the solutions

Now we will study the spacetime structure. The metric
has singularities at h; = 0 or iy = 0. The spacetime is thus
not singular when it is restricted inside the domain specified
by the conditions

hi(t,z) = ag+ a;t + K3(z) > 0, hy(z) >0, (101)
where the function K7 is defined in (83). The D-dimensional
spacetime cannot be extended beyond this region, because a
curvature singularity appears in the D-dimensional space-
time. The regular spacetime with branes ends up with the
singularities.

Since the system with a; > 0 has the time reversal one
of a; < 0, the dynamics of the spacetime depends on the
signature of a;.

Here we will consider the case with a; > 0. Then the
function h; is positive everywhere for >0 and the
spacetime is nonsingular. In the limit of + — co and apart

(100)

|

from a position of the branes, near which the geometry
takes a cylindrical form of an infinite throat, the solution
is approximately described by a time-dependent uniform
spacetime.

Now we discuss the time evolution for < 0. The
spacetime is regular everywhere and has a cylindrical top-
ology near each brane at t = 0. As time slightly decreases,
a curvature singularity appears as |z% —z%| — co. The
singular hypersurface cuts off more and more of the space
as time decreases further. When ¢ continues to decrease, the
singular hypersurface eventually splits and surrounds each
of the p-brane throats individually. The spatial surface is
finally composed of two isolated throats. For # > 0, the time
evolution of the D-dimensional spacetime is the time
reversal of 7 < 0.

For any values of fixed z¢ in the regular domain in the
D-dimensional spacetime (46), the overall transverse space
tends to expand asymptotically like #¥1. Thus, the solutions
describe static intersecting brane systems composed of
p-branes near the positions of the branes, while, in the far
region as |79 — z%| — oo, the solutions approach de Sitter
or FRW universes with the power-law expansion #%7. The
emergence of time-dependent universes isS an important
feature of the dynamical brane solutions.

1. Asymptotic structure

We study the asymptotic behavior of the solutions. The
solution describes a charged black hole in the FRW or de
Sitter universe in the limit of |z%| — oo, and Hj vanishes.
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it

7 = constant

FIG. 1 (color online).
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F (1 =+00)

(b)

Conformal diagrams of the D-dimensional spacetime for p; = 0. The regions corresponding to ¥ — oo give the

original spacetime, where 7> = 3" (x*)? + §,,2°z". (a) For the case of a; + 2 # 0, the metric (46) approaches in the limit » — co to the
D-dimensional flat FRW spacetime. (b) We also depict the conformal diagrams in the case of a; + 2 = 0. One can recognize that the

asymptotic region of the spacetime is the de Sitter universe.

First we consider the case of a power-law expanding
universe. The function h; depends only on time ¢ in the
far region from branes, and the resulting metric (82) can be
expressed as

5@

70

P/ T,“ T T*lz
dszz_d12+;<%) (dx*)? + (—> Sap(Z)dzdz".

(102)

The scale factor of the relative transverse space is given
by a.(7) = (/7,)?/%*2, while the expansion low for the
overall transverse space is written by a,(7) = (z/7)b1/“ %2,
On the other hand, for ¢; = 0 corresponding to de Sitter
universe (100), the metric of D-dimensional spacetime in
the far region from branes becomes

P
ds? = —dr? + (COCCOT)% [Z(dxa)Z + Ugyp (Z)dZade .
a=1

(103)

Figure 1 depicts the conformal diagrams of the FRW and de
Sitter universes.
J

~ b; b
ds? = 2 (M1 )" Lr V-
rD—p—3 - rD—p—3
I

P ~ N\ —bi+8 —by 5 2
_ M; 7105 Ly 10, a dr
+r2y (FD_H) <—rD‘1"3> (dx*)? + <7 + deD_p_z))].

Thus the metric (106) describes a warped product of

(p + 2)-dimensional spacetime M ., and (D —p —2)-
dimensional sphere SP~7~2,

2. Near-horizon geometry
Next we discuss the near-horizon geometry of the
solutions. We set the metric of (D — p — 1)-dimensional
overall transverse space:

bap(Z)dzdz = dr* +1r?dQq,_, .,

(104)
where &, denotes the metric of (D — p — 1)-dimensional
flat space and the line elements of a (D — p — 2)-sphere
(SP~P~2) are given by dQ, . The harmonic function
K; dominates in the limit of » — 0, and the time depend-
ence can be ignored. Thus the system becomes static near a
position of branes. When all of the branes are located at the
origin of the Z spaces, the solutions are rewritten as

]‘4~
I’lj(t, r) :ao—i-alt—f-rD_—pI_?’, (1053)
Ly
hy(r) =1 +rD_—;_3. (105b)

Here M; and L, are the mass of p;- and pp-branes,
respectively. In the near-horizon region r — 0, the depend-
ence on ¢ in (105) is negligible. Then the metric is reduced
to the following form:

M _% Ly _NA/
=1 I | (== G
r p 1 r P

(106)

|

Hence, the near-brane geometry has the same metric
form as the static one. If it has a horizon geometry, we can
obtain a black hole solution in the time-dependent
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background. In fact, some solutions, for instance, the
M2 - M2 - M2, M2 — M2 — M5 — M5 intersecting solu-
tion in 11 dimensions, give regular black hole spacetimes in
the static limit [15].

Our solution approaches asymptotically the dynamical
universe with the scale factor a(z), while the static solution
gives a black hole. Then we can regard the present solution
as a black hole in the expanding universe.

IV. COLLISION OF 0-BRANES

In this section, we apply our dynamical intersecting
brane solutions found in the previous section to brane
collisions.

The functions h; and A are assumed to be
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Here ¢, and ¢; are constants, and the function H; and hp
are expressed, respectively, as

Hj(z) = le

hp(z) = ¢p + Z 7
el bl

|Dp3d’

Or,

Z7|D_p_3_d’/ ’

(108)

where ¢ is constant, d and d denote the number of smeared
dimension for O-brane and pp-brane, respectively, we
assume D # p + 3 +dand D # p + 3 + dp,and Mj , (k =

..m) and Qp (I =1,...,m) are mass constants of 0-
brane and p-branes located at z§ and z§, respectively. Since
hp is the harmonic function on the (D —p—1—-dy)-

hi(t,z) = cot + ¢; + Hj(z), hy =hp(z).  (107)  dimensional Euclidean subspace in Z, we define
|
a al — 1 12 2,22 D-p-1-d _ ,D-p=1-d\2
20— = (@ =2 + (2 = B - 4 (PrId = PP, (109a)
|20 —zf| = \/(Zl — I (R =22+ (PPl PP (109b)
[
The metric, scalar, and gauge fields are given by  there is no regular spacetime region near branes due to

Eqgs. (46) and (49), respectively. For D = p 4+ 3 + d and
D = p + 3+ dp, these become

m
— E:M;,‘,< In |z — 2|,
=1

hp(z) = ¢r + Z O Infz® = zf]. (110)
=1

Since the time dependence allows only for the O-brane,
we see that the (D — 3 — dy)-brane background is critical
case. If we consider the (D — 2 — dy)-brane, the functions
h; and hp are written by the sum of linear functions of z.
The possibility of brane collisions comes from the differ-
ence in the overall transverse dimension.

From the solution (108), there are curvature singularities
at h; = 0 or at hy = 0 in the D-dimensional background.
Note that the regular D-dimensional spacetime is restricted
to the region of A; > 0 and Ay > 0, which is bounded by
curvature singularities. Hence, the D-dimensional metric
(46) is regular if and only if #; > 0 and hy > 0.

The solution with 0 — p, branes takes the form (82),
where we set K; = ¢t and the function Hj is given by (83).
We classify the behavior of the harmonic function /4 into
two classes: py < (D—4—dy) and py = (D -2 —dp).
Since these depend on the dimensions of the py-brane, we
discuss them below separately. In the case of the
(D —3 —dp)-brane, the harmonic function A, diverges
both at infinity and near (D —3 — dp)-branes. Since

hpy — —oo, these solutions are not physically relevant.
In the following, we discuss the collision involving the
0 — py brane in D-dimensional spacetime.

A. Collision of the 0 — p;-brane in the asymptotically
power-law expanding universe

The harmonic function H; becomes dominant in the limit
of z% — z{, while the function 4; depends only on time 7 in
the limit of |z| — co. Hence, we find a static structure of
the 0 — pp-brane system near branes. In the far region from
branes, the function H; vanishes. Therefore, the metric can
be written by

1 O

5 é(a)

as+2 — (301)
1 a)2
( ) R (dx®)

I'#1 a=1 2]
+ 11 ( )aﬂhb’éau )dz"dz", (111)
I'#l
where h; is defined by
=1+ (i> T, (112)
To

In order to analyze the brane collision, we consider a
concrete example, in which two 0 — p, branes are located
at z¢ = (£L,0,...,0). We will discuss the time evolution
separately with respect to the signature of a constant 7,
because the behavior of spacetime strongly depends on it.
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Since the metric function is singular at h;(z,z) = 0 and
hpy =0, one can note that the regular spacetime exists
inside the domain restricted by

_2
hj(f,z):<l>ﬂ’+2+Hi(Z)>0’ hy=hyp(z)>0, (113)

)

where the functions ;7 and 4 are defined in (107). The brane
background evolves into a curvature singularity, because the
dilaton ¢ diverges. Since the D-dimensional spacetime
cannot be extended beyond this region, the regular spacetime
with two O-branes (p + d < 6) ends on these singular hyper-
surfaces. The solution with (z,)~%(%+2) > 0 is the time
reversal one of (z,)~2/(4*2) < 0, because the time depend-
ence appears only in the form of (z/7,)%(%*2). In the
following, we consider the case with (7,)~%/(“+2) < 0.

For (7)?/(4+2) <0, the D-dimensional spacetime is
nonsingular, because the function h; is positive every-
where. In the limit of (7)*(%*2) — —co, the D-dimensional
spacetime becomes asymptotically a time-dependent uni-
form background, while the cylindrical forms of infinite
throats exist near branes.

For 7 > 0, the spatial metric is initially regular every-
where. The D-dimensional spacetime has a cylindrical

M, M,

PHYSICAL REVIEW D 90, 025024 (2014)

topology near each brane. As 7 increases slightly, a
singular hypersurface appears from the spatial infinity
(|z* — z{| = ). As 7 increases further, the singularity
cuts the space off more and more. Since the singular
hypersurface eventually splits and surrounds each of the
brane throats, the spatial surface is finally composed of two
isolated throats.

One notes that the transverse dimensions in the metric
(111) expand asymptotically as 7%/(4+2) for fixed spatial
coordinates z?. The D-dimensional spacetime becomes
static near branes, while the background approaches a
FRW universe in the far region (|z* — z{| — o). Hence, the
time evolution of the four-dimensional universe depends on
the position of the observer. For (z/7,)% (42 <0, the
behavior of D-dimensional spacetime is the time reversal of
the period of (z/7,)% (472 > 0.

Now we define

2= @R @R T (114)

By using the above equation, the proper distance at z;, = 0
between two branes can be written by

0, 0>

|
L 2/(a;+2)
o[
—L 70

The proper distance is a monotonically increasing function
of 7. We illustrate d(z) for the case of the O — p, brane
system in Fig. 2. We consider the case of d = dy =0,
00=—-1,0,=0=M=M,=1,L=1,and D =10
or D = 8. It shows that two O-branes are initially (z < 0)
approaching, the distance d(7) takes the minimum finite
value at 7 = 0, and then two 0-branes segregate each other.
Thus they will never collide. Hence, we cannot discuss a
brane collision in this case.

p
ds? = =Iy/ (2) (1 + c5'e™0 Hy) 2de® + Iy (2) (1 + €5 ™0 Hy)75 (et {Z(dxﬂ)z + 1" (2)d2? |,

where the function Hj(z) is written by

Hi(z) =) Mjlz -zl (117)
k=1

We consider the collision in the 0 — py-brane system
with charges M, and Q, at z! = —L and the other with
charges M, and Q, at z' = L. The proper distance at
z, = 0 between the two O-branes can be expressed as

b;/2 by /2
+ |Zl +L|D—3—p1/—d1r + |Zl —L|D_3_171’_d1’:| (1 + |Z1 _'_L|D—3—p,/—d+ |Z1 _L|D—3—p,/—d) :

(115)

B. Collision of the 0 — py-brane in the
asymptotically de Sitter universe

Let us next discuss the collision in the 0 — p-brane with
a trivial dilaton system. We consider the case that the
harmonic function A5 and A are linear in z and discuss in
detail the 0 — (D — 2)-brane in D dimensions as a example.
In this case, we have one extra dimension z in Z space. The
D-dimensional metric (100) can be rewritten by

(116)

a=1

d(z)

L
/ dZ(CoeCoT —I—M1|Zl _|_L| +M2|Zl —L|)l/(D_3)
—-L

< (14 Qilz" + LI + Qaz" = L] 2. (118)
In the period of ¢y < 0, the proper distance increases as 7
increases. If M; # M,, a singular hypersurface appears
at t=r,=In[-(M|z! + L| + Ms|z! = L|)cg'|cg! <0
when the distance is still finite.

