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We compute the partition function and specific heat for a quantum-mechanical particle under the
influence of a quartic double-well potential nonperturbatively, using the semiclassical method. Near
the region of bounded motion in the inverted potential, the usual quadratic approximation fails due
to the existence of multiple classical solutions and caustics. Using the tools of catastrophe theory, we
identify the relevant classical solutions, showing that at most two have to be considered. This corresponds
to the first step towards the study of spontaneous symmetry breaking and thermal phase transitions in the
nonperturbative framework of the boundary effective theory.
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I. INTRODUCTION AND MOTIVATION

In the analytic description of phase transitions in
particle physics and nuclear theory, one usually relies
on the effective model approach, given the complexity of
the fundamental theories involved. If we consider strong
interactions, the phase diagram related to chiral symmetry
restoration and deconfinement is a particularly interesting
example, since they are within experimental reach and
currently being investigated by different experiments at
RHIC-BNL and LHC-CERN [1]. Usually, one generally
adopts low-energy effective models such as the linear
sigma model [2,3] and the Nambu–Jona-Lasinio model
[4], which can be combined with different versions of
the Polyakov loop model [5]. The standard approach,
then, corresponds to the computation of a thermal effec-
tive potential from which one can extract information on
the different phases and all thermodynamic quantities, so
that one can build a phase diagram.
In most cases, the computation is performed in the

mean-field approximation with one-loop thermal correc-
tions assuming homogeneous and static background fields
[6]. Frequently, vacuum loop contributions are ignored,
even in a theory with spontaneous symmetry breaking,
where the presence of a condensate always modifies the
masses, which then become medium-dependent quantities,
affecting significantly the phase structure [7–16]. So, the

highly nonlinear behavior of the effective potential for large
fields is completely missed, as well as nonperturbative
effects (with the exception of the treatment within the
functional renormalization group [17]). Those aspects can,
in principle, dramatically modify the phase structure
provided by a given effective model.
The boundary effective theory formalism [18,19]

furnishes a nonperturbative method to calculate the
partition function of quantum systems in thermal equi-
librium in which configurations that are not strictly
periodic play the main role. In such approach, one can
compute the thermal one-loop effective potential for a
system of massless scalar fields with quartic interaction
[20]. The calculation relies on the solution of the classical
equation of motion for the field, and Gaussian fluctuations
around it. The result is nonperturbative and differs from
the standard one-loop effective potential [21] for field
values larger than T=

ffiffiffi
λ

p
, T being the temperature and λ

the coupling [20].
The natural extension would be the calculation of the

effective potential in the case with spontaneous symmetry
breaking. That would allow for the description of phase
transitions in effective models incorporating nonlinear
and nonperturbative effects, as well as controlling the
infrared divergences of thermal field theory in a well-
defined and relatively simple way [18,19,22]. However,
to develop the method to be applied in this case, it is
necessary to deal with multiple classical solutions, since
more than one solution may satisfy the boundary con-
ditions in Euclidean time.
As a first step towards the study of spontaneous

symmetry breaking and thermal phase transitions using
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the boundary effective theory, in this paper we focus on the
simpler case of computing the semiclassical partition
function for a quartic double-well potential in quantum
statistical mechanics. Although apparently trivial and
straightforward, the inverted potential in this case has a
region of bounded motion. Therefore, one also has to deal
with multiple solutions and their coalescence as the
temperature changes. The usual quadratic approximation
may yield good results when such solutions are far away
from each other in functional space, but, as we shall see
later on, this is not so in the opposite scenario. Among the
numerous solutions, we use the framework of catastrophe
theory to identify the only two relevant ones, following
Refs. [23,24]. We then compute the partition function and
specific heat, obtaining the correct limits at both high and
low temperatures, and a regular behavior where the usual
quadratic approximation diverges.
This problem—the existence of multiple classical

solutions—has been tackled by a few papers, all of them
interested in the calculation of the propagator (where
the Morse index does play an important role): In
Ref. [25], the author studies an spherically symmetric
potential which also yields caustics, but the paper
aimed at calculating the energy levels of the system.
Reference [26] was also interested in the energy levels and
in particular its ground-state value. There, the authors use
complex-valued trajectories and actions and take into
account an infinite number of periodic solutions—as
we shall see later on, we show that one shall use only
two real ones, that are strictly stable. Reference [27] does
go beyond quadratic order, like we do, but goes up to third
order, since that is enough to yield a well-behaved Airy
solution, which is nicely interpreted as an evanescent
wave. Reference [28] also studies the double well and
mentions that one can get rid of the singularities going to
fourth order, but the paper focuses on the low-temperature
(large-β) limit—the dilute instanton gas approximation—
as opposed to us, who make no such restriction on the
range of the temperature. The authors do mention the
negative-eigenvalue solutions but we show that they
should not be taken into account. None of those papers
calculate the specific heat and its behavior at both small
and large temperature.
The paper is organized as follows. In Sec. II we review

general characteristics of the semiclassical path-integral
representation of the partition function and discuss the
case of multiple solutions in the double well. In Sec. III we
use the tools from catastrophe theory to deal with the
coalescence of solutions and identification of relevant
minima. In Sec. IV we present results for the partition
function and the specific heat, discussing their controlled
behavior and the domain of validity of our approximation.
Section V contains our summary. Elements and some
technical details of catastrophe theory are presented in the
Appendices.

