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The methods of nonlinear realizations have proven to be powerful in studying the low-energy physics
resulting from spontaneously broken internal and spacetime symmetries. In this paper, we reconsider how
these techniques may be applied to the case of spontaneously broken gauge theories, concentrating on
Yang-Mills theories. We find that coset methods faithfully reproduce the description of low-energy physics
in terms of massive gauge bosons and discover that the Stückelberg replacement commonly employed
when treating massive gauge theories arises in a natural manner. Uses of the methods are considered in
various contexts, including generalizations to p-form gauge fields. We briefly discuss potential applications
of the techniques to theories of massive gravity and their possible interpretation as a Higgs phase of general
relativity.
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I. INTRODUCTION

Gauge symmetries form a pillar of modern physics and
as such they have been studied and interpreted in myriad
ways. Here we focus on a treatment of gauge fields in
the context of nonlinear realizations. The basis for this
approach is the observation that the global part of a gauge
symmetry acts linearly on gauge fields, while the local
symmetries act nonlinearly. That is, the transformation for
a Yang-Mills (YM) 1-form gauge field, A, schematically
given by A ↦ UðAþ dÞU−1, is generally nonlinear due to
the presence of the second term, but becomes linear in the
global limit where U is independent of x. This allows us to
think of the gauge field as a Goldstone field nonlinearly
realizing the gauge symmetry and to apply standard coset
construction techniques to build its action.1

The techniques of nonlinear realizations were developed
in the context of spontaneously broken global symmetries
[1–3]. Given a spontaneous symmetry-breaking (SSB)
pattern in which a global symmetry group G is broken
to a preserved subgroupH, denotedG → H, these methods
generate all terms which can appear in the low-energy
effective action used to describe the physics of the broken
phase [4]. The preserved symmetries of H act linearly on
the resulting low-energy degrees of freedom, while those in
G=H act nonlinearly. The coset construction has recently
seen a resurgence of interest (see Refs. [5–14] for a variety
of novel applications).

The power of coset methods lies in their generality.
For example, in the case of (internal) global symmetry
breaking one only needs the knowledge of the breaking
pattern to derive the universal form of the low-energy,
infrared (IR) action. Long-wavelength features are insen-
sitive to the detailed high-energy microphysics responsible
for breaking the symmetries. The goal of this paper is to
elucidate the analogous result for gauge theories, that is, to
determine the gross features of the Higgs phase of a gauge
theory only from the knowledge of the breaking pattern,
while remaining agnostic about the theory’s ultraviolet
(UV) completion.
Gauge fields are not typically interpreted as low-energy

degrees of freedom arising from spontaneous symmetry
breaking, but the coset techniques described above are still
useful in this context. A typical gauge group, which we
denote Glocal, is infinite dimensional and includes global
transformations as a subgroup, denoted Gglobal. As noted
previously, the action of Gglobal on gauge fields is linear
while the action of an element in Glocal=Gglobal is nonlinear.
Applying the coset methods to the “breaking” pattern
SUðNÞlocal → SUðNÞglobal, for example , one can generate
the YM action [15–17]. The Einstein-Hilbert action can
be derived similarly by considering the diffeomorphism
group [18].
Nonlinear realization techniques have previously been

used to study Higgs phases of gauge theories, but this was
done by first applying coset methods to global symmetry-
breaking patterns and then gauging the resulting theory
of Goldstone bosons by hand [19,20]. Here, we instead
systematically construct the appropriate actions for broken
gauge theories entirely in the coset framework. This
alternate route has gauge bosons built in from the start
and makes contact with a greater number of conceptual and

1It is quite surprising that this is possible; after all gauge
symmetry is merely a redundancy of description and not a
physical symmetry. Nevertheless, we will see that decomposing
the gauge symmetry into an infinite number of global trans-
formations will allow us to construct gauge fields as Goldstones.
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technical aspects of coset methods, such as the subtleties
of spacetime symmetries due to “inverse Higgs” effects,
and the use of cohomological methods in finding Wess-
Zumino terms.
Before studying the broken phase of gauge theories, we

review the standard coset construction for both internal and
spacetime symmetry groups and then perform the con-
struction of unbroken Yang-Mills theory in this language.
Along the way, we provide interesting demonstrations of
how various facets of gauge theories are expressed in the
coset language. For instance, the search for Wess-Zumino
terms leads us to the construction of Chern-Simons
(CS) terms.
We then turn to the main case of interest and demonstrate

that these techniques are also applicable to Yang-Mills
theories which truly exhibit spontaneous symmetry break-
ing. That is, given a SSB pattern in which Gglobal is at least
partly broken, coset methods correctly reproduce the fact
that the low-energy degrees of freedom are a mix of
massive and massless gauge bosons, where the precise
mixture depends on the breaking pattern. Further, we find
that coset techniques automatically employ the Stückelberg
trick commonly used for treating massive gauge bosons.
In the final section we discuss applications and gener-

alizations of these methods. We consider scenarios in
which different residual symmetries are preserved after
SSB and work out one such case in detail, confirming that
we accurately reproduce known results. We also discuss the
generalization to the case of p-form gauge fields where
the Stückelberg realization of the p-form gauge symmetry
arises naturally. Finally, we discuss the potential use of
coset methods in treating anomalous gauge theories.
There are many generalizations and applications of the

formalism we present. One such application is to the
spontaneous breaking of gauge symmetries in the non-
relativistic setting. Although throughout we assume that
Poincaré symmetry is preserved, our results generalize
straightforwardly to the nonrelativistic arena. Another
possible application of the coset formalism is to investigate
the Abelian vector duality presented in Ref. [21], which we
discuss. Finally, we briefly discuss the potential application
of our methods to theories of gravity. In this context, coset
methods can be used to study generic IR properties of
gravitational Higgs mechanisms in a systematic way which
is insensitive to the precise UV mechanism. In particular,
we are interested in studying breaking patterns which can
give rise to ghost-free de Rham-Gabadadze-Tolley (dRGT)
[22] massive gravity and exploring whether the dRGT
interactions are special in some way when compared to the
generic terms one generates. We explore this possibility in
detail in a companion paper [23].

II. GENERAL COSET METHODS

In this section, we review the machinery of nonlinear
realizations for treating the spontaneous breaking of both

internal and spacetime symmetry groups. The procedure for
the internal case was originally developed in Refs. [1,2] and
was discussed nicely in Refs. [4,24–26]. The construction
was generalized to broken spacetime symmetries in Ref. [3]
and techniques and subtleties relevant to the spacetime case
can be found in Refs. [9,26–30]. Both cases were reviewed
in Refs. [6,7], which we follow.

A. Internal symmetry breaking

Consider the spontaneous breaking of an internal
symmetry group, G, to a subgroup H. Let VI ,
I ∈ f1;…; dimHg, be the generators of the preserved
subgroup, H, and all other generators be denoted by Za,
a ∈ f1;…; dimG=Hg. We refer to VI’s and Za’s as the
“unbroken” and “broken” generators, respectively.
Representative coset elements, ~g ∈ G=H, are written in
the canonical form ~g ¼ expðξaZaÞ. From Goldstone’s
theorem, there are as many Goldstone bosons as there
are broken generators and we identify the associated fields
with the coordinates of the coset space G=H. The coset
elements are maps from spacetime, denoted M, to the
coset space, ~gðxÞ ∶M → G=H, and the Goldstone fields
are the ξaðxÞ’s.
Every group element g ∈ G defines a symmetry trans-

formation of the fields, g∶ξa → ξ0a, defined through

g expðξaðxÞZaÞ ¼ expðξ0aðxÞZaÞhðg; ξaðxÞÞ; ð2:1Þ

where hðg; ξaðxÞÞ is an element of H. Generally, the
transformation ξa → ξ0a is complicated and nonlinear,
but in the limit that g ⊂ H the relationship becomes linear.2

In order to build actions for the ξa fields we employ the
Lie algebra-valued Maurer-Cartan (MC) form

~g−1d~g≡Ω ¼ ΩZ þΩV ¼ Ωa
ZZa þΩI

VVI:

The utility of Ω is that it transforms nicely under Eq. (2.1),
whereΩZ transforms homogeneously andΩV transforms as
a connection,

g ∶
�
ΩZ ↦ hðxÞΩZh−1ðxÞ;
ΩV ↦ hðxÞðΩV þ dÞh−1ðxÞ: ð2:2Þ

For a d-dimensional spacetime, one then builds a
G-invariant d-form Lagrangian for the Goldstone fields
by combining together factors of Ωa

Z ’s using the exterior
product3 and contracting indices appropriately so that the
result is H invariant, in the sense that the final d-form is

2Strictly speaking this is only if commutators between broken
and unbroken generators never contain any unbroken generators.
The algebras we consider obey this restriction.