However, in the case of the equal charges Q; = 0, =
M, =M, =M, the situation is completely different,
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d(r)

(a) (b)

FIG. 2 (color online). (a) For the case of M| = M, in the asymptotically power-law expanding universe, the proper distance between
two dynamical O-branes given in (115) is depicted. We fixd = dy =0, D = 10,7 = -1, M; = 1,M, = 1, N =2, and L = 1 for the
0 — 8- (bold curve) and O — 6- (solid curve) branes. The distance decreases initially (z < 0) but turns to increase at z = 0, and then two 0-
branes segregate each other. (b) We also show the proper distance between two dynamical O-branes for O — 8- (bold curve) and 0 — 6-
(solid curve) brane systems from the bottom in the case of d =dy =0, M; =10, M, =1, N=2, L =1, and D = 10 in the
asymptotically power-law expanding universe. Although the proper distance initially decreases as 7(< 0) increases, the distance
increases as 7(> 0) increases.

d(T) o
- _t——
014} —
onf _— i
o~
i :
‘w' 008 ——30 |
0.06f
‘ 0f
004k
‘ 002 i
| . . : . T | | | | N
-0.693147 -0.693147 -0.693147 -0.693147 -0.693147 0 1 2 3 4 5
(a) -

FIG. 3 (color online). (a) For the case of M| = M, in the asymptotically de Sitter universe, we show the proper distance between two
dynamical O-branes given in (118). We set D = 10, ¢o = -1, M =1,M, =1, N =2, and L = 1 for the 0 — 8-brane. The proper
distance rapidly vanishes near where two branes collide. (b) We also show the proper distance between two dynamical O-branes for the
0 — 8- (bold curve) and 0 — 6- (solid curve) brane systems from the bottom in the case of M; = 10, M, = 1, N = 2, and D = 10 in the
asymptotically de Sitter universe. The proper distance initially decreases as 7 decreases and remains still finite when a singularity
appears.

because the proper distance finally vanishes at 7, =  ds? = _h‘;/’ (2)(1 + cyle0"Hy)2dr?
In(—2MLcy")cy! <0 as w e L
+ )/ (2)(1 + c5'e 0" Hy)p=5(cpe )p=s
d(t) = 2L(coe " + 2LM)Y/P=3) (1 + 2LM)Pr/2. (119) 4 ,
x {Z(dx“)%hf,ﬂv’ (2)8,5(Z)dz0dzb . (120)
a=1

Then two branes can collide. A singularity is formed at the
same point and time.

Let us consider the case py # D — 2. The D-dimensional ~ Since the proper distance at z;, = 0 between two branes is
metric (100) can be written as given by
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L : M, M,
d(T) = /_ dz <COeLOT + |Z] + L|D—p1/—3—d + |Zl _ L|D—P1/—3—d

L

the distance increases
to 7.

In the case of ¢y < 0, initially (z = 0), D-dimensional
space is regular except at |z% — z{| — 0, while this is an
asymptotically time-dependent spacetime and has the
cylindrical form of an infinite throat near the O-brane.
At 7 =17, <0, a singularity appears from the spatial
infinity (|z% — z{| — o). As time decreases (r < 0), the
singular hypersurface erodes the region with the large
values of |z — z{|. Since only the region near 0-branes
remains regular, eventually it splits and each fragment
surrounds each O-brane individually. Figure 3 shows
that this singularity appears before the proper distance
d(z) vanishes. Hence, the D-dimensional spacetime has
the singularity before two branes collide. Although two
O-branes approach very slowly, a singularity suddenly
appears at a finite distance. Then, the spacetime splits
into two isolated O-brane throats.

We show d(7) integrated numerically in Fig. 3 for the
case of ¢y < 0. In the future direction, the proper distance d
increases. Then for 7 > 0, each brane gradually separates
as 7 increases.

monotonically with respect

1

S=—
2i2

/ {(R S ADNES B % x dpndep—

where R denotes the Ricci scalar constructed from the
six-dimensional metric gy, x* is the six-dimensional
gravitational constant, * is the Hodge operator in the
six-dimensional spacetime, ¢ denotes the scalar field,
A >0 is the cosmological constant, and F and F(3
are 2-form and 3-form field strengths, respectively. From
Eq. (2a), the NSS model is realized by choosing
A,=A>0,A;,=0,N,=2,and N, = 4.

The six-dimensional action (122) gives the field equations

1 1
Ryn = 3 e?/ ﬁAgMN + 3 OppOng

e_‘/)/\/E
2-2!
e~V20

1
+ Sar <3FMABFNAB - EgMNFé)) . (123a)

1

+ 1 gMNF%2)>

V2 V2
VL V22 Ve V2 GIN2ZA
AP+ VIR e VY = V2l VA =0,

23!
(123b)

2.2!

PHYSICAL REVIEW D 90, 025024 (2014)

1/(D-3) 14 Q1 N Q2 by /2
|2 + L|P3=pu=d T |l — [|P-3-Pr—d ’

(121)

V. APPLICATIONS TO SUPERGRAVITIES

In the case of ten or 11 dimensions with N = 4and A; = 0,
Eq. (1) gives the action of supergravities. For instance, the
bosonic partofthe actionof D = 11 supergravity includes only
4-form field strength, while, for D = 10, the constant ¢ is
precisely the dilaton coupling for the Ramond-Ramond
(p + 2)-form in the type II supergravities. The dynamical
solutions for the case of N = 4 have been already discussed in
Ref. [21]. In this section, we will discuss the time-dependent
solution in six-dimensional Nishino-Salam-Sezgin (NSS)
gauged supergravity and Romans’ gauged supergravity mod-
els. The bosonic part of the six-dimensional NSS model
[66-69] is given by the expression (1) with A, > 0,
A, =0, while Romans’ six-dimensional N = 49 gauged
supergravity [70] is expressed by the action (1) with
A, <0,A; =0.

A. Nishino-Salam-Sezgin gauged supergravity

Now we consider the NSS model among the theories
of D = 6. The couplings of the 2-form (p, = 0) and the
3-form (p, = 1) field strengths to the dilaton are given by
€,¢, = —\/% and e,c, = —/2, respectively:

1
e_(p/ﬁ*F&)/\F(Z)_Z 3'e_ﬁ¢*F(3)/\F(3> s (122)
d[e—rﬁ/\/i « Fy] =0, (123c¢)

where A denotes the Laplace operator with respect to the
six-dimensional metric gy -

We construct solutions whose spacetime metric has the
form

ds> = by (1, y, )y * (1., 2) [=h32 (t, y, 2) b5 (1, y, 2)dr?
+h3'(t,y,2)dy* + uu(Z)dz"dz"). (124)

where u,,(Z) is the four-dimensional metric which
depends only on the four-dimensional coordinates z“.
The scalar field ¢ and field strengths F (5 and F3) are
written, respectively, by

e? = (hyhs)~V?2, (125a)

Fpo) = d[V2h3' (t.y,2)|Adr, (125b)
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F3) = d[h3'(1,y, 2)| Adindy. (125¢)

First we consider the Einstein equation (123a). By using the
ansatz (124) and (125), the Einstein equations become

5 102h2+ h; 132h3+ h52(3h5' 02hy + h3' O2hs)

+1h52h3_1 (3hy'azhy+h3'azhs) —EhgzhglA
1 7 3
+Z(8‘ lnh2)2+18, Inh,0, lnh3—Zhg2(1 —h3)(dyInh,)?

3 3
+Zh528y lnh28y lnh3 —Zhgzhgl (1 - h3)u“b8a lnhzab hlhz

PHYSICAL REVIEW D 90, 025024 (2014)

2h519,0,hy + h3'0,0,h3 + O, In hyd, Inhy

+ 0, Inh;0, Inh, =0, (126¢)

1 1
L 1By 9y = 103 h) = £ (hy B3y + 3h‘182h3)

1
—Zhgl(hglAzhz h3 Azh3)——h 1A+ (ah2>

1 3
—Zh%& lnhzat 11’1]’13 —Z(l — h3)(8y lnh2)2

5 1
—Zay In hzay In I’l3 +Zh§1(l - h3)u“baa In hzab In h2
1

1 — 2 h51 (1= I)u, In s, Inhy = 0. (126d)
—Zhgzhgl(l—h%)u“bﬁalnh33blnh320, (1263)
h_la ‘aah3 =+ 28 In h28a In h2 + 3 In hzaa In h3
3 Yy y Y
20510, hy + 2h718,0,hs + 9, In hyd, In hy 40, Inhsd, Inhy = 0, 126¢
2 y 3 y y y
+30, In h3d, nhy =0, (126b)
|
1 1 1
Rab<Z) + Zh%h:;l/lab (hglatzhz + h3_18,2h3) - Zh:;lxtab(l’lgla%hz + h§182h3> - Z Mab<h£1Azh2 + hglAzh:;)
1
+ Zh%h3uab[(8t In h2) + 38 In h28 In h3] + 4]13(1 - hg)l/lab(a In h2)2 h3uab8 In h28 In h3
1 1
+ Z (1 — h3)uahu0d85 In ]’lzad In h2 + Z (1 — h%)uubu‘“dac In h3ad In ]’l3 — (1 — h3)8a In hzab In h2
1 1
5 (1 - hz)a ln h36b ln ]’l'; —_ = (8 ln ]’lzab ln hg + 8 ln h38b ln hz) - I/labA = 0, (126f)

where A, denotes the Laplace operator on Z space and
R,,(Z) is the Ricci tensor constructed from the metric
Ugp (Z)

We next consider the gauge field equations (123c) and
(123d). Under the assumption (125), the gauge field
equations are written by

d[R30,hyQ(Z) + h3d hydyA(7dz®)] =0, (127a)

d[hy0,3hs (+dz7)] = 0, (127b)

h3hs(

— 13" Oy hydyhy — by Aghy

Now we consider the two cases. One is 0,4, # 0 and 9,h; = 0. The other is 0,h, =

the field equations reduce to

Rab(z) = 07

hy, =1,

h5'0%hy + h3'02hy) + hs(0,hy)? + 3hy0,hy0,hy — hy

hs = ko(t) + ki (y) + ko (2),

where x*, denotes the Hodge operator on Z and Q(Z) is the
volume 4-form on Z space:

Q(Z) = Vudz' Ad> AdZP AT (128)

Here, u is the determinant of the metric u,,.
Finally we consider the equation of motion for the scalar
field. Substituting the ansatz (125) into Eq. (123b), we have

hzlaghz + h518§h3) + I’l3(1 - ]’l3)((:)y In h2)2
- hglAzh3 + (1 - h3)u“h3a In hzab In h2 + (1 - h%)u“baa In h38b In h3

—2A=0. (129)

0and 9,h3 # 0. Upon setting h, = 1,

(130a)

(130b)
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Py Pky &k

a7 dr?

dy2 , Azk2 = 0

(130c)

We can also choose the solution in which the 0-brane part
depends on ¢. Then, we have

R,,(Z) =0, (131a)

hzzhz(t,v), ]’lz :Ko([)+K1(U), ]’l3:1, (131]3)
K,

W :ZA, Ale :0, (131(:)

where Ay denotes Laplace operator with respect to the
metric w,,,:

Wondv"dv" = dy* + ug,(Z)dz¢dz?,

(132)
AWK] = 8§K1 + AZKI'
Here, w,,, is the five-dimensional metric, and ™ denotes
the five-dimensional coordinate.
As a special example, we consider the case
Uap = Oaps hy =1, (133)
where 6, the four-dimensional Euclidean metric. Then, the
solution for /3 can be obtained explicitly as [20]

hy =1, (134a)

| >

N
M,
hy(t.y.2) = (P =) +eit+ eyt es+ Y s,
3(8,5,2) ( y9) 1 2y 3 2 |Za_z?l|2

(134b)

where ¢;(i = 1,2, 3) and z{ are constants and the parameter
M, is the mass constant of 1-branes, which is located
at z% = zj.