II. SEMICLASSICAL PATH-INTEGRAL
REPRESENTATION OF THE PARTITION

FUNCTION

A. General features

In statistical mechanics, the partition function for a
system in contact with a thermal reservoir at temperature
T is given by the sum of a probabilistic weight, the diagonal
elements of the density matrix, over a stochastic variable
that labels the state of the system. This object is of
fundamental importance, as it encodes all the thermody-
namic information.
For a one-dimensional quantum-mechanical system

consisting of a single particle, the stochastic variable can
be chosen as the Schrödinger-picture position operator
eigenvalue. Therefore, if the dynamics is dictated by the
Hamiltonian operator Ĥ, the partition function is written
as (1=β≡ kBT)

Z ¼
Z

∞

−∞
dx0hx0j expð−βĤÞjx0i: ð1Þ

The matrix element in the previous equation can be
understood as the analytic continuation of the transition
amplitude hx0j exp½−iðĤ=ℏÞðt − t0Þ�jx0i to imaginary time,
allowing for a formal expression for the diagonal elements
of the density matrix in terms of path integrals [29]. If we
restrict our analysis to systems subject to velocity-
independent potentials, the desired expression has the
well-known form:

hx0j expð−βĤÞjx0i ¼
Z
xð0Þ¼xðβℏÞ¼x0

½DxðτÞ�e−SE=ℏ; ð2Þ

where

SE½x� ¼
Z

β

0

dτ

�
m
2

�
dx
dτ

�
2

þ VðxÞ
�
: ð3Þ

In other words, the diagonal elements of the density matrix
are obtained integrating the exponential of the Euclidean
action SE over the paths xðτÞ in imaginary time satisfying
the conditions xð0Þ ¼ xðβℏÞ ¼ x0.
For convenience we define the dimensionless quantities

q≡ x=xN , θ≡ ωNτ, Θ≡ βℏωN , UðqÞ≡ VðxNqÞ=mω2
Nx

2
N

and g≡ ℏ=mωNx2N where ω−1
N and xN are the natural time

and length scales of the problem under consideration,
respectively. In terms of these, the partition function can
be written as follows:

ZðΘÞ ¼
Z

∞

−∞
dq0

Z
qð0Þ¼qðΘÞ¼q0

½DqðθÞ�e−I=g; ð4Þ

where
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I½q� ¼
Z

Θ

0

dθ

�
1

2

�
dq
dθ

�
2

þ UðqÞ
�
: ð5Þ

In general, it is not possible to solve exactly the path
integral above, but we can still resort to approximation
procedures in order to evaluate it. A very natural approach
is the Jeffreys-Wentzel-Kramers-Brillouin (JWKB) [30]
asymptotic expansion in ℏ (or g)—also known as semi-
classical approximation—that we briefly discuss below.
The trajectories that extremize the Euclidean action

I½q� are those satisfying the Euler-Lagrange equation
(U0 ≡ dU=dq),

d2qc
dθ2

− U0ðqcÞ ¼ 0; ð6Þ

subject to the boundary conditions qð0Þ ¼ qðΘÞ ¼ q0.
In other words, these are the classical solutions describing
the motion of a particle under the influence of the inverted
potential −UðqÞ.
Due to its Euclidean nature, the path integral in Eq. (2) is

dominated by the functions in the vicinity of those that
minimize I½q�. So, one has to determine among the
solutions of (6) those representing minima, which we
denote by q̄ci. Expanding the action around the minima,
we have I½q̄ci þ η� ¼ I½q̄ci� þ I2½q̄ci; η� þ δI½q̄ci; η�, where

I2½q̄ci; η� ¼
1

2

Z
Θ

0

dθηðθÞ
�
−

d2

dθ2
þ U00ðq̄ciÞ

�
ηðθÞ; ð7Þ

δI½q̄ci; η� ¼
X∞
k¼3

1

k!

Z
Θ

0

dθUðkÞðq̄ciÞηkðθÞ: ð8Þ

Keeping only terms up to quadratic order in the fluctua-
tions, one obtains the so-called standard semiclassical
approximation for the partition function:

Z ≈
Z

∞

−∞
dq0

X
i

expð−I½q̄ci�=gÞΔ−1=2; ð9Þ

where Δ is the determinant of the quadratic fluctuation
operator

Δ ¼ det F̂½q̄ci� ¼ det

�
−

d2

dθ2
þ U00ðq̄ciÞ

�
: ð10Þ

As an example, let us consider a single-well potential
UðqÞ, whose global minimum is located at the point qm, as
depicted in Fig. 1. Following the method described above,
one has to obtain the solutions describing the classical
motion of the particle under the influence of the inverted
potential that leaves the point q0 at θ ¼ 0 and returns after a
time interval Θ.
As the potential −UðqÞ is unbounded from below, if the

particle departs from a point such that q0 < qm (q0 > qm),

it will only return to the initial position if its initial velocity
points to the right (left), otherwise the particle will move
directly towards −∞ (þ∞). However, the initial velocity
cannot be arbitrarily large, for if the particle energy is
greater than the height of the potential barrier, it will not
return to its initial position either, as it will move directly
towards þ∞ (−∞). Thus, the maximum possible value for
the particle energy is exactly the barrier height.
For a fixed value of q0, the time the particle spends

going from the initial position up to the turning point qt
is a function of qt only, given by the following expression:

Θ
2
¼ signðqt − q0Þ

Z
qt

q0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½UðqÞ − UðqtÞ�

p : ð11Þ

Clearly, the previous expression vanishes when qt ¼ q0.
But, as the turning point moves further up the barrier,
the time of flight increases continuously, diverging when qt
is exactly at the top. Therefore, for any value of Θ, it is
possible to determine the one solution satisfying qð0Þ ¼
qðΘÞ ¼ q0 by choosing the appropriate turning point. It is,
then, a straightforward task to implement the semiclassical
method, as was demonstrated in detail in Ref. [31]. In fact,
even the D-dimensional case can be treated for central
potentials [32].

