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We discuss the dynamics of intersecting p-branes with cosmological constants in the higher-dimensional
gravity theories. For the delocalized brane case, these solutions describe an asymptotically de Sitter or
power-law expanding universe, while for the partially localized intersecting branes, they describe
homogeneous and isotropic universes at each position of the overall transverse space. We then apply
these time-dependent branes to the study on the collision of two 0-branes and show that the 0 − 8-brane
system or the smeared 0 − pI-brane system can provide an example of colliding branes if they have the
same brane charges and only one overall transverse space. Finally, we argue some applications of the
solutions in supergravity models.
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I. INTRODUCTION

In many recent developments involving cosmological
models and brane collisions in higher-dimensional gravity
theories [1–33], the dynamical p-branes carrying charges
have played important roles. In the classical solution of a
single p-brane, the coupling of the dilaton to the field
strength includes the parameter N. Since these brane
solutions with N ¼ 4 are related to well-known D-branes
and M-branes in supergravity theories, they certainly
exhibit many attractive properties in the higher-dimensional
spacetime. Some static solutions with N ≠ 4 also have
supersymmetry after dimensional reductions to lower-
dimensional theory [34,35]. The time-dependent general-
izations of these solutions are thus important examples of
higher-dimensional gravity theories. The dynamical brane
solution with the cosmological constant can be obtained by
choosing the coupling constant appropriately [20,21,24].
For a single 2-form field strength and a nontrivial dilaton,
we have found that the dynamical single 0-brane solution
describes the Milne universe [21,24]. The field equations
give an asymptotically de Sitter solution if the scalar field
is trivial [24], which is a generalization of the Kastor-
Traschen solution in the four-dimensional Einstein-
Maxwell theory [36,37]. The construction of intersecting
branes with a cosmological constant is a natural generali-
zation of the single cosmological brane solutions. The
time-dependent intersecting branes we have mainly dis-
cussed are localized only along the relative or overall
transverse directions in a higher-dimensional background,
which are delocalized intersecting brane systems. However,
in the higher-dimensional gravity theories, one of the
branes is localized along the relative transverse directions
but delocalized along the overall transverse directions,
which are partially localized branes solutions. If the back-
ground has the cosmological constant, there is little known
about the dynamics of the intersecting brane system for

not only the delocalized case but also the partially local-
ized one.
In the present paper, we will explore the possible

generalization of these solutions to the case of the inter-
secting brane systems with cosmological constants,
although similar single brane solutions have been analyzed
in Ref. [24]. We recall these arguments for constructions of
the solution and modify the ansatz of the fields. A brane
configuration has to satisfy an intersection rule which is an
algebraic equation that relates the coupling of the dilaton
to the dimensionality of the branes. The intersection rule
implies that only the 0-brane can depend on time and the
dynamical 0-brane commutes with the static p-branes.
We will study the dynamical intersecting brane solutions
for not only the delocalized case but also the partially
localized one.
The paper is constructed as follows: In Secs. II and III,

we derive the dynamical intersecting brane solutions with
cosmological constants in a D-dimensional theory follow-
ing the approach developed in Ref. [24]. We then illustrate
how the dynamical solution of two or n intersecting branes
arise under the condition of N ≠ 4 in the D-dimensional
theory. The spacetime starts with the structure of the
combined 0-branes. If they do not have the same charges,
a singularity hypersurface appears before they meet as the
time decreases for D > 4. We then discuss the dynamics of
two 0-branes with static p-branes (or the dynamics of two
black holes) in Sec. IV. If there exists one uncompactified
extra dimension [0 − 8-brane system or 0 − ðD − 1Þ-brane
systems (p ≤ 7)] and two brane systems have the same
brane charges, the solution describes a collision of two
branes (or two black holes), which is similar to the result in
Refs. [3,21,28]. In Sec. V, applications of these solutions to
five- or six-dimensional supergravity models are discussed.
We consider in detail the construction yielding the dynami-
cal 0- or 1-brane in the Nishino-Salam-Sezgin model. We
also provide brief discussions for a time-dependent brane
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system in Romans’ supergravity model. We describe how
our Universe could be represented in the present formu-
lation via an appropriate compactification and give the
application to cosmology. We show that there exists no
accelerating expansion of our Universe, although the
conventional power-law expansion of the Universe is
possible. We then discuss the dynamics of two 0- or
1-branes with smeared branes. If two brane systems have
the same brane charges with smearing some dimensions,
the solution describes a collision of two brane backgrounds.
There is a curvature singularity in the dynamical brane

background if we set a particular value for the constant
parameters. Then the solution implies that the presence of
the singularities is signaling possible instabilities, making
the solutions sick or unphysical. We study the classical
stability of the solutions in Sec. VI. Our preliminary
analysis will present that the energy of Klein-Gordon
scalar fields in the dynamical brane background grows
with time for inertial observers approaching the singularity.
In terms of using the preliminary analysis performed in
Refs. [38–41], the Klein-Gordon modes will be studied,
arriving at the preliminary conclusion of instability.
Section VII will be devoted to the summary and
conclusions.

II. DYNAMICAL PARTIALLY LOCALIZED
INTERSECTING BRANE BACKGROUNDS
WITH COSMOLOGICAL CONSTANTS

In this section, we will construct the partially localized
time-dependent brane systems in D dimensions with
cosmological constants.
We consider a D-dimensional theory composed of the

metric gMN , the scalar field ϕ, cosmological constants
ΛIðI ¼ r; sÞ, and two antisymmetric tensor field strengths

of rank ðpr þ 2Þ and ðps þ 2Þ. The action in D dimensions
is given by

S ¼ 1

2κ2

Z �
ðR − 2eαrϕΛr − 2eαsϕΛsÞ � 1D −

1

2
� dϕ∧dϕ

−
1

2

1

ðpr þ 2Þ! e
ϵrcrϕ � Fðprþ2Þ∧Fðprþ2Þ

−
1

2

1

ðps þ 2Þ! e
εscsϕ � Fðpsþ2Þ∧Fðpsþ2Þ

�
; ð1Þ

where R denotes the Ricci scalar constructed from the
D-dimensional metric gMN , αIðI ¼ r; sÞ are constants, κ2

denotes the D-dimensional gravitational constant, � is the
Hodge operator in the D-dimensional spacetime, and
Fðprþ2Þ and Fðpsþ2Þ are ðpr þ 2Þ and ðps þ 2Þ-form field
strengths, respectively. The constant parameters cI and
ϵIðI ¼ r; sÞ are defined by

c2I ¼ NI −
2ðpI þ 1ÞðD − pI − 3Þ

D − 2
; ð2aÞ

ϵI ¼
�þ if the pI-brane is electric;

− if the pI-brane is magnetic;
ð2bÞ

respectively. Here NI is constant. The ðpr þ 2Þ-form and
ðps þ 2Þ-form field strengths Fðprþ2Þ and Fðpsþ2Þ are given
by the ðpr þ 1Þ-form and ðps þ 1Þ-form gauge potentials
Aðprþ1Þ and Aðpsþ1Þ, respectively:

Fðprþ2Þ ¼ dAðprþ1Þ; Fðpsþ2Þ ¼ dAðpsþ1Þ: ð3Þ

For the D-dimensional action (1), the field equations read

RMN ¼ 2

D − 2
ðeαrϕΛr þ eαsϕΛsÞgMN þ 1

2
∂Mϕ∂Nϕþ 1

2

eϵrcrϕ

ðpr þ 2Þ!
�
ðpr þ 2ÞFMA2…Aðprþ2ÞFN

A2…Aðprþ2Þ −
pr þ 1

D − 2
gMNF2

ðprþ2Þ

�

þ 1

2

eϵscsϕ

ðps þ 2Þ!
�
ðps þ 2ÞFMA2…Aðpsþ2ÞFN

A2…Aðpsþ2Þ −
ps þ 1

D − 2
gMNF2

ðpsþ2Þ

�
; ð4aÞ

▵ϕ −
1

2

ϵrcr
ðpr þ 2Þ! e

ϵrcrϕF2
ðprþ2Þ −

1

2

ϵscs
ðps þ 2Þ! e

ϵscsϕF2
ðpsþ2Þ − 2αreαrϕΛr − 2αseαsϕΛs ¼ 0; ð4bÞ

d½eϵrcrϕ � Fðprþ2Þ� ¼ 0; ð4cÞ

d½eϵscsϕ � Fðpsþ2Þ� ¼ 0; ð4dÞ

where ▵ denotes the Laplace operator with respect to the D-dimensional metric gMN .
The D-dimensional metric involving the intersecting branes with a cosmological constant can be put in the general form

ds2 ¼ harr ðx; y; zÞhass ðx; v; zÞqμνðXÞdxμdxν þ hbrr ðx; y; zÞhass ðx; v; zÞγijðY1Þdyidyj
þ harr ðx; y; zÞhbss ðx; v; zÞwmnðY2Þdvmdvn þ hbrr ðx; y; zÞhbss ðx; v; zÞuabðZÞdzadzb; ð5Þ
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where qμν is the ðpþ 1Þ-dimensional metric depending
only on the ðpþ 1Þ-dimensional coordinates xμ, γij is
the ðps−pÞ-dimensional metric depending only on the
ðps − pÞ-dimensional coordinates yi, wmn is the ðpr − pÞ-
dimensional metric depending only on the ðpr − pÞ-
dimensional coordinates vm, and uab is the
ðDþ p − pr − ps − 1Þ-dimensional metric depending only
on the ðDþ p − pr − ps − 1Þ-dimensional coordinates za.
Here we assume that the parameters aIðI ¼ r; sÞ and
bIðI ¼ r; sÞ in the metric (5) are given by

aI ¼ −
4ðD − pI − 3Þ
NIðD − 2Þ ; bI ¼

4ðpI þ 1Þ
NIðD − 2Þ : ð6Þ

The brane configuration is illustrated in Table I.
The dynamical brane solutions are characterized

by two warp factors hr and hs, depending on the ðDþ p−
pr − ps − 1Þ-dimensional coordinates transverse to the
corresponding brane as well as the ðpþ 1Þ-dimensional
world-volume coordinate. In the case of intersection
involving two branes, the powers of warp factors have
to obey the intersection rule and then split the coordinates
in four parts [42–44]. One is coordinates of the world-
volume spacetime, xμ, which are common to the pr-, ps-
branes. The others are coordinates of the overall transverse
space za and coordinates of the relative transverse yi and
vm, which are transverse to only one of the pr-, ps-branes.
In this section, we consider the intersections of a pr- and a
ps-brane with the following conditions in D dimensions.
We assume that the functions hr and hs depend not only on
overall transverse coordinates but also on the correspond-
ing relative coordinates and world-volume coordinates. We
therefore may write hr ¼ hrðx; y; zÞ; hs ¼ hsðx; v; zÞ.
We give the expression for the field strengths Fðprþ2Þ and

Fðpsþ2Þ and scalar field ϕ of a pr-brane intersecting with a
ps-brane over a p-brane configuration:

eϕ ¼ h2ϵrcr=Nr
r h2ϵscs=Ns

s ; ð7aÞ

Fðprþ2Þ ¼
2ffiffiffiffiffiffi
Nr

p d½h−1r ðx; y; zÞ�∧ΩðXÞ∧ΩðY2Þ; ð7bÞ

Fðpsþ2Þ ¼
2ffiffiffiffiffiffi
Ns

p d½h−1s ðx; v; zÞ�∧ΩðXÞ∧ΩðY1Þ; ð7cÞ

where ΩðXÞ, ΩðY1Þ, and ΩðY2Þ are the volume ðpþ 1Þ-
form, ðps − pÞ-form, and ðpr − pÞ-form, respectively:

ΩðXÞ ¼ ffiffiffiffiffiffi
−q

p
dx0∧dx1∧ � � �∧dxp; ð8aÞ

ΩðY1Þ ¼ ffiffiffi
γ

p
dy1∧dy2∧ � � �∧dyps−p; ð8bÞ

ΩðY2Þ ¼
ffiffiffiffi
w

p
dv1∧dv2∧ � � �∧dvpr−p: ð8cÞ

Here, q, γ, andw denote the determinants of the metrics qμν,
γij, and wmn, respectively.

A. Power-law expanding universe

In this subsection, we consider the field equations (7)
with cIðI ¼ r; sÞ ≠ 0. The parameters αIðI ¼ r; sÞ are
assumed to be

αr ¼ −ϵrcr; αs ¼ −ϵscs: ð9Þ

Let us first consider the gauge field equations (4c) and
(4d). Using the assumptions (5) and (7), we have

d½h4ðχþ1Þ=Ns
s ∂ihrð�Y1

dyiÞ∧ΩðZÞ
þ h4χ=Ns

s ∂ahrð�ZdzaÞ∧ΩðY1Þ� ¼ 0; ð10aÞ

d½h4ðχþ1Þ=Nr
r ∂mhsð�Y2

dvmÞ∧ΩðZÞ
þ h4χ=Nr

r ∂ahsð�ZdzaÞ∧ΩðY2Þ� ¼ 0; ð10bÞ

where �Y1
, �Y2

, and �Z denote the Hodge operator on Y1,
Y2, and Z, respectively, and χ is given by

χ ¼ pþ 1 −
ðpr þ 1Þðps þ 1Þ

D − 2
þ 1

2
ϵrϵscrcs: ð11Þ

In the following, we discuss the case of χ ¼ 0, because the
relation χ ¼ 0 is consistent with the intersection rule which
has been found in Refs. [11,15,22,24,45–60].
Setting χ ¼ 0, Eq. (10a) gives

hs▵Y1
hr þ ▵Zhr ¼ 0; ∂μ∂ihr þ

4

Ns
∂μ ln hs∂ihr ¼ 0;

∂μ∂ahr ¼ 0; ð12Þ

where ▵Y1
and ▵Z are the Laplace operators on the space of

Y1 and Z, respectively.

TABLE I. Intersections of pr − ps-branes in the metric (5), where p0 ¼ ps þ pr − p.

Case 0 1 � � � p pþ 1 � � � ps ps þ 1 � � � p0 p0 þ 1 � � � D − 1

pr ∘ ∘ ∘ ∘ ∘ ∘ ∘
pr − ps ps ∘ ∘ ∘ ∘ ∘ ∘ ∘

xN t x1 � � � xp y1 � � � yps−p v1 � � � vpr−p z1 � � � zD−p0−1
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On the other hand, Eq. (10b) leads to

hr▵Y2
hs þ▵Zhs ¼ 0; ∂μ∂mhs þ

4

Nr
∂μ lnhr∂mhs ¼ 0;

∂μ∂ahs ¼ 0; ð13Þ

where we used Eq. (11) and ▵Y2
is the Laplace operators on

the space of Y2.
Now we consider the Einstein equation (4a). Using

the ansatz (5) and (7) and the intersection rule χ ¼ 0,
the Einstein equations become

RμνðXÞ −
4

Nr
h−1r DμDνhr −

4

Ns
h−1s DμDνhs þ

2

Nr
∂μ ln hr

��
1 −

4

Nr

�
∂ν ln hr −

4

Ns
∂ν ln hs

�

þ 2

Ns
∂μ ln hs

��
1 −

4

Ns

�
∂ν ln hs −

4

Nr
∂ν ln hr

�
−

2

D − 2
ðΛrh

−2þarpr
r has−2ϵrϵscrcs=Ns

s þ Λsh
ar−2ϵrϵscrcs=Nr
r h−2þasps

s Þqμν

−
1

2
qμνh

−4=Nr
r h−4=Ns

s ½arh−1r ðh4=Ns
s ▵Y1

hr þ ▵ZhrÞ þ ash−1s ðh4=Nr
r ▵Y2

hs þ ▵ZhsÞ�

−
1

2
qμν

�
arh−1r ▵Xhr − arqρσ∂ρ ln hr

��
1 −

4

Nr

�
∂σ ln hr −

4

Ns
∂σ ln hs

�

þash−1s ▵Xhs − asqρσ∂ρ ln hs

��
1 −

4

Ns

�
∂σ ln hs −

4

Nr
∂σ ln hr

��
¼ 0; ð14aÞ

2

Nr
h−1r

�
∂μ∂ihr þ

4

Ns
∂μ ln hs∂ihr

�
¼ 0;

2

Ns
h−1s

�
∂μ∂mhs þ

4

Nr
∂μ ln hr∂mhs

�
¼ 0; ð14bÞ

2

Nr
h−1r ∂μ∂ahr þ

2

Ns
h−1s ∂μ∂ahs ¼ 0; ð14cÞ

RijðY1Þ −
1

2
h4=Nr
r γij

�
brh−1r ▵Xhr − brqρσ∂ρ ln hr

��
1 −

4

Nr

�
∂σ ln hr −

4

Ns
∂σ ln hs

�

þash−1s ▵Xhs − asqρσ∂ρ ln hs

��
1 −

4

Ns

�
∂σ ln hs −

4

Nr
∂σ ln hr

��

−
1

2
γijh

−4=Ns
s fbrh−1r ðh4=Ns

s ▵Y1
hr þ ▵ZhrÞ þ ash−1s ðh4=Nr

r ▵Y2
hs þ ▵ZhsÞg

−
2

D − 2
½Λrh

−2þarprþ4=Nr
r has−2ϵrϵscrcs=Ns

s þ Λsh
ar−2ðϵrϵscrcs−2Þ=Nr
r h−2þasps

s �γij ¼ 0; ð14dÞ

8

NrNsðD − 2Þ2 ½ðpr þ 1Þðps þ 1Þ − ðD − 2Þðpr þ ps þ 2Þ�∂i ln hr∂m ln hs ¼ 0; ð14eÞ

RmnðY2Þ −
1

2
h4=Ns
s wmn

�
arh−1r ▵Xhr − arqρσ∂ρ ln hr

��
1 −

4

Nr

�
∂σ ln hr −

4

Ns
∂σ ln hs

�

þbsh−1s ▵Xhs − bsqρσ∂ρ ln hs

��
1 −

4

Ns

�
∂σ ln hs −

4

Nr
∂σ ln hr

��

−
1

2
wmnh

−4=Nr
r farh−1r ðh4=Ns

s ▵Y1
hr þ ▵ZhrÞ þ bsh−1s ðh4=Nr

r ▵Y2
hs þ ▵ZhsÞg

−
2

D − 2
½Λrh

−2þarpr
r has−2ðϵrϵscrcs−2Þ=Ns

s þ Λsh
ar−2ϵrϵscrcs=Nr
r h−2þaspsþ4=Ns

s �wmn ¼ 0; ð14fÞ
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RabðZÞ −
1

2
h4=Nr
r h4=Ns

s uab

�
brh−1r ▵Xhr − brqρσ∂ρ ln hr

��
1 −

4

Nr

�
∂σ ln hr −

4

Ns
∂σ ln hs

�

þbsh−1s ▵Xhs − bsqρσ∂ρ ln hs

��
1 −

4

Ns

�
∂σ ln hs −

4

Nr
∂σ ln hr

��

−
1

2
uab½brh−1r ðh4=Ns

s ▵Y1
hr þ ▵ZhrÞ þ bsh−1s ðh4=Nr

r ▵Y2
hs þ ▵ZhsÞ�

−
2

D − 2
½Λrh

−2þarprþ4=Nr
r has−2ðϵrϵscrcs−2Þ=Ns

s þ Λsh
ar−2ðϵrϵscrcs−2Þ=Nr
r h−2þaspsþ4=Ns

s �uab ¼ 0; ð14gÞ

whereDμ is the covariant derivative constructed from the
metric qμν, ▵X, ▵Y1

, ▵Y2
, and ▵Z are the Laplace operators

on X, Y1, Y2, and Z, respectively, and RμνðXÞ, RijðY1Þ,
RmnðY2Þ, and RabðZÞ are the Ricci tensors with respect
to the metrics qμνðXÞ, γijðY1Þ, wmnðY2Þ, and uabðZÞ,
respectively.
From Eqs. (14b) and (14c), the warp factors hr and hs

can be expressed as

hr ¼ h0ðxÞ þ h1ðy; zÞ; hs ¼ hsðv; zÞ; for ∂μhs ¼ 0;

ð15aÞ

hr ¼ hrðy; zÞ; hs ¼ k0ðxÞ þ k1ðv; zÞ; for ∂μhr ¼ 0:

ð15bÞ

If we require that the background satisfies

∂μhs ¼ 0; p ¼ pr ¼ 0; Λs ¼ 0; χ ¼ 0;

ð16Þ

the Einstein equations (14) reduce to

−
2

Nr

�
2h−1r

d2h0
dt2

−
�
1 −

4

Nr

�
ð∂t ln hrÞ2

�
þ 2

D − 2
Λrh−2r

þ 1

2
h−4=Nr
r h−4=Ns

s ½arh−1r ðh4=Ns
s ▵Y1

h1 þ ▵Zh1Þ þ ash−1s ▵Zhs� −
1

2
ar

�
h−1r

d2h0
dt2

−
�
1 −

4

Nr

�
ð∂t ln hrÞ2

�
¼ 0; ð17aÞ

RijðY1Þ þ
1

2
brh

4=Nr
r γij

�
h−1r

d2h0
dt2

−
�
1 −

4

Nr

�
ð∂t ln hrÞ2

�

−
2

D − 2
Λrh

−2þ 4
Nr

r γij −
1

2
γijh

−4=Ns
s ½brh−1r ðh4=Ns

s ▵Y1
h1 þ ▵Zh1Þ þ ash−1s ▵Zhs� ¼ 0; ð17bÞ

RabðZÞ þ
1

2
brh

4=Nr
r h4=Ns

s uab

�
h−1r

d2h0
dt2

−
�
1 −

4

Nr

�
ð∂t ln hrÞ2

�

−
2Λr

D − 2
h
−2þ 4

Nr
r h

4
Ns
s uab −

1

2
uab½brh−1r ðh4=Ns

s ▵Y1
h1 þ ▵Zh1Þ þ bsh−1s ▵Zhs� ¼ 0: ð17cÞ

Note that Eq. (14f) becomes trivial for p ¼ pr ¼ 0. By combining the above equations and setting p ¼ pr ¼ 0, the Einstein
equations for Nr ≠ 4 lead to

RijðY1Þ ¼ 0; RabðZÞ ¼ 0; ð18aÞ

hr ¼ h0ðtÞ þ h1ðy; zÞ; hs ¼ hsðzÞ; ð18bÞ

�
dh0
dt

�
2

þ Nr

�
1 −

4

Nr

�
−1
Λr ¼ 0; h4=Ns

s ▵Y1
h1 þ ▵Zh1 ¼ 0; ð18cÞ

▵Zhs ¼ 0: ð18dÞ
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Finally, we check the scalar field equation for the case of p ¼ pr ¼ 0. Substituting Eqs. (7), (15), and (16) and the
intersection rule χ ¼ 0 into Eq. (4b), we have