We can obtain the solution for 23 = 1 and 0,h, # 0 if the
roles of /1, and &5 are exchanged. The solution of the field
equations is then written as

N!
L
hy(t,v) = eV2At + ¢4 + Ziavm (135a)
a=1

|m_ |3’
a

(135b)

where ¢4, v2, and L, are constants and € = +1. The
delocalized brane solutions in the six-dimensional NSS
supergravity [66—68,71,72] have been investigated in
Refs. [20,73-80], including applications to cosmological
models. According to the intersection rule, the number of
the intersections dimensions involving the O-brane and
I-brane is —1. Although meaningless in ordinary
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spacetime, these configurations are relevant in the
Euclidean space, for instance, representing instantons.

In the following, we consider cosmological aspects
of the solution describing time-dependent branes. We first
study the time dependence of the scale factors in the
0-brane solutions after compactifying the extra directions,
and our Universe is discussed. Next we discuss the
dynamical 1-brane solution and apply it to the cosmology.

1. Cosmology in the 0-brane system

For the solution (135), we introduce a new time
coordinate 7 as

<£> =(eV2Ar+ ). = _ (136)

70 eV2A

The six-dimensional metric is thus given by

ds® = [1 + (;) _4%2(0)]_% [—d12+ {1 + (;) _4;‘12(1;)}
x <%> zémn(W)dvmdv”], (137)

where 6,,, is the five-dimensional Euclidean metric and
hy(v) is defined by

N
_ L,

a=1

Here d; denotes the number of smeared dimensions and
should satisfy 0 < d; < 4.

The six-dimensional spacetime implies (7/7q)~*
hy(v) =0 in the limit 7 — oo. Then the scale factor of
the six-dimensional space is proportional to 7. Although
the dynamical O-brane solutions cannot give a realistic
universe such as an accelerating expansion, a matter-, or a
radiation-dominated era, there is a possibility that appro-
priate compactification and smearing of the extra directions
may lead to a realistic expansion. Now we will discuss this
possibility.

We consider some compactification and smearing of
the extra directions of the solutions. Our Universe has to
be described by the O-brane solution with six directions.
Since the time direction is expressed as 7, the remaining
task is to identify the three spatial directions from the
coordinates v".

In an approach such as the construction of the cosmo-
logical scenario on the basis of a dynamical brane back-
ground, three spatial directions are supposed to be on the
overall transverse space to branes. If the spatial directions
are specified with ¢, it also works in the present case.
Then space is isotropic from the expression of the metric.
Now we look for a way to realize an isotropic and
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homogeneous three-dimensional space in the O-brane
solutions.

Since we set the coordinates (t,2%, 2%, v*) which
describes our Universe, it is convenient to decompose
the six-dimensional metric of the solutions into the follow-
ing form:

ds* = ds; + ds?, (139)

where each part of the six-dimensional metric is given by

ds? = —h3"? (1, 0)di® + hY* (1, 0)8,pdv*dv”,  (140a)

ds? = hy*(1,v)8;dv dv/. (140b)
Here ds? is the metric of the four-dimensional spacetime
with 7, v (a = 3,4, 5), while ds? denotes the metric of the
internal space. We can obtain the compactifications of the
solutions depending on the internal space.

The internal space is described by the coordinates
v'(i =1,2), and the spatial part of our Universe &, is
three-dimensional with »*(a = 3,4,5). Then 8qp and b
|

452 = [1 + <%> _6/32(1;)} B [—drz + {1 + (

where ds? is the five-dimensional metric in the Einstein
frame and the constant parameters 7, and the cosmic time 7
are defined, respectively, as

15(6\/2At)1/6, 70 = 0 .
0 eV2A

(143)

Since the power exponent of the scale factor is given by 1,
the metric of four-dimensional spacetime in the Einstein
frame implies that the solutions gives rise to a Milne
universe. To construct a realistic cosmological model such
as in the inflationary scenario, it would be necessary to add
some new ingredients in the background. Figure 4 depicts
the conformal diagrams of the five-dimensional spacetime
in the limit 7 — oco. Hence, the asymptotic regions of the
present spacetime (142) resemble the five-dimensional
Milne universe.

Finally, we discuss the near-horizon geometry of the
0-brane solution. When all of the O-branes are located at the
origin of the overall transverse space, the solution can be
expressed as

L
hy(t,r) = eV2At + ¢y + ., 2 =6,,v"", (144)
r

where L is the total mass of O-branes
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are the three- and two-dimensional Euclidean metrics,
respectively.

Now we derive the lower-dimensional effective theory
by compactifying the extra directions. In order to find a
realistic universe, we compactify the d-dimensional space
to be a d-dimensional torus, where d is the compactified
dimensions for the direction of internal space. The remain-
ing noncompact space is the external space. The range of d
is given by 0 < d < 1, because the v! direction is preserved
to measure the position of the universe in the overall
transverse space. Hence the »? direction will be compacti-
fied, where the compactified direction has to be smeared
out before the compactification.

Then the metric (124) with h; = 1 is recast into the
following form:

ds* = ds2 + ds?, (141)
where ds? is the metric of (6 — d)-dimensional external
spacetime and ds? is the metric of compactified dimen-
sions. Upon setting d = 1, the compactified metric in the
Einstein frame is

>_6ﬁz(v)}2 (T_T())Z X {8pdvidv? + (dvl)z}], (142)
|
L= iL (145)

In the near-horizon limit » — 0, the dependence on ¢ in
(144) is negligible. The six-dimensional metric is thus
reduced to the following form:

2 LN\-Ve 2/3 102
ds? = 3 [dsgs, + L7°d<,].  (146a)

L4/3 -1 L2/3
dSidsz = — <7> dlz + Tdrz, (146b)

where 8,,dv"dv" = dr* + r*dQ?, has been performed.
The line elements of a two-dimensional AdS space (AdS,)
and a four-sphere with the unit radius (S*) are given by
dsjgs, and dQ7, . respectively. Then the six-dimensional
metric (146) in the near-horizon limit of the O-brane system
describes a warped product of AdS, and S*. Figure 4 shows
the geometry of the AdS, and S*.

2. Cosmology in the I-brane system

Now we discuss the cosmological evolution for the time-
dependent 1-brane solution (134). We define the cosmic
time 7, which is given by
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(a) Conformal diagrams of the Milne universe are depicted. The solid line denotes the trapping horizon

71 = da(z)/dr, where a = (/1) [19]. One can recognize that the asymptotic region of the spacetime in (142) corresponding to 7 — oo
approximates the five-dimensional Milne universe, where 7> = 5,300” 4 (v')2. (b) The geometry of the 0-brane system (135) in the
limit » — 0 is depicted. The domain corresponding to » — 0 with finite ¢ describes warped AdS, x S* spacetime [19].

Cq =0.

1/4
(éﬂ) , TOE&, (147)

5)=G 7

The six-dimensional metric is expressed as

ds? = {1 + <%) I (y,z)} K [—drz + <%) Z
+{ 1+ (T—T()) _4}13(y,z)} <T—Z>25ab(Z)dz“dzb] , (148)

where 715(y, z) is defined by

Fa(.0) =~y b ey tes EN -
V)= —— c c .
3 y < 2 y 2y 3 — |Zu _ Z?|2_d"

(149)
Here d; is the number of smeared dimensions and should
satisfy 0 <d; <3. In order to fix the location of our
Universe in the transverse space, let us assume that at least
one direction of z(a = 1,...,4) is not smeared.

Now we apply the 1-brane solution to the lower-
dimensional effective theory. Let us consider a compacti-
fication and smearing of the transverse space to the
O-brane of the 1-brane solution. First of all, our
Universe is described by the solutions with the six-
dimensional coordinates 7,y,z%(a =1,...,4). The time
direction is identified with 7. Our choice is to take the three-
dimensional from the overall transverse space with z¢. The
four-dimensional universe is spanned by ¢, z2, z°, and z*, for
instance. The z' direction is preserved to measure the
position of our Universe in the overall transverse space of
the 1-brane. Since the metric depends on z¢ explicitly, we
have to smear out z2, z3, and z* so as to define our Universe.
Then the number of the smeared directions d; should satisfy
the condition d, = 3.

It is necessary to take that ¢, = 0 and A = 0 in (124) to
compactify the y direction. We compactify the y direction to
fit our Universe, where y denotes the compactified dimen-
sions with respect to the world volume of the 1-brane. The
metric (124) with h, = 1 is then described by (141).

In terms of the conformal transformation

ds? = hY/%ds?, (150)
we can rewrite the (6 — d)-dimensional metric in the
Einstein frame. If we set d = 1, the five-dimensional metric
in the Einstein frame is
ds? = —h3* (1, 2)d® + (1, 2)8,5(Z)dzdz?,  (151)
where d52 is the metric of five-dimensional external

spacetime in the Einstein frame. For hy = ¢t + h3(z),
the metric (151) is thus rewritten as

452 = — {1 + <T—TO) _3/2E3(z)] e
@l )"

X [8,pdz%dZP + (dz")?], (152)
where the spatial part of our Universe J,4 is three-
dimensional with z*(a = 2, 3,4), and the constant param-
eters 7, and the cosmic time 7 are defined, respectively, as

T 3

= t 2/3 , =— 153

TPt m=g (153)
Unfortunately, the power exponent of the four-

dimensional universe in the Einstein frame becomes 1/4.
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Hence, we have to conclude that, in order to obtain a
realistic expansion of the universe in this type of models,
one has to include additional fields on the background.

Let us finally consider the case of the near-horizon limit
that the spacetime metric and the functions %, and &5 satisfy
(134). If we consider the case where N 1-branes are located
at the origin of the Z space, we have

A M
hy(t.r) == (=) + et + ey +e3 T

2
1 =6,,7°7", (154)
where M is the total mass of 1-branes
N
M=> M, (155)
=1

Since the dependence on 7 and y in (154) is negligible in the
near-horizon limit » — 0, the six-dimensional metric is
reduced to the following form:

M\ —1/2 dr?
ds? = (—2> [—dﬂ +dy? + M{LZ +d9, H ,
r r
(156)

where 8,,dz"dz? = dr* + r*dQ}, has been used. The line
elements of a three—dimensionai space (M3) and a three-
sphere are given by dsy; and d923), respectively. Thus we
see that the near-horizon limit of the 1-brane system is a
warped product of M3 with a certain internal 3-space with a
circle.

B. Collision of the 0-brane in Nishino-Salam-Sezgin
gauged supergravity

We next study the behavior of the time-dependent
O-brane solution (135). By substituting (135) into the
metric (124), the six-dimensional metric is expressed as

ds? = —[eV2Mt + ¢4 + Iy ()] 2 dr?

+ [eV2At + ¢4 + flz(v)]l/zwmndv’"dv”, (157)
where w,,, is given by (132) and the function /,(v) is
defined by (138). Since the time dependence appears
through the function /,, the next task is to study the time
evolution of the solutions carefully. Hereafter we will
consider it by focusing upon the collision of 0-branes.
We also discuss smearing out some of the directions in the
transverse space to decrease the number of transverse
dimensions to the O-brane effectively.

Now we consider the case that the number of the smeared
directions is given by d,. Then the function &,(v) can be
expressed as

PHYSICAL REVIEW D 90, 025024 (2014)

_ L,
ha(v) = ZW

o = (158)
where d is the number of smeared dimensions and should
satisfy 0 < d, < 4, and we assume that at least one direction
of v"(m=1,...,5) is not smeared in order to fix the
location of our Universe in the transverse space. In the
following, we will use the function (158).

We will discuss the asymptotic behavior of the time-
dependent solutions. In the limit of v™ — v}, the time
dependence in the function /, can be ignored, because the
harmonic function /4,(v) dominates near a position of the
0-brane. On the other hand, the function /,(v) vanishes in
the limit of v — oo. Then the system becomes static near
the O-brane, while s, depends only on time ¢ in the far
region from O-branes. Thus the six-dimensional metric in
the limit of v — oo is rewritten by

ds> = —(eV2At + c4)_3/2dt2

+ (eV2A1 + c4)1/2wmnd1}mdv”. (159)
The metric has singularity at 7, = 0. Then the spacetime
is regular if it is restricted inside the domain specified by
the conditions
hy(t,v) = eV2At + ¢4 + hy(v) > 0, (160)
where the function /,(v) is defined in (158). Since the
spacetime evolves into a curvature singularity, the six-
dimensional spacetime cannot be extended beyond this
region. The regular spacetime with O-branes ends up with
the singularities.