B. Double-well potential: Multiple solutions

The problem becomes more intricate in the case of
double-well potentials. Suppose now thatUðqÞ represents a
double-well potential with degenerate minima located at
q ¼ a and q ¼ b, with a < b, e.g. like the one sketched in
Fig. 2. As we shall see, it is now necessary to deal with
multiple classical solutions.1

If q0 < a or q0 > b, the particle lies in a region of
unbounded motion under the potential −U, resembling the

qm
q

U

FIG. 1 (color online). Single-well inverted potential.

1The quartic double-well potential at finite temperature has
been investigated previously using semiclassical, variational and
perturbative methods, e.g. in Refs. [28,33–35].
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single-well case.2 It is trivial to extend the arguments given
in the previous section and conclude that, as before, each
pair ðq0;ΘÞ defines a unique solution to Eq. (6).
Let us now analyze what happens when a < q0 < b, i.e.

when the particle starts in the well of −UðqÞ. Once again,
its energy has to be smaller than the barrier height,
otherwise the particle will leave the well towards �∞
without ever returning to its initial position. In other words,
there is a maximum allowed speed for such particles and all
the solutions departing from a point in the well must always
remain therein. In this region of bounded motion, we see a
much richer structure, with the possibility of multiple
classical solutions for a given q0, depending on Θ.
If the temperature is high enough, the available time of

flight is still very restrictive. Accordingly, since the speed is
limited, the particle will be able to move only towards the
nearest peak (qt and q0 will have the same signal—see
Fig. 3, lower panel), but it will not be able to reach points
too far from its initial position. Thus, in this limit, we still
have a single solution for every q0. Lowering the temper-
ature (increasing Θ), the particle will be able to go further
away and eventually it will be able to reach also the
opposite side of the potential well and return to its initial
position. From then on (i.e, for lower temperatures), a fixed
q0 will no longer define a unique classical solution [23].
In order to apply the semiclassical method with multiple

solutions, one has to be able to identify and keep only those
representing minima of the Euclidean action in functional
space, discarding maxima and saddle points, which both
correspond to unstable solutions with at least one negative
eigenvalue3 of the quadratic fluctuation operator F̂½qc�,
defined in Eq. (10).

In the next section, we restrict ourselves to a quartic
double-well potential and, using the language of catastro-
phe theory, we not only identify how the number of
solutions changes as we vary the parameters ðq0;ΘÞ, but
also find a straightforward criterium to determine which
classical trajectories must be taken into account.

III. COALESCENCE OF SOLUTIONS

A. Caustics and catastrophes for the quartic
double-well potential

From now on, we consider the specific case of a quartic
double-well potential, VðxÞ¼−mω2x2=2þλx4=4. Writing
it in terms of q≡ x=xN , xN ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mω2=λ
p

:

UðqÞ ¼ λ

m2ω4
VðxNqÞ ¼ −

1

2
q2 þ 1

4
q4: ð12Þ

As discussed previously, if the temperature is sufficiently
high, there is only one closed path, with a single turning
point, for every q0. Lowering the temperature, we go from
a single-solution to a three-solution regime. Lowering it
even further, we reach a five-solution regime and so
on [23].

a b
q

U

FIG. 2 (color online). Double-well inverted potential.
1.0 0.5 0.0 0.5 1.0

qt

5

10

15

20

1.0 0.5 0.0 0.5 1.0
qt

5

10

15

20

FIG. 3 (color online). Plots of the time of flight Θ vs. the
turning point qt for q0 ¼ 0 (upper) and q0 ¼ 0.3 (lower). In the
upper panel, the trivial solution q0 ¼ qt ¼ 0 ¼ qðtÞ∀t, although
valid for all Θ, is not shown.

2It is essential for this piece of the argument that the maxima of
the inverted potential are degenerate. The method discussed in the
present work can be generalized and applied to the case of
nondegenerate minima.

3The solution qcðθÞ is a minimum when all the eigenvalues are
positive, a maximum when they are all negative and a saddle
point otherwise.
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Figure 3 is a clear illustration of the feature of solution
bifurcation. It shows the plots of the time of flight Θ vs. the
first turning point qt of the classical path for two different
values of q0. One can read directly from the plots the values
of qt that allow the particle to return to q0 in a time interval
Θ. As fixing the initial position and the first turning point
defines univocally the classical trajectory, the plot shows
the number of classical solutions related with each value of
the time of flight.
Thus, the plane ðq0;ΘÞ is divided into several regions

with different numbers of solutions, as shown in Fig. 4.
Moving from a certain region to a neighboring one, two
solutions are either created or annihilated. Exactly at the
frontier between those regions, two classical trajectories
coalesce. The curves defining the frontiers between two
such regions are named caustics, for they are analogous to
the optical phenomenon. In our case, the classical solutions
play the role of the light rays and the action replaces the
optical distance [23].
The information depicted in Figs. 3 and 4 is combined

into a single 3D plot in Fig. 5.
To apply the semiclassical method to compute the

partition function for the double-well potential we must
determine which of the solutions are actual minima of the
action and track them down. To do so, we use the
framework of catastrophe theory [36], which classifies
and studies how the extrema of certain functions coalesce
and emerge. A brief summary of a few ingredients of
catastrophe theory is presented in Appendix A.