ϵrcr
Nr

h−br4=Nr
r h−bs4=Ns

s

�
−h−1r

d2h0
dt2

þ
�
1−

4

Nr

�
ð∂t lnhrÞ2þNrΛrh−2r

�
þϵrcr

Nr
h−1r ðh4=Ns

s ▵Y1
h1þ▵Zh1Þþ

ϵscs
Ns

h−1s ▵Zhs¼0:

ð19Þ

Hence the scalar field equation (19) reads

d2h0
dt2

¼ 0;

�
dh0
dt

�
2

þ Nr

�
1 −

4

Nr

�
−1
Λr ¼ 0;

h4=Ns
s ▵Y1

h1 þ ▵Zh1 ¼ 0; ð20aÞ

▵Zhs ¼ 0: ð20bÞ

These are consistent with the Einstein equations (18). The
function hr can depend on the coordinate t only if Nr ≠ 4.
For Nr ¼ 4, the scalar field equation leads to Λr ¼ 0.
We can find the solution in which the ps-brane part

depends on xμ. For p ¼ ps ¼ 0, Λr ¼ 0, and ∂thr ¼ 0,
we have

RmnðY2Þ ¼ 0; RabðZÞ ¼ 0; ð21aÞ

hr ¼ hrðzÞ; hs ¼ k0ðtÞ þ k1ðv; zÞ; ð21bÞ

d2k0
dt2

¼ 0;

�
dk0
dt

�
2

þ Ns

�
1 −

4

Ns

�
−1
Λs ¼ 0;

h4=Nr
r ▵Y2

k1 þ ▵Zk1 ¼ 0; ð21cÞ

▵Zhr ¼ 0: ð21dÞ

It is clear that there is a solution for k0ðtÞ such as ∂ths ≠ 0
unless Ns ¼ 4. For Nr ¼ 4, the field equations lead
to Λr ¼ 0.
If Fðprþ2Þ ¼ 0 and Fðpsþ2Þ ¼ 0, the warp factors h1 and

k1 are trivial functions. Then the D-dimensional spacetime
is no longer warped [11]. Moreover, Eqs. (18) and (21)
imply the two cases. First, pr-, ps-branes are delocalized.
These are localized only along the overall transverse
directions. Second, the 0-brane is completely localized
on the ps- (or pr-) brane which is localized only along the
overall transverse directions, which is a partially localized
pr − 0 (or 0 − ps) brane system.
As an example, we set

p ¼ pr ¼ 0; γij ¼ δij; uab ¼ δab;

hs ¼ hsðzÞ;
ð22Þ

where δij and δab are the ps- and ðD − ps − 1Þ-dimensional
Euclidean metrics, respectively. Equation (18c) gives

h0ðtÞ ¼ c0tþ c1; c0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nr

�
4

Nr
− 1

�
−1
Λr

s
; ð23Þ

where c0 and c1 are constants. Hence, solutions exist for
Nr < 4 if Λr > 0 and vice versa.
If the functions h1 and hs satisfy the coupled partial

differential equations

h4=Ns
s ▵Y1

h1 þ ▵Zh1 ¼ 0; ▵Zhs ¼ 0; ð24Þ

the harmonic function hs that satisfies the equation in (18d)
takes the form

hsðzÞ ¼ 1þ
X
l

Ml

jza − zaljD−ps−3
; ð25Þ

where zal is the location of the lth ps-brane and Ml is
constant. Since we consider the case in which the ps-branes
coincide at the same location in the overall transverse
directions, the harmonic function hs can be written by the
following form [27,61,62]:

hsðzÞ ¼
M

jza − za0jD−ps−3
; ð26Þ

whereM is constant and the stack of ps-branes is located at
the same points za0 along the z directions. We can find
solutions for the harmonic function h1 in the case where
each of the ps-branes does not coincide at the same location
in the overall transverse directions.
If we set D − ps ≠ 3 and 2 − 4N−1

s ðD − ps − 3Þ ≠ 0 for
the overall transverse space, Eq. (24) can be solved as
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h1ðy; zÞ ¼ 1þ
X
l

Ml

½jyi − yilj2 þ 4M4=Ns

f2−4N−1
s ðD−ps−3Þg2 jz

a − za0j2−4N
−1
s ðD−ps−3Þ�ζr ; ð27Þ

where Ml is constant and ζr is given by

ζr ¼
1

2

�
ps − 1þ ð2 − 4N−1

s ÞðD − ps − 3Þ þ 2

2 − 4N−1
s ðD − ps − 3Þ

�
: ð28Þ

Hence, the functions hr and hs can be expressed as

hrðt; y; zÞ ¼ c0tþ c1 þ
X
l

Ml

½jyi − yilj2 þ 4M4=Ns

f2−4N−1
s ðD−ps−3Þg2 jz

a − za0j2−4N
−1
s ðD−ps−3Þ�ζr ; ð29aÞ

hsðzÞ ¼
M

jza − za0jD−ps−3
; ð29bÞ

where c0, c1, Ml, and M are constant parameters and yil
and za0 are constants representing the positions of the
branes. The curvature singularities appear at hr ¼ 0 in
the D-dimensional metric (5). Moreover, there is also a
singularity at za ¼ za0 unless the scalar field is trivial.
Upon setting D − ps ¼ 3 and Ns ¼ 4, the solutions

of Eq. (24) are given by

hrðt;y;zÞ¼c0tþc1þ
X
l

Ml

½jyi−yilj2þMjza−za0j2�
1
2
ðpsþ1Þ ;

ð30aÞ

hsðzÞ ¼ M ln jza − za0j: ð30bÞ

In the case of D − ps ¼ 5 and Ns ¼ 4, the functions hr
and hs can be written by

hrðt;y;zÞ¼c0tþc1þ
X
l

Ml½jyi−yilj2−psM ln jza−za0j�;
ð31aÞ

hsðzÞ ¼
M

jza − za0j2
: ð31bÞ

The solutions (30) and (31) have a singular hypersurface at
infinity as well as at hr ¼ 0, because the D-dimensional
metric depends on the logarithmic function of the trans-
verse coordinates. These solutions also give a singularity at
za ¼ za0 if the dilaton is nontrivial.
It is possible to find the solution for ∂thr ¼ 0 and

∂ths ≠ 0 if the roles of Y1 and Y2 are exchanged.
The solution of the field equations for D − pr ≠ 3 and
D − pr ≠ 5 can be written by

hsðt; v; zÞ ¼ c0tþ c1 þ
X
l

Ml

½jvm − vml j2 þ 4M4=Nr

f2−4N−1
r ðD−pr−3Þg2 jz

a − za0j2−4N
−1
r ðD−pr−3Þ�ζs ; ð32aÞ

hrðzÞ ¼
M

jza − za0jD−pr−3
; ð32bÞ

where ζs is given by

ζs ¼
1

2

�
pr − 1þ ð2 − 4N−1

r ÞðD − pr − 3Þ þ 2

2 − 4N−1
r ðD − pr − 3Þ

�
: ð33Þ

If we set D − pr ¼ 3, D − pr ¼ 5, and Nr ¼ 4, the harmonic functions hr and hs have logarithmic spatial dependence like
(30) and (31).
Assuming Λr > 0 and introducing a new time coordinate τ by

τ

τ0
¼ ðc0tþ c1Þ

ðNr−2ÞðD−2Þþ2

NrðD−2Þ ; τ0 ¼
NrðD − 2Þ

c0½ðNr − 2ÞðD − 2Þ þ 2� ; ð34Þ
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we find the D-dimensional metric (5) as

ds2¼
�
1þ

�
τ

τ0

�
− NrðD−2Þ
ðNr−2ÞðD−2Þþ2

h1

�− 4ðD−3Þ
NrðD−2Þ

hass

�
−dτ2þ

�
1þ

�
τ

τ0

�
− NrðD−2Þ
ðNr−2ÞðD−2Þþ2

h1

� 4
Nr
�
τ

τ0

� 4
ðNr−2ÞðD−2Þþ2

�
γijdyidyjþh

4
Ns
s uabdzadzb

��
:

ð35Þ

Since hs does not approach constant in any region, the
whole spacetime cannot be homogeneous and isotropic.
But on each za ¼ const slice the spacetime becomes a
homogeneous and isotropic universe. In the limit τ → ∞,
the function h1 can be negligible in the warp factor. This is
guaranteed by a scalar field with the exponential potential.
The accelerating universe is obtained on each za ¼ const
slice if Nr < 2, which corresponds to the case of a positive
cosmological constant. For 2ðD−3Þ

D−2 < Nr < 2, the solution
provides a power-law inflationary universe, and for
Nr >

2ðD−3Þ
D−2 , the scale factor diverges at τ ¼ τ∞ > 0, taking

the involution τ → τ∞ − τ. Finally, for Nr ¼ 2ðD−3Þ
D−2 , we

obtain a de Sitter universe which will be discussed in the
next subsection.

B. de Sitter universe

Next, we consider the solution with a dilaton which is
the case of cI ¼ 0ðI ¼ r or sÞ. In terms of cI ¼ 0, Eq. (2a)
gives

NI ¼
2ðD − pI − 3ÞðpI þ 1Þ

ðD − 2Þ : ð36Þ

If we assume

cr ¼ 0; cs ≠ 0; p ¼ pr ¼ 0;

Nr ¼
2ðD − 3Þ
ðD − 2Þ ; αr ¼ −

Nsas
2ϵscs

; Λs ¼ 0; ð37Þ

the field equations reduce to

RijðY1Þ ¼ 0; RabðZÞ ¼ 0; ð38aÞ

hrðt; y; zÞ ¼ h0ðtÞ þ h1ðy; zÞ;�
dh0
dt

�
2

−
2ðD − 3Þ2

ðD − 2ÞðD − 1ÞΛr ¼ 0; ð38bÞ

h4=Ns
s ▵Y1

h1 þ ▵Zh1 ¼ 0; ▵Zhs ¼ 0: ð38cÞ

Then Eq. (38b) gives

h0 ¼ c0tþ c1; ð39Þ

where c1 is an integration constant and c0 is given by

c0 ¼ �ðD − 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ðD − 2ÞðD − 1ÞΛr

s
: ð40Þ

Thus there is no solution for Λr < 0. If the metric uabðZÞ is
assumed to be Eq. (22), the function h1 is given by Eq. (27).
Now we introduce a new time coordinate τ by

c0τ ¼ ln t; ð41Þ
where we have set c0 > 0 for simplicity. Then the
D-dimensional metric (5) can be expressed as

ds2 ¼ hass ½−ð1þ c−10 e−c0τh1Þ−2dτ2
þ ð1þ c−10 e−c0τh1Þ2=ðD−3Þðc0ec0τÞ2=ðD−3Þ

× fγijðY1Þdyidyj þ h4=Ns
s uabðZÞdzadzbg�: ð42Þ

The function hs does not become constant in any region.
Then, the D-dimensional spacetime cannot be de Sitter
spacetime. However, the spacetime gives a homogeneous
and isotropic universe on each yi ¼ const, za ¼ const slice.
If we set hs ¼ const and h1 ¼ h1ðzÞ, Eq. (42) becomes
the solution which has been discussed by Refs. [63,64]
(see also [65]). Furthermore, for D ¼ 4 and by setting
hs ¼ 1, the solution is the Kastor-Traschen one [36].

III. THE INTERSECTION INVOLVING
n BRANE BACKGROUNDS

The construction that we have analyzed in Sec. II is a
special case of a more general construction of intersecting
branes with a cosmological constant. In effect, we have
been studying the special case of intersections involving a
two-brane. The time-dependent brane with a cosmological
constant property is a 0-brane, represented by a 2-form. To
describe more general intersections on a time-dependent
background, one simply incorporates additional branes in a
dynamical background. Without loss of the time depend-
ence, it is possible to also add n delocalized branes. This
also has one important further refinement. Instead of
power-law expansion, the support of a 0-brane might be
accelerated expansion, where D-dimensional geometry is
an asymptotically de Sitter spacetime. The n intersection
allows the time dependence of only 0-branes but not of the
p-branes (p ≠ 0). The reason for this is that the time-
dependent brane we have obtained can be performed in the
case of χ ¼ 0, where χ is defined by (11). So the coefficient
of the time dependence is simply proportional to the
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cosmological constant that we have explored in Sec. II: the
Einstein equations give p ¼ 0.
In this section, we discuss the intersection of the

delocalized n branes in the higher-dimensional gravity
theory with the cosmological constants. The general action
describing the intersection involving the n brane system is
given by

S ¼ 1

2κ2

Z ��
R − 2

X
I

eαIϕΛI

�
� 1D −

1

2
� dϕ∧dϕ

−
1

2

X
I

eϵIcIϕ

ðpI þ 2Þ! � FðpIþ2Þ∧FðpIþ2Þ

�
; ð43Þ

where κ2 denotes the D-dimensional gravitational constant,
R is the D-dimensional Ricci scalar constructed from the
D-dimensional metric gMN , ϕ is a scalar field, FðpIþ2Þ is the
antisymmetric tensor fields of rank ðpI þ 2Þ, � is the Hodge
dual operator in the D-dimensional spacetime, and cI and
ϵI are constants defined by

c2I ¼ NI −
2ðpI þ 1ÞðD − pI − 3Þ

D − 2
; ð44aÞ

ϵI ¼
�þ for the electric brane;

− for the magnetic brane:
ð44bÞ

Here I denotes the type of the corresponding branes.
The D-dimensional action (43) gives the field equations

RMN¼
2

D−2

X
I

eαIϕΛIgMNþ
1

2
∂Mϕ∂Nϕ

þ1

2

X
I

1

ðpIþ2Þ!e
ϵIcIϕ

�
ðpIþ2ÞFMA2…ApIþ2

FN
A2…ApIþ2

−
pIþ1

D−2
gMNF2

ðpIþ2Þ

�
; ð45aÞ

▵ϕ − 2
X
I

αIeαIϕΛI −
1

2

X
I

ϵIcI
ðpI þ 2Þ! e

ϵIcIϕF2
ðpIþ2Þ ¼ 0;

ð45bÞ

d½eϵIcIϕ � FðpIþ2Þ� ¼ 0; ð45cÞ

where ▵ denotes the Laplace operator with respect to the
D-dimensional metric gMN .
We adopt the ansatz that the D-dimensional metric can

be written by

ds2 ¼ −Aðt; zÞdt2 þ
Xp
α¼1

BðαÞðt; zÞðdxαÞ2

þ Cðt; zÞuabðZÞdzadzb; ð46Þ

where uabðZÞ denotes the metric of the ðD − p − 1Þ-
dimensional Z space which depends only on the
ðD − p − 1Þ-dimensional coordinates za. Concerning the
functions A, BðαÞ, and C, we assume

A ¼
Y
I

½hIðt; zÞ�aI ; BðαÞ ¼
Y
I

½hIðt; zÞ�δ
ðαÞ
I ;

C ¼
Y
I

½hIðt; zÞ�bI ;
ð47Þ

where the constants aI , bI , and δðαÞI are given, respectively,
by

aI ¼ −
4ðD − pI − 3Þ
NIðD − 2Þ ; bI ¼

4ðpI þ 1Þ
NIðD − 2Þ ;

δðαÞI ¼
�
aI for α ∈ I;

bI for α∉I. ð48Þ

The function hIðt; zÞ is a straightforward generalization of
the static solution associated with the brane I in an
intersecting brane system [54,55] to the dynamical one.
We further require that the dilaton ϕ and the form fields

Fðpþ2Þ satisfy the following conditions:

eϕ ¼
Y
I

h2ϵIcI=NI
I ; FðpIþ2Þ ¼

2ffiffiffiffiffiffi
NI

p dðh−1I Þ∧ΩðXIÞ;

ð49Þ

where XI is the space associated with the brane I, and the
volume ðpI þ 1Þ-form ΩðXIÞ is written by

ΩðXIÞ ¼ dt∧dxp1∧ � � �∧dxpI : ð50Þ

A. Power-law expanding universe

Firstly, we consider the Einstein equations (45a) with
cI ≠ 0ðI ¼ 0;…; n − 1Þ. We assume that the parameters
αIðI ¼ 0;…; n − 1Þ are given by

αI ¼ −ϵIcI: ð51Þ

We impose the condition with respect to the components
of D-dimensional metric [55]

AðD−p−3Þ Yp
α¼1

BðαÞC ¼ 1; A−1
Y
α∈I

ðBðαÞÞ−1eϵIcIϕ ¼ h2I :

ð52Þ

The Einstein equations (45a) become
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X
I;I0

�
2

NI
δII0 −MII0

�
∂t ln hI∂t ln hI0 þ

2

D − 2

X
I

ΛIh
−2þaIpI
I

Y
I0≠I

h
aI0−

2εI εI0 cIcI0
NI0

I0

þ 1

2

X
I

bI

��
1 −

4

NI

�
∂t ln hI −

X
I0≠I

4

NI0
∂t ln hI0

�
∂t ln hI −

1

2

X
I

�
4

NI
þ bI

�
h−1I ∂2

t hI þ
1

2

Y
I0
h−4=NI0
I0

X
I

aIh−1I ▵ZhI ¼ 0;

ð53aÞ

X
I

2

NI
h−1I ∂t∂ahI þ

X
I;I0

�
MII0 −

2

NI0
δII0

�
∂t ln hI∂a ln hI0 ¼ 0; ð53bÞ

Y
J0
h−aJ0J0

X
γ

Y
J

h
δðγÞJ
J

X
I

δðγÞI

�
h−1I ∂2

t hI −
��

1 −
4

NI

�
∂t ln hI−

X
I0≠I

4

NI0
∂t ln hI0

�
∂t ln hI

�

−
Y
J0
h−bJ0J0

X
γ

Y
J

h
δðγÞJ
J

X
I

δðγÞI h−1I ▵ZhI −
4

D − 2

X
I

ΛIh
−2þδðγÞI pI

I

Y
I0≠I

h
δðγÞ
I0 −

2ϵI ϵI0 cIcI0
NI0

I0 ¼ 0; ð53cÞ

RabðZÞ þ
1

2
uab

Y
J

h4=NJ
J

X
I

bI

�
h−1I ∂2

t hI −
��

1 −
4

NI

�
∂t ln hI −

X
I0≠I

4

NI0
∂t ln hI0

�
∂t ln hI

�

−
1

2
uab

X
I

bIh−1I ▵ZhI −
X
I;I0

2

NI

�
MII0 −

2

NI0
δII0

�
∂a ln hI∂b ln hI0 −

2

D − 2

X
I

ΛIh
−2þaIpIþ 4

NI
I

Y
I0≠I

h
aI0−

2ðεI εI0 cIcI0−2Þ
NI0

I0 uab ¼ 0;

ð53dÞ

where RabðZÞ is the Ricci tensor with respect to the metric
uabðZÞ and MII0 is defined by

MII0 ≡ 1

4

�
aIaI0 þ

X
α

δðαÞI δðαÞI0 þ ðD − p − 3ÞbIbI0
�

þ 2

NINI0
ϵIϵI0cIcI0 : ð54Þ

Equation (53b) can be rewritten as

X
I;I0

�
MII0 þ

2

NI
δII0

∂t∂a ln hI
∂t ln hI∂a ln hI

�
∂t ln hI∂a ln hI0 ¼ 0:

ð55Þ

One can find that Eq. (55) is equivalent to satisfying that

∂t∂a ln hI
∂t ln hI∂a ln hI

¼ kI: ð56Þ

Then we have

MII0 þ
2

NI
kIδII0 ¼ 0: ð57Þ

Equations (44a), (48), and (55) give

MII ¼
1

4
½ðpIþ1Þa2I þðp−pIÞb2I þðD−p−3Þb2I �þ

2

N2
I
c2I

¼ 2

NI
: ð58Þ

By combining (58) with (57), the constant kI in (57) is
kI ¼ −1, which implies

MII0 ¼
2

NI0
δII0 : ð59Þ

By taking account of these results, Eq. (53b) yields

∂t∂a½hIðt; zÞ� ¼ 0: ð60Þ

Hence we find

hIðt; zÞ ¼ KIðtÞ þHIðzÞ: ð61Þ

For I ≠ I0, (59) provides the intersection rule on the
dimension p̄ of the intersection for each pair of branes I and
I0 ðp̄ ≤ pI; pI0 Þ [57,58]:
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p̄ ¼ ðpI þ 1ÞðpI0 þ 1Þ
D − 2

− 1 −
1

2
ϵIcIϵI0cI0 : ð62Þ

Under the assumptions given above, we next reduce
the gauge field equations. In terms of the ansatz (49), the
Bianchi identity dFðpIþ2Þ ¼ 0 is automatically satisfied:

h−1I ð2∂a ln hI∂b ln hI þ h−1I ∂a∂bhIÞdza∧dzb∧ΩðXIÞ ¼ 0:

ð63Þ
By utilizing (49), the gauge field equation becomes

d½∂aHIð�ZdzaÞ∧ �X ΩðXIÞ� ¼ 0; ð64Þ

where we used Eqs. (52) and (61) and �X, �Z are the Hodge
dual operators on Xð≡∪IXIÞ and Z, respectively. Hence,
(64) gives (61), and we find

▵ZHI ¼ 0: ð65Þ

The roles of the Bianchi identity and field equations are
interchanged for the magnetic ansatz [55,57,58]. Then the
net result is the same.
In order to complete the system of equations, we must

also consider the scalar field equation. Substituting the
ansatz for fields (49) and the metric (46) and (61), the
equation of motion for the scalar field (45b) reduces to

−
Y
I00
h−aI00I00

X
I

1

NI
ϵIcI

�
h−1I

d2KI

dt2
−
��

1 −
4

NI

�
∂t ln hI −

X
I0≠I

4

NI0
∂t ln hI0

�
∂t ln hI−NIΛIh−2I

�

þ
Y
I00
h−bI00I00

X
I

1

NI
h−1I ϵIcI▵ZHI ¼ 0: ð66Þ

Furthermore, (66) reads

d2KI

dt2
¼ 0; ð67aÞ

▵ZHI ¼ 0; ð67bÞ

X
I

ϵIcI
NI

���
1 −

4

NI

�
∂t ln hI −

X
I0≠I

4

NI0
∂t ln hI0

�

× ∂t ln hI þ NIΛIh−2I

�
¼ 0: ð67cÞ

From Eq. (67a), we obtain

KI ¼ AItþ BI; ð68Þ

where AI and BI are constants.