The evolution of the spacetime highly depends on the
signature of A(=ev/2A). The system with A > 0 has the
time reversal one of A < 0. Now we will discuss the case
with A < 0. For f <0, the spacetime is not singular,
because the function h, is positive everywhere. In the
limit of + - —o0, the solution is approximately given by a
time-dependent uniform spacetime apart from a position of
O-branes. In the vicinity of branes, the geometry takes a
cylindrical form of an infinite throat.

We study the time evolution for # > 0 and ¢, = 0. At
t =0, the spacetime is regular everywhere and has a
cylindrical topology near each O-brane. As time slightly
evolves, a curvature singularity appears as [v" — | - oo.
The singular hypersurface cuts off more and more of the
space as time increases further. When time continues to
evolve, the singular hypersurface eventually splits and
surrounds each of the O-brane throats individually.
Hence, the spatial surface is composed of each isolated
throat. For ¢ < 0, the time evolution of the six-dimensional
spacetime is the time reversal of ¢ > 0.

Since the metric (159) in the regular domain implies that
the overall transverse space tends to expand asymptotically
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like ¢'/4, for any values of fixed v, the solutions describe
static O-branes near the positions of the branes. In the
far region as [v" — 02| — oo, the solutions approach
FRW universes with the power-law expansion ¢'/4. The
emergence of FRW universes is an important feature of the
time-dependent O-brane solutions.

We will discuss whether two 0-branes can collide or
not. We put the two O-branes at v; = (0,0, ...,0) and
v, = (£,0,...,0), where ¢ is a constant. If we introduce the
following quantity:

P= /(2P + @ (TR (16])

the proper distance at # = 0 between the two O-branes is
given by

¢ L L 1/4
d(t :/ dvl<€v2At+c + L4 2 ) ,
( ) 0 4 |v1|3—d,,. |v' _ §|3—d.\v

(162)

where L; and L, are the charges of the O-brane. For
€ = —1, this is a monotonically decreasing function of .
The behavior of the proper length is different depending on
the number of the smeared directions d,. We will discuss it
for each of the values of d; below.

First we consider the case with d; < 3. The proper length
is plotted in Fig. 5 for the cases with d, = 0 and d, = 2.
Since both cases show that a singularity appears before the
proper distance becomes zero, the singularity between two
O-branes appears before collision. The two O0-branes
approach very slowly, and then the singular hypersurface
suddenly appears at a finite proper distance. The spacetime
finally splits into two isolated O-brane throats. Therefore
one cannot see the collision of the O-branes in these

d(t)

6F

(@)

FIG. 5 (color online).
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examples. For the other case with d; = 1, the result is
the same.

Next we consider the case with d; = 4 and assume that
the v™ directions apart from ! are smeared. Since the
function A, is linear in v, the behavior of the proper
distance is different from the previous case. The six-
dimensional metric is now given by (157). By choosing
v = v', the harmonic function h, is written by

N/
1712(0) :ZLa|U_Ua|' (163)
a=1

We discuss the time-dependent solutions in the case that
one 0-brane charge L, is located at v = 0 and the other L,
at v = &. The proper length between the two 0O-branes is
given by

d(t) = /:dv[e\/z_m e+ (Ly]o] + Lajo — )",

(164)

For € = —1, the proper distance decreases with time. If we
set Ly # L,, a singularity appears again at a certain finite
time t = fg, while the proper distance is still finite, where zg
is defined as

; EC4+L1|U|+L2|U—<§|

s N (165)

This is the same result as the case with d, < 3.

On the other hand, two O-branes have the same brane
charges .| = L, = L, and the proper distance vanishes at a
certain finite time ¢ = f., where ¢, is defined by

d(t)

20p

15 - _-'__u—'—""‘--u-_-_,‘ .

™~
10
osf
, , , , ot
0 1 2 3 4 5

(b)

The time evolution of the proper distance between two dynamical O-branes for d; = 0 (a) and d; = 2 (b) in the

six-dimensional Nishino-Salam-Sezgin gauged supergravity. For both cases, the two 0-brane charges are identical, L; = L, = 1, and
the parameters are taken as ¢y =0, A = 0.5, ¢ = —1, and £ = 1. The result is also the same, and a singularity develops before the

collision of O-branes.
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FIG. 6 (color online).
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The time evolution of the proper distance between two dynamical O-branes for L; = L, =1 (a) and L; = 2,

L, =1 (b) in the six-dimensional Nishino-Salam-Sezgin gauged supergravity. We fix d; =4, ¢, =0,A =0.5,¢e = —1,and ¢ = 1. The
proper distance rapidly vanishes near where two O-branes collide for the case of L; = L, = 1, while for the case of L; = 2, L, = 1, itis

still finite when a curvature singularity appears.

cy +LE
t, = . 166
T (166)
Hence two O-branes can collide completely.
In terms of ¢, the proper length is expressed as
d(t) = LI=V2A(t = 1.)]"*. (167)

If we choose the values as ¢, =0, A =0.5, £ =1, and
e = —1, the proper distance d(¢) is plotted in Fig. 6 for the
two cases (a) the same O-brane charges L; = L, = 1 and
(b) different charges L = 2, L, = 1. In case (a), the two 0O-
branes can collide completely. However, in case (b), a
singularity appears before collision, as we have already
discussed analytically.

C. Collision of the 1-brane in Nishino-Salam-Sezgin
gauged supergravity
Now we apply our time-dependent solutions to a
collision of 1-brane systems. In the case of h, = 1, the
function A5 is assumed to be

iy = E ) ta i@, (16

where c5 is a constant parameter, we choose ¢; = ¢, = 0,
and the harmonic function # is expressed as

. N M
o) =) o ford, #2, (169a)
el B R
" N
h(z) =Y M;In|z" —zf|. ford;=2.  (169b)
=1

Here M, are charges of 1-branes located at z* = z{ and

|29 — z{|

— \/(zl — 2 (=B (= Z;l—dd.)z’
(170)

because the harmonic function / is defined on the (4 — d,)-
dimensional Euclidean subspace in Z. The six-dimensional
metric, scalar field, and gauge field of the solution are given
by Egs. (124) and (125), respectively. We see that d; = 2
case is critical. For d; = 3, the function # is written by the
sum of linear functions of z. The possibility of 1-brane
collisions depends on the difference in the transverse
dimensions, because the behavior of the gravitational field
in the transverse space depends on the number of the
transverse dimensions.

Although the six-dimensional metric (124) is regular if
and only if A3 > 0, the spacetime shows curvature singu-
larities at h3; = 0. Hence, the regular six-dimensional
spacetime is restricted to the region of A3 > 0, which is
bounded by curvature singularities.

Let us study the time evolution for time-dependent
I-brane solution (134). We perform the following coor-
dinate transformation:

2. 2.
= \/;tcoshj), y = \/;tsinhy. (171)

If we choose ¢; = ¢, =0, we find

ds? == [1 +72h(z)] /7!

[—di? + P{d5* + (1 + 12h(Z))6,,dz°dZ"}]

2
A
X
2 a5 =120 Lo
— [+ 167*h(2)]” /7 [=dt* + -1 {dy
A 4

+

(1 + 167*h(2))8,,dz°dZ"}], (172)
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where ;1(2), 7, and z“ are defined, respectively, by

- A M, y
h 7) = - = f: 2[‘1/2,
(Z) c3 + 2 1§=1: |Za _ 2;1 2

30 =4[220 (173)

Here, 7 obeys A(#* —y?)/2 =12. The six-dimensional
metric (172) represents a homogeneous and isotropic
spacetime whose scale factor evolves as the cosmic time
1, which is described as the Milne universe. Hence, we can
consider that the present solution with A > 0 gives a
system of 1-branes in the Milne universe. The existence
of the expanding Milne universe is guaranteed by the scalar
field with the exponential potential in the six-dimensional
action (122).

Now let us consider the collision of 1-branes. The
solution (124) without O-branes can be written in the form

1

Y(=dr? + di?)

ds® = {— (2 —y?) +c3+ iz(z)]

1

A ~ 3
+ [— (2 =y +c3+ h(z)] uydztdz?,  (174)

2

where we choose ¢; = ¢, =0, u,, denotes the four-
dimensional metric, and the function A(z) is given by
(169). The behavior of the harmonic function h(z) is
divided into two classes depending on the dimensions
of the 1-brane, that is, d, # 2 and d; = 2, which we will
study below separately. For d; = 2, the harmonic function
h(z) diverges both at infinity and near 1-branes. In parti-
cular, there is no regular spacetime region near 1-branes,
because h(z) — —oo. Hence, such a 1-brane solution is not
physically relevant. ~

Since the harmonic function /(z) becomes dominant in
the limit of z% — z{ (near 1-branes), we find a static
structure of the 1-brane system. In the far region from
1-branes, that is, in the limit of |z — z{ |~—> oo, the function
hs depends only on time 7, because h(z) vanishes. The
metric is thus written by

ds? = {— (2 —y?) + c3} (=df? + d?)

1
2

A
+ [E (2 —y?) + c3] Uqpdztdz". (175)

In the following, we will analyze one concrete example,
in which two 1-branes are located at z; = (0,0, ...,0) and
2> = (20,0, ...,0) in order to study in more detail. Since the
metric function is singular at 43 = 0, the regular spacetime
exists inside the domain restricted by

PHYSICAL REVIEW D 90, 025024 (2014)

A -
hy(t,z) = = (1 = y*) + ¢35 + h(z) > 0,

: (176)

where the function h(z) is given by (169). The six-
dimensional spacetime cannot be extended beyond this
region, because not only does the dilaton ¢ diverge but also
the spacetime evolves into a curvature singularity.

The regular spacetime with two 1-branes ends on these
singularities. The time dependence appears in the form of
%tz. For > > y* and c; = 0, the function h is positive
everywhere and the six-dimensional spacetime is not
singular. It is asymptotically a time-dependent uniform
spacetime except for near branes in the limit of z¢ — z{,
where the background geometry becomes the cylindrical
forms of infinite throats.

When ¢ <0, the spatial metric is initially (f - —o0)
regular apart from y — oo, and the spacetime has a
cylindrical topology near each I-brane. As ¢ evolves
slightly, a curvature singularity appears at y — 400 and
from a far region (|z!| = o). As t evolves further, the
singularity cuts off the space. As the time continues to
increase, the singular hypersurface eventually splits and
surrounds each of the 1-brane throats individually. Then
the spatial surface is composed of two isolated throats.

The six-dimensional metric (175) implies that the trans-
verse dimensions expand asymptotically as '/? for fixed
spatial coordinates y and z?. However, this is observer
dependent, because it becomes static near branes, and the
spacetime approaches a Friedmann-Robertson-Walker uni-
verse in the far region (|z'| = oo), which expands in the
background isotropically.

If we define

2= @@+ R (T)

the proper length at Z = 0 between two 1-branes is written
by

o TA
d(t,y) = AZ dz! [2(12 -y) +c;

N M, N M, ]:1
‘Zl|2—dA |Zl _ Zo|2_d"’

(178)

This is amonotonically decreasing function of time forz < 0.
In Fig. 7, we show d(t, y) for the case of the 1-brane system.
WesetA =2,z =1,c3 =0,and M| = M, = 1. Allof the
six-dimensional space is initially (f = —o0) regular except
at |y] - oo and |z' — 79| = co. Although the spacetime
becomes asymptotically time dependent and has the cylin-
drical form of an infinite throat near the 1-brane, the
singularity appears from a far region (|z! — 75| = c0) and
ly| = oo. As time increases (¢ < 0), the singularity erodes
the region with the large |y| region. The region of transverse
space is also invaded in time. As a result, only the region of
small |y| and near 1-branes remains regular. When we study
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FIG. 7 (color online).

The time evolution of the proper distance between two dynamical 1-branes for (a) d, = 3 and (b) d; = 1 in the

six-dimensional Nishino-Salam-Sezgin gauged supergravity. We fix ¢c; =0, My = M, =1, z5 = 1, and A = 2. The proper distance
rapidly vanishes near where two 1-branes collide for the case of d; = 3, while for the case of d; = 1, it is still finite when a curvature

singularity appears.

the evolution on the y and z¢ plane, the singularity appears at
infinity |z!| — oo, |y| = oo, and comes to the region of two
1-branes. A singular hypersurface eventually surrounds each
1-brane individually, and then the regular regions near 1-
branes split into two isolated throats. For the period of # > 0,
we find the time-reversed behavior of the case of 7 < 0.
Figures 7 and 8 show that this singularity appears before the
distance d vanishes.

Then a singularity between two branes forms before their
collision except for d;, = 3. Two 1-branes approach very
slowly, a singularity suddenly appears at a finite distance,
and the six-dimensional spacetime splits into two isolated
1-brane throats.