3Equivalently, the forms Ωa
Z can be used to construct a

covariant derivative for the Goldstone fields, dxμDμξ
a ¼ Ωa

Z,
which transforms covariantly.
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invariant under Eq. (2.2). Other matter fields couple to the
Goldstones via the covariant derivative whose connection is
defined by ΩV.
The above procedure of creating d-form Lagrangians

only constructs terms strictly invariant under the relevant
symmetries and therefore may miss certain “Wess-Zumino”
(WZ) terms which shift by a total derivative under the
symmetries. These terms can also appear in the action, but
require a higher-dimensional construction [4,31]. Finding a
WZ term is equivalent to a cohomology calculation: one
looks for an exact, H-invariant ðdþ 1Þ-form4 α ¼ dβ, built
out of the Ωa

Z, such that β is not itself H invariant. Instead,
β shifts by a closed form under the symmetries, so that
α ¼ dβ is still strictly invariant, and thus β represents a
perfectly fine term that can be added to the d-dimensional
action. That β is not strictly invariant is equivalent to
the statement that it is not built out of the Ωa

Z building
blocks and is therefore a term that would be missed had
we restricted ourselves to only searching for d-forms.
(See Refs. [4,32–34] for more on the cohomological
aspects of WZ terms.)
This higher-dimensional construction can help elucidate

the quantum-mechanical properties of Wess-Zumino
terms [31]. Given the appropriate ðdþ 1Þ-form α, one
can compactify spacetime so that it encloses a ðdþ 1Þ-
dimensional ball B, with ∂B ¼ M, and define the WZ
action as an integral over the ball by

SWZ ¼
Z
B
α ¼

Z
M

β:

There are actually inequivalent possibilities for the ball
over which the WZ action is defined, say B and B0. In order
for the physics to be insensitive to the choice made, the
difference between the two actions must be an integer
multiple of 2π,

Z
B
α −

Z
B0
α ¼

Z
Sdþ1

α ¼ 2πk; k ∈ Z; ð2:3Þ

so that the path integral is unaffected. As indicated in
Eq. (2.3), the difference between the integrals over the two
balls is equivalent to a single integral over the ðdþ 1Þ-
sphere generated by gluing the two balls together.
Essentially, one has compactified M into the d-sphere,
Sd, which is the equator of a ðdþ 1Þ-sphere, Sdþ1, whose
northern hemisphere is B, and whose southern hemisphere
is B0. The ðdþ 1Þ-form α now defines a map from Sdþ1 into
the coset space G=H. Such maps are classified by the
homotopy group πdþ1ðG=HÞ; if this group is nontrivial,
then it is possible for

R
Sdþ1 α ≠ 0 and the condition (2.3)

forces the coefficient of α to be quantized. The coupling

constant therefore cannot change continuously and hence
it cannot be renormalized. This was the procedure of
Ref. [31] where it was shown that the Wess-Zumino-
Witten term of the chiral Lagrangian must be built in
this manner and enjoys a nonrenormalization theorem.
See Ref. [4] for more details and subtleties in such
constructions.

B. Spacetime symmetry breaking

The coset treatment for spontaneously broken spacetime
symmetries proceeds much as the internal case, but with
two main subtleties. For simplicity, we take M to be
d-dimensional Minkowski space in this section.
The first subtlety is that every translation generator is

included in the coset element ~g, regardless of whether it is
truly broken or not. The reason for this is a practical one;
the generators included in the coset element are precisely
those that induce nonlinear symmetry transformations,
and since translations act nonlinearly on coordinates i.e.,
xμ ↦ xμ þ bμ, they too need to appear in the coset element,
despite the fact that they may act linearly on fields in the
theory.
The coset elements are then members of G=H, where H

includes all preserved transformations except for trans-
lations. Generators of H and preserved translations are
denoted by VI and Pμ, respectively, and the remaining
generators are denoted by Za. We write the coset element as

~g ¼ expðxμPμÞ expðξaZaÞ; ð2:4Þ

where xμ’s are the spacetime coordinates. The Maurer-
Cartan 1-form is expanded as

Ω ¼ ΩZ þ ΩV þ ΩP ¼ Ωa
ZZa þ ΩI

VVI þ Ωμ
PPμ; ð2:5Þ

and ΩV again transforms as a connection, while ΩP and
ΩZ transform homogeneously. Further, ΩP defines a
vielbein for the system with components ðΩPÞνμ defined
by ΩP ¼ dxμðΩPÞνμPν, where ν is the Lorentz index, so that
the covariant metric is given by gμν ¼ ðΩPÞαμðΩPÞβνηαβ.
The second subtlety is that, in the case of spacetime

symmetry breaking, there can be fewer Goldstone modes
than broken symmetries. There are various interpretations
of this phenomenon (see Refs. [9,11,27–30,35–38]), but
there is no general consensus and it is a topic of ongoing
research. In any case, a procedure exists for determining
when one can reduce the number of degrees of freedom by
eliminating fields in the action. Schematically, the rule is
that if the commutator of an unbroken translation generator,
P, and a broken generator, Z1, contains another broken
generator, Z2, that is ½P; Z1� ∼ Z2, then it is possible to
eliminate the field corresponding to Z1 in favor of the
remaining fields and their derivatives. The relation between
fields is determined by setting parts of the Maurer-Cartan
form along Z2 to zero. This is known as the inverse Higgs

4One imagines that the form α is constructed either on a
ðdþ 1Þ-dimensional spacetime or on G itself so that the ðdþ 1Þ-
form is well defined and not simply automatically zero.
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(IH) effect [27]. In practice the elimination of the Z1 field is
often equivalent to integrating the field out via its equations
of motion [29], but this is not always the case [7].
There is something of an art to choosing which parts of

the Maurer-Cartan form to set to zero and in determining
whether the fields ought to be eliminated at all [9], but the
only requirement from a consistency standpoint is that the
final theory obey all of the symmetries contained within G.
We take the viewpoint that one chooses which inverse
Higgs constraints to apply based on the degrees of freedom
one wishes to describe. For example, when considering
Yang-Mills we know that we are interested in gauge bosons
and therefore we eliminate all higher-order fields in favor
of Aa

μ. Keeping the other fields may be interesting in other
contexts, but not the one we wish to study here, and we
leave such explorations to future work.

III. YANG-MILLS AS A NONLINEAR
REALIZATION

With the knowledge of the previous sections, we can
construct the YM action on d-dimensional Minkowski
space. Much of the following section is a modern rephras-
ing of the original calculation of Ref. [15] and appears
elsewhere in the literature (see Ref. [39] for a nice review),
but some lesser-known results will be emphasized.
Although the results are very general, we will assume
that the gauge group is a simple group for simplicity.
For these groups, one can choose a matrix representation
for the generators, fTag, which satisfy trðTaTbÞ ∝ δab ¼
diagðþ;…;þÞ.5 We shall use the notations interchangeably
when convenient. The existence of other invariant tensors
depends on the group in question and for the majority of
our purposes it is sufficiently general to only contract group
indices with δab.