1. The intersection involving the same brane

Let us first consider the case that all cosmological
constants become nonvanishing. If we set ΛI ≠ 0, the field
equations imply that all functions are equal:

hIðt; zÞ ¼ Kðt; zÞ ¼ K0ðtÞ þ K1ðzÞ; NI ¼ NI0 ≡ N:

ð69Þ

We can find the solutions if the function h and N satisfy

K0ðtÞ ¼ Atþ B; A ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIΛI=

X
I

�
4

NI
− 1

�s
;

ð70Þ

where B denotes a constant. Then the remaining Einstein
equations (53) are

RabðZÞ ¼ 0: ð71Þ

Now we set

uab ¼ δab; ð72Þ

where δab is the ðD − p − 1Þ-dimensional Euclidean met-
ric. In this case, the solution for hI can be obtained
explicitly as

Kðt; zÞ ¼ Atþ Bþ
X
k

Mk

jza − zak jD−p−3 ; ð73Þ

where Mk’s are constant parameters and zak represents the
positions of the branes in Z space. If the functions hI
coincide, the locations of the pI-brane will also coincide.
In this case, all branes have the same total amount of charge
at the same position.
Let us consider the intersection rule in theD-dimensional

gravity theory. IfwesetpI ¼ ~p for allpI, the intersection rule
(62) leads to

p̄ ¼ ~p −
N
2
: ð74Þ

Then, we find the intersection involving two ~p-branes:

~p∩ ~p ¼ ~p −
N
2
: ð75Þ

Since the number of intersections for ~p < N
2
is negative, there

is no solution in these brane backgrounds.
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If we choose K0 ¼ 0ðA ¼ B ¼ 0Þ, the metric describes
the known static and extremal multi-black-hole solution
with black hole charges Mk [54,55,57,58].

2. A dynamical brane in the intersecting brane system

In the following, we consider the case that there is only
one function hI which depends on both za and t. We denote
it with the subscript ~I, while other functions of I0 ≠ ~I are
either dependent on za or constant. If we assume N ~I ≠ 4,
we have

∂thI0 ¼ 0; p~I ¼ 0; ΛI0 ¼ 0; for I0 ≠ ~I: ð76Þ

We can find the solutions if the function h~I andN ~I satisfy

h~Iðt; zÞ ¼ K ~IðtÞ þH~IðzÞ;

K ~IðtÞ ¼ �
��

4

N ~I
− 1

�
−1
N ~IΛ~I

�1
2

tþ c~I; N ~I ≠ 4;

ð77Þ
where c~I is constant. Then the remaining Einstein equa-
tions (53) are

RabðZÞ ¼ 0: ð78Þ
Now we set

uab ¼ δab; ð79Þ
where δab is the ðD − p − 1Þ-dimensional Euclidean
metric. In this case, the solution for hI can be written
explicitly as

h~Iðt; zÞ ¼ �
��

4

N ~I
− 1

�
−1
N ~IΛ~I

�1
2

tþ ~c~I

þ
X
k

M~I;k

jza − zak jD−p−3 ; ð80aÞ

hI0 ðzÞ ¼ ~cI0 þ
X
l

MI0;l

jza − zal jD−p−3 ; ð80bÞ

where ~c~I, ~c~I ,M~I;k, andMI0;l are constant parameters and zak
and zal denote the positions of the branes in Z space.N ~I < 4
leads to Λ~I > 0 and vice versa. Since the functions hI
coincide, the locations of the pI-brane also coincide. This
physically means that all branes have the same total amount
of charge at the same position. Here we have discussed
the solution without compactification of Z space. If
we consider the case that q dimensions of Z space are
smeared, we can find the different power of harmonics, i.e.,
jza − zak j−ðD−p−3−qÞ (q ≤ D − p − 2).
For K ~I ¼ 0ðA ¼ B ¼ 0Þ, the solution describes the

known static and extremal multi-black-hole solution with
black hole charges M~I;k [55,57,58]. We can find the

solution (80) for any NI ≠ 4. If we choose NI ¼ 4, the
solutions have already discussed in Ref. [15].
Let us consider the intersection rule in the D-

dimensional gravity theory. If we choose p~I ¼ ~p ¼ 0 for
all p~I ≠ pI0 , the intersection rule (62) leads to

pI0 þ 1

D − 2
− 1 −

1

2
ϵ~Ic~IϵI0cI0 ¼ 0: ð81Þ

Now we discuss the application of the time-dependent
solutions to study the cosmology. We assume an isotropic
and homogeneous three-space in the Friedmann-
Robertson-Walker (FRW) universe after compactification.
We set the ðD − p − 1Þ-dimensional Euclidean space

with uabðZÞ ¼ δabðZÞ and consider the case that there is
only one function hI depending on both za and t, which
we denote it with the subscript ~I, and other functions are
either dependent on za or constant. If we assume N ~I ≠ 4,
the D-dimensional metric can be expressed as

ds2 ¼−
Y
I≠~I

haII

�
1þ

�
τ

τ0

�
− 2
a~Iþ2

H~I

�a~I
dτ2

þ
X
α

Y
I≠~I

h
δðαÞI
I

�
1þ

�
τ

τ0

�
− 2
a~Iþ2

H~I

�δðαÞ
~I

�
τ

τ0

�2δ
ðαÞ
~I

a~Iþ2ðdxαÞ2

þ
Y
I≠~I

hbII

�
1þ

�
τ

τ0

�
− 2
a~Iþ2

H~I

�b~I� τ

τ0

� 2b~I
a~Iþ2

δabðZÞdzadzb;
ð82Þ

where the function H~I is given by

H~I ¼
X
k

M~I;k

jza − zak jD−p−3 ; ð83Þ

and the cosmic time τ defined by

τ

τ0
¼ ðAtÞða~Iþ2Þ=2; τ0 ¼

2

ða~I þ 2ÞA : ð84Þ

If we can regard the three-dimensional part of the overall
transverse space Z as our Universe, the power of the scale
factor in the fastest expanding case is expressed as

λ ¼ b~I

a~I þ 2
¼

�
−Dþ 3þ N ~I

2
ðD − 2Þ

�
−1
; for D > 2;

ð85Þ

where we used the D-dimensional metric (82). Hence,
we cannot find the cosmological model which exhibits an
accelerating expansion of our Universe. On the other hand,
if our three-space is given by a three-dimensional subspace
in relative transverse space, the power of the scale factor in
the fastest expanding case is also given by (85).
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By taking τ → τ∞ − τ, where τ∞ is constant, we have
accelerated expansion for τ∞ > τ and λ < 0. This is
equivalent to

N ~I > 2; D > 2 −
2

N ~I − 2
; or

N ~I < 2; 3 < D < 2 −
2

N ~I − 2
; ð86Þ

for D > 3 . However, the scale factor of our Universe
diverges at τ ¼ τ∞.
On the other hand, the power of the scale factor in the

fastest expanding case is automatically positive for D ¼ 3
and N ~I > 0.
Next we discuss the cosmological solution in the

lower-dimensional effective theories. We compactify
dð≡P

αdα þ dzÞ dimensions to give our Universe, where
dα and dz denote the compactified dimensions with respect
to the relative and overall transverse space, respectively.
The D-dimensional metric (46) is written by

ds2 ¼ ds2ðMÞ þ ds2ðNÞ; ð87Þ

where ds2ðMÞ is a ðD − dÞ-dimensional metric and ds2ðNÞ
is a metric of compactified dimensions.
In order to discuss the dynamics of the ðD − dÞ-

dimensional universe in the Einstein frame, we use the
conformal transformation

ds2ðMÞ ¼ hB~I
~I

Y
I≠~I

hCI
I ds2ðM̄Þ; ð88Þ

where B~I and CI are expressed, respectively, as

B~I ¼ −
P

αdαδ~I
ðαÞ þ dzb~I

D − d − 2
;

CI ¼ −
P

αdαδ
ðαÞ
I þ dzbI

D − d − 2
:

ð89Þ

The ðD − dÞ-dimensional metric in the Einstein frame is
thus given by

ds2ðM̄Þ ¼ h−B~I
~I

Y
J≠~I

hJ−CJ

�
−ha~I

Y
I≠~I

haII dt
2 þ

X
α0
h
δðα

0Þ
~I
~I

Y
I≠~I

h
δðα

0Þ
I
I ðdxα0 Þ2þhb~I

~I

Y
I≠~I

hbII δa0b0 ðZ0Þdza0dzb0
�
; ð90Þ

where xα
0
denotes the coordinate of ðp − dαÞ-dimensional relative transverse space and Z0 is ðD − p − 1 − dzÞ-dimensional

spaces.
If we set K ~I ¼ At, the ðD − dÞ-dimensional metric (46) in the Einstein frame can be expressed as

ds2ðM̄Þ ¼
Y
I≠~I

h−CI
I

�
−
Y
I≠~I

haII

�
1þ

�
τ

τ0

�
− 2

B0 ~Iþ2

H~I

�B0
~I

dτ2 þ
X
α0

Y
I≠~I

h
δðα

0Þ
I
I

�
1þ

�
τ

τ0

�
− 2

B0 ~Iþ2

H~I

�−B~Iþδðα
0Þ

~I

�
τ

τ0

�2ð−B~Iþδ
ðα0Þ
~I

Þ
B0 ~Iþ2 ðdxα0 Þ2

þ
Y
I≠~I

hbII

�
1þ

�
τ

τ0

�
− 2

B0 ~Iþ2

H~I

�B0
~Iþ1

�
τ

τ0

�2ðB0 ~Iþ1Þ
B0 ~Iþ2

δa0b0 ðZ0Þdza0dzb0
�
; ð91Þ

where B0
~I is given by B0

~I ¼ −B~I þ a~I and we define the
cosmic time τ:

τ

τ0
¼ ðAtÞðB0

~Iþ2Þ=2; τ0 ¼
2

ðB0
~I þ 2ÞA : ð92Þ

Hence, in the Einstein frame, the power of the scale factor
in the fastest expanding case is given by

0 <
B0

~I þ 1

B0
~I þ 2

< 1; for D − d − 2 > 0: ð93Þ

If the physical parameters satisfy (93), the solutions do
not give an accelerating expansion in our Universe. These
are the similar results with the case of the other partially

localized and delocalized intersecting brane backgrounds.
Although we find the exact time-dependent brane solution,
the power exponent of the scale factor is too small.
Furthermore, in order to discuss a de Sitter solution in
an intersecting brane background, one has to consider the
trivial dilaton, which will be discussed in the next
subsection.

B. de Sitter universe

In this subsection, we consider the Einstein equations
(45a) with c~I ¼ 0. Equation (44a) gives

N ~I ¼
2ðD − p~I − 3Þðp~I þ 1Þ

ðD − 2Þ : ð94Þ
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If we assume

p ¼ p~I ¼ 0; N ~I ¼
2ðD − 3Þ
ðD − 2Þ ;

αI0 ¼ −
NI0aI0

2ϵI0cI0
; ΛI0 ¼ 0; for I0 ≠ ~I; ð95Þ

the field equations reduce to

RijðZÞ ¼ 0; ð96aÞ

h~Iðt; zÞ ¼ K ~IðtÞ þH~IðzÞ;�
dK ~I

dt

�
2

−
2ðD − 3Þ2

ðD − 2ÞðD − 1ÞΛ~I ¼ 0; ð96bÞ

▵ZH~I ¼ 0; ▵ZhI0 ¼ 0: ð96cÞ

Then Eq. (96b) gives

K ~IðtÞ ¼ c0tþ ~c; ð97Þ

where ~c is an integration constant and c0 is given by

c0 ¼ �ðD − 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ðD − 2ÞðD − 1ÞΛ~I

s
: ð98Þ

Thus, there is no solution for Λ~I < 0. If the metric uabðZÞ
is assumed to be Eq. (79), the function H~I is given by
Eq. (83). Now we introduce a new time coordinate τ by

c0τ ¼ ln t: ð99Þ

The D-dimensional metric (46) is then rewritten as

ds2 ¼ −
Y
I0≠~I

haI0I0 ðzÞð1þ c−10 e−c0τH~IÞ−2dτ2 þ ð1þ c−10 e−c0τH~IÞ
2

D−3ðc0ec0τÞ 2
D−3

×

�Xp
α¼1

Y
I0≠~I

fhI0 ðzÞgδ
ðαÞ
I0 ðdxαÞ2 þ

Y
I0≠~I

fhI0 ðzÞgbIuabðZÞdzadzb
�
: ð100Þ

The D-dimensional metric (100) implies that the spacetime
describes an isotropic and homogeneous universe if
H~I ¼ 0. In the region where the terms with H~I are
negligible and hI0 approaches a constant, which is realized
in the limit τ → ∞ and for c0 > 0, the D-dimensional
spacetime becomes de Sitter universe. If we set hI0 ðzÞ ¼
const and uab ¼ δab, Eq. (100) becomes the solution which
has been discussed by Ref. [63] (see also [65]). Further-
more, for D ¼ 4 and by setting all hI0 ¼ 1, the solution is
the Kastor-Traschen one [36].

C. The behavior of the solutions

Now we will study the spacetime structure. The metric
has singularities at h~I ¼ 0 or hI0 ¼ 0. The spacetime is thus
not singular when it is restricted inside the domain specified
by the conditions

h~Iðt; zÞ ¼ a0 þ a1tþ K ~IðzÞ > 0; hI0 ðzÞ > 0; ð101Þ

where the functionK ~I is defined in (83). TheD-dimensional
spacetime cannot be extended beyond this region, because a
curvature singularity appears in the D-dimensional space-
time. The regular spacetime with branes ends up with the
singularities.
Since the system with a1 > 0 has the time reversal one

of a1 < 0, the dynamics of the spacetime depends on the
signature of a1.
Here we will consider the case with a1 > 0. Then the

function h~I is positive everywhere for t > 0 and the
spacetime is nonsingular. In the limit of t → ∞ and apart

from a position of the branes, near which the geometry
takes a cylindrical form of an infinite throat, the solution
is approximately described by a time-dependent uniform
spacetime.
Now we discuss the time evolution for t ≤ 0. The

spacetime is regular everywhere and has a cylindrical top-
ology near each brane at t ¼ 0. As time slightly decreases,
a curvature singularity appears as jza − zaαj → ∞. The
singular hypersurface cuts off more and more of the space
as time decreases further. When t continues to decrease, the
singular hypersurface eventually splits and surrounds each
of the p-brane throats individually. The spatial surface is
finally composed of two isolated throats. For t > 0, the time
evolution of the D-dimensional spacetime is the time
reversal of t < 0.
For any values of fixed za in the regular domain in the

D-dimensional spacetime (46), the overall transverse space
tends to expand asymptotically like tb~I . Thus, the solutions
describe static intersecting brane systems composed of
p-branes near the positions of the branes, while, in the far
region as jza − zaαj → ∞, the solutions approach de Sitter
or FRW universes with the power-law expansion tb~I . The
emergence of time-dependent universes is an important
feature of the dynamical brane solutions.

1. Asymptotic structure

We study the asymptotic behavior of the solutions. The
solution describes a charged black hole in the FRW or de
Sitter universe in the limit of jzaj → ∞, and H~I vanishes.
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First we consider the case of a power-law expanding
universe. The function h~I depends only on time t in the
far region from branes, and the resulting metric (82) can be
expressed as

ds2 ¼−dτ2þ
Xp
α¼1

�
τ

τ0

�2δ
ðαÞ
~I

a~I
þ2ðdxαÞ2þ

�
τ

τ0

� 2b~I
a~I

þ2

δabðZÞdzadzb:
ð102Þ

The scale factor of the relative transverse space is given
by arðτÞ ¼ ðτ=τ0Þb~I=a~Iþ2, while the expansion low for the
overall transverse space is written by atðτÞ ¼ ðτ=τ0Þb~I=a~Iþ2.
On the other hand, for c~I ¼ 0 corresponding to de Sitter
universe (100), the metric of D-dimensional spacetime in
the far region from branes becomes

ds2 ¼ −dτ2 þ ðc0ec0τÞ 2
D−3

�Xp
α¼1

ðdxαÞ2 þ uabðZÞdzadzb
�
:

ð103Þ

Figure 1 depicts the conformal diagrams of the FRWand de
Sitter universes.

2. Near-horizon geometry

Next we discuss the near-horizon geometry of the
solutions. We set the metric of ðD − p − 1Þ-dimensional
overall transverse space:

δabðZÞdzadzb ¼ dr2 þ r2dΩ2
ðD−p−2Þ; ð104Þ

where δab denotes the metric of ðD − p − 1Þ-dimensional
flat space and the line elements of a ðD − p − 2Þ-sphere
(SD−p−2) are given by dΩ2

ðD−p−2Þ. The harmonic function
K ~I dominates in the limit of r → 0, and the time depend-
ence can be ignored. Thus the system becomes static near a
position of branes. When all of the branes are located at the
origin of the Z spaces, the solutions are rewritten as

h~Iðt; rÞ ¼ a0 þ a1tþ
M~I

rD−p−3 ; ð105aÞ

hI0 ðrÞ ¼ 1þ LI0

rD−p−3 : ð105bÞ

Here M~I and LI0 are the mass of p~I- and pI0 -branes,
respectively. In the near-horizon region r → 0, the depend-
ence on t in (105) is negligible. Then the metric is reduced
to the following form:

ds2 ¼ r2
�

M~I

rD−p−3

�
b~IY

I0

�
LI0

rD−p−3

�
bI0
�
−r−2

�
M~I

rD−p−3

�
− 4
N ~I
Y
I0

�
LI0

rD−p−3

�
− 4
NI0dt2

þ r−2
Xp
α¼1

Y
I0

�
M~I

rD−p−3

�
−b~IþδðαÞ

~I

�
LI0

rD−p−3

�
−bI0þδðαÞI ðdxαÞ2 þ

�
dr2

r2
þ dΩ2

ðD−p−2Þ

��
: ð106Þ

Thus the metric (106) describes a warped product of
ðpþ 2Þ-dimensional spacetime M pþ2 and ðD − p − 2Þ-
dimensional sphere SD−p−2.

Hence, the near-brane geometry has the same metric
form as the static one. If it has a horizon geometry, we can
obtain a black hole solution in the time-dependent

(a) (b)

FIG. 1 (color online). Conformal diagrams of the D-dimensional spacetime for p~I ¼ 0. The regions corresponding to ~r → ∞ give the
original spacetime, where ~r2 ¼ P

αðxαÞ2 þ δabzazb. (a) For the case of a~I þ 2 ≠ 0, the metric (46) approaches in the limit r → ∞ to the
D-dimensional flat FRW spacetime. (b) We also depict the conformal diagrams in the case of a~I þ 2 ¼ 0. One can recognize that the
asymptotic region of the spacetime is the de Sitter universe.
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background. In fact, some solutions, for instance, the
M2 −M2 −M2, M2 −M2 −M5 −M5 intersecting solu-
tion in 11 dimensions, give regular black hole spacetimes in
the static limit [15].
Our solution approaches asymptotically the dynamical

universe with the scale factor aðτÞ, while the static solution
gives a black hole. Then we can regard the present solution
as a black hole in the expanding universe.

IV. COLLISION OF 0-BRANES

In this section, we apply our dynamical intersecting
brane solutions found in the previous section to brane
collisions.
The functions h~I and hI0 are assumed to be

h~Iðt; zÞ ¼ c0tþ ~c~I þH~IðzÞ; hI0 ¼ hI0 ðzÞ: ð107Þ

Here c0 and ~c~I are constants, and the function H~I and hI0
are expressed, respectively, as

H~IðzÞ ¼
Xm
k¼1

M~I;k

jza − zak jD−p−3−d ;

hI0 ðzÞ ¼ ~cI0 þ
Xm
l¼1

QI0;l

jza − zal jD−p−3−dI0
; ð108Þ

where ~cI0 is constant,d anddI0 denote the number of smeared
dimension for 0-brane and pI0-brane, respectively, we
assumeD ≠ pþ 3þ d andD ≠ pþ 3þ dI0 , andM~I;kðk ¼
1;…; mÞ and QI0;lðl ¼ 1;…; mÞ are mass constants of 0-
brane andpI0 -branes located at zak and z

a
l , respectively. Since

hI0 is the harmonic function on the ðD − p − 1 − dI0 Þ-
dimensional Euclidean subspace in Z, we define

jza − zak j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1 − z1kÞ2 þ ðz2 − z2kÞ2 þ � � � þ ðzD−p−1−d − zD−p−1−d

k Þ2
q

; ð109aÞ

jza − zal j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1 − z1l Þ2 þ ðz2 − z2l Þ2 þ � � � þ ðzD−p−1−dI0 − zD−p−1−dI0

l Þ2
q

: ð109bÞ

The metric, scalar, and gauge fields are given by
Eqs. (46) and (49), respectively. For D ¼ pþ 3þ d and
D ¼ pþ 3þ dI0 , these become

H~IðzÞ ¼
Xm
k¼1

M~I;k ln jza − zak j;

hI0 ðzÞ ¼ ~cI0 þ
Xm
l¼1

QI0;l ln jza − zal j: ð110Þ

Since the time dependence allows only for the 0-brane,
we see that the ðD − 3 − dI0 Þ-brane background is critical
case. If we consider the ðD − 2 − dI0 Þ-brane, the functions
h~I and hI0 are written by the sum of linear functions of z.
The possibility of brane collisions comes from the differ-
ence in the overall transverse dimension.
From the solution (108), there are curvature singularities

at h~I ¼ 0 or at hI0 ¼ 0 in the D-dimensional background.
Note that the regular D-dimensional spacetime is restricted
to the region of h~I > 0 and hI0 > 0, which is bounded by
curvature singularities. Hence, the D-dimensional metric
(46) is regular if and only if h~I > 0 and hI0 > 0.
The solution with 0 − pI0 branes takes the form (82),

where we setK ~I ¼ c0t and the functionH~I is given by (83).
We classify the behavior of the harmonic function hI0 into
two classes: pI0 ≤ ðD − 4 − dI0 Þ and pI0 ¼ ðD − 2 − dI0 Þ.
Since these depend on the dimensions of the pI0-brane, we
discuss them below separately. In the case of the
ðD − 3 − dI0 Þ-brane, the harmonic function hI0 diverges
both at infinity and near ðD − 3 − dI0 Þ-branes. Since

there is no regular spacetime region near branes due to
hI0 → −∞, these solutions are not physically relevant.
In the following, we discuss the collision involving the
0 − pI0 brane in D-dimensional spacetime.