B. Finding the minima

Following Appendix A, new real solutions of (6),
i.e. new extrema of the Euclidean action, emerge whenever
the fluctuation determinant Δ vanishes. This provides a
criterium to determine the location of the caustics.

It is clear that, for the problem under consideration, there
are only two variables controlling the pattern of action
extrema, which we choose to be q0 and Θ.4 Therefore, we
are dealing with catastrophes whose codimension is not
greater than two. The only two catastrophes satisfying
this condition are the fold and the cusp, both having only
one essential variable or coordinate [36]. In other words,
we know that, in our case, only one eigenvalue of the
fluctuation operator vanishes when a caustic is crossed.
Therefore, we can focus on one direction of the func-

tional space: the one defined by the eigenfunction whose
lowest eigenvalue vanishes. If we project the action onto
that direction and perform a change of variables (see
Appendix B), we will reach the so-called normal form
(see Table I):

INðzÞ ¼
1

4
z4 þ u

2
z2 þ vzþ s; ð13Þ

where z is the coordinate associated to the aforementioned
direction in functional space and u and v are the control
parameters. The bifurcation set is then given by

1.0 0.5 0.0 0.5 1.0
0

5

10

15

20

q0

FIG. 4 (color online). The plane ðq0;ΘÞ is divided into regions
with different number of classical solutions. The frontiers
between those regions, named caustics, are shown above. The
smooth curves indicate the coalescence of strictly periodic
solutions, i.e, those that begin and end at the same position
and at the same velocity.

FIG. 5 (color online). Three-dimensional plot of qt × q0 × Θ
(upper panel) and its projections onto the planes qt × Θ (bottom
left) and q0 × Θ (bottom right).

4The third available quantity, qt, can be written in terms of the
chosen ones.
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dIN
dz

¼ d2IN
dz2

¼ 0 ⇒ 27v2 þ 4u3 ¼ 0: ð14Þ

The previous equation defines a cusp in the control
parameter space ðu; vÞ, dividing it in two parts—see
Fig. 6. To the right of the curve the action has one
minimum, to its left there are one maximum and two
minima.
If the cusp is crossed at its vertex, as in arrow 1 of Fig. 6,

the original minimum becomes a maximum and two
symmetric minima appear—see Fig. 7. On the other hand,
if the crossing happens at any other point, as in arrow 2
in Fig. 6, the original minimum remains and two
new solutions appear—a maximum and a new (local)
minimum—see Fig. 8. In the former case, one solution
splits into three; in the later, two new solutions emerge
(out of the coalescence of their complex counterparts—see
next paragraph) while the previously existing minimum is
unaffected. This picture agrees with our previous statement
that the number of solutions of (6) increases by two.
It is useful to think of exactly the same merging of

extrema that happens in the algebraic equation (13). Being
a fourth-order polynomial with real coefficients, there
are always three extrema which may be either real or
imaginary, depending on the values taken by the control
parameters fu; vg. Then, one usually speaks of the coa-
lescence of complex solutions (which always come in pairs

and are conjugate to each other) and their subsequent
separation along the real axis, as opposed to their plain
creation out of nothing.
Previous works (see, for instance, Ref. [26]) took into

account such complex-valued trajectories. In Fig. 9 we plot
the level curves of the imaginary part of the action (13),
which define the steepest descent path crossing the only
classical solution before the first caustic takes place (first
panel). Even as u changes and the caustic is crossed, the
real axis is always the steepest path crossing the former
only extremum.
As one lowers the temperature, at the next catastrophe

the classical trajectory with highest action is the one that
gives rise to two new solutions. So, the solutions emerging
after the second caustic are still maxima along the direction
(in functional space) of the first catastrophe. On all the
forthcoming catastrophes, the same happens: new solutions
originate from the one with the highest action. Thus, in the
multiple-solution regime, the only solutions that are actual
minima of the action are those that are minima along the
direction of the first catastrophe. So, to apply the semi-
classical method, we just have to be concerned about at
most two classical solutions.
Moreover, as the first catastrophe happens before the

emergence of strictly periodic solutions (in fact, these
solutions appear only in the second catastrophe), we can
guarantee that the solutions we have to keep have a single

TABLE I. The five simplest elementary catastrophes, their codimension (number of control parameters),
dimensions (number of coordinates) and the normal forms of their generating functions.

Catastrophe Codimensions Dimensions Normal form

Foldl 1 1 x3=3þ ux
Cusp 2 1 x4=4þ ux2=2þ vx
Swallowtail 3 1 x5=5þ ux3=3þ vx2=2þ wx
Elliptic umbilic 3 2 x3 − 3xy2 − uðx2 þ y2Þ − vx − wx
Hyperbolic umbilic 3 2 x3 þ y3 þ uxy − vx − wy

FIG. 6 (color online). Cuspid 27v2 þ 4u3 ¼ 0 in the control
parameter space. See text and Figs. 7 and 8 for explanation of the
arrows.

FIG. 7 (color online). Behavior of the action in functional space
when the cusp is crossed at the vertex. See arrow 1 in Fig. 6.