A. The local Yang-Mills algebra

We now construct the algebra which the gauge fields
nonlinearly realize. Although our main interest is non-
Abelian gauge theory, it is helpful for building intuition to
first consider the Abelian case. An Abelian 1-form gauge
field, A, transforms under a gauge transformation, with
g ¼ eαðxÞQ as

A ↦ g−1ðAþ dÞg ¼ Aþ dα; ð3:1Þ
where Q is the U(1) generator and αðxÞ is an arbitrary
function. We can imagine Taylor expanding this function as

αðxÞQ ¼
X∞
n¼0

cμ1���μnx
μ1 � � � xμnQ; ð3:2Þ

where the cμ1���μn are constant coefficients. If we then define
new generators

Qμ1���μn ≡ xμ1 � � � xμnQ; ð3:3Þ
we can think of a gauge transformation as being built out of
an infinite number of global rotations [39]

g ¼ ecQþ
P

∞
n¼1

cμ1 ���μnQ
μ1 ���μn : ð3:4Þ

The interpretation is then that the global transformation
generated by Q is linearly realized, while the transforma-
tions generated by the Qμ1���μn are nonlinearly realized and
the gauge field is the corresponding Goldstone boson.
Notice that the generators Qμ1���μn explicitly depend on xμ

and therefore do not commute with the spacetime Poincaré
generators.
With this intuition, we can now proceed to construct the

algebra nonlinearly realized by a non-Abelian gauge field.
We denote the generators of the global part of the algebra
by Ta, a ∈ f1;…; Ng, satisfying commutation relations

½Ta; Tb� ¼ −gfabcTc; ð3:5Þ
where g is the gauge coupling. Latin gauge indices are
raised and lowered with δab and whether an index is up or
down is unimportant. The Poincaré generators are Pμ

and Jμν.
In order to define local gauge generators we again expand

the gauge generator as αaðxÞTa ≡P∞
n¼0 α

a
ν1…νnx

ν1…xνnTa
for some set of constants αaν1…νn . Then, defining
Tν1…νn
a ≡ xν1…xνnTa, these generators obey the commuta-

tion relations6

½Tα1…αn
a ; Tβ1…βm

b � ¼ −gfabcT
α1…αnβ1…βm
c ;

½Pμ; T
ν1…νn
a � ¼ −nδðν1μ Tν2…νnÞ

a ; ð3:6Þ

and indeed we take Eq. (3.6) to define the algebra under
study, along with the relations for ½Pμ; Jαβ�, ½Jμν; Jρσ� and
½Jμν; Tα1…αn

a � whose specific forms will not be needed. We
call fTα1…αn

a g, n ≠ 0, the “local generators” of the gauge
group and fTag are the “global generators.” The union
of the two sets generates Glocal while fTag generates
Gglobal ⊂ Glocal.

B. Unbroken phase

When the global symmetry is preserved, the SO(3,1)
rotations and Gglobal transformations act linearly on gauge
fields and YM is reproduced by studying the “breaking”
pattern

Glocal × ISOð3; 1Þ ⟶ Gglobal × SOð3; 1Þ: ð3:7Þ
5In addition, for a simple group, the structure constants of the

Lie algebra can be made totally antisymmetric by employing the
Cartan-Killing metric gab ¼ jadcfbcd.

6We symmetrize with weight one, e.g., TðμνÞ ¼ 1
2
ðTμν þ TνμÞ.
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The representative coset element belongs to ðGlocal ×
ISOð3; 1ÞÞ=ðGglobal × SOð3; 1ÞÞ and is written as

~g ¼ ex
μPμ ½…�eΦa

α1α2α3
T
α1α2α3
a eΦ

b
ν1ν2

T
ν1ν2
b e−A

c
μT

μ
c ; ð3:8Þ

where the fields fΦa
ν1…νng are totally symmetric in all greek

indices and the terms in ½…� are all higher order in that they
contain generators with more greek indices.

1. Maurer-Cartan form and inverse Higgs

Given the coset representative (3.8), we can compute the
Maurer-Cartan form and expand it asΩ ¼ Ωμ

PPμ þ ΩaTaþ
Ωa

νTν
a þ…, with components calculated to be

Ωμ
P ¼ dxμ;

Ωa ¼ dxνAa
ν ;

Ωa
ν ¼ −dAa

ν − 2dxμΦa
μν þ

1

2
gfbcaAb

μAc
νdxμ: ð3:9Þ

The commutation relation ½Pμ; T
αβ
a � ¼ −2δðαμ TβÞ

a reveals

that we can eliminate the field corresponding to Tαβ
a ,

i.e., Φa
αβ, through an inverse Higgs constraint. In compo-

nents,7 we haveΩa
ν ¼ dxμΩa

μν, which we can separate into a
symmetric and an antisymmetric piece, where Φa

αβ only
appears in the symmetric components

Ωa
ðμνÞ ¼ −∂ðμAa

νÞ − 2Φa
μν;

Ωa
½μν� ¼ −∂ ½μAa

ν� þ
1

2
gfbcaAb

μAc
ν ¼ −

1

2
Fa
μν: ð3:10Þ

Setting Ωa
ðμνÞ ¼ 0, we eliminate Φa

μν in favor of derivatives

of Aa
μ through

Φa
μν ¼ −

1

2
∂ðμAa

νÞ: ð3:11Þ

Evaluating Ωa
ν on this constraint, we obtain the YM field

strength tensor, denoted

Ωa
ν jIH ¼ −

1

2
Fa
μνdxμ: ð3:12Þ

A similar pattern holds when performing the calculation
to higher orders. The fields Φa

α1…αn can all be removed by
IH constraints which eliminate them in favor of Aa

ν and its
derivatives. The higher-order components of the Maurer-
Cartan form all turn into gauge-covariant derivatives of the
field strength tensor [39].

2. Symmetries

As a consistency check, we confirm that actions con-
structed using the IH constraint still respect the full set of
Glocal symmetries. We perform a generic symmetry trans-
formation by acting on ~g with expð−Pnϵ

a
α1…αnT

α1…αn
a Þ.

Defining ϵaðxÞ≡P
nx

ν1…xνnϵaν1…νn , the infinitesimal
transformations are found to be

δAa
μ ¼ gfbcaϵbAc

μ þ ∂μϵ
a;

δΦa
μν ¼ gfbcaϵbΦc

μν −
1

2
∂μ∂νϵ

a −
1

2
gfbcaAc

ðν∂μÞϵb: ð3:13Þ

The first line of Eq. (3.13) is recognized as the familiar non-
Abelian gauge transformation with gauge parameter ϵa.
The second line demonstrates that − 1

2
∂ðμAa

νÞ and Φa
μν have

the same transformation properties and hence the IH
replacement, Φa

μν ↦ − 1
2
∂ðμAa

νÞ, is consistent and yields
an action invariant under the full Glocal group.

3. Construction of the action

We now construct the action. As discussed previously,
the components of the Maurer-Cartan form along the
preserved generators define the connection used in mat-
ter-covariant derivatives, and thus from Eq. (3.9) the
connection is simply Aa

μdxμ ≡ Aa, as expected. The remain-
ing components are contracted in H-invariant ways. For
the case under consideration, this simply translates into the
requirement that latin gauge indices are contracted with
factors of δab and greek indices are contracted with ημν
or ϵμ1…μd.
We are imposing the IH constraint Φa

μν ¼ − 1
2
∂ðμAa

νÞ and
so the lowest-order forms we can build actions with are
Ωμ

P ¼ dxμ and Ωa
ν jIH ¼ − 1

2
Fa
μνdxμ. In generic d > 2

dimensions, there is only one possible invariant action
which is quadratic in Ωa

ν jIH,

L2 ∝ δabFa ∧ ⋆Fb ¼ trF ∧ ⋆F; ð3:14Þ

where F is given by8

Fa ¼ 1

2
Fa
μνdxμ ∧ dxν ¼ Ων

P ∧ Ωa
ν ð3:15Þ

and where ⋆ is the Hodge star with respect to the vielbein
on M defined by Ωμ

P (here just the flat metric). This is
nothing but the standard Yang-Mills kinetic term,
trF ∧ ⋆F ∝ ddxFa

μνF
μν
a , and hence the coset construction

is seen to generate the correct term.
We therefore see that the objects from which we can

construct an invariant action are the field strength tensor
Fa
μνTa and the gauge-covariant derivative Dμ¼∂μþ

igAa
μTa, and that any Lagrangian LðDμ; FμνÞ built from

7There is potential confusion here as greek indices are used
both as form indices and indices on the fields, but their meaning
should be clear in context.

8This relation is actually independent of whether or not one
chooses to impose the IH constraint.
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these ingredients will be gauge invariant, which is a
familiar result.
In even dimensions, there are further possibilities.

For example, in d ¼ 4 there can be a term of the form
Lθ ∝ trF ∧ F. This is nothing but the topological θ term
which is known to be a total derivative. It is straightforward
to verify this fact by explicitly writing out Lθ in terms of
Aa
μ, but it proves more interesting and fruitful to verify

this fact through an alternative procedure which takes
advantage of the underlying group structure and makes
connections to standard techniques of coset methods.