A. Collision of the 0 − pI-brane in the asymptotically
power-law expanding universe

The harmonic functionH~I becomes dominant in the limit
of za → zak , while the function h~I depends only on time τ in
the limit of jzaj → ∞. Hence, we find a static structure of
the 0 − pI0 -brane system near branes. In the far region from
branes, the function H~I vanishes. Therefore, the metric can
be written by

ds2 ¼ −
Y
I0≠~I

haI0I0 h̄
a~I
~I
dτ2 þ

Xp
α¼1

Y
I0≠~I

h
δðαÞ
I0
I0

�
τ

τ0

�2δ
ðαÞ
~I

a~I
þ2

h̄
δðαÞ
~I
~I

ðdxαÞ2

þ
Y
I0≠~I

hbI0I0

�
τ

τ0

� 2b~I
a~I

þ2

h̄b~I~I δabðZÞdzadzb; ð111Þ

where h̄~I is defined by

h̄~I ¼ 1þ
�
τ

τ0

�
− 2
a~I

þ2

H~I: ð112Þ

In order to analyze the brane collision, we consider a
concrete example, in which two 0 − pI0 branes are located
at za ¼ ð�L; 0;…; 0Þ. We will discuss the time evolution
separately with respect to the signature of a constant τ0,
because the behavior of spacetime strongly depends on it.
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Since the metric function is singular at h~Iðτ; zÞ ¼ 0 and
hI0 ¼ 0, one can note that the regular spacetime exists
inside the domain restricted by

h~Iðτ;zÞ¼
�
τ

τ0

� 2
a~I

þ2þH~IðzÞ>0; hI0 ¼hI0 ðzÞ>0; ð113Þ

where the functionsH~I andhI0 are defined in (107). The brane
background evolves into a curvature singularity, because the
dilaton ϕ diverges. Since the D-dimensional spacetime
cannot be extended beyond this region, the regular spacetime
with two 0-branes (pþ d ≤ 6) ends on these singular hyper-
surfaces. The solution with ðτ0Þ−2=ða~Iþ2Þ > 0 is the time
reversal one of ðτ0Þ−2=ða~Iþ2Þ < 0, because the time depend-
ence appears only in the form of ðτ=τ0Þ2=ða~Iþ2Þ. In the
following, we consider the case with ðτ0Þ−2=ða~Iþ2Þ < 0.
For ðτÞ2=ða~Iþ2Þ < 0, the D-dimensional spacetime is

nonsingular, because the function h~I is positive every-
where. In the limit of ðτÞ2=ða~Iþ2Þ → −∞, theD-dimensional
spacetime becomes asymptotically a time-dependent uni-
form background, while the cylindrical forms of infinite
throats exist near branes.
For τ > 0, the spatial metric is initially regular every-

where. The D-dimensional spacetime has a cylindrical

topology near each brane. As τ increases slightly, a
singular hypersurface appears from the spatial infinity
(jza − zak j → ∞). As τ increases further, the singularity
cuts the space off more and more. Since the singular
hypersurface eventually splits and surrounds each of the
brane throats, the spatial surface is finally composed of two
isolated throats.
One notes that the transverse dimensions in the metric

(111) expand asymptotically as τb~I=ða~Iþ2Þ for fixed spatial
coordinates za. The D-dimensional spacetime becomes
static near branes, while the background approaches a
FRWuniverse in the far region (jza − zak j → ∞). Hence, the
time evolution of the four-dimensional universe depends on
the position of the observer. For ðτ=τ0Þ2=ða~Iþ2Þ < 0, the
behavior ofD-dimensional spacetime is the time reversal of
the period of ðτ=τ0Þ2=ða~Iþ2Þ > 0.
Now we define

z⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2Þ2 þ ðz3Þ2 þ � � � þ ðzD−1−p−dÞ2

q
: ð114Þ

By using the above equation, the proper distance at z⊥ ¼ 0
between two branes can be written by

dðτÞ¼
Z

L

−L
dz1

��
τ

τ0

�
2=ða~Iþ2Þ

þ M1

jz1þLjD−3−pI0−dI0
þ M2

jz1−LjD−3−pI0−dI0

�
b~I=2

�
1þ Q1

jz1þLjD−3−pI0−d
þ Q2

jz1−LjD−3−pI0−d

�
bI0=2

:

ð115Þ

The proper distance is a monotonically increasing function
of τ. We illustrate dðτÞ for the case of the 0 − pI0 brane
system in Fig. 2. We consider the case of d ¼ dI0 ¼ 0,
τ0 ¼ −1, Q1 ¼ Q2 ¼ M1 ¼ M2 ¼ 1, L ¼ 1, and D ¼ 10
or D ¼ 8. It shows that two 0-branes are initially (τ < 0)
approaching, the distance dðτÞ takes the minimum finite
value at τ ¼ 0, and then two 0-branes segregate each other.
Thus they will never collide. Hence, we cannot discuss a
brane collision in this case.

B. Collision of the 0 − pI0-brane in the
asymptotically de Sitter universe

Let us next discuss the collision in the 0 − pI0 -brane with
a trivial dilaton system. We consider the case that the
harmonic function H~I and hI0 are linear in z and discuss in
detail the 0 − ðD − 2Þ-brane inD dimensions as a example.
In this case, we have one extra dimension z in Z space. The
D-dimensional metric (100) can be rewritten by

ds2 ¼ −haI0I0 ðzÞð1þ c−10 e−c0τH~IÞ−2dτ2 þ haI0I0 ðzÞð1þ c−10 e−c0τH~IÞ
2

D−3ðc0ec0τÞ 2
D−3

�Xp
α¼1

ðdxαÞ2 þ h4=NI0
I0 ðzÞdz2

�
; ð116Þ

where the function H~IðzÞ is written by

H~IðzÞ ¼
Xm
k¼1

M~I;kjz − zkj: ð117Þ

We consider the collision in the 0 − pI0 -brane system
with charges M1 and Q1 at z1 ¼ −L and the other with
charges M2 and Q2 at z1 ¼ L. The proper distance at
z⊥ ¼ 0 between the two 0-branes can be expressed as

dðτÞ ¼
Z

L

−L
dzðc0ec0τ þM1jz1 þ Lj þM2jz1 − LjÞ1=ðD−3Þ

× ð1þQ1jz1 þ Lj þQ2jz1 − LjÞbI0=2: ð118Þ

In the period of c0 < 0, the proper distance increases as τ
increases. If M1 ≠ M2, a singular hypersurface appears
at τ ¼ τs ≡ ln ½−ðM1jz1 þ Lj þM2jz1 − LjÞc−10 �c−10 < 0
when the distance is still finite.
However, in the case of the equal charges Q1 ¼ Q2 ¼

M1 ¼ M2 ¼ M, the situation is completely different,
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because the proper distance finally vanishes at τs ¼
ln ð−2MLc−10 Þc−10 < 0 as

dðτÞ ¼ 2Lðc0ec0τ þ 2LMÞ1=ðD−3Þð1þ 2LMÞbI0=2: ð119Þ

Then two branes can collide. A singularity is formed at the
same point and time.
Let us consider the case pI0 ≠ D − 2. TheD-dimensional

metric (100) can be written as

ds2 ¼ −haI0I0 ðzÞð1þ c−10 e−c0τH~IÞ−2dτ2
þ haI0I0 ðzÞð1þ c−10 e−c0τH~IÞ

2
D−3ðc0ec0τÞ 2

D−3

×

�Xp
α¼1

ðdxαÞ2 þ h4=NI0
I0 ðzÞδabðZÞdzadzb

�
: ð120Þ

Since the proper distance at z⊥ ¼ 0 between two branes is
given by

FIG. 3 (color online). (a) For the case ofM1 ¼ M2 in the asymptotically de Sitter universe, we show the proper distance between two
dynamical 0-branes given in (118). We set D ¼ 10, c0 ¼ −1, M1 ¼ 1;M2 ¼ 1, N ¼ 2, and L ¼ 1 for the 0 − 8-brane. The proper
distance rapidly vanishes near where two branes collide. (b) We also show the proper distance between two dynamical 0-branes for the
0 − 8- (bold curve) and 0 − 6- (solid curve) brane systems from the bottom in the case ofM1 ¼ 10,M2 ¼ 1, N ¼ 2, and D ¼ 10 in the
asymptotically de Sitter universe. The proper distance initially decreases as τ decreases and remains still finite when a singularity
appears.

FIG. 2 (color online). (a) For the case of M1 ¼ M2 in the asymptotically power-law expanding universe, the proper distance between
two dynamical 0-branes given in (115) is depicted. We fix d ¼ dI0 ¼ 0, D ¼ 10, τ0 ¼ −1, M1 ¼ 1;M2 ¼ 1, N ¼ 2, and L ¼ 1 for the
0 − 8- (bold curve) and 0 − 6- (solid curve) branes. The distance decreases initially (τ < 0) but turns to increase at τ ¼ 0, and then two 0-
branes segregate each other. (b) We also show the proper distance between two dynamical 0-branes for 0 − 8- (bold curve) and 0 − 6-
(solid curve) brane systems from the bottom in the case of d ¼ dI0 ¼ 0, M1 ¼ 10, M2 ¼ 1, N ¼ 2, L ¼ 1, and D ¼ 10 in the
asymptotically power-law expanding universe. Although the proper distance initially decreases as τð< 0Þ increases, the distance
increases as τð> 0Þ increases.
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dðτÞ ¼
Z

L

−L
dz

�
c0ec0τ þ

M1

jz1 þ LjD−pI0−3−d
þ M2

jz1 − LjD−pI0−3−d

�
1=ðD−3Þ�

1þ Q1

jz1 þ LjD−3−pI0−d
þ Q2

jz1 − LjD−3−pI0−d

�
bI0=2

;

ð121Þ

the distance increases monotonically with respect
to τ.
In the case of c0 < 0, initially (τ ¼ 0), D-dimensional

space is regular except at jza − zak j → 0, while this is an
asymptotically time-dependent spacetime and has the
cylindrical form of an infinite throat near the 0-brane.
At τ ¼ τs < 0, a singularity appears from the spatial
infinity (jza − zak j → ∞). As time decreases (τ < 0), the
singular hypersurface erodes the region with the large
values of jza − zak j. Since only the region near 0-branes
remains regular, eventually it splits and each fragment
surrounds each 0-brane individually. Figure 3 shows
that this singularity appears before the proper distance
dðτÞ vanishes. Hence, the D-dimensional spacetime has
the singularity before two branes collide. Although two
0-branes approach very slowly, a singularity suddenly
appears at a finite distance. Then, the spacetime splits
into two isolated 0-brane throats.
We show dðτÞ integrated numerically in Fig. 3 for the

case of c0 < 0. In the future direction, the proper distance d
increases. Then for τ > 0, each brane gradually separates
as τ increases.

V. APPLICATIONS TO SUPERGRAVITIES

In the case of ten or 11 dimensionswithN ¼ 4 andΛI ¼ 0,
Eq. (1) gives the action of supergravities. For instance, the
bosonicpartof theactionofD ¼ 11 supergravity includesonly
4-form field strength, while, for D ¼ 10, the constant c is
precisely the dilaton coupling for the Ramond-Ramond
ðpþ 2Þ-form in the type II supergravities. The dynamical
solutions for the case ofN ¼ 4 have been already discussed in
Ref. [21]. In this section, we will discuss the time-dependent
solution in six-dimensional Nishino-Salam-Sezgin (NSS)
gauged supergravity and Romans’ gauged supergravity mod-
els. The bosonic part of the six-dimensional NSS model
[66–69] is given by the expression (1) with Λr > 0,
Λs ¼ 0, while Romans’ six-dimensional N ¼ 4g gauged
supergravity [70] is expressed by the action (1) with
Λr < 0, Λs ¼ 0.

A. Nishino-Salam-Sezgin gauged supergravity

Now we consider the NSS model among the theories
of D ¼ 6. The couplings of the 2-form (pr ¼ 0) and the
3-form (ps ¼ 1) field strengths to the dilaton are given by
ϵrcr ¼ − 1ffiffi

2
p and ϵscs ¼ −

ffiffiffi
2

p
, respectively:

S ¼ 1

2κ2

Z �
ðR − 2eϕ=

ffiffi
2

p
ΛÞ � 1 − 1

2
� dϕ∧dϕ− 1

2 · 2!
e−ϕ=

ffiffi
2

p
� Fð2Þ∧Fð2Þ −

1

2 · 3!
e−

ffiffi
2

p
ϕ � Fð3Þ∧Fð3Þ

�
; ð122Þ

where R denotes the Ricci scalar constructed from the
six-dimensional metric gMN , κ2 is the six-dimensional
gravitational constant, � is the Hodge operator in the
six-dimensional spacetime, ϕ denotes the scalar field,
Λ > 0 is the cosmological constant, and Fð2Þ and Fð3Þ
are 2-form and 3-form field strengths, respectively. From
Eq. (2a), the NSS model is realized by choosing
Λr ¼ Λ > 0, Λs ¼ 0, Nr ¼ 2, and Ns ¼ 4.
The six-dimensional action (122) gives the field equations

RMN ¼ 1

2
eϕ=

ffiffi
2

p
ΛgMN þ 1

2
∂Mϕ∂Nϕ

þ e−ϕ=
ffiffi
2

p

2 · 2!

�
2FMAFN

A −
1

4
gMNF2

ð2Þ

�

þ e−
ffiffi
2

p
ϕ

2 · 3!

�
3FMABFN

AB −
1

2
gMNF2

ð3Þ

�
; ð123aÞ

▵ϕþ
ffiffiffi
2

p

4 · 2!
e−ϕ=

ffiffi
2

p
F2
ð2Þ þ

ffiffiffi
2

p

2 · 3!
e−

ffiffi
2

p
ϕF2

ð3Þ −
ffiffiffi
2

p
eϕ=

ffiffi
2

p
Λ¼ 0;

ð123bÞ

d½e−ϕ=
ffiffi
2

p
� Fð2Þ� ¼ 0; ð123cÞ

d½e−
ffiffi
2

p
ϕ � Fð3Þ� ¼ 0; ð123dÞ

where ▵ denotes the Laplace operator with respect to the
six-dimensional metric gMN .
We construct solutions whose spacetime metric has the

form

ds2 ¼ h1=22 ðt; y; zÞh1=23 ðt; y; zÞ½−h−22 ðt; y; zÞh−13 ðt; y; zÞdt2
þh−13 ðt; y; zÞdy2 þ uabðZÞdzadzb�; ð124Þ

where uabðZÞ is the four-dimensional metric which
depends only on the four-dimensional coordinates za.
The scalar field ϕ and field strengths Fð2Þ and Fð3Þ are
written, respectively, by

eϕ ¼ ðh2h3Þ−
ffiffi
2

p
=2; ð125aÞ

Fð2Þ ¼ d½
ffiffiffi
2

p
h−12 ðt; y; zÞ�∧dt; ð125bÞ
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Fð3Þ ¼ d½h−13 ðt; y; zÞ�∧dt∧dy: ð125cÞ

First we consider the Einstein equation (123a). By using the
ansatz (124) and (125), the Einstein equations become

5

4
h−12 ∂2

t h2þ
3

4
h−13 ∂2

t h3þ
1

4
h−22 ð3h−12 ∂2

yh2þh−13 ∂2
yh3Þ

þ1

4
h−22 h−13 ð3h−12 ▵Zh2þh−13 ▵Zh3Þ−

1

2
h−22 h−13 Λ

þ1

4
ð∂t lnh2Þ2þ

7

4
∂t lnh2∂t lnh3−

3

4
h−22 ð1−h3Þð∂y lnh2Þ2

þ3

4
h−22 ∂y lnh2∂y lnh3−

3

4
h−22 h−13 ð1−h3Þuab∂a lnh2∂b lnh2

−
1

4
h−22 h−13 ð1−h22Þuab∂a lnh3∂b lnh3¼0; ð126aÞ

2h−12 ∂t∂yh2 þ 2h−13 ∂t∂yh3 þ ∂t ln h2∂y ln h3

þ 3∂t ln h3∂y ln h2 ¼ 0; ð126bÞ

2h−12 ∂t∂ah2 þ h−13 ∂t∂ah3 þ ∂t ln h2∂a ln h3

þ ∂t ln h3∂a ln h2 ¼ 0; ð126cÞ

1

4
h22ðh−12 ∂2

t h2 − h−13 ∂2
t h3Þ −

1

4
ðh−12 ∂2

yh2 þ 3h−13 ∂2
yh3Þ

−
1

4
h−13 ðh−12 ▵Zh2 − h−13 ▵Zh3Þ −

1

2
h−13 Λþ 1

4
ð∂th2Þ2

−
1

4
h22∂t ln h2∂t ln h3 −

3

4
ð1 − h3Þð∂y ln h2Þ2

−
5

4
∂y ln h2∂y ln h3 þ

1

4
h−13 ð1 − h3Þuab∂a ln h2∂b ln h2

−
1

4
h−13 ð1 − h22Þuab∂a ln h3∂b ln h3 ¼ 0; ð126dÞ

h−13 ∂y∂ah3 þ 2∂y ln h2∂a ln h2 þ ∂y ln h2∂a ln h3

þ ∂y ln h3∂a ln h2 ¼ 0; ð126eÞ

RabðZÞ þ
1

4
h22h3uabðh−12 ∂2

t h2 þ h−13 ∂2
t h3Þ −

1

4
h3uabðh−12 ∂2

yh2 þ h−13 ∂2
yh3Þ −

1

4
uabðh−12 ▵Zh2 þ h−13 ▵Zh3Þ

þ 1

4
h22h3uab½ð∂t ln h2Þ2 þ 3∂t ln h2∂t ln h3� þ

1

4
h3ð1 − h3Þuabð∂y ln h2Þ2 −

1

4
h3uab∂y ln h2∂y ln h3

þ 1

4
ð1 − h3Þuabucd∂c ln h2∂d ln h2 þ

1

4
ð1 − h22Þuabucd∂c ln h3∂d ln h3 − ð1 − h3Þ∂a ln h2∂b ln h2

−
1

2
ð1 − h22Þ∂a ln h3∂b ln h3 −

1

2
ð∂a ln h2∂b ln h3 þ ∂a ln h3∂b ln h2Þ −

1

2
uabΛ ¼ 0; ð126fÞ

where ▵Z denotes the Laplace operator on Z space and
RabðZÞ is the Ricci tensor constructed from the metric
uabðZÞ.
We next consider the gauge field equations (123c) and

(123d). Under the assumption (125), the gauge field
equations are written by

d½h23∂yh2ΩðZÞ þ h3∂ah2dy∧ð�ZdzaÞ� ¼ 0; ð127aÞ

d½h2∂ah3ð�ZdzaÞ� ¼ 0; ð127bÞ

where �Z denotes the Hodge operator on Z and ΩðZÞ is the
volume 4-form on Z space:

ΩðZÞ ¼ ffiffiffi
u

p
dz1∧dz2∧dz3∧dz4: ð128Þ

Here, u is the determinant of the metric uab.
Finally we consider the equation of motion for the scalar

field. Substituting the ansatz (125) into Eq. (123b), we have

h22h3ðh−12 ∂2
t h2 þ h−13 ∂2

t h3Þ þ h3ð∂th2Þ2 þ 3h2∂th2∂th3 − h3ðh−12 ∂2
yh2 þ h−13 ∂2

yh3Þ þ h3ð1 − h3Þð∂y ln h2Þ2
− h−12 ∂yh2∂yh3 − h−12 ▵Zh2 − h−13 ▵Zh3 þ ð1 − h3Þuab∂a ln h2∂b ln h2 þ ð1 − h22Þuab∂a ln h3∂b ln h3 − 2Λ ¼ 0: ð129Þ

Now we consider the two cases. One is ∂th2 ≠ 0 and ∂th3 ¼ 0. The other is ∂th2 ¼ 0 and ∂th3 ≠ 0. Upon setting h2 ¼ 1,
the field equations reduce to

RabðZÞ ¼ 0; ð130aÞ

h2 ¼ 1; h3 ¼ k0ðtÞ þ k1ðyÞ þ k2ðzÞ; ð130bÞ
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d2k0
dt2

¼ Λ;
d2k0
dt2

¼ −
d2k1
dy2

; ▵Zk2 ¼ 0: ð130cÞ

We can also choose the solution in which the 0-brane part
depends on t. Then, we have

RabðZÞ ¼ 0; ð131aÞ

h2¼h2ðt;vÞ; h2¼K0ðtÞþK1ðvÞ; h3¼1; ð131bÞ
�
dK0

dt

�
2

¼ 2Λ; ▵WK1 ¼ 0; ð131cÞ

where ▵W denotes Laplace operator with respect to the
metric wmn:

wmndvmdvn ¼ dy2 þ uabðZÞdzadzb;
▵WK1 ¼ ∂2

yK1 þ ▵ZK1:
ð132Þ

Here, wmn is the five-dimensional metric, and vm denotes
the five-dimensional coordinate.
As a special example, we consider the case

uab ¼ δab; h2 ¼ 1; ð133Þ

where δab the four-dimensional Euclidean metric. Then, the
solution for h3 can be obtained explicitly as [20]

h2 ¼ 1; ð134aÞ

h3ðt; y; zÞ ¼
Λ
2
ðt2 − y2Þ þ c1tþ c2yþ c3 þ

XN
l¼1

Ml

jza − zal j2
;

ð134bÞ
where ciði ¼ 1; 2; 3Þ and zal are constants and the parameter
Ml is the mass constant of 1-branes, which is located
at za ¼ zal .
We can obtain the solution for h3 ¼ 1 and ∂th2 ≠ 0 if the

roles of h2 and h3 are exchanged. The solution of the field
equations is then written as

h2ðt; vÞ ¼ ϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4 þ

XN0

α¼1

Lα

jvm − vmα j3
; ð135aÞ

h3 ¼ 1; ð135bÞ

where c4, vmα , and Lα are constants and ϵ ¼ �1. The
delocalized brane solutions in the six-dimensional NSS
supergravity [66–68,71,72] have been investigated in
Refs. [20,73–80], including applications to cosmological
models. According to the intersection rule, the number of
the intersections dimensions involving the 0-brane and
1-brane is −1. Although meaningless in ordinary

spacetime, these configurations are relevant in the
Euclidean space, for instance, representing instantons.
In the following, we consider cosmological aspects

of the solution describing time-dependent branes. We first
study the time dependence of the scale factors in the
0-brane solutions after compactifying the extra directions,
and our Universe is discussed. Next we discuss the
dynamical 1-brane solution and apply it to the cosmology.