FIG. 8 (color online). Behavior of the action in functional space
when the cusp is crossed at a point that is not the vertex. See
arrow 2 in Fig. 6.
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turning point. Hence, there is a criterium that allows us to
determine which solutions of (6) we must use when
applying the semiclassical method: at the end we need
only the single-turning-point trajectories.

IV. PARTITION FUNCTION AND SPECIFIC HEAT
FOR THE DOUBLE-WELL POTENTIAL

The solutions of the classical equation of motion for the
potential given in Eq. (12) can be expressed in terms of
Jacobi elliptic functions [37,38]. In particular, the solutions
we are interested in, the ones with a single turning point,
can be written as

qðθÞ ¼ qtcd½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2t =2

q
ðθ − Θ=2Þ; k� ð15Þ

where we define k≡ qt=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − q2t

p
. In Fig. 10 we show plots

of the classical solutions before and after the first caustic.
For those trajectories, the fluctuation determinant Δ

defined in (10) can be expressed as [23,31]:

Δ ¼ 4πg½UðqtÞ −Uðq0Þ�
U0ðqtÞ

�∂Θ
∂qt

�
q0

ð16Þ

That being so, we can now use the previous equation in (9)
to obtain the semiclassical partition function.
The standard semiclassical method yields a very good

approximation for the density matrix before and after the
first caustic. However, as discussed in Ref. [24] (see also
below), the method breaks down at the caustic, since, there,
by construction, the determinant Δ vanishes—see Eq. (9).
This can be easily understood in the functional space

(see Figs. 7 and 8): the second derivative of the action
vanishes whenever two (or three) solutions coalesce.
Therefore, any approximation that stops at the quadratic
term is bound to diverge at this point.
This singularity, however, is integrable (as also noted in

[24]). This statement can be proved if we perform a change
of variables in (9) from q0 to qt. Using (11) and (16) we can
write, following Ref. [31],

�∂q0
∂qt

�
Θ
¼ −

U0ðqtÞΔ
4πgvðq0; qtÞ

: ð17Þ

Thus, the standard semiclassical partition function is
written as

Z ¼ −
1

4πg

X
i

Z
qþΘ

q−Θ

dqt
U0ðqtÞΔ1=2

vðq0; qtÞ
expð−I½q̄ci�=gÞ; ð18Þ

where vðq0; qtÞ≡ signðqt − q0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Uðq0Þ −UðqtÞ�

p
and

q�Θ ≡ limq0→�∞qtðq0;ΘÞ. Therefore, the change of varia-
bles removes the singularity and this procedure, summing

FIG. 9 (color online). Level urves of the imaginary part of the
action (13), where a≡RðzÞ (horizontal axis), b≡ IðzÞ (vertical
axis). We adopted v ¼ 1 and u ¼ −1, −2, −3, for the first, second
and third panels, respectively, i.e, following arrow 2 in Fig. 6.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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q

FIG. 10 (color online). Plots of the classical solutions qðθÞ for
q0 ¼ 0.3 and Θ ¼ 3 (upper), before the first caustic, and for
Θ ¼ 6 (lower), after the first caustic. In the latter, the middle
curve corresponds to a (local) maximum of the action and, thus,
will not be taken into consideration in the subsequent calculation
of the partition function.
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over the two minima of the Euclidean action, should give a
reasonable approximation to the partition function.
However, thermodynamic quantities are obtained taking

derivatives of the partition function and thus they are
affected by the singularity. Therefore, as we are interested
in computing the specific heat, we shall take our calculation
up to the fourth order in the fluctuations. Notice that this is
still a semiclassical expansion, for we assume that the main
contribution comes from the classical solution. The calcu-
lation is depicted in Appendix B, where one can also
promptly recognize the standard semiclassical expansion5

if one stops at the second term on the right-hand side of
Eq. (B8). Nevertheless, even the full expression is not
useful for practical purposes, for its calculation requires
the knowledge of the eigenfunction y0ðθÞ and its eigen-
value c0. There is, however, a shortcut [24]: just as in a
plain fourth-order polynmial of the form [see Eq. (13)
and Table I]

fðxÞ ¼ 1

4
x4 þ a

2
x2 þ bxþ c; ð19Þ

the coefficients fa; b; cg are completely determined
by the values of the function fðxÞ in 3 points. In the
present case, all we need are the values of the action
at the 3 extrema, easily calculated from the classical
trajectories (15).
The following plots present the results obtained for the

specific heat for g ¼ 0.1—we argue in the next subsection
that this value is small enough so that the effects of the
catastrophe are relevant. In Fig. 11 we compare our results
to the classical one (no quantum effects, yields correct
results only at high temperatures). In Fig. 12 we zoom in

around the temperature where the first catastrophe takes
place (at Θ ¼ π) and show the results for the specific heat