4. Chern-Simons as a Wess-Zumino term

Given a group G with Lie algebra generators Xa which
obey ½Xa; Xb� ¼ fabcXc, the components of the Maurer-
Cartan form obey the Maurer-Cartan equation,

dΩc þ 1

2
fabcΩa ∧ Ωb ¼ 0; ð3:16Þ

where Ω ¼ ΩaXa. For the Lie algebra at hand [Eq. (3.6)]
and theMaurer-Cartan components in Eq. (3.9), this implies

dΩμ
P ¼ 0;

dΩa ¼ g
2
fbcaΩb ∧ Ωc þ Ωμ

P ∧ Ωa
μ;

dΩa
μ ¼ gfbcaΩb

μ ∧ Ωc þ Ων
P ∧ Ωa

νμ: ð3:17Þ

The exterior derivative relations (3.17) then provide the
necessary ingredients for the cohomological problem of
finding Wess-Zumino terms.
For simplicity, we will focus on the case d ¼ 4 and use

Eq. (3.17) to show that trF ∧ F is closed and, relatedly,
that there exists a WZ term in d ¼ 3 which is simply the
Chern-Simons term. We follow the general WZ strategy
and look for closed 4-forms. There is no need to impose IH
for this part of the calculation; we consider the form

Lθ ≡ δabðΩμ
P ∧ Ωa

μÞ ∧ ðΩν
P ∧ Ωb

νÞ: ð3:18Þ

Using the relations (3.17) we find that this form is closed,

dLθ ¼ 2gfcadðΩμ
P ∧ Ωc

μÞ ∧ ðΩν
P ∧ Ωa

νÞ ∧ Ωd ¼ 0; ð3:19Þ

since under c↔a the structure constant is antisymmetric
while the forms are symmetric. As indicated by our
notation, this 4-form is simply the θ term from the previous
section, Lθ ∝ trF ∧ F, and thus we have proven the claim
that it is a total derivative using the coset framework.
Further, Lθ is the exterior derivative of a 3-form which is

not itself H invariant. Explicitly,

Lθ ¼ d

�
Ωμ

P ∧ Ωa
μ ∧ Ωbδab þ

1

6
gfabcΩa ∧ Ωb ∧ Ωc

�

≡ dLcs3 ; ð3:20Þ

and since we are not allowed to use Ωa in constructing the
relevant H-invariant actions, Lcs3 is not itself strictly H
invariant. Therefore, Lcs3 represents a WZ term which can
appear in the d ¼ 3 action which would have been missed
in a purely three-dimensional coset construction. Replacing
the Ω’s in favor of Aa and the field strength, we find

Lcs3 ¼ δabAa ∧ Fb þ 1

6
gfabcAa ∧ Ab ∧ Ac

¼ δabAa ∧ dAb −
1

3
gfabcAa ∧ Ab ∧ Ac: ð3:21Þ

As the notation indicates, and as one may have expected,
the Wess-Zumino 3-form for non-Abelian gauge fields is
simply the Chern-Simons term. Note that this result is in
harmony with the earlier discussion about symmetries in
the coset construction; the Chern-Simons term (a WZ term)
changes by an exact form under a gauge transformation
while the standard, non-WZ, kinetic term is strictly
invariant.9 A similar connection between Chern-Simons
and Wess-Zumino terms was noted in Ref. [41].
The extension to higher-dimensional cases is straightfor-

ward, but group dependent. If the gauge group Gglobal
admits an invariant tensor of the form Ma1…ak , then there
exists a closed, gauge-invariant 2k-form L2k which will
lead to WZ terms defined by

L2k¼ dβ2k−1wz ¼Ma1…akΩ
μ
P ∧Ωa1

μ ∧…∧Ων
P ∧Ωak

ν ; ð3:22Þ

but the existence of such an invariant tensor depends on the
precise gauge group at hand. In terms of the usual treatment
of gauge fields, given the set of generators fTag the tensor
Ma1…ak exists if trðTa1…TakÞ is nonvanishing. Assuming
the tensor exists, then the ð2k − 1Þ-form β2k−1wz shifts
under the gauge transformation by an exact form.
Having chosen the gauge group and determined the values
of k for which Eq. (3.22) exists, we can build the WZ terms
appropriate for odd, d ¼ 2n − 1 dimensions.
There are, in general, multiple such terms and they are

all constructed by wedging a single β2k−1wz type form with a
set of L2k type forms such that the final result is a ð2n − 1Þ-
form. That is,

Lwz ¼ β2k−1wz ∧ L2k2 ∧ … ∧ L2km ð3:23Þ
will define a WZ term (equivalently, a Chern-Simons term)
in d ¼ 2n − 1, so long as k1 þ � � � þ km ¼ n and the

9It is well known that the coupling of the d ¼ 3 non-Abelian
Chern-Simons form is quantized for certain gauge groups [40].
In particular, the d ¼ 3 Chern-Simons level is quantized if
the homotopy group π3ðGÞ is nontrivial. On the other hand, a
naive application of Wess-Zumino-Witten-type arguments [31]
would alternatively indicate that this coupling is quantized if
π4ððGlocal × ISOð2; 1ÞÞ=ðGglobal × SOð2; 1ÞÞ is nontrivial. Fur-
ther explorations of the relation between the two arguments
would be interesting, but fall outside the scope of this paper.
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appropriate invariant tensors exist to generate each of
these forms. For instance, defining the shorthand Ωa

ð2Þ≡
Ωμ

P ∧ Ωa
μ, d ¼ 7 will always inherit a Chern-Simons term

from the 8-form

L80 ≡ δabδcdΩa
ð2Þ ∧ Ωb

ð2Þ ∧ Ωc
ð2Þ ∧ Ωd

ð2Þ; ð3:24Þ

and if Mabcd exists then there will also be a second Chern-
Simons term coming from

L8 ≡MabcdΩa
ð2Þ ∧ Ωb

ð2Þ ∧ Ωc
ð2Þ ∧ Ωd

ð2Þ: ð3:25Þ

These results are well known, so this section is intended
both as a translation between the language and concepts of
coset constructions and those of gauge theories and as a
further check that the methods of nonlinear realizations
can reproduce known results. Indeed the final two lines of
Eq. (3.17) are nothing but the definition of the curvature
tensor and the Bianchi identity, respectively, implying

Fa ¼ dAa −
1

2
gfbcaAb ∧ Ac;

dFa − gfbcaAb ∧ Fc ¼ 0: ð3:26Þ

If one were to repeat the calculations of this section using
the identities in the form (3.26) rather than (3.17), the
derivation of Chern-Simons terms would have directly
mirrored methods familiar in the literature. For instance,
the 8-forms in Eqs. (3.24) and (3.25) simply correspond to

L80 ∝ ðtrF ∧ FÞ ∧ ðtrF ∧ FÞ;
L8 ∝ trðF ∧ F ∧ F ∧ FÞ; ð3:27Þ

in the usual language, with corresponding Chern-Simons
7-forms.

C. Spontaneously broken phase

We now want to address the situation in which the gauge
symmetry is spontaneously broken. For concreteness, we
consider the case where all of the gauge symmetries are
broken. It is straightforward to apply the following pro-
cedure to more general breaking patterns and we will
comment on other scenarios in a later section.
The primary difference from the unbroken case is that

now the global part of the gauge transformation is also
nonlinearly realized. Therefore, only Lorentz symmetry is
linearly realized, and the corresponding breaking pattern
is Glocal × ISOð3; 1Þ → SOð3; 1Þ. The representative coset
element belongs to ðGlocal × ISOð3; 1ÞÞ=SOð3; 1Þ and can
be written as

~g ¼ ex
μPμ ½…�eΦb

ν1ν2
T
ν1ν2
b e−A

c
μT

μ
ceπ

aTa ; ð3:28Þ

in the same manner as Eq. (3.8).