1. Cosmology in the 0-brane system

For the solution (135), we introduce a new time
coordinate τ as

�
τ

τ0

�
≡ ðϵ

ffiffiffiffiffiffi
2Λ

p
tþ c4Þ1=4; τ0 ≡ 4

ϵ
ffiffiffiffiffiffi
2Λ

p : ð136Þ

The six-dimensional metric is thus given by

ds2 ¼
�
1þ

�
τ

τ0

�
−4
h̄2ðvÞ

�
−3
2

�
−dτ2þ

�
1þ

�
τ

τ0

�
−4
h̄2ðvÞ

�

×
�
τ

τ0

�
2

δmnðWÞdvmdvn
�
; ð137Þ

where δmn is the five-dimensional Euclidean metric and
h̄2ðvÞ is defined by

h̄2ðvÞ≡
XN0

α¼1

Lα

jvm − vmα j3−ds
: ð138Þ

Here ds denotes the number of smeared dimensions and
should satisfy 0 ≤ ds ≤ 4.
The six-dimensional spacetime implies ðτ=τ0Þ−4

h̄2ðvÞ ¼ 0 in the limit τ → ∞. Then the scale factor of
the six-dimensional space is proportional to τ . Although
the dynamical 0-brane solutions cannot give a realistic
universe such as an accelerating expansion, a matter-, or a
radiation-dominated era, there is a possibility that appro-
priate compactification and smearing of the extra directions
may lead to a realistic expansion. Now we will discuss this
possibility.
We consider some compactification and smearing of

the extra directions of the solutions. Our Universe has to
be described by the 0-brane solution with six directions.
Since the time direction is expressed as t, the remaining
task is to identify the three spatial directions from the
coordinates vm.
In an approach such as the construction of the cosmo-

logical scenario on the basis of a dynamical brane back-
ground, three spatial directions are supposed to be on the
overall transverse space to branes. If the spatial directions
are specified with vm, it also works in the present case.
Then space is isotropic from the expression of the metric.
Now we look for a way to realize an isotropic and
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homogeneous three-dimensional space in the 0-brane
solutions.
Since we set the coordinates ðt; v2; v3; v4Þ which

describes our Universe, it is convenient to decompose
the six-dimensional metric of the solutions into the follow-
ing form:

ds2 ¼ ds24 þ ds2i ; ð139Þ

where each part of the six-dimensional metric is given by

ds24 ¼ −h−3=22 ðt; vÞdt2 þ h1=22 ðt; vÞδαβdvαdvβ; ð140aÞ

ds2i ¼ h1=22 ðt; vÞδijdvidvj. ð140bÞ

Here ds24 is the metric of the four-dimensional spacetime
with t; vα ðα ¼ 3; 4; 5Þ, while ds2i denotes the metric of the
internal space. We can obtain the compactifications of the
solutions depending on the internal space.
The internal space is described by the coordinates

viði ¼ 1; 2Þ, and the spatial part of our Universe δαβ is
three-dimensional with vαðα ¼ 3; 4; 5Þ. Then δαβ and δij

are the three- and two-dimensional Euclidean metrics,
respectively.
Now we derive the lower-dimensional effective theory

by compactifying the extra directions. In order to find a
realistic universe, we compactify the d-dimensional space
to be a d-dimensional torus, where d is the compactified
dimensions for the direction of internal space. The remain-
ing noncompact space is the external space. The range of d
is given by 0 ≤ d ≤ 1, because the v1 direction is preserved
to measure the position of the universe in the overall
transverse space. Hence the v2 direction will be compacti-
fied, where the compactified direction has to be smeared
out before the compactification.
Then the metric (124) with h3 ¼ 1 is recast into the

following form:

ds2 ¼ ds2e þ ds2i ; ð141Þ

where ds2e is the metric of ð6 − dÞ-dimensional external
spacetime and ds2i is the metric of compactified dimen-
sions. Upon setting d ¼ 1, the compactified metric in the
Einstein frame is

ds̄2e ¼
�
1þ

�
τ

τ0

�
−6
h̄2ðvÞ

�
−5
3

�
−dτ2 þ

�
1þ

�
τ

τ0

�
−6
h̄2ðvÞ

�
2
�
τ

τ0

�
2

× fδαβdvαdvβ þ ðdv1Þ2g
�
; ð142Þ

where ds̄2e is the five-dimensional metric in the Einstein
frame and the constant parameters τ0 and the cosmic time τ
are defined, respectively, as

τ

τ0
≡ ðϵ

ffiffiffiffiffiffi
2Λ

p
tÞ1=6; τ0 ≡ 6

ϵ
ffiffiffiffiffiffi
2Λ

p : ð143Þ

Since the power exponent of the scale factor is given by 1,
the metric of four-dimensional spacetime in the Einstein
frame implies that the solutions gives rise to a Milne
universe. To construct a realistic cosmological model such
as in the inflationary scenario, it would be necessary to add
some new ingredients in the background. Figure 4 depicts
the conformal diagrams of the five-dimensional spacetime
in the limit τ → ∞. Hence, the asymptotic regions of the
present spacetime (142) resemble the five-dimensional
Milne universe.
Finally, we discuss the near-horizon geometry of the

0-brane solution. When all of the 0-branes are located at the
origin of the overall transverse space, the solution can be
expressed as

h2ðt; rÞ ¼ ϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4 þ

L
r3
; r2 ≡ δmnvmvn; ð144Þ

where L is the total mass of 0-branes

L≡XN0

α¼1

Lα: ð145Þ

In the near-horizon limit r → 0, the dependence on t in
(144) is negligible. The six-dimensional metric is thus
reduced to the following form:

ds2 ¼
�
L
r3

�
−1=6

½ds2AdS2 þ L2=3dΩ2
ð4Þ�; ð146aÞ

ds2AdS2 ≡ −
�
L4=3

r4

�−1
dt2 þ L2=3

r2
dr2; ð146bÞ

where δmndvmdvn ¼ dr2 þ r2dΩ2
ð4Þ has been performed.

The line elements of a two-dimensional AdS space (AdS2)
and a four-sphere with the unit radius (S4) are given by
ds2AdS2 and dΩ2

ð4Þ, respectively. Then the six-dimensional
metric (146) in the near-horizon limit of the 0-brane system
describes a warped product of AdS2 and S4. Figure 4 shows
the geometry of the AdS2 and S4.

2. Cosmology in the 1-brane system

Now we discuss the cosmological evolution for the time-
dependent 1-brane solution (134). We define the cosmic
time τ, which is given by
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�
τ

τ0

�
≡

�
Λ
2
t2
�

1=4
; τ0 ≡ 2

ffiffiffi
2

pffiffiffiffi
Λ

p ; c1 ¼ 0: ð147Þ

The six-dimensional metric is expressed as

ds2¼
�
1þ

�
τ

τ0

�
−4
h̄3ðy;zÞ

�
−1
2

�
−dτ2þ

�
τ

τ0

�
−2
dy2

þ
�
1þ

�
τ

τ0

�
−4
h̄3ðy;zÞ

��
τ

τ0

�
2

δabðZÞdzadzb
�
; ð148Þ

where h̄3ðy; zÞ is defined by

h̄3ðy; zÞ≡ −
Λ
2
y2 þ c2yþ c3 þ

XN
l¼1

Ml

jza − zal j2−ds
. ð149Þ

Here ds is the number of smeared dimensions and should
satisfy 0 ≤ ds ≤ 3. In order to fix the location of our
Universe in the transverse space, let us assume that at least
one direction of zaða ¼ 1;…; 4Þ is not smeared.
Now we apply the 1-brane solution to the lower-

dimensional effective theory. Let us consider a compacti-
fication and smearing of the transverse space to the
0-brane of the 1-brane solution. First of all, our
Universe is described by the solutions with the six-
dimensional coordinates t; y; zaða ¼ 1;…; 4Þ. The time
direction is identified with t. Our choice is to take the three-
dimensional from the overall transverse space with za. The
four-dimensional universe is spanned by t, z2, z3, and z4, for
instance. The z1 direction is preserved to measure the
position of our Universe in the overall transverse space of
the 1-brane. Since the metric depends on za explicitly, we
have to smear out z2, z3, and z4 so as to define our Universe.
Then the number of the smeared directions ds should satisfy
the condition ds ¼ 3.

It is necessary to take that c2 ¼ 0 and Λ ¼ 0 in (124) to
compactify the y direction.We compactify the y direction to
fit our Universe, where y denotes the compactified dimen-
sions with respect to the world volume of the 1-brane. The
metric (124) with h2 ¼ 1 is then described by (141).
In terms of the conformal transformation

ds2e ¼ h1=63 ds̄2e ; ð150Þ

we can rewrite the ð6 − dÞ-dimensional metric in the
Einstein frame. If we set d ¼ 1, the five-dimensional metric
in the Einstein frame is

ds̄2e ¼ −h−2=33 ðt; zÞdt2 þ h1=33 ðt; zÞδabðZÞdzadzb; ð151Þ

where ds̄2e is the metric of five-dimensional external
spacetime in the Einstein frame. For h3 ¼ c1tþ h̄3ðzÞ,
the metric (151) is thus rewritten as

ds̄2e ¼ −
�
1þ

�
τ

τ0

�
−3=2

h̄3ðzÞ
�
−2=3

dτ2

þ
�
1þ

�
τ

τ0

�
−3=2

h̄3ðzÞ
�
1=3

�
τ

τ0

�
1=2

× ½δαβdzαdzβ þ ðdz1Þ2�; ð152Þ

where the spatial part of our Universe δαβ is three-
dimensional with zαðα ¼ 2; 3; 4Þ, and the constant param-
eters τ0 and the cosmic time τ are defined, respectively, as

τ

τ0
≡ ðc1tÞ2=3; τ0 ≡ 3

2c1
: ð153Þ

Unfortunately, the power exponent of the four-
dimensional universe in the Einstein frame becomes 1=4.

(b)(a)

FIG. 4 (color online). (a) Conformal diagrams of the Milne universe are depicted. The solid line denotes the trapping horizon
r̄T ≡ daðτÞ=dτ, where a ¼ ðτ=τ0Þ [19]. One can recognize that the asymptotic region of the spacetime in (142) corresponding to r̄ → ∞
approximates the five-dimensional Milne universe, where r̄2 ¼ δαβvαvβ þ ðv1Þ2. (b) The geometry of the 0-brane system (135) in the
limit r → 0 is depicted. The domain corresponding to r → 0 with finite t describes warped AdS2 × S4 spacetime [19].
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Hence, we have to conclude that, in order to obtain a
realistic expansion of the universe in this type of models,
one has to include additional fields on the background.
Let us finally consider the case of the near-horizon limit

that the spacetime metric and the functions h2 and h3 satisfy
(134). If we consider the case where N 1-branes are located
at the origin of the Z space, we have

h3ðt; rÞ ¼
Λ
2
ðt2 − y2Þ þ c1tþ c2yþ c3 þ

M
r2

;

r2 ≡ δabzazb; ð154Þ

where M is the total mass of 1-branes

M ≡XN
l¼1

Ml: ð155Þ

Since the dependence on t and y in (154) is negligible in the
near-horizon limit r → 0, the six-dimensional metric is
reduced to the following form:

ds2 ¼
�
M
r2

�
−1=2

�
−dt2 þ dy2 þM

�
dr2

r2
þ dΩ2

ð3Þ

��
;

ð156Þ

where δabdzadzb ¼ dr2 þ r2dΩ2
ð3Þ has been used. The line

elements of a three-dimensional space (M3) and a three-
sphere are given by ds2M3

and dΩ2
ð3Þ, respectively. Thus we

see that the near-horizon limit of the 1-brane system is a
warped product of M3 with a certain internal 3-space with a
circle.

B. Collision of the 0-brane in Nishino-Salam-Sezgin
gauged supergravity

We next study the behavior of the time-dependent
0-brane solution (135). By substituting (135) into the
metric (124), the six-dimensional metric is expressed as

ds2 ¼ −½ϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4 þ h̄2ðvÞ�−3=2dt2

þ ½ϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4 þ h̄2ðvÞ�1=2wmndvmdvn; ð157Þ

where wmn is given by (132) and the function h̄2ðvÞ is
defined by (138). Since the time dependence appears
through the function h2, the next task is to study the time
evolution of the solutions carefully. Hereafter we will
consider it by focusing upon the collision of 0-branes.
We also discuss smearing out some of the directions in the
transverse space to decrease the number of transverse
dimensions to the 0-brane effectively.
Nowwe consider the case that the number of the smeared

directions is given by ds. Then the function h̄2ðvÞ can be
expressed as

h̄2ðvÞ≡
X
α

Lα

jvm − vmα j3−ds
; ð158Þ

where ds is the number of smeared dimensions and should
satisfy 0 ≤ ds ≤ 4, and we assume that at least one direction
of vmðm ¼ 1;…; 5Þ is not smeared in order to fix the
location of our Universe in the transverse space. In the
following, we will use the function (158).
We will discuss the asymptotic behavior of the time-

dependent solutions. In the limit of vm → vmα , the time
dependence in the function h2 can be ignored, because the
harmonic function h̄2ðvÞ dominates near a position of the
0-brane. On the other hand, the function h̄2ðvÞ vanishes in
the limit of vm → ∞. Then the system becomes static near
the 0-brane, while h2 depends only on time t in the far
region from 0-branes. Thus the six-dimensional metric in
the limit of vm → ∞ is rewritten by

ds2 ¼ −ðϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4Þ−3=2dt2

þ ðϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4Þ1=2wmndvmdvn: ð159Þ

The metric has singularity at h2 ¼ 0. Then the spacetime
is regular if it is restricted inside the domain specified by
the conditions

h2ðt; vÞ ¼ ϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4 þ h̄2ðvÞ > 0; ð160Þ

where the function h̄2ðvÞ is defined in (158). Since the
spacetime evolves into a curvature singularity, the six-
dimensional spacetime cannot be extended beyond this
region. The regular spacetime with 0-branes ends up with
the singularities.
The evolution of the spacetime highly depends on the

signature of ~Λð≡ϵ
ffiffiffiffiffiffi
2Λ

p Þ. The system with ~Λ > 0 has the
time reversal one of ~Λ < 0. Now we will discuss the case
with ~Λ < 0. For t < 0, the spacetime is not singular,
because the function h2 is positive everywhere. In the
limit of t → −∞, the solution is approximately given by a
time-dependent uniform spacetime apart from a position of
0-branes. In the vicinity of branes, the geometry takes a
cylindrical form of an infinite throat.
We study the time evolution for t > 0 and c4 ¼ 0. At

t ¼ 0, the spacetime is regular everywhere and has a
cylindrical topology near each 0-brane. As time slightly
evolves, a curvature singularity appears as jvm − vmα j → ∞.
The singular hypersurface cuts off more and more of the
space as time increases further. When time continues to
evolve, the singular hypersurface eventually splits and
surrounds each of the 0-brane throats individually.
Hence, the spatial surface is composed of each isolated
throat. For t < 0, the time evolution of the six-dimensional
spacetime is the time reversal of t > 0.
Since the metric (159) in the regular domain implies that

the overall transverse space tends to expand asymptotically

KUNIHITO UZAWA PHYSICAL REVIEW D 90, 025024 (2014)

025024-24



like t1=4, for any values of fixed vm, the solutions describe
static 0-branes near the positions of the branes. In the
far region as jvm − vmα j → ∞, the solutions approach
FRW universes with the power-law expansion t1=4. The
emergence of FRW universes is an important feature of the
time-dependent 0-brane solutions.
We will discuss whether two 0-branes can collide or

not. We put the two 0-branes at v1 ¼ ð0; 0;…; 0Þ and
v2 ¼ ðξ; 0;…; 0Þ, where ξ is a constant. If we introduce the
following quantity:

~v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2Þ2 þ ðv3Þ2 þ � � � þ ðv5−dsÞ2

q
; ð161Þ

the proper distance at ~v ¼ 0 between the two 0-branes is
given by

dðtÞ ¼
Z

ξ

0

dv1
�
ϵ

ffiffiffiffiffiffi
2Λ

p
tþ c4 þ

L1

jv1j3−ds þ
L2

jv1 − ξj3−ds
�

1=4
;

ð162Þ

where L1 and L2 are the charges of the 0-brane. For
ϵ ¼ −1, this is a monotonically decreasing function of t.
The behavior of the proper length is different depending on
the number of the smeared directions ds. We will discuss it
for each of the values of ds below.
First we consider the case with ds ≤ 3. The proper length

is plotted in Fig. 5 for the cases with ds ¼ 0 and ds ¼ 2.
Since both cases show that a singularity appears before the
proper distance becomes zero, the singularity between two
0-branes appears before collision. The two 0-branes
approach very slowly, and then the singular hypersurface
suddenly appears at a finite proper distance. The spacetime
finally splits into two isolated 0-brane throats. Therefore
one cannot see the collision of the 0-branes in these

examples. For the other case with ds ¼ 1, the result is
the same.
Next we consider the case with ds ¼ 4 and assume that

the vm directions apart from v1 are smeared. Since the
function h̄2 is linear in v, the behavior of the proper
distance is different from the previous case. The six-
dimensional metric is now given by (157). By choosing
v ¼ v1, the harmonic function h̄2 is written by

h̄2ðvÞ ¼
XN0

α¼1

Lαjv − vαj: ð163Þ

We discuss the time-dependent solutions in the case that
one 0-brane charge L1 is located at v ¼ 0 and the other L2

at v ¼ ξ. The proper length between the two 0-branes is
given by

dðtÞ ¼
Z

ξ

0

dv½ϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4 þ ðL1jvj þ L2jv − ξjÞ�1=4:

ð164Þ

For ϵ ¼ −1, the proper distance decreases with time. If we
set L1 ≠ L2, a singularity appears again at a certain finite
time t ¼ tS, while the proper distance is still finite, where tS
is defined as

tS ≡ c4 þ L1jvj þ L2jv − ξjffiffiffiffiffiffi
2Λ

p : ð165Þ

This is the same result as the case with ds ≤ 3.
On the other hand, two 0-branes have the same brane

charges L1 ¼ L2 ¼ L, and the proper distance vanishes at a
certain finite time t ¼ tc, where tc is defined by

FIG. 5 (color online). The time evolution of the proper distance between two dynamical 0-branes for ds ¼ 0 (a) and ds ¼ 2 (b) in the
six-dimensional Nishino-Salam-Sezgin gauged supergravity. For both cases, the two 0-brane charges are identical, L1 ¼ L2 ¼ 1, and
the parameters are taken as c4 ¼ 0, Λ ¼ 0.5, ϵ ¼ −1, and ξ ¼ 1. The result is also the same, and a singularity develops before the
collision of 0-branes.
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tc ≡ c4 þ Lξffiffiffiffiffiffi
2Λ

p : ð166Þ

Hence two 0-branes can collide completely.
In terms of tc, the proper length is expressed as

dðtÞ ¼ L½−
ffiffiffiffiffiffi
2Λ

p
ðt − tcÞ�1=4: ð167Þ

If we choose the values as c4 ¼ 0, Λ ¼ 0.5, ξ ¼ 1, and
ϵ ¼ −1, the proper distance dðtÞ is plotted in Fig. 6 for the
two cases (a) the same 0-brane charges L1 ¼ L2 ¼ 1 and
(b) different charges L1 ¼ 2, L2 ¼ 1. In case (a), the two 0-
branes can collide completely. However, in case (b), a
singularity appears before collision, as we have already
discussed analytically.

C. Collision of the 1-brane in Nishino-Salam-Sezgin
gauged supergravity

Now we apply our time-dependent solutions to a
collision of 1-brane systems. In the case of h2 ¼ 1, the
function h3 is assumed to be

h3ðt; y; zÞ ¼
Λ
2
ðt2 − y2Þ þ c3 þ ~hðzÞ; ð168Þ

where c3 is a constant parameter, we choose c1 ¼ c2 ¼ 0,
and the harmonic function ~h is expressed as

~hðzÞ ¼
XN
l¼1

Ml

jza − zal j2−ds
; for ds ≠ 2; ð169aÞ

~hðzÞ ¼
XN
l¼1

Ml ln jza − zal j; for ds ¼ 2. ð169bÞ

Here Ml are charges of 1-branes located at za ¼ zal and

jza − zal j

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1 − z1l Þ2 þ ðz2 − z2l Þ2 þ � � � þ ðz4−ds − z4−dsl Þ2

q
;

ð170Þ
because the harmonic function ~h is defined on the ð4 − dsÞ-
dimensional Euclidean subspace in Z. The six-dimensional
metric, scalar field, and gauge field of the solution are given
by Eqs. (124) and (125), respectively. We see that ds ¼ 2
case is critical. For ds ¼ 3, the function ~h is written by the
sum of linear functions of z. The possibility of 1-brane
collisions depends on the difference in the transverse
dimensions, because the behavior of the gravitational field
in the transverse space depends on the number of the
transverse dimensions.
Although the six-dimensional metric (124) is regular if

and only if h3 > 0, the spacetime shows curvature singu-
larities at h3 ¼ 0. Hence, the regular six-dimensional
spacetime is restricted to the region of h3 > 0, which is
bounded by curvature singularities.
Let us study the time evolution for time-dependent

1-brane solution (134). We perform the following coor-
dinate transformation:

t ¼
ffiffiffiffi
2

Λ

r
~t cosh ~y; y ¼

ffiffiffiffi
2

Λ

r
~t sinh ~y: ð171Þ

If we choose c1 ¼ c2 ¼ 0, we find

ds2 ¼ 2

Λ
½1þ ~t−2 ~hð~zÞ�−1=2~t−1

× ½−d~t2 þ ~t2fd~y2 þ ð1þ ~t−2 ~hð~zÞÞδabd~zad~zbg�

¼ 2

Λ
½1þ 16t̄−4 ~hð~zÞ�−1=2½−dt̄2 þ 1

4
t̄2fd~y2

þ ð1þ 16t̄−4 ~hð~zÞÞδabd~zad~zbg�; ð172Þ

FIG. 6 (color online). The time evolution of the proper distance between two dynamical 0-branes for L1 ¼ L2 ¼ 1 (a) and L1 ¼ 2,
L2 ¼ 1 (b) in the six-dimensional Nishino-Salam-Sezgin gauged supergravity. We fix ds ¼ 4, c4 ¼ 0, Λ ¼ 0.5, ϵ ¼ −1, and ξ ¼ 1. The
proper distance rapidly vanishes near where two 0-branes collide for the case of L1 ¼ L2 ¼ 1, while for the case of L1 ¼ 2, L2 ¼ 1, it is
still finite when a curvature singularity appears.
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where ~hð~zÞ, t̄, and ~za are defined, respectively, by

~hð~zÞ ¼ c3 þ
Λ
2

XN
l¼1

Ml

j~za − ~zal j2
; t̄ ¼ 2~t1=2;