C≡ Θ2

�
1

Z
∂2Z
∂Θ2

−
�
1

Z
∂Z
∂Θ

�
2
�

ð20Þ

from different semiclassical approaches. We plot (dotted/
magenta line) the standard semiclassical approximation
around the global minimum of the action, (dashed/blue
line) the standard semiclassical approximation around both
minima of the action, considered independent and far apart
from each other (recall that there are two of them only at the
left-hand, low-temperature side of the plot), and (solid/red
line) the current approach. The former two calculations are
supposed to diverge at the catastrophe due to the coales-
cence of the classical trajectories.
Here, we show the corrections that should be taken into

account when the standard semiclassical approximation
fails, going beyond second order in the perturbation
whenever this approximation yielded divergent results.
On the other hand, we still rely on the assumption that
the classical solution is responsible for the main contribu-
tion to the partition function (and, consequently, to relevant
thermodynamic quantities, such as the specific heat). In
other words, we assume throughout the paper that the first
term of the JWKB expansion of the partition function is a
good approximation.
Just as in any standard quantum mechanics calculation,

one does not expect the JWKB approximation to hold when
the thermal energy is close to the height of the barrier,
where the potential changes quickly and the classical
turning points are too close to each other. Therefore, one
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FIG. 11 (color online). Specific heat (20) vs. 1=Θ for g ¼ 0.1.
Dashed/green: Classical result; solid/red: current approach.
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FIG. 12 (color online). Same as previous plot—specific heat
(20) vs. 1=Θ for g ¼ 0.1—zooming in around the temperature
where the first catastrophe takes place (Θ ¼ π). Dotted/magenta
line: Only the global minimum is taken into account. Dashed/blue
line: Both global and local minima are taken into account. Note
that the local minimum (and therefore also this curve) exists only
at low temperatures, on the left-hand side of the plot. Solid/red
line: Current approach.

5It is also obvious then when this approximation fails: by
neglecting terms of order c30 and higher, Eq. (B8) yields the usual
term Δ−1=2, which diverges at the caustic.
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must require here that Eb=ET ≡ Θ=ð4gÞ ≫ 1, where Eb ≡
Vð0Þ − Vð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mw2=λ

p
Þ is the height of the barrier and ET ≡

1=β≡ kBT corresponds to the thermal energy. In other
words, unless g ≪ Θc=4 ∼ 0.8, the JWKB approximation
itself will break down before the first catastrophe sets in
at Θc ¼ π.

V. SUMMARY

Semiclassical approximations usually uncover important
nonperturbative information about quantum systems. They
are especially suited to the construction of effective theories
at finite temperature, since the perturbative approach
suffers from serious infrared problems and needs involved
resummation techniques to provide sensible results. The
boundary effective theory has proved to be very adequate to
describe the thermodynamics of a thermal massless scalar
theory, providing an excellent result for the pressure at
leading order [19], as well as a consistent description of
the thermal effective potential in the symmetric sector [20].
Its extension to the case where spontaneous symmetry
breaking is present is, nevertheless, subtle, the main
obstacle being the existence of multiple extrema of the
action for sufficiently low temperatures and the associated
bifurcations of classical solutions.
In this paper we have considered, as a toy model

(however not an academic one, since the double well
has, of course, applications in statistical mechanics and
condensed matter physics), the analogous case in quantum
statistical mechanics. We have shown how to use the tools
of catastrophe theory to deal with caustics and provide
finite and well-behaved results for the partition function
and the specific heat. In particular, we have proved that
one needs at most two relevant classical solutions in the
procedure, which renders the method of practical use.
As mentioned previously, this corresponds to a first step
towards the study of spontaneous symmetry breaking and
thermal phase transitions using the boundary effective
theory, on which we plan to report soon.
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APPENDIX A: ELEMENTS OF
CATASTROPHE THEORY

Consider a function Sðx; νÞ that depends on a set of
coordinates x ¼ fx1; x2; :::g and certain control parameters
ν ¼ fν1; ν2; :::g. The number of coordinates is the dimen-
sion of the catastrophe, while the number of control

parameters defines the so-called codimension of the
catastrophe.
In two dimensions, S can be seen, for instance, as

describing the terrain height of a certain landscape. Its
maxima, minima and saddle points represent the peaks,
valleys and throats. In this picture, the role of the param-
eters ν is to deform the topography of the landscape,
changing the position of the extrema and eventually
splitting or merging some of them.
The aim of catastrophe theory is to study how the pattern

of the so-called generating function S is qualitatively
altered when the control parameters are changed. Within
this framework, one is able to understand how the extrema
coalesce and separate as the parameters νk are varied, in a
systematic and quite general approach.
Catastrophe theory [36] characterizes the stable singu-

larities under changes in the generating functional S: those
are the so-called elementary catastrophes. The splitting
lemma [36] guarantees that it is always possible to write
such stable generating functions in their normal forms,
according to Table I. They can also be arranged hierarchi-
cally: whenever a given catastrophe is identified, all of
its subordinated ones—those with the same dimension and
smaller codimension—will also be present.
Let us consider the phase space ðx; νÞ defined by both the

coordinates and control parameters of the function S.
Obviously, the locus of the extrema, the so-called equilib-
rium surface, of S is given by

∂S
∂xi ðxe; νÞ ¼ 0; ðA1Þ

i.e., if for certain values of the control parameters ν, the
point xe represents an extremum of S, and the point ðxe; νÞ
is said to lie on the equilibrium surface.
Note, however, that no information about the nature of

the extrema is given by (A1). In order to determine whether
a given extremum is a minimum, maximum or a saddle
point, one has to study the eigenvalues of the Hessian
matrix H calculated at the equilibrium points xe, whose
elements are defined as