On the other hand, we can discuss a brane collision for
d,=3and t < 0. If M| # M,, a singularity appears at t =
tg < 0 when the distance is still finite (see Fig. 9). This is just

&
255525
KLR

9%
L

(a)

FIG. 8 (color online).

the same as the case in Sec. V B. However, if M| = M, = M,
the result completely changes (Fig. 7). Since the distance
eventually vanishes at 7 = 7., two 1-branes collide with
each other. The proper length for fixed y decreases as
time increases from ¢ = —oo, and it eventually vanishes at
t = t.. Hence, one 1-brane approaches the other as time
evolves, causing the complete collision at ¢t = .. If we
fix the 1-brane charges such that M| = M, = M, the
branes first collide at larger |y|, and as time progresses,
the subsequent collisions occur at the smaller |y|. We
show d(t,y) integrated numerically in Figs. 7, 8, and 9.

We also calculate the distance d(z,y) aty =0andz =0
between two branes before the singularity appears except
for the case of d, = 3 if M; = M,. The proper length is
also given by Eq. (178). In the present case, d is a
monotonically decreasing function of > when ¢ < 0.

A

(b)

The proper distance between two dynamical 1-branes given in (178) is depicted for (a) M| = 10, M, = 1 and (b)

M, =2, M, = 1 in the six-dimensional Nishino-Salam-Sezgin gauged supergravity. We fix ¢; = 0, d, = 0, zo = 1, and A = 2. In both
cases, a singularity appears at t = tg < 0 when the distance is still finite.
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FIG. 9 (color online). The time evolution of the proper distance between two dynamical 1-branes for (a) M; = 10, M, = 1 and (b)
M, =2, M, =1 in the six-dimensional Nishino-Salam-Sezgin gauged supergravity. We fix ¢3 =0, d;, =3, zo =1, and A = 2.
For M| # M,, a singularity appears at t = tg < 0 when the distance is still finite. Then, the solution does not describe the collision of
two O-branes.

d(t) d(t)
Sr 5r
T rys —— rys
R& 3L ——--"‘"'_———-— \ ir /
N 7
1F "’. 1F X
L . . t » b n i. . t
3 Z2 0 2 3 ) _2 0 2 1
(a) (b)

FIG. 10 (color online). (a) The proper distance between two dynamical 1-branes at y = 0 and Z = 0 for the case of d; = 0 in the six-
dimensional Nishino-Salam-Sezgin gauged supergravity is depicted. We fix ¢, = 0, zo = 1, and A = 2. For 7 < 0, the proper length
decreases as time increases. The bold line denotes the case of M| = M, = 1, while the solid one corresponds to the M; = 10, M, =1
case. (b) For the case of M| = M, in the six-dimensional Nishino-Salam-Sezgin gauged supergravity, the time evolution of the proper
distance between two dynamical 1-branes at y = 3 and z = 0 given in (178) is depicted. We fix ¢, =0, z5 = 1, and A = 2. We show
the lengths for d; = 0 (bold line), d, = 1 (solid line), and d; = 3 (dashed line). The proper distance rapidly vanishes near where two
1-branes collide in the case of d; = 3, while in the case of d; # 3, it is still finite when a curvature singularity appears.

We show the time evolution of the distance in Fig. 10 for
the case of M| = M,.

On the other hand, for the case of M| # M,, a singularity
appears, when the proper distance is still finite. For the
period of ¢ > 0, the behavior of six-dimensional spacetime
is the time reversal of the period of + < 0. We show the
proper distance d(¢) integrated numerically in Fig. 10 for -
the cases of d; =3 and d; # 3.

3-form and of the 2-form field strengths to the dilaton are
given by €,¢, = —1/v/2 and e,c, = /2, respectively:
S:L/ (R+26#V20) 51— 2 s dpndip

2x? 2

1
2.2!

1
3!

C_¢/\/§ * F(2>/\F(2) - 5 e‘/id’ * F(3)/\F(3) s

(179)

D. Romans’ six-dimensional gauged supergravity

Similarly, for the six-dimensional Romans’ theory [70],
following the discussion in Ref. [81], the coupling of the

where R denotes the Ricci scalar constructed from the
six-dimensional metric gy, k> is the six-dimensional
gravitational constant, * is the Hodge operator in the
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six-dimensional spacetime, ¢ denotes the scalar field, A > 0
is cosmological constants, and F(3) and F ;) are 3-form and
2-form field strengths, respectively. This has a negative
scalar potential. In terms of Eq. (2a), Romans’ model is
given by choosing A, = -1, A; =0, N, =2, and N, = 4.

From the six-dimensional action (179), we find the field
equations:

1 1
Ryy = — 5 et/ ﬁ/IQMN + 5 OnpOng

e_‘/’/\/E 4 2
+ 290 <2FMAFN __gMNF(2)>
eV p_ 1 2
+ 230 <3FMABFN - 29MNF(3)) . (180a)

2 2
Ap+ V2 iip %eﬁd’Fé) +V2et/V25 = 0,

4.21° @772
(180b)
dle™/V2 5 F (5] = 0, (180c)
d[eV? « F 3] =0, (180d)

where A denotes the Laplace operator with respect to the
six-dimensional metric g,y .

We assume the six-dimensional metric of the form (124).
The scalar field and the gauge field strengths are assumed
to be

e = ny Y22y, (181a)
Fry = d[V2h3'(1.y.2)|Adt, (181b)
Fi3) = d[h3'(t,y, z)|Adindy. (181c)
The FEinstein equations (180a) then reduce to
S i 3 1 L a1 —12
th Orhy + Zh3 Orhs + th (3h3'05hy + h3' Oyhs)
1 1
+3 h3*h3' (3h5' agzhy + hy'aghs) + 3 h3*A
1 7
+ Z (3, ln h2)2 + Z 8, ln hzat ln I’l3
3
+ Z h52ay In h28y In h3 = O, (1 823.)
hglaﬁyhz + /’l;lalayhg, —+ (9[ In h38y In h2 = 0, (]82b)
2h5'0,0,hy + h3'0,0,h; =0, (182c¢)
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1 1
3 B0 0y = 5 0 hs) = (h" Ry + 305" O3y
1 1 1
- ZhEI (hy'azhy — h3' aghs) + Aty (91hy)?

1 5
- Zh%@, In h28, In l’l3 - Zay In hzay In ,’l3 = 0,
(182d)

h3' 0,0,k + 20, Inhyd, Inhy =0,  (182e)

1
R (Z) + Zh%hWab(hE]atzhz + h3'0thsy)

1
- Z h3uab (hglaghz + h§18§h3)

1
~ ugp(hy' Azhy + h3'Azhy)

1
+ Zh§h3uab[(8, Inh,)% + 30, In h,0, In hs)

— % h3u a0y Inhy0, In hy + % Ugphsd =0, (182f)
where Ay denotes the Laplace operator onZ space and R, (Z)
is the Ricci tensor constructed from the metric u,,(Z).

We next consider the gauge field. Under the ansatz (181),
the Bianchi identity is automatically satisfied. Also the
equation of motion for the gauge field becomes

d[h3'0,hQ(Z) + 0,hadyA(x2dz%)] =0, (183a)

d[04hs(xzdz%)] = 0, (183b)
where *; denotes the Hodge operator on Z.

Although the roles of the Bianchi identity and field
equations are interchanged, the net result is the same.
Finally, we consider the equation of motion for the scalar
field. Substituting the scalar field and the gauge field in
(181) into the equation of motion for the scalar field (180b),
we have

h3hs(hy'0Fhy — h3'0%hs) + h3(0,h2)* — ha0,hy0,hy
— hy(h5' Py — b3 Phy) — h3' 0, a0y
— 3 Aghy + 3 Aghy + 230 = 0. (184)

Then, the functions &, and &5 satisfy the equations

(8th2)2 + 24 + h28,2h2 - hEIAth = 0, for h3 = 1,
(185a)

- 8%]13 —+ 3%h3 + 2&]’[3 + h;lAZ,’Ig = 0, fOf hz = 1,
(185b)

where Laplace operator Ay is defined in Eq. (132). If we
set h, = 1, the field equations give
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Rab(Z) = O, (1863)
hz - 1, ﬂ - 0, 3,2/13 - 83}13 - 0, Azl’l3 - 0
(186b)

Now we will focus upon a case by imposing the conditions

Uy = Ogps hy =1, A=0, (187)
where 6, is the four-dimensional Euclidean metric. Then,

the solution for /53 can be obtained explicitly as

N
M
h3(l’ysZ):Clt+CQy+C3+Zm, (188)
=1 1

where ¢;(i = 1,2,3) are constants.

One can easily get the solution for 73 = 1, 4 # 0, and
0,h, # 0 if the roles of h, and h; are exchanged. The
solution of field equations is thus expressed as

N/
L
/’l2<t,1)) =:|:\/2i/1t+C5+ZW, (1898)

a=1
(189b)

where c¢s, v, and L, are constants and the five-
dimensional coordinate »” is defined by (132). Hence,
there is no cosmological 0-brane solution in terms of the
ansatz of fields (124) and (181) if A # 0.

E. Romans’ five-dimensional gauged supergravity

Finally, we consider the five-dimensional Romans’
theory [82]. The five-dimensional action is given by

_ 1
S [(R +2VEG) s 1 = 3 dpnd

e
1
22!
1
22!

6_2(/)/\/6 * F(z)/\F(z)

64{/)/\/6 * H(z)/\H(z)} s (190)

where the expectation value of the Yang-Mills potential is
assumed to vanish, R denotes the Ricci scalar constructed
from the five-dimensional metric gy, k° is the five-
dimensional gravitational constant, * is the Hodge operator
in the five-dimensional spacetime, ¢ denotes the scalar
field, 2 > 0 is the cosmological constant, F (2) and H ) are
2-form field strengths, and the couplings of the 2-form field
strengths and cosmological constant to the dilaton are given
by €,c, = —2/\/6, €,Cy = 4/\/6, and a, = 2/\/6, in the
action (1), respectively. This has also a negative scalar
potential. In terms of Eq. (2a), Romans’ five-dimensional
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model is given by setting A, = -1, A, =0, N, =2,
and N, = 4.

The five-dimensional action (190) gives the field
equations:

1 - 1
Ryy = —5624)/%/191\41\1 + EaMfﬁaNﬁb

2076 L1 .
2.2 <2FMAFN _ggMNF(2)>
G L1 .
+ﬁ <2HMAHN —ggMNH(2)>, (1913)
ve o, V6
IS YAV(Y ~ I A YAV 2 )
A+ oy ) =55 €Y,
2 _
+ ;—@ew/@ —0, (191b)
dle™2#Vo 5 F (5] = 0, (191c)
d[e*/V 5« H(»)] =0, (191d)

where A denotes the Laplace operator with respect to the
five-dimensional metric gy .
We assume the five-dimensional metric of the form

ds* = W3 (1, Y (1.2) [ h?(1. D)k (1, )i

+ uyp(Z)dz4dz"], (192)
where u,,(Z) is the four-dimensional metric which
depends only on the four-dimensional coordinates z¢.

The scalar field and the gauge field strengths are
assumed to be

et = my? VR, (193a)
Foy = d[V2h3!(1,2)|ndt, (193b)
H) = d[ky! (t.2)|ndt. (193c)
Then, the field equations are reduced to
Ru(Z) =0, (194a)
hy(t,2) = ho(t) + h(z),  kao(t,2) = ko(t) + k(2),
(194b)
dho\? - dhy dk
— 20 =0, 20—,
< dt ) " dt dt
d’h d*ky
T2 T = 0’ 194
dr’ dr? ( C)
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(194d)

where Ay is the Laplace operator on Z space and R, (Z) is
the Ricci tensor with respect to the metric u,,(Z). By
setting 1 # 0, there is no cosmological solution because of
Eq. (1944d).

Let us consider the case

_ dhy

Ugp = Ogps A=0, WZO’ (195)

where 6, is the four-dimensional Euclidean metric. Then
we can construct the solution

N/
L(l
hy(z) = ¢; + Z Tl (196a)
a=1 a
N
M
kz(t,Z) :C2t+C3+Z|Za_4[H, (196b)
=1 /

where ¢;(i = 1,2,3), L,, and M, are the constants.