~za ¼
ffiffiffiffi
Λ
2

r
za: ð173Þ

Here, ~t obeys Λðt2 − y2Þ=2 ¼ ~t2. The six-dimensional
metric (172) represents a homogeneous and isotropic
spacetime whose scale factor evolves as the cosmic time
t̄, which is described as the Milne universe. Hence, we can
consider that the present solution with Λ > 0 gives a
system of 1-branes in the Milne universe. The existence
of the expanding Milne universe is guaranteed by the scalar
field with the exponential potential in the six-dimensional
action (122).
Now let us consider the collision of 1-branes. The

solution (124) without 0-branes can be written in the form

ds2 ¼
�
Λ
2
ðt2 − y2Þ þ c3 þ ~hðzÞ

�
−1
2ð−dt2 þ dx2Þ

þ
�
Λ
2
ðt2 − y2Þ þ c3 þ ~hðzÞ

�1
2

uabdzadzb; ð174Þ

where we choose c1 ¼ c2 ¼ 0, uab denotes the four-
dimensional metric, and the function ~hðzÞ is given by
(169). The behavior of the harmonic function ~hðzÞ is
divided into two classes depending on the dimensions
of the 1-brane, that is, ds ≠ 2 and ds ¼ 2, which we will
study below separately. For ds ¼ 2, the harmonic function
~hðzÞ diverges both at infinity and near 1-branes. In parti-
cular, there is no regular spacetime region near 1-branes,
because ~hðzÞ → −∞. Hence, such a 1-brane solution is not
physically relevant.
Since the harmonic function ~hðzÞ becomes dominant in

the limit of za → zal (near 1-branes), we find a static
structure of the 1-brane system. In the far region from
1-branes, that is, in the limit of jza − zal j → ∞, the function
h3 depends only on time t, because ~hðzÞ vanishes. The
metric is thus written by

ds2 ¼
�
Λ
2
ðt2 − y2Þ þ c3

�
−1
2ð−dt2 þ dx2Þ

þ
�
Λ
2
ðt2 − y2Þ þ c3

�1
2

uabdzadzb: ð175Þ

In the following, we will analyze one concrete example,
in which two 1-branes are located at z1 ¼ ð0; 0;…; 0Þ and
z2 ¼ ðz0; 0;…; 0Þ in order to study in more detail. Since the
metric function is singular at h3 ¼ 0, the regular spacetime
exists inside the domain restricted by

h3ðt; zÞ ¼
Λ
2
ðt2 − y2Þ þ c3 þ ~hðzÞ > 0; ð176Þ

where the function ~hðzÞ is given by (169). The six-
dimensional spacetime cannot be extended beyond this
region, because not only does the dilaton ϕ diverge but also
the spacetime evolves into a curvature singularity.
The regular spacetime with two 1-branes ends on these

singularities. The time dependence appears in the form of
Λ
2
t2. For t2 > y2 and c3 ¼ 0, the function h is positive

everywhere and the six-dimensional spacetime is not
singular. It is asymptotically a time-dependent uniform
spacetime except for near branes in the limit of za → zal ,
where the background geometry becomes the cylindrical
forms of infinite throats.
When t ≤ 0, the spatial metric is initially (t → −∞)

regular apart from y → �∞, and the spacetime has a
cylindrical topology near each 1-brane. As t evolves
slightly, a curvature singularity appears at y → �∞ and
from a far region (jz1j → ∞). As t evolves further, the
singularity cuts off the space. As the time continues to
increase, the singular hypersurface eventually splits and
surrounds each of the 1-brane throats individually. Then
the spatial surface is composed of two isolated throats.
The six-dimensional metric (175) implies that the trans-

verse dimensions expand asymptotically as t1=2 for fixed
spatial coordinates y and za. However, this is observer
dependent, because it becomes static near branes, and the
spacetime approaches a Friedmann-Robertson-Walker uni-
verse in the far region (jz1j → ∞), which expands in the
background isotropically.
If we define

z̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2Þ2 þ ðz3Þ2 þ � � � þ ðz4−dsÞ2

q
; ð177Þ

the proper length at z̄ ¼ 0 between two 1-branes is written
by

dðt; yÞ ¼
Z

z0

0

dz1
�
Λ
2
ðt2 − y2Þ þ c3

þ M1

jz1j2−ds þ
M2

jz1 − z0j2−ds
�1

4

: ð178Þ

This is amonotonically decreasing functionof time for t ≤ 0.
In Fig. 7, we show dðt; yÞ for the case of the 1-brane system.
We setΛ ¼ 2, z0 ¼ 1, c3 ¼ 0, andM1 ¼ M2 ¼ 1. All of the
six-dimensional space is initially (t ¼ −∞) regular except
at jyj → ∞ and jz1 − z0j → ∞. Although the spacetime
becomes asymptotically time dependent and has the cylin-
drical form of an infinite throat near the 1-brane, the
singularity appears from a far region (jz1 − z0j → ∞) and
jyj → ∞. As time increases (t < 0), the singularity erodes
the region with the large jyj region. The region of transverse
space is also invaded in time. As a result, only the region of
small jyj and near 1-branes remains regular. When we study
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the evolution on the y and za plane, the singularity appears at
infinity jz1j → ∞, jyj → ∞, and comes to the region of two
1-branes.A singular hypersurface eventually surrounds each
1-brane individually, and then the regular regions near 1-
branes split into two isolated throats. For the period of t > 0,
we find the time-reversed behavior of the case of t < 0.
Figures 7 and 8 show that this singularity appears before the
distance d vanishes.
Then a singularity between two branes forms before their

collision except for ds ¼ 3. Two 1-branes approach very
slowly, a singularity suddenly appears at a finite distance,
and the six-dimensional spacetime splits into two isolated
1-brane throats.
On the other hand, we can discuss a brane collision for

ds ¼ 3 and t < 0. If M1 ≠ M2, a singularity appears at t ¼
tS < 0when the distance is still finite (see Fig. 9). This is just

the sameas thecase inSec.V B.However, ifM1 ¼ M2 ¼ M,
the result completely changes (Fig. 7). Since the distance
eventually vanishes at t ¼ tc, two 1-branes collide with
each other. The proper length for fixed y decreases as
time increases from t ¼ −∞, and it eventually vanishes at
t ¼ tc. Hence, one 1-brane approaches the other as time
evolves, causing the complete collision at t ¼ tc. If we
fix the 1-brane charges such that M1 ¼ M2 ¼ M, the
branes first collide at larger jyj, and as time progresses,
the subsequent collisions occur at the smaller jyj. We
show dðt; yÞ integrated numerically in Figs. 7, 8, and 9.
We also calculate the distance dðt; yÞ at y ¼ 0 and z̄ ¼ 0

between two branes before the singularity appears except
for the case of ds ¼ 3 if M1 ¼ M2. The proper length is
also given by Eq. (178). In the present case, d is a
monotonically decreasing function of t2 when t < 0.

FIG. 7 (color online). The time evolution of the proper distance between two dynamical 1-branes for (a) ds ¼ 3 and (b) ds ¼ 1 in the
six-dimensional Nishino-Salam-Sezgin gauged supergravity. We fix c3 ¼ 0, M1 ¼ M2 ¼ 1, z0 ¼ 1, and Λ ¼ 2. The proper distance
rapidly vanishes near where two 1-branes collide for the case of ds ¼ 3, while for the case of ds ¼ 1, it is still finite when a curvature
singularity appears.

FIG. 8 (color online). The proper distance between two dynamical 1-branes given in (178) is depicted for (a)M1 ¼ 10,M2 ¼ 1 and (b)
M1 ¼ 2,M2 ¼ 1 in the six-dimensional Nishino-Salam-Sezgin gauged supergravity. We fix c3 ¼ 0, ds ¼ 0, z0 ¼ 1, and Λ ¼ 2. In both
cases, a singularity appears at t ¼ tS < 0 when the distance is still finite.
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We show the time evolution of the distance in Fig. 10 for
the case of M1 ¼ M2.
On the other hand, for the case ofM1 ≠ M2, a singularity

appears, when the proper distance is still finite. For the
period of t > 0, the behavior of six-dimensional spacetime
is the time reversal of the period of t < 0. We show the
proper distance dðtÞ integrated numerically in Fig. 10 for
the cases of ds ¼ 3 and ds ≠ 3.

D. Romans’ six-dimensional gauged supergravity

Similarly, for the six-dimensional Romans’ theory [70],
following the discussion in Ref. [81], the coupling of the

3-form and of the 2-form field strengths to the dilaton are
given by ϵrcr ¼ −1=

ffiffiffi
2

p
and ϵscs ¼

ffiffiffi
2

p
, respectively:

S ¼ 1

2κ2

Z �
ðRþ 2eϕ=

ffiffi
2

p
λÞ � 1 − 1

2
� dϕ∧dϕ

−
1

2 · 2!
e−ϕ=

ffiffi
2

p
� Fð2Þ∧Fð2Þ −

1

2 · 3!
e

ffiffi
2

p
ϕ � Fð3Þ∧Fð3Þ

�
;

ð179Þ

where R denotes the Ricci scalar constructed from the
six-dimensional metric gMN , κ2 is the six-dimensional
gravitational constant, � is the Hodge operator in the

FIG. 9 (color online). The time evolution of the proper distance between two dynamical 1-branes for (a) M1 ¼ 10, M2 ¼ 1 and (b)
M1 ¼ 2, M2 ¼ 1 in the six-dimensional Nishino-Salam-Sezgin gauged supergravity. We fix c3 ¼ 0, ds ¼ 3, z0 ¼ 1, and Λ ¼ 2.
For M1 ≠ M2, a singularity appears at t ¼ tS < 0 when the distance is still finite. Then, the solution does not describe the collision of
two 0-branes.

FIG. 10 (color online). (a) The proper distance between two dynamical 1-branes at y ¼ 0 and z̄ ¼ 0 for the case of ds ¼ 0 in the six-
dimensional Nishino-Salam-Sezgin gauged supergravity is depicted. We fix c4 ¼ 0, z0 ¼ 1, and Λ ¼ 2. For t < 0, the proper length
decreases as time increases. The bold line denotes the case of M1 ¼ M2 ¼ 1, while the solid one corresponds to the M1 ¼ 10, M2 ¼ 1
case. (b) For the case of M1 ¼ M2 in the six-dimensional Nishino-Salam-Sezgin gauged supergravity, the time evolution of the proper
distance between two dynamical 1-branes at y ¼ 3 and ~z ¼ 0 given in (178) is depicted. We fix c4 ¼ 0, z0 ¼ 1, and Λ ¼ 2. We show
the lengths for ds ¼ 0 (bold line), ds ¼ 1 (solid line), and ds ¼ 3 (dashed line). The proper distance rapidly vanishes near where two
1-branes collide in the case of ds ¼ 3, while in the case of ds ≠ 3, it is still finite when a curvature singularity appears.
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six-dimensional spacetime, ϕ denotes the scalar field, λ > 0
is cosmological constants, and Fð3Þ and Fð2Þ are 3-form and
2-form field strengths, respectively. This has a negative
scalar potential. In terms of Eq. (2a), Romans’ model is
given by choosing Λr ¼ −λ, Λs ¼ 0, Nr ¼ 2, and Ns ¼ 4.
From the six-dimensional action (179), we find the field

equations:

RMN ¼ −
1

2
eϕ=

ffiffi
2

p
λgMN þ 1

2
∂Mϕ∂Nϕ

þ e−ϕ=
ffiffi
2

p

2 · 2!

�
2FMAFN

A −
1

4
gMNF2

ð2Þ

�

þ e
ffiffi
2

p
ϕ

2 · 3!

�
3FMABFN

AB −
1

2
gMNF2

ð3Þ

�
; ð180aÞ

▵ϕþ
ffiffiffi
2

p

4 · 2!
e−ϕ=

ffiffi
2

p
F2
ð2Þ −

ffiffiffi
2

p

2 · 3!
e

ffiffi
2

p
ϕF2

ð3Þ þ
ffiffiffi
2

p
eϕ=

ffiffi
2

p
λ ¼ 0;

ð180bÞ

d½e−ϕ=
ffiffi
2

p
� Fð2Þ� ¼ 0; ð180cÞ

d½e
ffiffi
2

p
ϕ � Fð3Þ� ¼ 0; ð180dÞ

where ▵ denotes the Laplace operator with respect to the
six-dimensional metric gMN .
We assume the six-dimensional metric of the form (124).

The scalar field and the gauge field strengths are assumed
to be

eϕ ¼ h−
ffiffi
2

p
=2

2 h
ffiffi
2

p
=2

3 ; ð181aÞ

Fð2Þ ¼ d½
ffiffiffi
2

p
h−12 ðt; y; zÞ�∧dt; ð181bÞ

Fð3Þ ¼ d½h−13 ðt; y; zÞ�∧dt∧dy: ð181cÞ

The Einstein equations (180a) then reduce to

5

4
h−12 ∂2

t h2 þ
3

4
h−13 ∂2

t h3 þ
1

4
h−22 ð3h−12 ∂2

yh2 þ h−13 ∂2
yh3Þ

þ 1

4
h−22 h−13 ð3h−12 ▵Zh2 þ h−13 ▵Zh3Þ þ

1

2
h−22 λ

þ 1

4
ð∂t ln h2Þ2 þ

7

4
∂t ln h2∂t ln h3

þ 3

4
h−22 ∂y ln h2∂y ln h3 ¼ 0; ð182aÞ

h−12 ∂t∂yh2 þ h−13 ∂t∂yh3 þ ∂t ln h3∂y ln h2 ¼ 0; ð182bÞ

2h−12 ∂t∂ah2 þ h−13 ∂t∂ah3 ¼ 0; ð182cÞ

1

4
h22ðh−12 ∂2

t h2 − h−13 ∂2
t h3Þ −

1

4
ðh−12 ∂2

yh2 þ 3h−13 ∂2
yh3Þ

−
1

4
h−13 ðh−12 ▵Zh2 − h−13 ▵Zh3Þ þ

1

2
λþ 1

4
ð∂th2Þ2

−
1

4
h22∂t ln h2∂t ln h3 −

5

4
∂y ln h2∂y ln h3 ¼ 0;

ð182dÞ

h−13 ∂y∂ah3 þ 2∂y ln h2∂a ln h2 ¼ 0; ð182eÞ

RabðZÞ þ
1

4
h22h3uabðh−12 ∂2

t h2 þ h−13 ∂2
t h3Þ

−
1

4
h3uabðh−12 ∂2

yh2 þ h−13 ∂2
yh3Þ

−
1

4
uabðh−12 ▵Zh2 þ h−13 ▵Zh3Þ

þ 1

4
h22h3uab½ð∂t ln h2Þ2 þ 3∂t ln h2∂t ln h3�

−
1

4
h3uab∂y ln h2∂y ln h3 þ

1

2
uabh3λ ¼ 0; ð182fÞ

where▵Z denotes theLaplaceoperatoronZspace andRabðZÞ
is the Ricci tensor constructed from the metric uabðZÞ.
We next consider the gauge field. Under the ansatz (181),

the Bianchi identity is automatically satisfied. Also the
equation of motion for the gauge field becomes

d½h−13 ∂yh2ΩðZÞ þ ∂ah2dy∧ð�ZdzaÞ� ¼ 0; ð183aÞ

d½∂ah3ð�ZdzaÞ� ¼ 0; ð183bÞ

where �Z denotes the Hodge operator on Z.
Although the roles of the Bianchi identity and field

equations are interchanged, the net result is the same.
Finally, we consider the equation of motion for the scalar
field. Substituting the scalar field and the gauge field in
(181) into the equation of motion for the scalar field (180b),
we have

h22h3ðh−12 ∂2
t h2 − h−13 ∂2

t h3Þ þ h3ð∂th2Þ2 − h2∂th2∂th3

− h3ðh−12 ∂2
yh2 − h−13 ∂2

yh3Þ − h−12 ∂yh2∂yh3

− h−12 ▵Zh2 þ h−13 ▵Zh3 þ 2h3λ ¼ 0: ð184Þ
Then, the functions h2 and h3 satisfy the equations

ð∂th2Þ2 þ 2λþ h2∂2
t h2 − h−12 ▵Wh2 ¼ 0; for h3 ¼ 1;

ð185aÞ

− ∂2
t h3 þ ∂2

yh3 þ 2λh3 þ h−13 ▵Zh3 ¼ 0; for h2 ¼ 1;

ð185bÞ

where Laplace operator ▵W is defined in Eq. (132). If we
set h2 ¼ 1, the field equations give
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RabðZÞ ¼ 0; ð186aÞ

h2 ¼ 1; λ ¼ 0; ∂2
t h3 ¼ ∂2

yh3 ¼ 0; ▵Zh3 ¼ 0:

ð186bÞ

Now we will focus upon a case by imposing the conditions

uab ¼ δab; h2 ¼ 1; λ ¼ 0; ð187Þ

where δab is the four-dimensional Euclidean metric. Then,
the solution for h3 can be obtained explicitly as

h3ðt; y; zÞ ¼ c1tþ c2yþ c3 þ
XN
l¼1

Ml

jza − zal j2
; ð188Þ

where ciði ¼ 1; 2; 3Þ are constants.
One can easily get the solution for h3 ¼ 1, λ ≠ 0, and

∂th2 ≠ 0 if the roles of h2 and h3 are exchanged. The
solution of field equations is thus expressed as

h2ðt; vÞ ¼ �
ffiffiffiffiffiffiffi
2iλ

p
tþ c5 þ

XN0

α¼1

Lα

jvm − vmα j3
; ð189aÞ

h3 ¼ 1; ð189bÞ

where c5, vmα , and Lα are constants and the five-
dimensional coordinate vm is defined by (132). Hence,
there is no cosmological 0-brane solution in terms of the
ansatz of fields (124) and (181) if λ ≠ 0.

E. Romans’ five-dimensional gauged supergravity

Finally, we consider the five-dimensional Romans’
theory [82]. The five-dimensional action is given by

S ¼ 1

2κ2

Z h
ðRþ 2e2ϕ=

ffiffi
6

p
λ̄Þ � 1 − 1

2
� dϕ∧dϕ

−
1

2 · 2!
e−2ϕ=

ffiffi
6

p
� Fð2Þ∧Fð2Þ

−
1

2 · 2!
e4ϕ=

ffiffi
6

p
�Hð2Þ∧Hð2Þ

i
; ð190Þ

where the expectation value of the Yang-Mills potential is
assumed to vanish, R denotes the Ricci scalar constructed
from the five-dimensional metric gMN , κ2 is the five-
dimensional gravitational constant, � is the Hodge operator
in the five-dimensional spacetime, ϕ denotes the scalar
field, λ̄ > 0 is the cosmological constant, Fð2Þ and Hð2Þ are
2-form field strengths, and the couplings of the 2-form field
strengths and cosmological constant to the dilaton are given
by ϵrcr ¼ −2=

ffiffiffi
6

p
, ϵscs ¼ 4=

ffiffiffi
6

p
, and αr ¼ 2=

ffiffiffi
6

p
, in the

action (1), respectively. This has also a negative scalar
potential. In terms of Eq. (2a), Romans’ five-dimensional

model is given by setting Λr ¼ −λ̄, Λs ¼ 0, Nr ¼ 2,
and Ns ¼ 4.
The five-dimensional action (190) gives the field

equations:

RMN ¼ −
1

2
e2ϕ=

ffiffi
6

p
λ̄gMN þ 1

2
∂Mϕ∂Nϕ

þ e−2ϕ=
ffiffi
6

p

2 · 2!

�
2FMAFN

A −
1

3
gMNF2

ð2Þ

�

þ e4ϕ=
ffiffi
6

p

2 · 2!

�
2HMAHN

A −
1

3
gMNH2

ð2Þ

�
; ð191aÞ

▵ϕþ
ffiffiffi
6

p

6 · 2!
e−2ϕ=

ffiffi
6

p
F2
ð2Þ −

ffiffiffi
6

p

3 · 2!
e4ϕ=

ffiffi
6

p
H2

ð2Þ

þ 2
ffiffiffi
6

p

3
e2ϕ=

ffiffi
6

p
λ̄ ¼ 0; ð191bÞ

d½e−2ϕ=
ffiffi
6

p
� Fð2Þ� ¼ 0; ð191cÞ

d½e4ϕ=
ffiffi
6

p
�Hð2Þ� ¼ 0; ð191dÞ

where ▵ denotes the Laplace operator with respect to the
five-dimensional metric gMN .
We assume the five-dimensional metric of the form

ds2 ¼ h2=32 ðt; zÞk1=32 ðt; zÞ½−h−22 ðt; zÞk−12 ðt; zÞdt2
þ uabðZÞdzadzb�; ð192Þ

where uabðZÞ is the four-dimensional metric which
depends only on the four-dimensional coordinates za.
The scalar field and the gauge field strengths are

assumed to be

eϕ ¼ h−2=
ffiffi
6

p
2 k2=

ffiffi
6

p
2 ; ð193aÞ

Fð2Þ ¼ d½
ffiffiffi
2

p
h−12 ðt; zÞ�∧dt; ð193bÞ

Hð2Þ ¼ d½k−12 ðt; zÞ�∧dt: ð193cÞ

Then, the field equations are reduced to

RabðZÞ ¼ 0; ð194aÞ

h2ðt; zÞ ¼ h0ðtÞ þ h̄ðzÞ; k2ðt; zÞ ¼ k0ðtÞ þ k̄ðzÞ;
ð194bÞ

�
dh0
dt

�
2

þ 2λ̄ ¼ 0;
dh0
dt

dk0
dt

¼ 0;

d2h0
dt2

¼ 0;
d2k0
dt2

¼ 0; ð194cÞ
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▵Zh̄ ¼ 0; ▵Zk̄ ¼ 0; ð194dÞ

where ▵Z is the Laplace operator on Z space and RabðZÞ is
the Ricci tensor with respect to the metric uabðZÞ. By
setting λ̄ ≠ 0, there is no cosmological solution because of
Eq. (194d).
Let us consider the case

uab ¼ δab; λ̄ ¼ 0;
dh0
dt

¼ 0; ð195Þ

where δab is the four-dimensional Euclidean metric. Then
we can construct the solution

h2ðzÞ ¼ c1 þ
XN0

α¼1

Lα

jza − zaαj2
; ð196aÞ

k2ðt; zÞ ¼ c2tþ c3 þ
XN
l¼1

Ml

jza − zal j2
; ð196bÞ

where ciði ¼ 1; 2; 3Þ, Lα, and Ml are the constants.
Now we discuss the cosmological evolution for time-

dependent solution (196). We define the cosmic time τ,
which is given by�

τ

τ0

�
≡ ðc2tÞ2=3; τ0 ≡ 3

2c2
; c3 ¼ 0: ð197Þ

The five-dimensional metric can be expressed as

ds2 ¼ h−4=32 ðzÞ
�
1þ

�
τ

τ0

�
−3=2

k̄ðzÞ
�
−2
3

�
−dτ2

þh22ðzÞ
�
1þ

�
τ

τ0

�
−3=2

k̄ðzÞ
��

τ

τ0

�
1=2

δabðZÞdzadzb
�
;

ð198Þ

where the functions h2ðzÞ and k̄ðzÞ are given, respectively,
by

h2ðzÞ ¼ c1 þ
XN0

α¼1

Lα

jza − zaαj2−ds
;

k̄ðzÞ≡ c3 þ
XN
l¼1

Ml

jza − zal j2−ds
. ð199Þ

Here ds is the number of smeared dimensions and should
satisfy 0 ≤ ds ≤ 3. Here we assume that one direction of
zaða ¼ 1;…; 4Þ is not smeared in order to fix the location
of our Universe in the transverse space. Our Universe is
given by the solutions with the five-dimensional coordi-
nates t; zaða ¼ 1;…; 4Þ. The time direction is written by t.
Our choice is to take the three-dimensional from the overall
transverse space with za. The four-dimensional universe is

spanned by t, z2, z3, and z4, for instance. The z1 direction is
preserved to measure the position of our Universe in the
overall transverse space of 0-branes. Since the metric
depends on za explicitly, we have to smear out z2, z3,
and z4 so as to define our Universe. Then the number of the
smeared directions ds should satisfy the condition ds ¼ 3.
Unfortunately, the power exponent of a four-dimensional

universe becomes 1=4. Hence, we have to conclude that, in
order to obtain a realistic expansion of the universe in this
type of models, one has to include additional fields on the
background.
We study the asymptotic behavior of the dynamical