Hij ¼
∂2S

∂xi∂xj
����
xe

: ðA2Þ

When all the eigenvalues of H are positive, we have a
minimum; when all are negative, a maximum and when k
are negative and the others positive, the extremum under
consideration is a k saddle point.
It is clear from the previous considerations that the nature

of the extrema changes when some of the related eigen-
values of H change sign. Therefore, if none of the
eigenvalues is zero, a small change of the parameters will
not affect the nature of the extrema.
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At the bifurcation set, when one or more of the
eigenvalues vanish, the situation changes drastically, as
any small change of the control parameters will make the
eigenvalue(s) positive or negative, changing the nature of
the extremum. In other words, the qualitative aspect of
the function is changed whenever the determinant of H
vanishes.
One can see such behavior clearly present in Fig. 6,

which represents the bifurcation set in the control param-
eter space, with codimension 2: crossing at the vertex
corresponds to the coalescence of 3 extrema (Fig. 7): this is
the cusp catastrophe. Along the bifurcation set, however,
there is only one free control parameter (codimension 1)—
since Eq. (14) introduces a constraint between the two of
them. On this curve, only 2 trajectories coalesce (Fig. 8):
this is the fold, subordinated to the cusp.
In the next Appendix, we show how one can write the

action in the normal form corresponding to the cusp.

APPENDIX B: THE NORMAL FORM
OF THE ACTION

In this section, we show how the action can be written in
normal form, as in Eq. (13).
In the first place, we write qðθÞ ¼ qclðθÞ þ ηðθÞ, so that

the Euclidean action is cast in the form:

I½qðθÞþηðθÞ� ¼ I½qclðθÞ�

þ1

2

Z
Θ

0

ηðθÞ
�
−

d2

dθ2
−1þ3q2clðθÞ

�
ηðθÞdθ

þ
Z

Θ

0

�
qclðθÞη3ðθÞþ

1

4
η4ðθÞ

�
dθ: ðB1Þ

Notice that the classical solution was not specified. There
are two interesting cases: the identically null function
(qcl ≡ 0), or one of the new functions. In the latter case,
the calculation is obviously made after they appear.
Now, we expand the perturbation ηðθÞ in terms of the

eigenfunctions of the fluctuation operator, i.e. in terms of
the functions yjðθÞ satisfying the following equation:

�
−

d2

dθ2
− 1þ 3q2clðθÞ

�
yjðθÞ ¼ αjyjðθÞ: ðB2Þ

The eigenfunctions can be taken as orthonormal in the
interval ½0;Θ�:

Z
Θ

0

yiðθÞyjðθÞdθ ¼ δij: ðB3Þ

Furthermore, they must satisfy the following boundary
conditions:

yjð0Þ ¼ yjðΘÞ ¼ 0∀j: ðB4Þ

Expanding ηðθÞ in terms of yjðθÞ, we have

ηðθÞ ¼
X∞
j¼0

cjyjðθÞ: ðB5Þ

Thus, using the expansion of the fluctuations and the
orthonormalization conditions, we can write the action as

I ¼ Icl þ
1

2

X
j

c2jαj þ
X
ijk

cicjck

Z
Θ

0

qclyiyjykdθ

þ 1

4

X
i

c4i : ðB6Þ

We have to impose the fact that the classical solution qcl
is an extremum of the action, therefore the fluctuations
vanish, i.e. cj ¼ 0, at qcl. Equivalently,

∂I
∂ci

����
ci¼0

¼ 0: ðB7Þ

This leads to the following expression for the action:

I ≈ Icl þ
α0
2
c20 þ c30

Z
Θ

0

qcly30dθ þ
1

4
c40 þ

X
j≠0

αj
2
c2j :

ðB8Þ

In the previous equation, j ¼ 0 denotes the eigenfunction
whose eigenvalue is about to vanish. Besides, we have
neglected terms of the order c3j for j ≠ 0.
The difference between this expression and the usual

saddle-point approximation is the inclusion of higher-order
terms in the variable c0, the one related with the vanishing
eigenvalue, while only terms up to second order in the
other variables, related with the other directions in func-
tional space.
Now we perform the following change of variables:

z≡ c0 þϒ ðB9aÞ

u≡ α0 − 3ϒ2 ðB9bÞ

v≡ϒð2ϒ2 − α0Þ ðB9cÞ

s≡ Icl þ ϒ2

2

�
α0 − 3

2
ϒ2

�
ðB9dÞ

ϒ≡ RΘ
0 qcly30dθ ðB9eÞ

allowing us to write the action in the so called normal form,
as in Eq. (13).

D. KROFF et al. PHYSICAL REVIEW D 90, 025019 (2014)

025019-10



[1] T. Ullrich, B. Wyslouch, and J. W. Harris, Nucl. Phys.
A904–A905, 1c (2013).

[2] M. Gell-Mann and M. Levy, Nuovo Cim. 16, 705 (1960).
[3] B. Lee, Chiral Dynamics (Gordon and Breach, New York,

1972).
[4] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[5] R. D. Pisarski, Phys. Rev. D 62, 111501 (2000).
[6] M. Le Bellac, Thermal Field Theory (Cambridge University

Press, Cambridge, 2000); J. I. Kapusta and C. Gale, Finite-
Temperature Field Theory: Principles and Applications
(Cambridge University Press, Cambridge, 2006).

[7] A. Mocsy, I. N. Mishustin, and P. J. Ellis, Phys. Rev. C 70,
015204 (2004).

[8] L. F. Palhares and E. S. Fraga, Phys. Rev. D 78, 025013
(2008).

[9] L. F. Palhares, M.Sc. thesis, Instituto de Física, Universi-
dade Federal do Rio de Janeiro, 2008.