Now we discuss the cosmological evolution for time-
dependent solution (196). We define the cosmic time 7
which is given by

T
70
The five-dimensional metric can be expressed as

ds? = 15" (2) {1 + CO) _3/2/2@)} [—dfz

=(et)3, ty==—., =0. (197)

gt (2) k(D) aw@aar|

(198)

where the functions £, (z) and k(z) are given, respectively,
by

(199)

Here d; is the number of smeared dimensions and should
satisfy 0 < d; < 3. Here we assume that one direction of
z%(a =1,...,4) is not smeared in order to fix the location
of our Universe in the transverse space. Our Universe is
given by the solutions with the five-dimensional coordi-
nates 7, z%(a = 1, ...,4). The time direction is written by .
Our choice is to take the three-dimensional from the overall
transverse space with z¢. The four-dimensional universe is
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spanned by #, 7%, 73, and z*, for instance. The z' direction is
preserved to measure the position of our Universe in the
overall transverse space of O-branes. Since the metric
depends on z¢ explicitly, we have to smear out z2, 73,
and z* so as to define our Universe. Then the number of the
smeared directions d, should satisfy the condition d; = 3.

Unfortunately, the power exponent of a four-dimensional
universe becomes 1/4. Hence, we have to conclude that, in
order to obtain a realistic expansion of the universe in this
type of models, one has to include additional fields on the
background.

We study the asymptotic behavior of the dynamical
0-brane background. The time dependence in the function
hy can be ignored in the limit of z* — z{, because the
harmonic function k(z) dominates near a position of the
O-brane. In the limit of z¢ — oo, as function l_c(z) vanishes,
the system becomes static near the O-brane. Then, the
function k, depends only on time in the far region from
O-branes. The five-dimensional metric in the limit of
7% — oo is thus given by

ds* = —(cot + c3)723d? + (cat + ¢3)Puy,dzdzb.

(200)

The metric has a singularity at t = —c3/c,. Then the
five-dimensional spacetime does not have any singularity if
it is restricted inside the domain satisfied by the conditions

_C1+Z 2—d, >0,
zal

ky(t,2) = cpt + k(z) > 0, (201)
where the function k(z) is defined in (199). The five-
dimensional spacetime cannot be extended beyond this
region. Since the spacetime evolves into a curvature
singularity, the regular spacetime with dynamical O-branes
ends up with the singularities.

Although the evolution of the dynamical O-brane with
¢, > 0 has the time reversal one of ¢, < 0, the behavior of
the background spacetime strongly depends on the signa-
ture of ¢,. In the following, we will focus on the case with
¢y < 0. For t < 0, the function A, is positive everywhere.
Then the spacetime is not singular. In the limit of t - —o0,
the solution becomes a time-dependent uniform spacetime
apart from a position of O-branes. The five-dimensional
background geometry can be described as a cylindrical
form of an infinite throat near the dynamical O-branes.

Let us consider the time evolution of the five-dimen-
sional spacetime. At t = 0, the five-dimensional spacetime
does not have any curvature singularity in the background.
The background geometry has a cylindrical topology near
each O-brane. As time slightly increases, a curvature
singularity appears far from O-branes |[z% —z%| — oo.
After that, the singular hypersurface cuts off more and
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more of the space as time increases further. The singular
hypersurface splits and surrounds each of the O-brane
throats individually after time continues to evolve. The
spatial surface is finally composed of two isolated throats.
The time evolution of the five-dimensional spacetime for
t < 0 is the time reversal of 7 > 0.

We find that the overall transverse space tends to expand
asymptotically like ¢'/°, for any values of fixed z%, in the
regular domain of the five-dimensional metric (200), while
the solutions describe static O-branes near the positions of
the branes. In the far region from O0-branes where
|z — 74| — oo, the background geometry becomes FRW
universes with the power-law expansion !/,

Next we consider the case of the near-horizon limit that
the spacetime metric and the functions 4, and k, are given
by (196). If we consider the case where all O-branes are
located at the origin of the Z space, we have

L
hy(r) = ¢ +ﬁ’ (202a)
M
kz(t,r):C2[+C3+F, r _5[,21, (202b)

where L and M are the total masses of O-branes

EN: (203)

Since the dependence on ¢ in (202) is negligible in the near-
horizon limit r — 0, the five-dimensional metric is reduced
to the following form:

~
1
h
3

|||

ds* = ds}gs, + LM Qe (204a)

L*M
dsigs, = L™3M™23 (—r“dl‘2 +— drz), (204b)

where 8,,dz%dz" = dr* + erQ% ;) has been used. The line
elements of a two-dimensional AdS space (AdS,) and a
three- sphere with the unit radius (S%) are given by ds% AdS,
and dQ? 30 respectively. Thus we see that the near-horizon
limit of the O-brane system is an AdS, with a certain
internal 3-space.

Before closing this subsection, we discuss the collision
of O-branes. There are two kinds of O-brane in the five-
dimensional spacetime. One is a static O-brane coming
from the function &,(z). The other is a dynamical 0-brane
given by k,(f,z). We set the two dynamical O-branes at
z; =(0,0,...,0) and z, = (P,0,...,0), where P is a
constant. On the other hand, we suppose that N’ static
O-branes are sitting at a point
(205)

=" =Zn=Zy)= (2(1),0,...,0).
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Now we consider the following quantity:

e

Then the proper length at z = 0 between the two dynamical
O-branes is given by

d(1) /Pd1< L >1/3
1) = ot
0 el =l

M, M, 1/6
(oot it ) 20

24 (2)? o CARL L (206)

where M| and M, are the charges of the dynamical O-brane
and L is defined by

(208)

NI
L=Y L,
a=1

For ¢, = —1, the length d(¢) is a monotonically decreasing
function of time. Since the time evolution of the proper
length depends on the number of the smeared directions d,,
we shall analyze it for each of the values of d; below.

First we consider the case with d, < 2. For d, = 2, the
harmonic functions %, and k, diverge both at infinity and
near O-branes. In particular, there is no regular spacetime
region near O-branes because of 1, — oo and k — co. Then,
these are not physically relevant. Hence, we show the
proper length in Fig. 11 for the cases with d; =0 and
d, = 1. For both cases, the singularity between two
dynamical O-branes appears before collision, because a
singularity appears before the proper distance becomes
zero. Although two dynamical O-branes initially approach
very slowly, the singular hypersurface suddenly appears at
a finite distance, and the spacetime finally splits into two
isolated O-brane throats. Therefore, we cannot analyze the
collision of the dynamical O-branes in these examples.

However, for the case with d, = 3, the function %, and k
are written by the linear function of z¢. If we assume that
the z¢ directions apart from z' are smeared, the time
evolution of the proper length is different from the previous
case. Hence, the harmonic functions /4, and k are expressed,
respectively, as

N/
N=c¢ +2La|zl — Zgls
a=1

N
k(z') = c3 + ZMI|ZI -l.

=1

(209)

We study the dynamics of 0-branes, where one O-brane
charge M, is located at z' = 0 and the other M, at z' = P.
The proper distance between the two dynamical O-branes is
given by
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FIG. 11 (color online).
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(b)

The behavior of the proper distance between two dynamical O-branes for d; = 0 (a) and d;, = 1 (b) in the five-

dimensional Romans’ theory. For both cases, the two dynamical O-brane charges are identical, M| = M, = 1, and the parameters are
takenasc; =0,¢, = —-1,c3=0,L =1, z(lJ = 0,and P = 1. The result is also the same, and a singularity appears before the collision of

dynamical 0O-branes.

P
i) = [ dzl(er LIz = 2y
0

x [eat + c3 + (My |2 + Ma|2' = P[)]'V/6, (210)

where we assume again that N’ static 0-branes are sitting at
a point z' = z} and L is defined by (208). For ¢, < 0, the
proper distance decreases with time. By setting M| # M,, a
curvature singularity appears again at a certain finite time

t = tg before the dynamical O-branes collide. Then, tg is
written by

_ M [+ M =P

= 211
- C11)
This is the same result as the case with d, < 2.
d(t)
150
1o}
osf T
L \,'
20 02 o0+ 0s oz 1o

FIG. 12 (color online).

On the other hand, two O-branes have the same brane
charges M| = M, = M, and the proper distance vanishes
at a certain finite time ¢t = 7., where 7, is defined by

C3 + MP
Cy ’

c =

(212)

Then two dynamical O-branes collide completely.
If we set z(l) =0, for simplicity, the proper length
between two dynamical O-branes can be written by

(1) = o l-c 4 (e + LPYPlfealr -], (213)

If we choose the physical parameters as ¢; =0, ¢, = —1,
c;=0,P=1, z(l) =0, and L = 1, the proper distance d(¢)

d(t)

10

05

0.0 0.5 1.0 15 20

The behavior of the proper distance between two dynamical O-branes for M; = M, =1 (a) and M| = 2,

M, =1 (b) in the five-dimensional Romans’ theory. We fix d;, =3, ¢; =0, ¢, = -1, ¢3 =0, z(l) =0,L =1, and P = 1. The proper
length rapidly vanishes near where two 0-branes collide for the case of M; = M, = 1. For the case of M| = 2, M, = 1, it is still finite

when a curvature singularity appears.
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is depicted in Fig. 12 for the two cases (a) the same O-brane
charges M| = M, = 1 and (b) different charges M| = 2,
M, = 1. For case (a), the two dynamical O-branes can
collide completely. On the other hand, in case (b), a
singularity appears before the collision of dynamical
O-branes, as we have already discussed in Sec. V B.

VI. THE INSTABILITY OF THE DYNAMICAL
BRANE BACKGROUND

In this section, we briefly discuss the nature of the
singularities appearing in the time-dependent solutions
and present the stability analysis for the dynamical brane
background. We follow the method used by Refs. [38—41]
(see also [83—-85]) and present the preliminary analysis
performed, where the Klein-Gordon modes are analyzed.
An analysis of such a possibility will definitely make the
property of singularity more clear, even if it is just a simple
preliminary study to assess this issue.

A. The dynamical 0-brane background in
Nishino-Salam-Sezgin gauged supergravity

Let us first consider the stability for the 0-brane solution
in Nishino-Salam-Sezgin gauged supergravity. The six-
dimensional metric becomes static space near the O-brane,
while the background depends only on the times far from
the O-brane. We will study the stability in the O-brane
solution far from the branes.

For the limit » — oo in the solution (144), the six-
dimensional metric is expressed as

ds® = —(eV2At + ¢) > dr?

+ (eV2At + ¢4)'%8,,,(W)dvmdv",  (214a)
Sun(W)dv™dv" = dr* + r*w;;(S*)dEdEl, (214b)

where ;;(S*) denotes the metric of four-dimensional
sphere. The six-dimensional metric has a curvature singu-
larity at t = —c4/ eVv2A. In order to study the stability, we
consider the Klein-Gordon equation for a massive scalar
field propagating in the background (214):

1
-y
Van!)
where g denotes the determinant of the six-dimensional

metric (214). In terms of the metric (214), the Klein-
Gordon equation can be written by

(v=99"NOng) + m*p = 0, (215)

A, (eV2A1 + ¢4)0,0) — r9,(r*9,90)

1
5859+ (eV2A1 + ) Pmi =0,  (216)
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where Ag: denotes the Laplace operator on the S*. The
six-dimensional metric involved permits separation of
variables, so we take

@ = @o(1)p1(r)p2 (&), (217)

where the functions ¢, (r) and ¢,(£) obey the eigenvalue
equations
Ay (N)@a(8) = =251 (1)@ (&) (218)

Here Ay is the Laplace operator on the W space, Ay is the
eigenvalue, and ¢ (r) and ¢, (&) satisfy [86]

@ (r) = % (b1, (Awr) + by Y, (Awr)],s

Agpy(8) = =252 (8), (219)

where b; and b, are constants, J, and Y, denote the Bessel
functions, and v is related to the eigenvalue /1§4 as

9

V= /1§4 + 1 (220)
The Klein-Gordon equation thus is rewritten by
d’>pq 2eV2A  dy,
df*  (eV2At+cy) dt
1 1/2
A5 + (eV2ALt + ¢ m?|py = 0.
(6\/%1‘-%— 04)2[ W ( 4) ](pO
(221)

Then the solution for ¢ is oscillatory, having the form

A
C2mP(ev2At + ¢)'?

m(e Cy /4
4 (\/62_\1)%_ ) }] (222)

where 77, and 7, are constants, J_, and J, denote the Bessel
functions, and y is given by

273,
r=2 ey

Let us consider the energy of the Klein-Gordon modes to
study whether the instability occurs or not. Using the
asymptotic solution (222), we will see that E — oo as the
singularity is approached, where there is a curvature
singularity at # = —c,/ev/2A in the six-dimensional back-
ground (214). Since the velocity is well behaved besides the
singularity, the energy of the Klein-Gordon modes can be
estimated as

@o(t)

(223)
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E=—uMdy0p, u=ad, + po,, (224)

where u is velocity. In terms of the normalization condition
u*> = —1, the behavior of the a and f are determined in

order to remain nonsingular. Then, we find

—2(eV2At + ¢4) 7 4 B2(eV2A1 + ¢4)' P = —1.
(225)

As t — 0, @ and S have to behave as

a~(eV2ht+ )% P~ (eV2ht+ ), (226)
in the limit » — oo for the dynamical 0-brane background.
Upon setting (226), one then finds
—E = a0, + p0,¢. (227)
In terms of the asymptotic solution (222) with y (223),
we find that £ — oo as the singularity is approached if
we set ¢ =1 and A > 0. Hence, the O-brane solution
implies that the energy-momentum tensor of the scalar
field mode diverges far from the O-brane. However, it is
necessary to study a full analysis of the metric perturbations
for whether the mode of Klein Gordon field is not likely to
destabilize the metric modes near the singularity or not.