0-brane background. The time dependence in the function
h2 can be ignored in the limit of za → zal , because the
harmonic function k̄ðzÞ dominates near a position of the
0-brane. In the limit of za → ∞, as function k̄ðzÞ vanishes,
the system becomes static near the 0-brane. Then, the
function k2 depends only on time in the far region from
0-branes. The five-dimensional metric in the limit of
za → ∞ is thus given by

ds2 ¼ −ðc2tþ c3Þ−2=3dt2 þ ðc2tþ c3Þ1=3uabdzadzb:
ð200Þ

The metric has a singularity at t ¼ −c3=c2. Then the
five-dimensional spacetime does not have any singularity if
it is restricted inside the domain satisfied by the conditions

h2ðzÞ ¼ c1 þ
XN0

α¼1

Lα

jza − zaαj2−ds
> 0;

k2ðt; zÞ ¼ c2tþ k̄ðzÞ > 0; ð201Þ

where the function k̄ðzÞ is defined in (199). The five-
dimensional spacetime cannot be extended beyond this
region. Since the spacetime evolves into a curvature
singularity, the regular spacetime with dynamical 0-branes
ends up with the singularities.
Although the evolution of the dynamical 0-brane with

c2 > 0 has the time reversal one of c2 < 0, the behavior of
the background spacetime strongly depends on the signa-
ture of c2. In the following, we will focus on the case with
c2 < 0. For t < 0, the function h2 is positive everywhere.
Then the spacetime is not singular. In the limit of t → −∞,
the solution becomes a time-dependent uniform spacetime
apart from a position of 0-branes. The five-dimensional
background geometry can be described as a cylindrical
form of an infinite throat near the dynamical 0-branes.
Let us consider the time evolution of the five-dimen-

sional spacetime. At t ¼ 0, the five-dimensional spacetime
does not have any curvature singularity in the background.
The background geometry has a cylindrical topology near
each 0-brane. As time slightly increases, a curvature
singularity appears far from 0-branes jza − zaαj → ∞.
After that, the singular hypersurface cuts off more and
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more of the space as time increases further. The singular
hypersurface splits and surrounds each of the 0-brane
throats individually after time continues to evolve. The
spatial surface is finally composed of two isolated throats.
The time evolution of the five-dimensional spacetime for
t < 0 is the time reversal of t > 0.
We find that the overall transverse space tends to expand

asymptotically like t1=6, for any values of fixed za, in the
regular domain of the five-dimensional metric (200), while
the solutions describe static 0-branes near the positions of
the branes. In the far region from 0-branes where
jza − zaαj → ∞, the background geometry becomes FRW
universes with the power-law expansion t1=6.
Next we consider the case of the near-horizon limit that

the spacetime metric and the functions h2 and k2 are given
by (196). If we consider the case where all 0-branes are
located at the origin of the Z space, we have

h2ðrÞ ¼ c1 þ
L
r2

; ð202aÞ

k2ðt; rÞ ¼ c2tþ c3 þ
M
r2

; r2 ≡ δabzazb; ð202bÞ

where L and M are the total masses of 0-branes

L≡XN0

α¼1

Lα; M ≡XN
l¼1

Ml: ð203Þ

Since the dependence on t in (202) is negligible in the near-
horizon limit r → 0, the five-dimensional metric is reduced
to the following form:

ds2 ¼ ds2AdS2 þ L2=3M1=3dΩ2
ð3Þ; ð204aÞ

ds2AdS2 ≡ L−4=3M−2=3
�
−r4dt2 þ L2M

r2
dr2

�
; ð204bÞ

where δabdzadzb ¼ dr2 þ r2dΩ2
ð3Þ has been used. The line

elements of a two-dimensional AdS space (AdS2) and a
three-sphere with the unit radius (S3) are given by ds2AdS2
and dΩ2

ð3Þ, respectively. Thus we see that the near-horizon
limit of the 0-brane system is an AdS2 with a certain
internal 3-space.
Before closing this subsection, we discuss the collision

of 0-branes. There are two kinds of 0-brane in the five-
dimensional spacetime. One is a static 0-brane coming
from the function h2ðzÞ. The other is a dynamical 0-brane
given by k2ðt; zÞ. We set the two dynamical 0-branes at
z1 ¼ ð0; 0;…; 0Þ and z2 ¼ ðP; 0;…; 0Þ, where P is a
constant. On the other hand, we suppose that N0 static
0-branes are sitting at a point

z1 ¼ � � � ¼ zN0 ≡ z0 ¼ ðz10; 0;…; 0Þ: ð205Þ

Now we consider the following quantity:

~z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2Þ2 þ ðz3Þ2 þ � � � þ ðz4−dsÞ2

q
: ð206Þ

Then the proper length at ~z ¼ 0 between the two dynamical
0-branes is given by

dðtÞ ¼
Z

P

0

dz1
�
c1 þ

L
jz1 − z10j2−ds

�
1=3

×

�
c2tþ c3 þ

M1

jz1j2−ds þ
M2

jz1 − Pj2−ds
�

1=6
; ð207Þ

whereM1 andM2 are the charges of the dynamical 0-brane
and L is defined by

L ¼
XN0

α¼1

Lα: ð208Þ

For c2 ¼ −1, the length dðtÞ is a monotonically decreasing
function of time. Since the time evolution of the proper
length depends on the number of the smeared directions ds,
we shall analyze it for each of the values of ds below.
First we consider the case with ds ≤ 2. For d2 ¼ 2, the

harmonic functions h2 and k2 diverge both at infinity and
near 0-branes. In particular, there is no regular spacetime
region near 0-branes because of h2 → ∞ and k̄ → ∞. Then,
these are not physically relevant. Hence, we show the
proper length in Fig. 11 for the cases with ds ¼ 0 and
ds ¼ 1. For both cases, the singularity between two
dynamical 0-branes appears before collision, because a
singularity appears before the proper distance becomes
zero. Although two dynamical 0-branes initially approach
very slowly, the singular hypersurface suddenly appears at
a finite distance, and the spacetime finally splits into two
isolated 0-brane throats. Therefore, we cannot analyze the
collision of the dynamical 0-branes in these examples.
However, for the case with ds ¼ 3, the function h2 and k̄

are written by the linear function of za. If we assume that
the za directions apart from z1 are smeared, the time
evolution of the proper length is different from the previous
case. Hence, the harmonic functions h2 and k̄ are expressed,
respectively, as

h2ðz1Þ ¼ c1 þ
XN0

α¼1

Lαjz1 − z1αj;

k̄ðz1Þ ¼ c3 þ
XN
l¼1

Mljz1 − z1l j: ð209Þ

We study the dynamics of 0-branes, where one 0-brane
charge M1 is located at z1 ¼ 0 and the other M2 at z1 ¼ P.
The proper distance between the two dynamical 0-branes is
given by
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dðtÞ ¼
Z

P

0

dz1ðc1 þ Ljz1 − z10jÞ1=3

× ½c2tþ c3 þ ðM1jz1j þM2jz1 − PjÞ�1=6; ð210Þ

where we assume again that N0 static 0-branes are sitting at
a point z1 ¼ z10 and L is defined by (208). For c2 < 0, the
proper distance decreases with time. By settingM1 ≠ M2, a
curvature singularity appears again at a certain finite time
t ¼ tS before the dynamical 0-branes collide. Then, tS is
written by

tS ≡ −
c3 þM1jz1j þM2jz1 − Pj

c2
: ð211Þ

This is the same result as the case with ds ≤ 2.

On the other hand, two 0-branes have the same brane
charges M1 ¼ M2 ¼ M, and the proper distance vanishes
at a certain finite time t ¼ tc, where tc is defined by

tc ≡ −
c3 þMP

c2
: ð212Þ

Then two dynamical 0-branes collide completely.
If we set z10 ¼ 0, for simplicity, the proper length

between two dynamical 0-branes can be written by

dðtÞ ¼ 3

4L
½−c4=31 þ ðc1 þ LPÞ4=3�½c2ðt − tcÞ�1=6: ð213Þ

If we choose the physical parameters as c1 ¼ 0, c2 ¼ −1,
c3 ¼ 0, P ¼ 1, z10 ¼ 0, and L ¼ 1, the proper distance dðtÞ

FIG. 11 (color online). The behavior of the proper distance between two dynamical 0-branes for ds ¼ 0 (a) and ds ¼ 1 (b) in the five-
dimensional Romans’ theory. For both cases, the two dynamical 0-brane charges are identical, M1 ¼ M2 ¼ 1, and the parameters are
taken as c1 ¼ 0, c2 ¼ −1, c3 ¼ 0, L ¼ 1, z10 ¼ 0, and P ¼ 1. The result is also the same, and a singularity appears before the collision of
dynamical 0-branes.

FIG. 12 (color online). The behavior of the proper distance between two dynamical 0-branes for M1 ¼ M2 ¼ 1 (a) and M1 ¼ 2,
M2 ¼ 1 (b) in the five-dimensional Romans’ theory. We fix ds ¼ 3, c1 ¼ 0, c2 ¼ −1, c3 ¼ 0, z10 ¼ 0, L ¼ 1, and P ¼ 1. The proper
length rapidly vanishes near where two 0-branes collide for the case of M1 ¼ M2 ¼ 1. For the case of M1 ¼ 2, M2 ¼ 1, it is still finite
when a curvature singularity appears.
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is depicted in Fig. 12 for the two cases (a) the same 0-brane
charges M1 ¼ M2 ¼ 1 and (b) different charges M1 ¼ 2,
M2 ¼ 1. For case (a), the two dynamical 0-branes can
collide completely. On the other hand, in case (b), a
singularity appears before the collision of dynamical
0-branes, as we have already discussed in Sec. V B.

VI. THE INSTABILITY OF THE DYNAMICAL
BRANE BACKGROUND

In this section, we briefly discuss the nature of the
singularities appearing in the time-dependent solutions
and present the stability analysis for the dynamical brane
background. We follow the method used by Refs. [38–41]
(see also [83–85]) and present the preliminary analysis
performed, where the Klein-Gordon modes are analyzed.
An analysis of such a possibility will definitely make the
property of singularity more clear, even if it is just a simple
preliminary study to assess this issue.

A. The dynamical 0-brane background in
Nishino-Salam-Sezgin gauged supergravity

Let us first consider the stability for the 0-brane solution
in Nishino-Salam-Sezgin gauged supergravity. The six-
dimensional metric becomes static space near the 0-brane,
while the background depends only on the times far from
the 0-brane. We will study the stability in the 0-brane
solution far from the branes.
For the limit r → ∞ in the solution (144), the six-

dimensional metric is expressed as

ds2 ¼ −ðϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4Þ−3=2dt2

þ ðϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4Þ1=2δmnðWÞdvmdvn; ð214aÞ

δmnðWÞdvmdvn ≡ dr2 þ r2ωijðS4Þdξidξj; ð214bÞ

where ωijðS4Þ denotes the metric of four-dimensional
sphere. The six-dimensional metric has a curvature singu-
larity at t ¼ −c4=ϵ

ffiffiffiffiffiffi
2Λ

p
. In order to study the stability, we

consider the Klein-Gordon equation for a massive scalar
field propagating in the background (214):

−
1ffiffiffiffiffiffi−gp ∂Mð

ffiffiffiffiffiffi
−g

p
gMN∂NφÞ þm2φ ¼ 0; ð215Þ

where g denotes the determinant of the six-dimensional
metric (214). In terms of the metric (214), the Klein-
Gordon equation can be written by

∂t½ðϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4Þ2∂tφ� − r−4∂rðr4∂rφÞ

−
1

r2
▵S4φþ ðϵ

ffiffiffiffiffiffi
2Λ

p
tþ c4Þ1=2m2φ ¼ 0; ð216Þ

where ▵S4 denotes the Laplace operator on the S4. The
six-dimensional metric involved permits separation of
variables, so we take

φ ¼ φ0ðtÞφ1ðrÞφ2ðξÞ; ð217Þ
where the functions φ1ðrÞ and φ2ðξÞ obey the eigenvalue
equations

▵Wφ1ðrÞφ2ðξÞ ¼ −λ2Wφ1ðrÞφ2ðξÞ: ð218Þ
Here ▵W is the Laplace operator on the W space, λW is the
eigenvalue, and φ1ðrÞ and φ2ðξÞ satisfy [86]

φ1ðrÞ ¼
1

r
½b1JνðλWrÞ þ b2YνðλWrÞ�;

▵S4φ2ðξÞ ¼ −λ2S4φ2ðξÞ; ð219Þ

where b1 and b2 are constants, Jν and Yν denote the Bessel
functions, and ν is related to the eigenvalue λ2S4 as

ν2 ¼ λ2S4 þ
9

4
: ð220Þ

The Klein-Gordon equation thus is rewritten by

d2φ0

dt2
þ 2ϵ

ffiffiffiffiffiffi
2Λ

p

ðϵ ffiffiffiffiffiffi
2Λ

p
tþ c4Þ

dφ0

dt

þ 1

ðϵ ffiffiffiffiffiffi
2Λ

p
tþ c4Þ2

½λ2W þ ðϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4Þ1=2m2�φ0 ¼ 0:

ð221Þ

Then the solution for φ0 is oscillatory, having the form

φ0ðtÞ ¼
Λ

2m2ðϵ ffiffiffiffiffiffi
2Λ

p
tþ c4Þ1=2

×

�
η1Γð1 − γÞJ−γ

�
4mðϵ ffiffiffiffiffiffi

2Λ
p

tþ c4Þ1=4
ϵ

ffiffiffiffiffiffi
2Λ

p
�

þη2Γð1þ γÞJγ
�
4mðϵ ffiffiffiffiffiffi

2Λ
p

tþ c4Þ1=4
ϵ

ffiffiffiffiffiffi
2Λ

p
��

; ð222Þ

where η1 and η2 are constants, J−γ and Jγ denote the Bessel
functions, and γ is given by

γ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2λ2W
Λ

r
: ð223Þ

Let us consider the energy of the Klein-Gordon modes to
study whether the instability occurs or not. Using the
asymptotic solution (222), we will see that E → ∞ as the
singularity is approached, where there is a curvature
singularity at t ¼ −c4=ϵ

ffiffiffiffiffiffi
2Λ

p
in the six-dimensional back-

ground (214). Since the velocity is well behaved besides the
singularity, the energy of the Klein-Gordon modes can be
estimated as
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E ¼ −uM∂Mφ; u ¼ α∂t þ β∂r; ð224Þ
where u is velocity. In terms of the normalization condition
u2 ¼ −1, the behavior of the α and β are determined in
order to remain nonsingular. Then, we find

−α2ðϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4Þ−3=2 þ β2ðϵ

ffiffiffiffiffiffi
2Λ

p
tþ c4Þ1=2 ¼ −1:

ð225Þ
As t → 0, α and β have to behave as

α ∼ ðϵ
ffiffiffiffiffiffi
2Λ

p
tþ c4Þ3=4; β ∼ ðϵ

ffiffiffiffiffiffi
2Λ

p
tþ c4Þ−1=4; ð226Þ

in the limit r → ∞ for the dynamical 0-brane background.
Upon setting (226), one then finds

−E ¼ α∂tφþ β∂rφ: ð227Þ
In terms of the asymptotic solution (222) with γ (223),

we find that E → ∞ as the singularity is approached if
we set ϵ ¼ 1 and Λ > 0. Hence, the 0-brane solution
implies that the energy-momentum tensor of the scalar
field mode diverges far from the 0-brane. However, it is
necessary to study a full analysis of the metric perturbations
for whether the mode of Klein Gordon field is not likely to
destabilize the metric modes near the singularity or not.

B. The dynamical 1-brane background in
Nishino-Salam-Sezgin gauged supergravity

Next we consider the stability for the 1-brane solution in
Nishino-Salam-Sezgin gauged supergravity. For the metric
(168), the harmonic function ~hðzÞ dominates in the limit of
za → zal (near a position of 1-branes) and the time depend-
ence can be ignored. Thus the background becomes static.
On the other hand, in the limit of jzaj → ∞, ~hðzÞ vanishes.
Then h3 depends on t and y in the far region from 1-branes,
and the resulting metric is given by

ds2 ¼
�
Λ
2
ðt2 − y2Þ þ c1tþ c2yþ c3

�
−1=2

ð−dt2 þ dy2Þ

þ
�
Λ
2
ðt2 − y2Þ þ c1tþ c2yþ c3

�
1=2

δabðZÞdzadzb;
ð228aÞ

δabðZÞdzadzb ≡ dr2 þ r2 ~ωijðS3Þdξidξj; ð228bÞ

where ~ωijðS3Þ is the metric of three-dimensional sphere.
For the six-dimensional metric, a curvature singularity may
appear at

Λ
2
ðt2 − y2Þ þ c1tþ c2yþ c3 ¼ 0: ð229Þ

In the following, we will again discuss the stability in the
1-brane solution far from the branes. Let us consider the

Klein-Gordon equation for a massive scalar field in the
six-dimensional background (228):

−
1ffiffiffiffiffiffi−gp ∂Mð

ffiffiffiffiffiffi
−g

p
gMN∂NψÞ þm2ψ ¼ 0; ð230Þ

where g denotes the determinant of the six-dimensional
metric (228). Substituting the six-dimensional metric
(228) into the Klein-Gordon equation for a massive scalar
field (230), we find

∂t

��
Λ
2
ðt2−y2Þþc1t

�
∂tψ

�
−∂y

��
Λ
2
ðt2−y2Þþc1t

�
∂yψ

�

−r−3∂rðr3∂rψÞ−
1

r2
▵S3ψ

þ
��

Λ
2
ðt2−y2Þþc1t

��
1=2

m2ψ ¼0; ð231Þ

where we set c2 ¼ c3 ¼ 0 and ▵S3 denotes the Laplace
operator on the S3. The six-dimensional metric involved
permits separation of variables, so we take

ψ ¼ ψ0ðtÞψ1ðyÞψ2ðrÞψ3ðξÞ; ð232Þ

where the functions ψ2ðrÞ and ψ3ðξÞ obey the eigenvalue
equations

▵Zψ2ðrÞψ3ðξÞ ¼ −λ2Zψ2ðrÞψ3ðξÞ: ð233Þ

Here ▵Z is the Laplace operator on the Z space, λZ is the
eigenvalue, for Eq. (233), and ψ2ðrÞ and ψ3ðξÞ are satisfy

ψ2ðrÞ ¼
1

r
½b1JνðλZrÞ þ b2YνðλZrÞ�;

▵S3ψ3ðξÞ ¼ −λ2S3ψ3ðξÞ; ð234Þ

where b1 and b2 are constants, Jν and Yν denote the Bessel
functions, and ν is related to λ2S3 :

ν2 ¼ λ2S3 þ 1: ð235Þ

Hence, the Klein-Gordon equation is reduced to

ψ1∂t

��
Λ
2
ðt2 − y2Þ þ c1t

�
dψ0

dt

�

− ψ0∂y

��
Λ
2
ðt2 − y2Þ þ c1t

�
dψ1

dy

�

þ
�
λ2Z þ

�
Λ
2
ðt2 − y2Þ þ c1t

�
1=2

m2

�
ψ0ψ1 ¼ 0: ð236Þ

We shall discuss the massless cases in the following. In
terms of c1 ¼ 0 and m ¼ 0, the particular solutions of ψ0

and ψ1 are given, respectively, by

KUNIHITO UZAWA PHYSICAL REVIEW D 90, 025024 (2014)

025024-36



ψ0ðtÞ ¼ ζ1t−
1
2
þρ þ ζ2t−

1
2
−ρ;

ψ1ðyÞ ¼ σ1y−
1
2
þρ þ σ2y−

1
2
−ρ;

ð237Þ

where ζiði ¼ 1; 2Þ and σiði ¼ 1; 2Þ are constants and ρ is
defined by

ρ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4λ2Z
Λ

r
: ð238Þ

We study the stability in terms of the energy of the Klein-
Gordon modes. Using the asymptotic solution given by
Eq. (237), we can estimate the energy near the singularity,
where there is a curvature singularity at t ¼ �y in the six-
dimensional background (228). Since the velocity is well
defined besides the singularity, the energy of the Klein-
Gordon modes can be written as

E ¼ −vM∂Mψ ; v ¼ αt∂t þ αy∂y þ αr∂r; ð239Þ

where v is velocity. By using the normalization condition
v2 ¼ −1, the behavior of the αt, αy, and αr are determined
in order to remain nonsingular. Then, we find

ð−α2t þ α2yÞ
�
Λ
2
ðt2 − y2Þ

�
−1=2

þ α2r

�
Λ
2
ðt2 − y2Þ

�
1=2

¼ −1:

ð240Þ

In the limit r → ∞ and t → 0, for the dynamical 1-brane
background (228), αt, αy, and αr provided

ð−α2t þ α2yÞ1=2 ∼
�
Λ
2
ðt2 − y2Þ

�
1=4

;

αr ∼
�
Λ
2
ðt2 − y2Þ

�
−1=4

: ð241Þ

If we set the parameters (241), one then finds

−E ¼ αt∂tψ þ αy∂yψ þ αr∂rψ : ð242Þ

In terms of the asymptotic solution (237), we find that
E → ∞ as the singularity is approached at t ¼ �y.
Let us next consider the case m ¼ 0 and Λ ¼ 0. In the

limit r → ∞ for the solution (154), the six-dimensional
metric becomes

ds2 ¼ ðc1tþ c4Þ−1=2ð−dt2 þ dy2Þ
þ ðc1tþ c4Þ1=2δabðZÞdzadzb; ð243aÞ

δabðZÞdzadzb ≡ dr2 þ r2ωijðS3Þdξidξj; ð243bÞ

where we set c2 ¼ c3 ¼ 0 andωijðS3Þ denotes the metric of
the three-dimensional sphere. There is a curvature singu-
larity at t ¼ −c4=c1.