1. Maurer-Cartan form and inverse Higgs

The construction of the Maurer-Cartan form and the
implementation of the inverse Higgs constraint proceed
along the same lines as the unbroken case. Since the
representative coset element of the broken case is related
simply to that of the unbroken case, i.e., ~gbroken ¼
~gunbrokeneπ

aTa , the two Maurer-Cartan forms are also closely
related,

Ωbroken ¼ e−π
aTaΩunbrokeneπ

aTa þ e−π
aTadeπ

aTa : ð3:29Þ

Expanding out the Maurer-Cartan form as before, we find
that the coefficients are

Ωμ
P ¼ dxμ;

Ωa ¼ dxνAb
νUðπÞab þ

1

g
fbcaUðπÞbddUðπÞdc;

Ωa
ν ¼ −dAb

νUðπÞab − 2dxμΦb
μνUðπÞab

þ 1

2
gfbcdAb

μAc
νdxμUðπÞad; ð3:30Þ

where we have defined the matrix

UðπÞba ¼ δba þ gπcfcab þ
1

2
g2πcπc

0
fcadfc0db þ…

¼ exp½gπcfcab�: ð3:31Þ

Also note that U−1ðπÞba ¼ UðπÞab. Additionally, we have
chosen to normalize the generators so that facdfbdc ¼ δab.
The IH constraint which eliminates Φa

αβ remains the
same10: Φa

αβ ¼ − 1
2
∂ðαAa

βÞ. After imposing this constraint,

we have Ωa
ν jIH ¼ − 1

2
dxμFb

μνUðπÞab.

2. Relation to the Stückelberg trick

The above calculation demonstrates that the ingredients
derived from coset methods for building Yang-Mills
actions in the Higgs phase are simply a realization of
the Stückelberg trick used to restore gauge symmetries. In
this section, we make the correspondence explicit.

10Notice that the commutation relation ½Pμ; Tν
a� ¼ −δνμTa

implies that it is possible to eliminate Aa
μ in favor of πa and

its derivatives through an inverse Higgs constraint. In accordance
with our philosophy on the IH effect, we choose not to implement
the constraint. Physically, we know that we want to describe
gauge bosons so we keep the Aa

μ’s. In practice, the resulting IH
constraint would force Aa

μ to be pure gauge, resulting in a trivial
Maurer-Cartan form free of any dynamical fields, which is indeed
invariant under the relevant symmetries, but is not particularly
useful.
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First, we review the implementation of the Stückelberg
trick in the theory of massive SUðNÞ YM gauge bosons
which, for simplicity, all have the same mass m,

L ¼ −
1

4g2
trFμνFμν −

m2

2g2
trAμAμ: ð3:32Þ

This Lagrangian is not gauge invariant, but gauge
invariance can be restored by coupling in new fields,
πaðxÞ, with a ∈ f1;…; N2 − 1g, i.e., one field for each
generator of SUðNÞ. In order to insert the πaðxÞ’s appro-
priately, one first performs a gauge transformation with
πaðxÞ as the gauge parameter,

Aμ ↦ U†ðπÞðAμ þ ∂μÞUðπÞ≡ A0
μ;

Fμν ↦ U†ðπÞFμνUðπÞ≡ F0
μν; ð3:33Þ

where UðπÞ ¼ eπ
aðxÞTa is an element of SUðNÞ. We then

define a new Lagrangian L0 by taking Eq. (3.32) and
replacing Aμ ↦ A0

μ and Fμν ↦ F0
μν. That is,

L0 ¼ −
1

4g2
trF0

μνF0μν −
m2

2g2
trA0

μA0ν

¼ −
1

4g2
trFμνFμν −

m2

2g2
trDμUðπÞDμU†ðπÞ; ð3:34Þ

where DμUðπÞ¼∂μUðπÞþAμUðπÞ is the gauge-covariant
derivative of UðπÞ. The Lagrangian L0 then enjoys a gauge
symmetry under which we simultaneously change

Aμ ↦ V†ðxÞðAμ þ 1∂μÞVðxÞ;
UðπÞ ↦ V†ðxÞUðπÞ; ð3:35Þ

where VðxÞ ∈ SUðNÞ.
The physics of the L and L0 Lagrangians are the same;

we have just made the degrees of freedom in Eq. (3.32)
manifest. In L0, we introduced N2 − 1 new fields, but also
restored N2 − 1 gauge symmetries and hence the degree of
freedom counting is the same for both cases. We can
demonstrate the equivalence explicitly by using the gauge
symmetry of L0 to go “unitary gauge” in which we set
UðπÞ → 1, where the two Lagrangians coincide.
The above process and its generalizations are known

collectively as the Stückelberg trick, which is often a
useful tool for elucidating the physics in certain regimes
of theories, especially at high energies. See Refs. [19,42–44]
for good discussions of Stückelberg fields in various
contexts.
The Stückelberged fields in Eq. (3.33) are precisely

the terms which arise in the Maurer-Cartan form (3.30) when
applied to completely broken SUðNÞ. We noted in Eq. (3.29)
that the Maurer-Cartan forms for the broken and unbroken
phases of YM are related in a very simple manner. If we
expand out the terms on each side of Eq. (3.29) using

Ωbroken ¼ Ω0μ
PPμ þ Ω0aTa þΩ0a

ν Tν
a þ � � � ;

Ωunbroken ¼ Ωμ
PPμ þΩaTa þ Ωa

νTν
a þ � � � ; ð3:36Þ

then Eq. (3.29) demonstrates that

Ω0aTa ¼ e−π
bðxÞTbðΩaTa þ dÞeπbðxÞTb ;

Ω0a
ν Tν

a ¼ e−π
bðxÞTbΩa

νTν
aeπ

bðxÞTb : ð3:37Þ

Identifying Ωa ↦ Aa
μdxμ, Ωa

ν ↦ − 1
2
Fa
μνdxν and eπ

bðxÞTb ¼
UðπÞ (and similar for primed terms), we easily see that the
ingredients we obtain from the Maurer-Cartan form (3.30)
are precisely the same as the fields used in the Stückelberg
trick (3.33).
The Stückelberg trick is applicable to more general

theories (in our example the gauge masses were only
chosen to be equal for simplicity) and, as we will see,
the broken-phase Maurer-Cartan components (3.30) pro-
vide the completely general building blocks for generating
the low-energy action in completely broken gauge theories.
It is interesting that the coset construction for broken

YM theories automatically comes replete with Stückelberg
fields, but perhaps it is not surprising. After all, the coset
construction generates actions which nonlinearly realize
every broken symmetry of the system. Massive gauge
theories written in the standard form, as in Eq. (3.32), retain
none of the broken gauge symmetries. Only when we
couple in Stückelberg fields do we restore a realization of
gauge invariance and hence one might have expected this
method to coincide with the coset result.

3. Relation to gauging cosets by hand

Finally, we comment on the relation between our con-
struction, the Stückelberg trick and themethod inwhich coset
models are gauged by hand [19,20]. This technique explores
the role of gauge fields in SSB systems essentially by using
the Stückelberg trick in reverse. Rather than beginning
with the gauge fields, one starts with the Goldstones fπag
which parametrize the coset space G=H corresponding to a
global symmetry-breaking pattern G → H.
As detailed previously, the action for the bosons is

generated by writing a typical element ofG=H as ~g¼eπ
aTa ,

taking the πa’s to be the Goldstone fields and defining the
nonlinearly realized symmetries of πa by πa → π0a via the
relation

geπ
aTa ¼ eπ

0aTahðπ; gÞ; ð3:38Þ

or equivalently g ∶ ~g → ~g0 ¼ g~gh−1ðπ; gÞ, where g is an
arbitrary, spacetime-independent element of G. One
then constructs the Maurer-Cartan form Ω ¼ ~g−1d~g ¼
ΩZ þΩV ¼ Ωa

ZZa þ ΩI
VVI, where VI’s generate H and

Za are the remaining, broken generators. Under Eq. (3.38)
these components transform as
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g∶
�
ΩZ ↦ hðπ; gÞΩZh−1ðπ; gÞ;
ΩV ↦ hðπ; gÞðΩV þ dÞh−1ðπ; gÞ: ð3:39Þ