B. The dynamical 1-brane background in
Nishino-Salam-Sezgin gauged supergravity

Next we consider the stability for the 1-brane solution in
Nishino-Salam-Sezgin gauged supergravity. For the metric
(168), the harmonic function /(z) dominates in the limit of
z% — z{ (near a position of 1-branes) and the time depend-
ence can be ignored. Thus the background becomes static.
On the other hand, in the limit of [z%| — oo, h(z) vanishes.
Then h3 depends on ¢ and y in the far region from 1-branes,
and the resulting metric is given by

A -1/2
ds> = {— (2 =y) +cit+cy+ C3:| (=dt?* + dy?)
A 1/2
+ {E (2 =y} +cit+ ey + C3:| Sap(Z)dzdz?,
(228a)
Bup(Z)dzodzb = dr® + r2iv;;(S?)dEidel,  (228b)
where @;;(S?) is the metric of three-dimensional sphere.

For the six-dimensional metric, a curvature singularity may
appear at

N[>

(2 =y +cit+cy+c3=0. (229)

In the following, we will again discuss the stability in the
1-brane solution far from the branes. Let us consider the
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Klein-Gordon equation for a massive scalar field in the
six-dimensional background (228):

1
——— 0y (/=96"N Oyy) + m*y = 0,
7 m(v/=99"" Ony) v

where ¢ denotes the determinant of the six-dimensional
metric (228). Substituting the six-dimensional metric
(228) into the Klein-Gordon equation for a massive scalar
field (230), we find

A A
0, [{E(tz -y?) +clt}8,u/} -0, HE(IZ —y?) +Clt}8yl//:|
1
- r_3ar(r38rl//) _ﬁASﬂll

A 1/2
+ |:{§(l‘2—y2)+clt}:| mzy/:0,

where we set ¢, = c3 =0 and Ag denotes the Laplace
operator on the S*. The six-dimensional metric involved
permits separation of variables, so we take

(230)

(231)

v = wo(yw1(wa(r)ys(E), (232)

where the functions y,(r) and w3 (&) obey the eigenvalue
equations

Az (w3 (&) = =gy (r)ys(8). (233)

Here A7 is the Laplace operator on the Z space, A is the
eigenvalue, for Eq. (233), and y,(r) and y3(&) are satisfy

valr) = (b1 ) + b2, i)
Agy3 (&) = A5y (8), (234)

where b; and b, are constants, J, and Y, denote the Bessel
functions, and v is related to /133:
V= /%3 + 1. (235)

Hence, the Klein-Gordon equation is reduced to

A d
w10, [{5([2 -+ Clt} —;/[0}
A dy
—yody [{2(l2 -+ Clt} dyl}

A 1/2
+ |:)“% + {5(t2 - )’2) + Clt} m2:| Yoy = 0. (236)

We shall discuss the massless cases in the following. In
terms of ¢; = 0 and m = 0, the particular solutions of v,
and y; are given, respectively, by
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wo(t) = (i + L1,

i B (237)
wi1(y) =01y + 0,77,

where ¢;(i = 1,2) and 6,(i = 1,2) are constants and p is

defined by
1 422
r=a\Vt=3

We study the stability in terms of the energy of the Klein-
Gordon modes. Using the asymptotic solution given by
Eq. (237), we can estimate the energy near the singularity,
where there is a curvature singularity at t = £y in the six-
dimensional background (228). Since the velocity is well
defined besides the singularity, the energy of the Klein-
Gordon modes can be written as

(238)

E = -0y, v = a0, +a,0, + ,0,, (239)

where v is velocity. By using the normalization condition
v?> = —1, the behavior of the a,, ay, and a, are determined

in order to remain nonsingular. Then, we find

~1,2 1/2
ara)ye-n)ralge-m] -

(240)

In the limit 7 — oo and ¢ — 0, for the dynamical 1-brane
background (228), a;, a,, and «, provided

A 1/4
a4 @)~ 5= "

A —1/4
e GRS IR
If we set the parameters (241), one then finds
—E = a, 0,y + a, 0y + @,0,y. (242)

In terms of the asymptotic solution (237), we find that
E — oo as the singularity is approached at r = +y.

Let us next consider the case m = 0 and A = 0. In the
limit r — oo for the solution (154), the six-dimensional
metric becomes

ds* = (cyt + ¢u) "% (=di* + dy?)

+ (et + ¢s)'V?8,,(Z)dz0dzP,  (243a)

8. (Z)dz0dzb = dr? + rza)ij(S3)d§id§j, (243b)
where we set ¢; = ¢3 = 0 and w;;(S?) denotes the metric of
the three-dimensional sphere. There is a curvature singu-
larity at t = —c4/c;.
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Now we study the behavior of the Klein-Gordon field.
The scalar field equation (230) in the six-dimensional
background (243) reads

dy(c110yr) = By(c110,y) — r39,(r*0,y)

1
— ey + (1) 2m?y = 0. (244)
If we assume that the scalar field y is given by (232), where

y,(r) and w3 (&) can be written by (234), the function y (y)
is determined by the eigenvalue equation:

dy
W; = -2, (245)

Here, 4, is constant. Then, the equation for y, becomes
d ( dl[/o

Cﬂ‘w) +[ﬂ%clt—i—l%—l—(clt)l/zmz]l//():O. (246)

dt

For the massless case, the solution of v is given by the
oscillatory form

wolt) = e HIF U, 1.2idy1) + frLy(2idy1)].  (247)

where U denotes the hypergeometric function, L_g is the
Laguerre polynomial, f; and f, are constants, and 9 is
defined by

gL i

2" 210,

(248)

We estimate the energy of the Klein-Gordon modes
whether the instability exists or not. In terms of the
asymptotic solution (247), we can present the behavior
of the energy as the singularity is approached. Since the
velocity is well behaved except for the singularity, the
energy of the Klein-Gordon modes is given by (239). By
using the normalization condition > = —1, a,, a,, and a,
are determined by
(—a? + @) (e t)™ 12+ a2 (cy1)'? = -1. (249)
As t = 0 and r — oo, the functions a;, a,, and a, are
set to be
(—a? + a2)V2 ~ (c;n)V4, ~1/4,

a,~ (c11) (250)

If we use Eq. (250), the energy can be expressed as
—-E = a,0,y + a,0,y + a,0,y. (251)

Then, for the asymptotic solution (247), the energy
becomes E — oo as the singularity is approached, that
is, t = 0. Since the 1-brane solution gives that the
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energy-momentum tensor of the Klein-Gordon field mode
diverges in this limit, the mode of the scalar field cannot
stabilize the metric modes near the singularity.

C. The dynamical 0-brane background in
five-dimensional Romans’ gauged supergravity

In this subsection, we analyze the stability of the
dynamical O-brane background in the five-dimensional
Romans’ gauged supergravity. We will study the stability
of the scalar field far from O-branes. For r — oo in the
dynamical 0-brane background (202), the five-dimensional
metric becomes

ds® = —(Czt + C3)_2/3dt2 + (Czt + C3)1/35ab(Z>dZade,
(252a)

Sup(Z)dz"dz" = dr* + rPw;;(S*)dE dE/, (252b)
where we set ¢; = 1 and ;;(S?) denotes the metric of the
three-dimensional sphere. There is a curvature singularity
at t = —C3/C2.

Let us consider the behavior of the Klein-Gordon field:

1
vV—g
where ¢ denotes the determinant of the five-dimensional

metric (252). The scalar field equation (253) in the five-
dimensional background (252) reads

O (vV/=99"NOnep) + m*p = 0, (253)

1
Dl(eat + es)0i9] = 10,7 0,0) ~ 5 s
+ (et + ¢3)Pm¢p = 0. (254)

Here, Ag: denotes the Laplace operator on the S*, and the
scalar field ¢ is assumed to be

@ = @o(1)p1(r)p2(E), (255)

where @ (r) and ¢, (&) are determined by the eigenvalue
equation:

2701 (r)@2(8) = =221 ()2 (&) (256)

Here A5 is the Laplace operator on the Z space, A is the
eigenvalue, and functions ¢, (r) and ¢, (&) obey [86]
1 - _
@i(r) = - (017, (Azr) + byY ,(Az7)],

Agpa(§) = —/153 »2(8), (257)

where b, and b, are constants, J, and Y, denote the Bessel
functions, and v is related to the eigenvalue /153 as
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V= /133 + 1. (258)
By using Eq. (256), the equation for ¢, becomes
d do
dr [(Czt +¢3) d—zo] + 27+ (cat + ¢3)' PmP]py = 0.
(259)

For m = 0, the solution of ¢, is given by the oscillatory
form

< 24 - 22
wo(t) = f1Jo <C—22vczt + 63> + f2Yy <c_22 Veot + c3>,
(260)

where f, and f, are constants. We calculate the energy of
the Klein-Gordon modes to study the stability of the
dynamical O-brane background. By using the asymptotic
solution (260), we can present the behavior of the energy as
the singularity is approached. Since it is possible to
calculate the velocity except for the singularity, the energy
of the Klein-Gordon modes is given by

E=—uMdy0p, u=ad,+a.d,, (261)
where u denotes the velocity in the five-dimensional
spacetime. In terms of the normalization condition

u?> = —1, a, and a, are given by

—aZ(cyt +c3) 3+ (et +c3)' P =-1.  (262)
As t - —c3/c, and r — oo, the functions a, and «a, are
described as

a, ~ (cyt +c3)'/3, -1/6,

a, ~ (C2l + C3) (263)
By using Eq. (263), the energy of the scalar field can be
expressed as
-E= afat(p + arar§0~ (264)
For the asymptotic solution (260), one can note that
the energy becomes E — oo as the singularity is
approached. The dynamical O-brane solution gives that
the energy-momentum tensor of the scalar field mode
diverges in the limit t - —c3/c,. Hence, the mode of
the scalar field cannot stabilize the metric modes near the
singularity.

D. Intersection involving the 0 — p;-brane background
in the D-dimensional asymptotically power-law
expanding universe

Now we investigate the stability analysis for the dynami-
cal 0 — p;-brane background. The geometry of the 0 — p-
brane system becomes a static structure near branes, while
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the background geometry depends only on the time in
the far region from branes. By setting B =0 in the
D-dimensional background (73), the metric in the limit
7% — oo is thus given by

ds? = —(A)dP? + (A1), (Z)dz°dz?,  (265a)

Sup(Z)dzdzb = dr? + rPa;(SP-2)dEidel,  (265b)

where @,;(SP~?) denotes the metric of the (D —2)-

dimensional sphere and a, and b, are defined,
respectively, by
D-3 1
= - = — 2
“w="p-_2 '=p-2 (266)

The D-dimensional spacetime has singularities at r = 0.
Let us consider the Klein-Gordon equation to discuss the
stability analysis

1
——— 0y (/=gg"N Oyp) + m?p =0,
N w(v/=99"" Ong) + m*e

where ¢ denotes the determinant of the D-dimensional
metric (265). Equation (267) on the D-dimensional back-
ground (265) becomes

(267)

0,(At0,9) = P20, (rP20,9)

1
— 5 Agg + (At)bom?¢p = 0, (268)
where Agp-> denotes the Laplace operator on the SP=2.
We assume that the scalar field ¢ is given by
@ = @o()p1(r) e (£), (269)
where the functions ¢, (r) and ¢,(£) obey the eigenvalue
equations
271 (r)a(8) = =501 ()@ (&) (270)
Here A, denotes the Laplace operator on the Z space, and
Ay 1is the eigenvalue for the equation.