Now we study the behavior of the Klein-Gordon field.
The scalar field equation (230) in the six-dimensional
background (243) reads

∂tðc1t∂tψÞ − ∂yðc1t∂yψÞ − r−3∂rðr3∂rψÞ

−
1

r2
▵S3ψ þ ðc1tÞ1=2m2ψ ¼ 0: ð244Þ

If we assume that the scalar field ψ is given by (232), where
ψ2ðrÞ and ψ3ðξÞ can be written by (234), the function ψ1ðyÞ
is determined by the eigenvalue equation:

d2ψ1

dy2
¼ −λ2yψ1: ð245Þ

Here, λy is constant. Then, the equation for ψ0 becomes

d
dt

�
c1t

dψ0

dt

�
þ½λ2yc1tþλ2Zþðc1tÞ1=2m2�ψ0¼0: ð246Þ

For the massless case, the solution of ψ0 is given by the
oscillatory form

ψ0ðtÞ ¼ e−iλyt½f1Uðϑ; 1; 2iλytÞ þ f2L−ϑð2iλytÞ�; ð247Þ

where U denotes the hypergeometric function, L−ϑ is the
Laguerre polynomial, f1 and f2 are constants, and ϑ is
defined by

ϑ ¼ 1

2
þ iλ2Z
2c1λy

: ð248Þ

We estimate the energy of the Klein-Gordon modes
whether the instability exists or not. In terms of the
asymptotic solution (247), we can present the behavior
of the energy as the singularity is approached. Since the
velocity is well behaved except for the singularity, the
energy of the Klein-Gordon modes is given by (239). By
using the normalization condition v2 ¼ −1, αt, αy, and αr
are determined by

ð−α2t þ α2yÞðc1tÞ−1=2 þ α2rðc1tÞ1=2 ¼ −1: ð249Þ

As t → 0 and r → ∞, the functions αt, αy, and αr are
set to be

ð−α2t þ α2yÞ1=2 ∼ ðc1tÞ1=4; αr ∼ ðc1tÞ−1=4: ð250Þ

If we use Eq. (250), the energy can be expressed as

−E ¼ αt∂tψ þ αy∂yψ þ αr∂rψ : ð251Þ

Then, for the asymptotic solution (247), the energy
becomes E → ∞ as the singularity is approached, that
is, t → 0. Since the 1-brane solution gives that the
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energy-momentum tensor of the Klein-Gordon field mode
diverges in this limit, the mode of the scalar field cannot
stabilize the metric modes near the singularity.

C. The dynamical 0-brane background in
five-dimensional Romans’ gauged supergravity

In this subsection, we analyze the stability of the
dynamical 0-brane background in the five-dimensional
Romans’ gauged supergravity. We will study the stability
of the scalar field far from 0-branes. For r → ∞ in the
dynamical 0-brane background (202), the five-dimensional
metric becomes

ds2 ¼ −ðc2tþ c3Þ−2=3dt2 þ ðc2tþ c3Þ1=3δabðZÞdzadzb;
ð252aÞ

δabðZÞdzadzb ≡ dr2 þ r2ωijðS3Þdξidξj; ð252bÞ

where we set c1 ¼ 1 and ωijðS3Þ denotes the metric of the
three-dimensional sphere. There is a curvature singularity
at t ¼ −c3=c2.
Let us consider the behavior of the Klein-Gordon field:

−
1ffiffiffiffiffiffi−gp ∂Mð

ffiffiffiffiffiffi
−g

p
gMN∂NφÞ þm2φ ¼ 0; ð253Þ

where g denotes the determinant of the five-dimensional
metric (252). The scalar field equation (253) in the five-
dimensional background (252) reads

∂t½ðc2tþ c3Þ∂tφ� − r−3∂rðr3∂rφÞ −
1

r2
▵S3φ

þ ðc2tþ c3Þ1=3m2φ ¼ 0: ð254Þ

Here, ▵S3 denotes the Laplace operator on the S3, and the
scalar field φ is assumed to be

φ ¼ φ0ðtÞφ1ðrÞφ2ðξÞ; ð255Þ

where φ1ðrÞ and φ2ðξÞ are determined by the eigenvalue
equation:

▵Zφ1ðrÞφ2ðξÞ ¼ −λ2Zφ1ðrÞφ2ðξÞ: ð256Þ

Here ▵Z is the Laplace operator on the Z space, λZ is the
eigenvalue, and functions φ1ðrÞ and φ2ðξÞ obey [86]

φ1ðrÞ ¼
1

r
½b̄1JνðλZrÞ þ b̄2YνðλZrÞ�;

▵S3φ2ðξÞ ¼ −λ2S3φ2ðξÞ; ð257Þ

where b̄1 and b̄2 are constants, Jν and Yν denote the Bessel
functions, and ν is related to the eigenvalue λ2S3 as

ν2 ¼ λ2S3 þ 1: ð258Þ

By using Eq. (256), the equation for φ0 becomes

d
dt

�
ðc2tþ c3Þ

dφ0

dt

�
þ ½λ2Z þ ðc2tþ c3Þ1=3m2�φ0 ¼ 0:

ð259Þ
For m ¼ 0, the solution of φ0 is given by the oscillatory
form

φ0ðtÞ ¼ f̄1J0

�
2λZ
c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2tþ c3

p �
þ f̄2Y0

�
2λZ
c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2tþ c3

p �
;

ð260Þ
where f̄1 and f̄2 are constants. We calculate the energy of
the Klein-Gordon modes to study the stability of the
dynamical 0-brane background. By using the asymptotic
solution (260), we can present the behavior of the energy as
the singularity is approached. Since it is possible to
calculate the velocity except for the singularity, the energy
of the Klein-Gordon modes is given by

E ¼ −uM∂Mφ; u ¼ αt∂t þ αr∂r; ð261Þ
where u denotes the velocity in the five-dimensional
spacetime. In terms of the normalization condition
u2 ¼ −1, αt and αr are given by

−α2t ðc2tþ c3Þ−2=3 þ α2rðc2tþ c3Þ1=3 ¼ −1: ð262Þ
As t → −c3=c2 and r → ∞, the functions αt and αr are
described as

αt ∼ ðc2tþ c3Þ1=3; αr ∼ ðc2tþ c3Þ−1=6: ð263Þ

By using Eq. (263), the energy of the scalar field can be
expressed as

−E ¼ αt∂tφþ αr∂rφ: ð264Þ
For the asymptotic solution (260), one can note that

the energy becomes E → ∞ as the singularity is
approached. The dynamical 0-brane solution gives that
the energy-momentum tensor of the scalar field mode
diverges in the limit t → −c3=c2. Hence, the mode of
the scalar field cannot stabilize the metric modes near the
singularity.

D. Intersection involving the 0 − pI-brane background
in the D-dimensional asymptotically power-law

expanding universe

Now we investigate the stability analysis for the dynami-
cal 0 − pI-brane background. The geometry of the 0 − pI0 -
brane system becomes a static structure near branes, while
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the background geometry depends only on the time in
the far region from branes. By setting B ¼ 0 in the
D-dimensional background (73), the metric in the limit
za → ∞ is thus given by

ds2 ¼ −ðAtÞa0dt2 þ ðAtÞb0δabðZÞdzadzb; ð265aÞ

δabðZÞdzadzb ¼ dr2 þ r2ω̄ijðSD−2Þdξidξj; ð265bÞ

where ω̄ijðSD−2Þ denotes the metric of the ðD − 2Þ-
dimensional sphere and a0 and b0 are defined,
respectively, by

a0 ¼ −
D − 3

D − 2
; b0 ¼

1

D − 2
: ð266Þ

The D-dimensional spacetime has singularities at t ¼ 0.
Let us consider the Klein-Gordon equation to discuss the

stability analysis

−
1ffiffiffiffiffiffi−gp ∂Mð

ffiffiffiffiffiffi
−g

p
gMN∂NφÞ þm2φ ¼ 0; ð267Þ

where g denotes the determinant of the D-dimensional
metric (265). Equation (267) on the D-dimensional back-
ground (265) becomes

∂tðAt∂tφÞ − r−ðD−2Þ∂rðrD−2∂rφÞ

−
1

r2
▵SD−2φþ ðAtÞb0m2φ ¼ 0; ð268Þ

where ▵SD−2 denotes the Laplace operator on the SD−2.
We assume that the scalar field φ is given by

φ ¼ φ0ðtÞφ1ðrÞφ2ðξÞ; ð269Þ

where the functions φ1ðrÞ and φ2ðξÞ obey the eigenvalue
equations

▵Zφ1ðrÞφ2ðξÞ ¼ −λ2Zφ1ðrÞφ2ðξÞ: ð270Þ

Here ▵Z denotes the Laplace operator on the Z space, and
λY is the eigenvalue for the equation.
The functions φ1ðrÞ and φ2ðξÞ also satisfy the equa-

tions [86]

φ1ðrÞ ¼
1

r
½b3Jν̄ðλZrÞ þ b4Y ν̄ðλZrÞ�;

▵SD−2φ2ðξÞ ¼ −λ2SD−2φ2ðξÞ; ð271Þ

where b3 and b4 are constants, Jν̄ and Y ν̄ denote the Bessel
functions, and ν̄ is related to the eigenvalue λ2SD−2 as

ν̄2 ¼ λ2SD−2 þ ðD − 3Þ2
4

: ð272Þ

By using Eqs. (265), (269), and (270), the field equation for
φ0 becomes

d
dt

�
At

dψ0

dt

�
þ ½λ2Z þ ðAtÞb0m2�φ0 ¼ 0: ð273Þ

Let us consider the case of m ¼ 0. The solution of φ0 is
given by the oscillating form

φ0ðtÞ ¼ f3J0ð2λZ
ffiffiffiffiffiffiffiffiffi
A−1t

p
Þ þ f4Y0ð2λZ

ffiffiffiffiffiffiffiffiffi
A−1t

p
Þ; ð274Þ

where f3 and f4 are constants and J0 and Y0 are the Bessel
functions. The energy of the Klein-Gordon modes can be
calculated by

E ¼ −uM∂Mφ; u ¼ α∂t þ β∂r; ð275Þ

where u is velocity. Then, α and β are determined by

−α2ðAtÞa0 þ β2ðAtÞb0 ¼ −1; ð276Þ

where we used the normalization condition u2 ¼ −1. In the
case of t → 0 and r → ∞, α and β must behave as

α ∼ ðAtÞ−a0=2; β ∼ ðAtÞ−b0=2; ð277Þ

in order to remain nonsingular.
If we use the expression (277), the energy of the scalar

field is given by

−E ¼ α∂tφþ β∂rφ: ð278Þ

For the asymptotic solution (274), one can note that the
energy becomes E → ∞ as the singularity is approached.
Hence, the energy-momentum tensor of the Klein-Gordon
field mode diverges. The classical solution gives the mode
of the scalar field which cannot stabilize the metric modes
near the singularity.

E. Intersection involving the 0 − pI0 -brane
background in the D-dimensional
asymptotically de Sitter universe

Finally, we discuss the stability analysis for the 0 − pI0 -
brane in the asymptotically de Sitter universe. If we set
~c ¼ 0 and take za → ∞ in the background (97), the
D-dimensional metric becomes

ds2 ¼ −dτ2 þ ðc0ec0τÞ2=ðD−3ÞδabðZÞdzadzb; ð279aÞ

δabðZÞdzadzb ¼ dr2 þ r2ω̄ijðSD−2Þdξidξj; ð279bÞ

where ω̄ijðSD−2Þ denotes the metric of the ðD − 2Þ-
dimensional sphere, c0 is given by (98), and the cosmic
time τ is defined by (99). There is a curvature singularity at
τ → −∞ in the D-dimensional spacetime. In the following,
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we set c0 > 0. Otherwise, the scale factor ofD-dimensional
spacetime becomes complex or negative.
We consider the Klein-Gordon field to analyze the

stability

−
1ffiffiffiffiffiffi−gp ∂Mð

ffiffiffiffiffiffi
−g

p
gMN∂NφÞ þm2φ ¼ 0; ð280Þ

where g is the determinant of the six-dimensional metric
(279). Substituting the D-dimensional metric (279) into
Eq. (280), we obtain

ðc0ec0τÞ−1∂τ½ðc0ec0τÞD−1
D−3∂τφ� − r−ðD−2Þ∂rðrD−2∂rφÞ

−
1

r2
▵SD−2φþ ðc0ec0τÞ 2

D−3m2φ ¼ 0; ð281Þ

where ▵SD−2 denotes the Laplace operator on the SD−2.
We assume an ansatz for the scalar field φ:

φ ¼ φ0ðτÞφ1ðrÞφ2ðξÞ; ð282Þ

where the functions φ1ðrÞ and φ2ðξÞ satisfy the eigenvalue
equation

▵Zφ1ðrÞφ2ðξÞ ¼ −λ2Zφ1ðrÞφ2ðξÞ; ð283Þ

and obey the equations

φ1ðrÞ ¼
1

r
½b5J ~νðλZrÞ þ b6Y ~νðλZrÞ�;

▵SD−2φ2ðξÞ ¼ −λ2SD−2φ2ðξÞ: ð284Þ

Here ▵Z is the Laplace operator on the Z space, b5 and b6
denote constants, J ~ν and Y ~ν are the Bessel functions, and ~ν
is written by the eigenvalue λ2SD−2 as

~ν2 ¼ λ2SD−2 þ ðD − 3Þ2
4

: ð285Þ

In terms of Eqs. (270), (279), and (282), the field equation
for φ0 becomes

ðc0ec0τÞ−1
d
dτ

�
ðc0ec0τÞðD−1Þ=ðD−3Þ dφ0

dτ

�
þ ½λ2Z þ ðc0ec0τÞ2=ðD−3Þm2�φ0 ¼ 0: ð286Þ

Let us first consider the solution of φ0 for D ¼ 5 and
D ¼ 6. In the case of D ¼ 5, the solution of φ0 can be
expressed as

φ0ðτÞ ¼ λ2Zc
−3
0 e−c0τ½f5Γð1 − l1ÞJ−l1

ð2λZc−3=20 e−c0τ=2Þ
þf6Γð1þ l1ÞJl1

ð2λZc−3=20 e−c0τ=2Þ�; ð287Þ

where f5 and f6 are constants, Jl1 and J−l1 are the Bessel
functions, and l1 is defined by

l1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
m
c0

�
2

s
: ð288Þ

On the other hand, setting D ¼ 6, we can also find the
solution of φ0:

φ0ðτÞ ¼
9

4

ffiffiffi
3

2

r
λ5=2Z c−10=30 e−5c0τ=6

× ½f7Γð1 − l2ÞJ−l2ð3λZc−4=30 e−c0τ=3Þ
þf8Γð1þ l2ÞJl2ð3λZc−4=30 e−c0τ=3Þ�: ð289Þ

Here f7 and f8 denote constants, Jl2 and J−l2 are the
Bessel functions, and the constant l2 is given by

l2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − 36

�
m
c0

�
2

s
: ð290Þ

For D ≥ 4, the solution of φ0 can be written in the
following form:

φ0ðτÞ ¼
�
D − 3

2

�D−1
2

λ
D−1
2

Z c
−ðD−1ÞðD−2Þ

2ðD−3Þ
0 e−

D−1
2ðD−3Þc0τ

× ½f̄Γð1 − lÞJ−lððD − 3ÞλZc−
D−2
D−3

0 e−
1

D−3c0τÞ
þ ~fΓð1þ lÞJlððD − 3ÞλZc−

D−2
D−3

0 e−
1

D−3c0τÞ�; ð291Þ

where f̄ and ~f are constants, Jl and J−l denote the Bessel
functions, and l is defined by

l ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 1Þ2 − 4ðD − 3Þ2

�
m
c0

�
2

s
: ð292Þ

Since the energy of the scalar field can be written
as (275), the energy of the Klein-Gordon modes can be
given by the expression (278). Then, we can find α and β in
this way:

−α2 þ β2ðc0ec0τÞ2=ðD−3Þ ¼ −1; ð293Þ

where we used the normalization condition u2 ¼ −1. In the
case of τ → −∞ and r → ∞, α and β have to behave as

α ∼ const; β ∼ ðc0ec0τÞ−1=ðD−3Þ: ð294Þ

For the solution (291), the energy becomes E → ∞ in the
limit τ → −∞. Since the energy is not convergent with the
asymptotic solution, the mode of the scalar field does not
stabilize the metric modes near the singularity.
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VII. CONCLUSION AND DISCUSSION

In this paper, we have discussed the time-dependent
intersecting branes with cosmological constants for not
only the delocalized case but also the partially localized one
in D-dimensional gravitational theory. We are everywhere
brief, and on some points, we simply call attention to
questions that might be investigated in the future. The
function hI depends on time as well as the coordinate of the
relative and overall transverse spaces. The coupling con-
stants between the field strengths and the dilaton are given
by the assumptions (7) or (49) and depend on the parameter
N. In the case of the 11- or ten-dimensional supergravity
theory, the dilaton coupling requires N ¼ 4. The power of
the time dependence depends on the number of the brane
and total dimensions with the parameter N of the dilaton
coupling constant.
An exceptional case arises if the parameter N in the

dilaton coupling takes another value than 4. There are static
solutions withN ≠ 4 in the lower-dimensional supergravity
theories as well as Einstein-Maxwell theory [34,35]. In this
case one gets asymptotically power-law expanding solu-
tions if the dilaton is nontrivial. For the trivial dilaton, the
Einstein equations give an asymptotically de Sitter solution
for a single 2-form field strength. Since the cosmological
constant is related to the field strength, the time derivative
of the warp factor arises only from the Ricci tensor and
can be compensated by the cosmological constant in the
Einstein equations. This is the same structure as in
Refs. [21,22,36] and the generalization of the solutions
[36,63,64]. In N ¼ 4 case, the equation of motion in the
presence of the cosmological constant gives the static
delocalized or partially localized intersecting brane solution
because of the ansatz of the fields. Thus, one expects
that the recipe for picking an accelerating expansion from
the dynamical intersecting brane solutions depends on the
dilaton coupling constant, and this is the case for the
proposal in Ref. [22]. Once the de Sitter solution is
obtained in the single p-brane solutions, it is possible to
apply it to the intersecting brane systems.
An immediate point is that the time-dependent solutions

make dynamical compactification more or less obvious,
since cosmological evolution is a general property of the
solution (with constant parameters) once the function hI is
properly endowed with the time dependence. The power of
the scale factor in some solutions gives an accelerating
expansion law even in the case that functions hI depend on
both the time and coordinates of overall transverse space,
while the extra dimension will shrink as cosmic time
increases. However, something is still missing, because
the scale factor of our Universe diverges at τ ¼ τ∞. At the
moment, it is not clear how to do this.
We have discussed the dynamics of the brane collisions.

As the spacetime is contracting in the D-dimensional
spacetime, each 0-brane approaches others as the
time evolves for τ < 0 but separates for τ > 0 in the

asymptotically power-law expanding solutions. Thus
0-branes never collide. In the case of asymptotically de
Sitter solutions, all domains between branes are connected
at τ ¼ 0 (c0 < 0). The domain shrinks as the time
decreases, while the proper distance becomes constant as
τ increases. For the 0 − pI0 -brane system (p ≤ 7), a
singularity appears before 0-branes collide, and eventually
the topology of the spacetime changes so that branes are
separated by singular hypersurfaces surrounding each
brane if branes are not smeared. Thus, we cannot describe
the collision of two 0-branes in terms of these solutions.
On the other hand, the 0 − 8-brane system in ten dimen-
sions or the smeared 0 − pI-brane system inD-dimensional
theory can provide examples of colliding branes if they
have the same brane charges and only one overall trans-
verse space. We have analyzed the collision of the brane
where the p0 − pI-branes are localized at the same position
along the overall transverse directions, in the case of equal
charges. The brane collision would not occur if the brane
charges are different. Moreover, if these branes are local-
ized at different positions, it raises the possibility that the
curvature singularities appear.
We have also studied the dynamics of the five- or

six-dimensional supergravity models with applications to
cosmology and collision of branes. First we have discussed
the brane solutions to study the time evolution in the NSS
model. In the case of vanishing 3-form field strength in the
five-dimensional effective theory, the scale factor of our
four-dimensional spacetime is a linear function of the
cosmic time which is the same evolution as the Milne
universe. On the other hand, for the dynamical 1-brane
without 2-form field strength, the solution tells us that the
function h depends on all the world-volume coordinates of
the 1-brane. Hence, the contribution of the field strength
except for the 2-form leads to an inhomogeneous universe.
We have investigated the dynamics of 0-branes and found
that, when the spacetime is contracting in six dimensions,
each 0-brane approaches the others as the time evolves. All
domains between branes connected initially (t ¼ 0), but it
shrinks as t increases. However, for the 0-brane system
without smearing branes, a singularity appears before 0-
branes collide, and eventually the topology of the spacetime
changes such that parts of the branes are separated by a
singular region surrounding each brane. Thus, the solution
cannot describe the collision of two 0-branes. In contrast, the
smeared 0-brane system with ds ¼ 4 can provide an example
of colliding 0-branes and collision of the universes, if they
have the same brane charges.
We have next constructed the time-dependent 1-brane

solution in the NSS supergravity model. In the asymptotic
far 1-brane region, the 1-brane spacetime in the NSS model
approaches the six-dimensional Milne universe. In regions
close to the 1-branes, for concreteness, we have studied the
case of two 1-branes in detail. The 1-brane is approaching
the other as the time progress for t < 0. We have found that,
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in the case of t < 0, all of the domains between the 1-branes
are initially connected, but some region (near small y)
shrinks as the time increases, and eventually the topology
of the spacetime changes such that parts of the branes are
separated by a singular region surrounding each 1-brane.
Thus, in the case of ds ≠ 3, 1-branes never collide. On the
other hand, the case of ds ¼ 3, for t < 0, could provide an
example of colliding 1-branes. We found that the collision
time depends on both brane charges and the place in the
world volume of the 1-brane. Since this case has the time-
reversal symmetry, the evolution for t > 0 is obtained by
the time-reversal transformation.
We also investigated the time-dependent solution in the

five-dimensional supergravity model. The power of the
scale factor is so small that the solutions cannot give a
realistic expansion law. Then, it is necessary to include
additional matter on the background in order to obtain a
realistic expanding universe.
We finally analyzed the classical instability of the

dynamical brane background towards singularity. In order
to present the instability of the dynamical brane back-
ground, we have estimated whether an instability does
exist by computing the energy of the Klein-Gordon modes.

One can find that the energy seen by an observer diverges
as the curvature singularity is approached. This implies that
the mode of the scalar field is likely to destabilize the
background metric modes near the singularity. Although
this result has been given by preliminary analysis, it has
made the property of singularity in the dynamical brane
background more clear. It is also necessary for us to
perform a more rigorous analysis by considering in detail
the metric perturbation whether the stability analysis arrives
to the same conclusion or not.
A recent study of intersecting systems depending on the

time coordinate and overall transverse space shows that all
warp factors in the solutions can depend on time [28]. It is
interesting to study if similar more general solutions can be
obtained by relaxing some of our assumptions. We hope to
report on this subject in the near future elsewhere.
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