If we wish to promote this to local transformations,
g → gðxÞ, so that the transformation now replaces πa by
πa → π0a via the new relation

gðxÞeπaTa ¼ eπ
0aTahðπ; gðxÞÞ; ð3:40Þ

or equivalently gðxÞ ∶ ~g ↦ ~g0 ¼ gðxÞ~gh−1ðπ; gðxÞÞ, we
need to introduce a gauge field A with components along
all of the generators of G. Since we wish to insert A in such
a way that we retain the nice properties we had when
working with the Maurer-Cartan form, it proves useful
to consider the object ~Ω≡ ~g−1ðdþ AÞ~g ¼ Ωþ ~g−1A~g.
Demanding that under the action of gðxÞ, A transforms
as gðxÞ∶A ↦ gðxÞðAþ dÞgðxÞ−1, we find that the total
transformation of ~Ω is

gðxÞ∶ ~g−1ðdþAÞ~g
↦ h~g−1gðxÞ−1½dþ gðxÞAgðxÞ−1 þ gðxÞdgðxÞ−1�gðxÞ~gh−1
¼ h ~Ωh−1 þ hdh−1: ð3:41Þ

If we break up ~Ω into its components along Za and VI as
~Ω ¼ ~ΩZ þ ~ΩV ¼ ~Ωa

ZZa þ ~ΩI
VVI then, entirely analogously

to the ungauged case (3.39), the above transformation law
and the assumed properties of the groups imply that the
components of ~Ω along broken generators transform
homogeneously while those along unbroken generators
transform as a connection,

gðxÞ∶
� ~ΩZ ↦ hðπ; gðxÞÞ ~ΩZhðπ; gðxÞÞ−1;

~ΩV ↦ hðπ; gðxÞÞð ~ΩV þ dÞhðπ; gðxÞÞ−1:
ð3:42Þ

From here, the coset construction proceeds as normal; one
uses ~ΩZ to write downH-invariant actions, and in particular
one can use these terms to write down masses for the
broken gauge generators. In the limiting case where the
gauge group is entirely broken, we see that we are required
to build actions with ~g−1ðdþ AÞ~g, with ~g ∈ G, which is
exactly the object we used to build actions in the previous
section when using the Stückelberg trick which was, in
turn, found to be essentially equivalent to the construction
used in this paper.
In the end, the building blocks found through the

methods of this section—the Stückelberg trick and the
spacetime coset techniques presented in this paper—are
identical to each other, but rather than starting with only
gauge fields or only Goldstone bosons, our method
incorporates both simultaneously and fits entirely within
the framework of nonlinear realizations, which may prove
to be a technical advantage. In particular, when studying
Higgs mechanisms for systems which also spontaneously
break Poincaré invariance, spacetime coset methods handle

the implementation of inverse Higgs constraints quite
naturally and would seem to be better suited for these
scenarios than Stückelberging or gauging by hand would
be [23].

4. Construction of the action

We now construct the d-dimensional action appropriate
for the broken phase of the theory. Two crucial differences
between the broken and unbroken cases are that we can
now use Ωa in the construction of the action (because it
now corresponds to a broken generator) and we no longer
are required to contract gauge indices with δab.
Defining Ων

P ∧ Ωa
ν ≡ F a ¼ FbΩðπÞab, the most general

SO(3,1)-invariant action quadratic in the Maurer-Cartan
components is

L2 ¼ IabF a ∧ ⋆F b −MabΩa ∧ ⋆Ωb þ ΘabF a ∧ F b

þ εabΩa ∧ Ωb ð3:43Þ

for arbitrary tensors Iab and Mab. The tensors Θab and εab
can be nonzero only in d ¼ 4 and d ¼ 2, respectively, and
we do not consider them further. Any theory whose gauge
group is completely broken will have a low-energy
description whose action takes on the form (3.43), at
lowest order.
Basic physical requirements place coarse constraints on

the form of Eq. (3.43), but finer-grained information cannot
be determined without further assumptions. The require-
ment that there be no tachyons forces the mass matrix Mab
to be positive semi-definite, while freedom from ghosts
and technical naturalness11 require that Iab parametrically
reduces to Iab → λδab, with λ > 0, as Mab → 0 [42]. But
there is no physical principle that determines, for example,
the distribution of the gauge boson masses.
This is as it should be, since the knowledge that the

symmetry group is entirely broken is not enough informa-
tion on its own to determine the distribution of gauge
masses. The coset construction only gives us invariant
objects that can be used to build low-energy effective
actions and finding a UV theory which gives rise to specific
parameters is a separate question. In fact, even given a
microphysical model where the field content, interactions
and couplings are specified, this information may not be
enough to uniquely determine the spectrum of gauge
masses. For instance, there could be moduli in the theory
which break the gauge symmetries by acquiring vacuum
expectation values (VEVs), which in turn set the gauge
masses. Since there exist many possible values for the

11Here we mean requiring that gauge invariance be restored in
the limit that the gauge masses are taken to zero. This ensures that
corrections to the gauge masses are proportional to the masses
themselves, so that the mass is not raised to the cutoff by quantum
corrections.

SPONTANEOUSLY BROKEN GAUGE THEORIES AND THE … PHYSICAL REVIEW D 90, 025022 (2014)

025022-9



VEVs, there exist many possible distributions for the
gauge masses.
The coset construction can thus properly reproduce the

generic form of the low-energy action for a completely
spontaneously broken gauge theory. We found that the
gross features of the action could be determined, but certain
details could not. This is in part an artifact of the example
we chose to study. Often the gauge group is not entirely
broken; rather, it is only broken down to a subgroup, or
there may be additional UV global symmetries which more
tightly constrain the form of the low-energy action than in
the setting considered above. We briefly touch on some of
these alternative situations in the next section.

5. WZ terms in the broken phase

For completeness, we search for possible Wess-Zumino
terms in the broken phase. Unlike in the unbroken case,
there are no terms which we a priori expect to find. That is,
the Chern-Simons term fits all of the criteria for a WZ term
and it was fairly clear that it would arise as such in the
unbroken phase. However, there are no well-known ana-
logues which appear in the action only in the broken phase
and, indeed, we will not find any WZ terms here.
The procedure is nearly identical to that of the unbroken

case. For simplicity we assume that in addition to Glocal
there is an additional global G symmetry and that the
total group is spontaneously broken down to the diagonal
subgroup,12 Glocal ×G → ðGlocal ×GÞdiag. This is not a
significant change. The Maurer-Cartan components for
this pattern are the same as in Eq. (3.30) and the preserved
symmetry just forces us to contract latin gauge indices with
gauge-invariant tensors, as we will see more explicitly in
later examples. The choice is simply made for brevity, since
it reduces the number of terms we need to consider when
constructing actions.
We start with the components of the Maurer-Cartan form

and use the Maurer-Cartan structure equations to find
H-invariant, closed ðdþ 1Þ-forms which are locally the
exterior derivative of a d-form which is not itself H
invariant. The d-form defines a d-dimensional WZ term.
Since the algebra under study remains unchanged in the
broken phase, all of the Maurer-Cartan structure equations
remain exactly the same. The only differences are that the
Maurer-Cartan components now have different dependen-
cies on the fields13 and we can now use Ωa, whereas it was
forbidden in the unbroken case. Finally, to be precise, we
concentrate on the construction of WZ terms in d ¼ 3 in
order to compare to the work of previous sections.

We find that in the broken phase there exist only two
invariant 4-forms that are generically closed.14 The first
such 4-form is

L ¼ Ωa
μ ∧ Ωμ

P ∧ Ωb ∧ Ωcfabc; ð3:44Þ

but this is the exterior derivative of an allowed 3-form,

L ¼ 1

3
d½fabcΩa ∧ Ωb ∧ Ωc�: ð3:45Þ

The second 4-form is familiar to us; it is simply the θ term

Lθ ≡ δabðΩμ
P ∧ Ωa

μÞ ∧ ðΩν
P ∧ Ωb

νÞ; ð3:46Þ

and as we stated earlier, we already knew this would be
closed in the broken phase since the algebra and form of
the Maurer-Cartan structure equations remain unchanged.
Again, we previously found [Eq. (3.20)] that Lθ is exact,

Lθ ¼ d

�
Ωμ

P ∧ Ωa
μ ∧ Ωbδab þ

1

6
gΩa ∧ Ωb ∧ Ωcfabc

�

¼ dLcs3 ; ð3:47Þ

but now the conclusion is different. In the unbroken phase
the use of Ωa was disallowed in the coset construction and
so L3 was missed when attempting to generate 3-form
actions, meaning that Lcs3 represented a true WZ term. In
the broken phase, Ωa can now be used to generate 3-forms
and so Lcs3 is simply a 3-form action that can be written
down within the usual coset framework. In the language of
nonlinear realizations, Lcs3 no longer represents a WZ term
in the broken phase. Therefore, there are no WZ terms at all
for spontaneously broken d ¼ 3 gauge theories.
There is some potential confusion with respect to the

interpretation of Lcs3 in the Higgs phase which deserves
comment. We no longer have ΩaTa ¼ AaTa, but instead,
from Eq. (3.30), it is of the form ΩaTa ¼
UðπÞ−1ðAaTa þ dÞUðπÞ, where UðπÞ is an element of G
which depends on the πa fields. Therefore, Lcs3 defined in
Eq. (3.47) is the normal Chern-Simons 3-form (3.21) with
the replacement A ↦ U−1ðAþ dÞU everywhere, which we
write as Lcs3 ½U−1ðAþ dÞU�. Since the CS term is gauge
invariant up to a total derivative it is tempting to replace
Lcs3 ½U−1ðAþ dÞU� → Lcs3 ½A� and remove the Stückelberg
fields entirely. Possible confusion arises as this replacement
obscures the fact that the CS term is no longer a Wess-
Zumino term in the sense that it should no longer shift by a

12Along with the usual “breaking” pattern for the Poincaré
symmetries, which we have omitted writing here.