The functions ¢;(r) and @,(&) also satisfy the equa-
tions [86]

01(r) = H{b3dulzr) + baYelizr)],

ASD’Z(/)2(§) = _/%D—z(ﬂZ (é)’ (271)

where b3 and b, are constants, J; and Y; denote the Bessel
functions, and  is related to the eigenvalue AéH as

(D-3)

i (272)

172 = ﬂgn—z +

PHYSICAL REVIEW D 90, 025024 (2014)

By using Egs. (265), (269), and (270), the field equation for
@o becomes

d dyy

A 5 M0 2 bo2],
o (At ” ) + [47 + (A1)m*|py = 0.

(273)
Let us consider the case of m = 0. The solution of ¢y is
given by the oscillating form

@o(1) = 31020z V AT ) + f4Y(22,V A1), (274)

where f3 and f, are constants and J,, and Y, are the Bessel
functions. The energy of the Klein-Gordon modes can be
calculated by

E = —MMaM(/),

u = ad, + fo,, (275)

where u is velocity. Then, a and f are determined by

—a?(An)® + p*(Ar)bo = -1, (276)
where we used the normalization condition u*> = —1. In the
case of t - 0 and r — oo, @ and  must behave as
a~ (Af)y~®/2 B~ (Af)Th/2, (277)
in order to remain nonsingular.
If we use the expression (277), the energy of the scalar
field is given by
—E = ad,p + f0,¢. (278)
For the asymptotic solution (274), one can note that the
energy becomes £ — oo as the singularity is approached.
Hence, the energy-momentum tensor of the Klein-Gordon
field mode diverges. The classical solution gives the mode
of the scalar field which cannot stabilize the metric modes
near the singularity.

E. Intersection involving the 0 — py-brane
background in the D-dimensional
asymptotically de Sitter universe

Finally, we discuss the stability analysis for the 0 — py-
brane in the asymptotically de Sitter universe. If we set
¢ =0 and take z? - oo in the background (97), the
D-dimensional metric becomes

ds? = —de 4 (ce" Y/ P5,,(Z)dzedz?.  (279)

8up(Z)dzdz" = dr* + r*@;;(SP~?)déldEl,  (279b)
where @,;(S?~?) denotes the metric of the (D —2)-
dimensional sphere, ¢ is given by (98), and the cosmic
time 7 is defined by (99). There is a curvature singularity at
7 — —oo in the D-dimensional spacetime. In the following,
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we set ¢y > 0. Otherwise, the scale factor of D-dimensional
spacetime becomes complex or negative.

We consider the Klein-Gordon field to analyze the
stability

1
- \/—_—gaM(\/ =99V One) + mPp =0,
where ¢ is the determinant of the six-dimensional metric
(279). Substituting the D-dimensional metric (279) into
Eq. (280), we obtain

(280)

(™)~ De[(coe )35 0,qp] = r= (P20, (rP=20,)

1
—— Agp2¢p + (coeo™)pm2ep = 0, (281)
2

where Agqo> denotes the Laplace operator on the SP~2.
We assume an ansatz for the scalar field ¢:

@ = @o(0)p1 (1), (&), (282)

where the functions ¢, (r) and ¢, (&) satisfy the eigenvalue
equation

Bzp1 () @2 (&) = =501 ()2 (8), (283)
and obey the equations
1
@i(r) = - [bsJ5(2z1) + beY (A1),
Agp205 (&) = =2p2 902 (£). (284)

Here A is the Laplace operator on the Z space, b5 and bg
denote constants, J; and Y; are the Bessel functions, and v
is written by the eigenvalue /1%0,2 as

(D-3)

= ign—z + 4

(285)
In terms of Eqgs. (270), (279), and (282), the field equation
for ¢, becomes

14 scory(0-1)/(-3) 99
(coe?) 1E (coec0 )(D 1)/(D 3>d—10

+ [ + (coe™) Y P m?)gy = 0. (286)
Let us first consider the solution of ¢, for D =5 and
D = 6. In the case of D =5, the solution of ¢, can be
expressed as

§00< )

Aegieot[fsD(1 —¢1)J_p, (2/12C53/26_C°T/2)
FfeD (1 + 1), (200 e, (287)

where f5 and f¢ are constants, J, and J_,, are the Bessel
functions, and #; is defined by
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m 2
Co '

On the other hand, setting D = 6, we can also find the
solution of ¢g:

9 /3 _
— Z \/;A%/ZCO 10/36—5001/6

x [f7l—'<l - bﬂz)]_fz (3/12(;64/36—001/3)
+f8r(1 + l/ﬁz).]& <3)“ZC(;4/36_COT/3)}.

£ =2 (288)

(289)

Here f7 and fg denote constants, J,, and J_,, are the
Bessel functions, and the constant £, is given by

1 2
A 25—36<ﬁ> .
2 Co

For D > 4, the solution of ¢, can be written in the
following form:

D -3 % D-1 —(D_l)(_n_z) __D-1
po(1) = <T A7 ¢ 03 e TaD=5 0"

(290)

X [FD(1 = £)J_o((D = 3P e rseor)

FIT(1 4 ) 4((D = 3)ge> e

1

hen)],(291)

where f and f are constants, J, and J_, denote the Bessel
functions, and # is defined by

f:%\/(p—1)2—4(u—3)2<cﬂ0>2.

Since the energy of the scalar field can be written
as (275), the energy of the Klein-Gordon modes can be
given by the expression (278). Then, we can find a and f in
this way:

(292)

—a® + B (coeco™) ¥ (P=3) = —1, (293)
where we used the normalization condition u> = —1. In the
case of 7 - —oo and r — oo, a and f have to behave as

a ~ const, B~ (coeor)~1/(P=3),

(294)
For the solution (291), the energy becomes E — oo in the
limit 7 — —o0. Since the energy is not convergent with the
asymptotic solution, the mode of the scalar field does not
stabilize the metric modes near the singularity.
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VII. CONCLUSION AND DISCUSSION

In this paper, we have discussed the time-dependent
intersecting branes with cosmological constants for not
only the delocalized case but also the partially localized one
in D-dimensional gravitational theory. We are everywhere
brief, and on some points, we simply call attention to
questions that might be investigated in the future. The
function /; depends on time as well as the coordinate of the
relative and overall transverse spaces. The coupling con-
stants between the field strengths and the dilaton are given
by the assumptions (7) or (49) and depend on the parameter
N. In the case of the 11- or ten-dimensional supergravity
theory, the dilaton coupling requires N = 4. The power of
the time dependence depends on the number of the brane
and total dimensions with the parameter N of the dilaton
coupling constant.

An exceptional case arises if the parameter N in the
dilaton coupling takes another value than 4. There are static
solutions with N # 4 in the lower-dimensional supergravity
theories as well as Einstein-Maxwell theory [34,35]. In this
case one gets asymptotically power-law expanding solu-
tions if the dilaton is nontrivial. For the trivial dilaton, the
Einstein equations give an asymptotically de Sitter solution
for a single 2-form field strength. Since the cosmological
constant is related to the field strength, the time derivative
of the warp factor arises only from the Ricci tensor and
can be compensated by the cosmological constant in the
Einstein equations. This is the same structure as in
Refs. [21,22,36] and the generalization of the solutions
[36,63,64]. In N = 4 case, the equation of motion in the
presence of the cosmological constant gives the static
delocalized or partially localized intersecting brane solution
because of the ansatz of the fields. Thus, one expects
that the recipe for picking an accelerating expansion from
the dynamical intersecting brane solutions depends on the
dilaton coupling constant, and this is the case for the
proposal in Ref. [22]. Once the de Sitter solution is
obtained in the single p-brane solutions, it is possible to
apply it to the intersecting brane systems.

An immediate point is that the time-dependent solutions
make dynamical compactification more or less obvious,
since cosmological evolution is a general property of the
solution (with constant parameters) once the function #; is
properly endowed with the time dependence. The power of
the scale factor in some solutions gives an accelerating
expansion law even in the case that functions /; depend on
both the time and coordinates of overall transverse space,
while the extra dimension will shrink as cosmic time
increases. However, something is still missing, because
the scale factor of our Universe diverges at 7 = 7. At the
moment, it is not clear how to do this.

We have discussed the dynamics of the brane collisions.
As the spacetime is contracting in the D-dimensional
spacetime, each O-brane approaches others as the
time evolves for 7 < 0 but separates for z > 0 in the
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asymptotically power-law expanding solutions. Thus
O-branes never collide. In the case of asymptotically de
Sitter solutions, all domains between branes are connected
at 7=0 (c¢g <0). The domain shrinks as the time
decreases, while the proper distance becomes constant as
7 increases. For the O — pp-brane system (p <7), a
singularity appears before O-branes collide, and eventually
the topology of the spacetime changes so that branes are
separated by singular hypersurfaces surrounding each
brane if branes are not smeared. Thus, we cannot describe
the collision of two O-branes in terms of these solutions.
On the other hand, the 0 — 8-brane system in ten dimen-
sions or the smeared 0 — p;-brane system in D-dimensional
theory can provide examples of colliding branes if they
have the same brane charges and only one overall trans-
verse space. We have analyzed the collision of the brane
where the p, — p;-branes are localized at the same position
along the overall transverse directions, in the case of equal
charges. The brane collision would not occur if the brane
charges are different. Moreover, if these branes are local-
ized at different positions, it raises the possibility that the
curvature singularities appear.

We have also studied the dynamics of the five- or
six-dimensional supergravity models with applications to
cosmology and collision of branes. First we have discussed
the brane solutions to study the time evolution in the NSS
model. In the case of vanishing 3-form field strength in the
five-dimensional effective theory, the scale factor of our
four-dimensional spacetime is a linear function of the
cosmic time which is the same evolution as the Milne
universe. On the other hand, for the dynamical 1-brane
without 2-form field strength, the solution tells us that the
function A depends on all the world-volume coordinates of
the 1-brane. Hence, the contribution of the field strength
except for the 2-form leads to an inhomogeneous universe.
We have investigated the dynamics of 0-branes and found
that, when the spacetime is contracting in six dimensions,
each O-brane approaches the others as the time evolves. All
domains between branes connected initially (z = 0), but it
shrinks as ¢ increases. However, for the O-brane system
without smearing branes, a singularity appears before O-
branes collide, and eventually the topology of the spacetime
changes such that parts of the branes are separated by a
singular region surrounding each brane. Thus, the solution
cannot describe the collision of two 0-branes. In contrast, the
smeared 0-brane system with d; = 4 can provide an example
of colliding O-branes and collision of the universes, if they
have the same brane charges.

We have next constructed the time-dependent 1-brane
solution in the NSS supergravity model. In the asymptotic
far 1-brane region, the 1-brane spacetime in the NSS model
approaches the six-dimensional Milne universe. In regions
close to the 1-branes, for concreteness, we have studied the
case of two 1-branes in detail. The 1-brane is approaching
the other as the time progress for r < 0. We have found that,
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in the case of t < 0, all of the domains between the 1-branes
are initially connected, but some region (near small y)
shrinks as the time increases, and eventually the topology
of the spacetime changes such that parts of the branes are
separated by a singular region surrounding each 1-brane.
Thus, in the case of d; # 3, 1-branes never collide. On the
other hand, the case of d; = 3, for ¢t < 0, could provide an
example of colliding 1-branes. We found that the collision
time depends on both brane charges and the place in the
world volume of the 1-brane. Since this case has the time-
reversal symmetry, the evolution for ¢ > 0 is obtained by
the time-reversal transformation.

We also investigated the time-dependent solution in the
five-dimensional supergravity model. The power of the
scale factor is so small that the solutions cannot give a
realistic expansion law. Then, it is necessary to include
additional matter on the background in order to obtain a
realistic expanding universe.

We finally analyzed the classical instability of the
dynamical brane background towards singularity. In order
to present the instability of the dynamical brane back-
ground, we have estimated whether an instability does
exist by computing the energy of the Klein-Gordon modes.
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One can find that the energy seen by an observer diverges
as the curvature singularity is approached. This implies that
the mode of the scalar field is likely to destabilize the
background metric modes near the singularity. Although
this result has been given by preliminary analysis, it has
made the property of singularity in the dynamical brane
background more clear. It is also necessary for us to
perform a more rigorous analysis by considering in detail
the metric perturbation whether the stability analysis arrives
to the same conclusion or not.

A recent study of intersecting systems depending on the
time coordinate and overall transverse space shows that all
warp factors in the solutions can depend on time [28]. It is
interesting to study if similar more general solutions can be
obtained by relaxing some of our assumptions. We hope to
report on this subject in the near future elsewhere.
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