13For example, in the broken phase Ωa ¼ dxνAb
νUðπÞabþ

1
g fbc

aUðπÞbddUðπÞdc, while in the unbroken phase it was simply
Ωa ¼ dxμAa

μ.

14By “generically closed,” we mean closed for all possible
gauge groups. Certain forms may end up being closed only for
particular gauge groups simply due to dimensionalities. For
example, Ωa ∧ Ωb ∧ Ωc ∧ Ωd vanishes for SU(2) because there
are only three independent gauge indices, and this fact could in
principle cause certain forms to be closed when studying
SU(2), but this would not generally be true.
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total derivative. That is, we have claimed that non-WZ
terms are strictly invariant, but if we make the above
replacement then we will find that Lcs3 ½A� shifts by a total
derivative under gauge transformations, as usual. The key is
that to preserve the non-WZ nature of this term in the
broken phase we should not drop the total derivatives we
get when removing the Stückelberg fields as they are
responsible for keeping Lcs3 ½U−1ðAþ dÞU� strictly gauge
invariant. For most purposes, either form ofLcs3 will be fine
and this discussion is just a clarification on the internal
consistency of these coset procedures. However, there does
exist one subtlety in that the usual nonrenormalization
argument [40] for the CS coupling constant does not go
through for Lcs3 ½U−1ðAþ dÞU� as it crucially relies on the
fact that the CS term shifts by a total derivative.

IV. APPLICATIONS AND GENERALIZATIONS

In this section, we generalize the previous construction in
two ways. First, we consider a situation where the gauge
symmetry is not completely broken, but rather is broken to
some subgroup. Additionally, we consider the generaliza-
tion of our techniques to p-form gauge theories, and
construct actions for these theories in both the unbroken
and Stückelberg phases using coset techniques.

A. Other breaking patterns

First we consider symmetry-breaking patterns where the
UV physics contains both gauged and global copies of a
symmetry group G which is spontaneously broken down to
a group which contains a diagonal version of G.
As a concrete example, consider an SUðNÞ theory with

N Higgs fields transforming in the fundamental represen-
tation. We can combine the Higgs fields into an N × N
matrix Φ and build an appropriate potential out of tr½Φ†Φ�
such that the fields acquire a vacuum expectation value
hΦi ∝ 1 [43]. The potential has a SUðNÞ × SUðNÞ × Uð1Þ
symmetry under which Φ → eiθLΦR, where eiθ ∈ Uð1Þ
and L; R ∈ SUðNÞ.
Nowimagine thatwehavegaugedthe left transformations.

The VEVs then generate the breaking pattern SUðNÞlocal×
SUðNÞglobal × Uð1Þglobal → SUðNÞdiagonal, since hΦi →
LhΦiR with L ¼ R−1 is the only preserved symmetry.
We now examine this breaking pattern using our coset

methods. Letting the generators of SUðNÞlocal, SUðNÞglobal
and Uð1Þglobal be fTν1…νn

a g, fUag and V, respectively, the
only preserved internal symmetry is generated by the
diagonal set fTa − Uag. It is convenient to take the basis
of broken generators as fTν1…νn

a ; Vg, in which case the
representative coset element is

~g0 ¼ ex
μPμ ½…�eΦa

μνT
μν
a e−A

c
μT

μ
c eπ

aTaeϕV; ð4:1Þ

and we may expand the Maurer-Cartan form as

~g0−1d~g0 ¼Ω0μ
PPμþΩ0

T
aTaþΩ0

U
aUaþΩ0

VVþΩ0
T
a
νTν

aþ��� :
ð4:2Þ

The calculation is almost the same as in the broken
case (3.30), and the result is

Ω0μ
P ¼ dxμ;

Ω0
V ¼ dϕ;

Ω0
T
a ¼ Ab

νdxνUðπÞab þ
1

g
fbcaUðπÞbddUðπÞdc;

Ω0
T
a
ν ¼ −dAb

νUðπÞab − 2dxμΦb
μνUðπÞab

þ 1

2
gfbcdAb

μAc
νdxμUðπÞad; ð4:3Þ

where the matrix UðπÞba is defined in Eq. (3.31).
Every part of the Maurer-Cartan form lies along a broken

generator, since there is no component alongUa, and hence
we can use every component of Eq. (4.3) to build actions. It
is crucially important that there is now a preserved global,
diagonal SUðNÞ symmetry, as this dictates that the latin
gauge indices must be contracted with δab. This eliminates
many of the UðπÞba factors, since UðπÞbaUðπÞcb ¼ δca, and
the most general, stable action that is quadratic in the
components of the Maurer-Cartan form is found to be

L ¼ −
1

4g2
trFμνFμν −

m2

2g2
trDμUðπÞDμU−1ðπÞ − 1

2
ð∂ϕÞ2;

ð4:4Þ

where we have imposed the inverse Higgs constraint,
employed trace notation rather than displaying the explicit
δab’s and have used the gauge-covariant derivative notation
of Eq. (3.34).
Therefore, the result of the symmetry-breaking pattern

is N2 − 1 gauge bosons of equal mass and a massless
Goldstone field corresponding to the broken U(1), in
accord with the results of Ref. [43].15 We thus see that
the coset methods applied to gauge theories can have more
predictive power when more symmetries are preserved.
Also note that had we not included the U(1) factor we
would have reproduced the Lagrangian of Eq. (3.33).

B. Generalization to p-forms

Thus far, we have been studying 1-form gauge fields, but
it is also straightforward to generalize to the case of Abelian
p-forms. Such a form, Ap ¼ Aμ1���μpdx

μ1 ∧ � � � ∧ dxμp ,
transforms under a gauge transformation as

15We have assumed that the acquired gauge boson masses are
smaller than the masses of the radial modes so that the massless ϕ
field and the gauge fields are the lowest-energy degrees of
freedom.
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Ap ↦ Ap þ dΛp−1; ð4:5Þ

where Λp−1 is a ðp − 1Þ-form. Explicitly, in components,
this is Aμ1���μp ↦ Aμ1���μp þ ∂ ½μ1Λμ2���μp�. As before, the
global part of the gauge transformation (for which
dΛ ¼ 0) is linearly realized on Ap, while the local part
of the gauge transformation is realized nonlinearly.
Similar to the Yang-Mills case, we can expand out the
gauge parameter Λp−1 and define new generators by
Tα1���αnμ1���μp−1 ≡ xα1 � � � xαnTμ1���μp−1 , all of which commute
with each other. Note that Tμ1���μp−1 generates the global part
of the gauge transformation, while the other generators
generate the local transformations. These generators have
nontrivial commutators with spacetime translations

½Pν; Tα1���αnμ1���μp−1 � ¼ −nδðα1ν Tα2���αnÞμ1���μp−1 ; ð4:6Þ

and also with spacetime rotations and boosts, but the
form of this latter commutator will be immaterial to our
purposes.
We are interested in the coset Glocal=Gglobal, which we

parametrize as

~g ¼ ex
μPμ � � � eΦα1α2μ1 ���μp−1T

α1α2μ1 ���μp−1
eAαμ1 ���μp−1T

αμ1 ���μp−1
: ð4:7Þ

Note that Aαμ1���μp−1 is antisymmetric in all of its indices.
From this, we can compute the components of the Maurer-
Cartan form

Ω¼ΩμPμþΩμ1���μp−1T
μ1���μp−1 þΩαμ1���μp−1T

αμ1���μp−1 ; ð4:8Þ

where the coefficients are given by

Ωμ ¼ dxμ; ð4:9Þ

Ωμ1���μp−1 ¼ dxαAαμ1���μp−1 ; ð4:10Þ

Ωαμ1���μp−1 ¼ dAαμ1���μp−1 − 2dxβΦðαβÞμ1���μp−1 : ð4:11Þ

As before, we can eliminate the field Φ through an inverse
Higgs constraint by setting

1

2
∂ðβAαÞμ1���μp−1 − 2dxβΦðαβÞμ1���μp−1 ¼ 0: ð4:12Þ

This projects the part symmetric in ðαβÞ. Upon substituting
back in, we obtain the field strength16:

Ωαμ1���μp−1 ¼
1

2
dxβ∂ ½βAαμ1���μp−1� ¼

1

2
dxβFβαμ1���μp−1 : ð4:13Þ

Using this, we can construct the quadratic action

L2 ¼ Ωμ1���μp ∧ ⋆Ωμ1���μp ∼ Fpþ1 ∧ ⋆Fpþ1; ð4:14Þ

where Fpþ1 ¼ dAp. Notice that in the case p ¼ 1, with
A ¼ Aμdxμ, this reduces precisely to Maxwell electrody-
namics, as expected.
Similar to the Yang-Mills case, there exist Wess-Zumino

terms for p-forms, descending from topological terms built
out of products of Ωμ1���μp , of the form

L ∼ Fpþ1 ∧ Fpþ1 ∧ � � � ∧ Fpþ1; ð4:15Þ

which exist whenever nðpþ 1Þ ¼ d for some n. These
terms are exact (L ¼ dβcs), and have corresponding Wess-
Zumino terms in one lower dimension, which are again the
Chern-Simons terms

βcs ¼ Ap ∧ Fpþ1 ∧ � � � ∧ Fpþ1; ð4:16Þ

which shift by a total derivative under a gauge
transformation.

1. Spontaneously broken p-form gauge theories

We now consider the theory of spontaneously broken
p-form gauge fields. Much as in the Yang-Mills case, in
order to construct the theory in the broken phase, we
consider breaking the global part of the field transformation
also, corresponding to Tμ1���μp−1 , which has a corresponding
Goldstone boson, Bμ1���μp−1 . We therefore consider the coset
element

~g ¼ ~glocale
Bμ1 ���μp−1T

μ1 ���μp−1
: ð4:17Þ

TheMaurer-Cartan forms are similar to before: after imposing
the inverse Higgs constraint (4.12), the MC 1-forms are

Ωμ ¼ dxμ; ð4:18Þ

Ωμ1���μp−1 ¼ dxαðAαμ1���μp−1 þ ∂ ½αBμ1���μp−1�Þ; ð4:19Þ

Ωαμ1���μp−1 ¼
1

2
dxβFβαμ1���μp−1 : ð4:20Þ

Notice that in addition to the kinetic term ∼F2, we can also
now construct a mass term for the gauge field, so that the
quadratic Lagrangian is (in form notation)

L¼−
1

2
dAp ∧⋆dAp−

m2

2
ðApþdBp−1Þ∧⋆ðApþdBp−1Þ;

ð4:21Þ
which is invariant under a gauge transformation where both
Ap and Bp−1 transform,

Ap ↦ Ap þ dΛp−1; ð4:22Þ
16Here we have used the fact that ∂ ½βAα�μ1���μp−1 ¼ ∂ ½βAαμ1���μp−1�,

because A is antisymmetric in all its indices.
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Bp−1 ↦ Bp−1 − Λp−1: ð4:23Þ

Here the form fieldBp−1 is a Stückelberg field which restores
gauge invariance in the massive theory. This type of
Stückelberg realization of the gauge symmetry arises, for
example, in the worldvolume action of D-branes in the
presence of background p-form gauge fields [45]. Again,
in the case p ¼ 1, this reduces to the scalar Stückelberg field
that appears in a massive U(1) theory.

C. Anomalous gauge theories

Finally, we note that the discussion has so far
remained classical, but the above methods could have
applications to interesting quantum-mechanical aspects
of symmetry breaking. There exist gauge theories which
are anomaly free in the UV, but which display gauge
anomalies in the IR after SSB occurs, as was nicely
discussed in Ref. [43]. Here, a gauge-invariant descrip-
tion can be restored by coupling in Stückelberg fields
through a Wess-Zumino term whose gauge variation
does not vanish, but precisely cancels the anomalous
variation arising from the other low-energy fields. It
would be an interesting exercise to explore whether the
physics of such anomalous low-energy theories can be
captured in the coset language.

V. CONCLUSION

The coset methods of Callan, Coleman, Wess and
Zumino, and Volkov [1–3] have proven to be invaluable
tools for exploring the low-energy behavior of systems
which exhibit the spontaneous breaking of internal
symmetries. These methods were later extended and it
was shown that the YM Lagrangian naturally arises if
one studies a “breaking” pattern in which a local gauge
symmetry is “broken” to the global group [15,16]. In
this paper, we have extended these methods to study the
case where gauge symmetries are truly spontaneously
broken.
First, we reproduced the coset construction of Yang-

Mills gauge theories in modern language. The results are
familiar, but it is interesting to approach YM from this
nonstandard direction. For instance, the search for a Wess-
Zumino action in the coset calculation, in the sense of
Ref. [4], was shown to lead to the Chern-Simons terms.
Next, we have extended these techniques to the case

where even the global symmetry is nonlinearly realized,
which physically corresponds to a true breaking of the
gauge symmetry. Coset methods faithfully reproduce the
result that the low-energy physics is described by massive
gauge bosons. Depending on the breaking pattern, it can
be possible to discern the distribution of gauge boson
masses while remaining agnostic about the UV physics.
Historically this is what makes the coset construction
powerful: generic properties of the low-energy physics

can be discerned from only the knowledge of the breaking
pattern. A search for WZ terms in the broken phase
revealed that none exist.
We were able to reproduce familiar results about

Stückelberged Yang-Mills theories, where the nonlinear
realization of gauge symmetry arises in an interesting way.
Further, we were able to reproduce results about other
breaking patterns, where only some of the gauge sym-
metries are broken in this alternative language. Similar
analyses can be performed for other, related patterns. For
instance, the above procedure could be used to study color-
flavor locking [46], electroweak symmetry breaking via
chiral condensates, or theories with approximate custodial
symmetries. Alternatively, it is straightforward to study
examples in which subsets of the gauge group are pre-
served. Additionally, it was straightforward to generalize our
results to the case of p-form gauge theories. Although we
focused on Abelian p-form theories, it would be interesting
to see if these techniques could be applied to the construction
of actions for non-Abelian p-form gauge fields.
Many other directions in which to generalize present

themselves. An obvious one is to consider what happens
if in addition to gauge symmetry, spacetime symmetries
are broken. In this note we have assumed that Poincaré
symmetry is preserved by the symmetry-breaking physics,
but this need not be so, and the formalism should generalize
readily to this case. Such Higgs phases of nonrelativistic
gauge theories have recently been considered in
Refs. [47,48], and it would be interesting to try to reproduce
their results in this language. Another possible application
of these techniques is to the duality recently pointed out in
Ref. [21] for Abelian vector fields. Similar to the way
that the duality enjoyed by Galileon theories [49] can be
understood from the coset perspective [13,50], it should be
possible to understand this vector duality using the tech-
niques presented here. Concretely, the duality should
follow upon the identification Tμ ↦ Tμ þ αPμ, which
implements the field redefinition xμ ↦ xμ þ αAμ in the
low-energy theory.
A final application of these methods concerns studying

Higgs phases of gravity. Various proposals for Higgs
mechanisms of gravity have been previously suggested,
but only with the recent discovery of dRGT [22] has it
become known how to construct an apparently consistent,
ghost-free theory of massive gravity, making it the
leading candidate for describing a potential Higgs phase
of gravity. Applying our methods to general relativity,
it is possible to determine to what extent dRGT can be
expected as the generic low-energy description of sponta-
neously broken gravity. These avenues are currently under
investigation [23].
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