[10] E. S. Fraga, L. F. Palhares, and M. B. Pinto, Phys. Rev. D 79,
065026 (2009).

[11] J. K. Boomsma and D. Boer, Phys. Rev. D 80, 034019
(2009).

[12] A. J. Mizher, M. N. Chernodub, and E. S. Fraga, Phys. Rev.
D 82, 105016 (2010).

[13] V. Skokov, B. Friman, E. Nakano, K. Redlich, and
B.-J. Schaefer, Phys. Rev. D 82, 034029 (2010).

[14] L. F. Palhares and E. S. Fraga, Phys. Rev. D 82, 125018
(2010).

[15] J. O. Andersen, R. Khan, and L. T. Kyllingstad, arXiv:
1102.2779.

[16] B. W. Mintz, R. Stiele, R. O. Ramos, and J. Schaffner-
Bielich, Phys. Rev. D 87, 036004 (2013).

[17] J. Berges, N. Tetradis and C. Wetterich, Phys. Rep. 363, 223
(2002); J. M. Pawlowski, Ann. Phys. (Amsterdam) 322,
2831 (2007); H. Gies, Lect. Notes Phys. 852, 287 (2012).

[18] A. Bessa, F. T. Brandt, C. A. A. de Carvalho, and E. S.
Fraga, Phys. Rev. D 82, 065010 (2010).

[19] A. Bessa, F. T. Brandt, C. A. A. de Carvalho, and E. S.
Fraga, Phys. Rev. D 83, 085024 (2011).

[20] A. Bessa, C. A. A. de Carvalho, E. S. Fraga, and F. Gelis,
Phys. Rev. D 83, 125016 (2011).

[21] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
[22] A. Bessa, C. A. A. de Carvalho, E. S. Fraga and F. Gelis,

J. High Energy Phys. 08 (2007) 007.
[23] C. A. A. de Carvalho and R. M. Cavalcanti, Braz. J. Phys.

27, 373 (1997).
[24] C. A. A. de Carvalho, R. M. Cavalcanti, E. S. Fraga, and

S. E. Jorás, Phys. Rev. E 65, 056112 (2002).
[25] M. C. Gutzwiller, J. Math. Phys. (N.Y.) 8, 1979 (1967); J.

Math. Phys. (N.Y.) 10, 1004 (1969); J. Math. Phys. (N.Y.)
11, 1791 (1970); J. Math. Phys. (N.Y.) 12, 343 (1971).

[26] A. Lapedes and E. Mottola, Nucl. Phys. B203, 58 (1982).
[27] C. De Witt-Morette, A. Maheshwari, and B. Nelson, Phys.

Rep. 50, 255 (1979).
[28] B. J. Harrington, Phys. Rev. D 18, 2982 (1978).
[29] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and

Path Integrals (McGraw-Hill, New York, 1965); R. P.
Feynman, Statistical Mechanics (Addison-Wesley, Reading,
MA, 1972).

[30] L. S. Schulman, Techniques and Applications of Path
Integration (Dover Publications, New York, 2005)

[31] C. A. A. de Carvalho, R. M. Cavalcanti, E. S. Fraga, and
S. E. Jorás, Ann. Phys. (N.Y.) 273, 146 (1999).

[32] C. A. A. de Carvalho, R. M. Cavalcanti, E. S. Fraga, and
S. E. Jorás, Phys. Rev. E 61, 6392 (2000).

[33] L. Dolan and J. E. Kiskis, Phys. Rev. D 20, 505 (1979).
[34] A. Cuccoli, R. Giachetti, V. Tognetti, R. Vaia, and

P. Verrucchi, J. Phys. Condens. Matter 7, 7891 (1995).
[35] M. Bachmann, H. Kleinert and A. Pelster, Phys. Rev. A 60,

3429 (1999).
[36] P. T. Saunders, An Introduction to Catastrophe Theory

(Cambridge University Press, Cambridge, 1980).
[37] P. F. Byrd and M. D. Friedman, Handbook of Elliptic

Integrals for Engineers and Physicists (Springer-Verlag,
Berlin, 1954).

[38] I. S. Gradhsteyn and I. M. Ryzhik, Table of Integrals,
Series, and Products (Academic Press, New York, 2007).

SEMICLASSICAL PARTITION FUNCTION FOR THE … PHYSICAL REVIEW D 90, 025019 (2014)

025019-11

http://dx.doi.org/10.1007/BF02859738
http://dx.doi.org/10.1103/RevModPhys.64.649
http://dx.doi.org/10.1103/PhysRevD.62.111501
http://dx.doi.org/10.1103/PhysRevC.70.015204
http://dx.doi.org/10.1103/PhysRevC.70.015204
http://dx.doi.org/10.1103/PhysRevD.78.025013
http://dx.doi.org/10.1103/PhysRevD.78.025013
http://dx.doi.org/10.1103/PhysRevD.79.065026
http://dx.doi.org/10.1103/PhysRevD.79.065026
http://dx.doi.org/10.1103/PhysRevD.80.034019
http://dx.doi.org/10.1103/PhysRevD.80.034019
http://dx.doi.org/10.1103/PhysRevD.82.105016
http://dx.doi.org/10.1103/PhysRevD.82.105016
http://dx.doi.org/10.1103/PhysRevD.82.034029
http://dx.doi.org/10.1103/PhysRevD.82.125018
http://dx.doi.org/10.1103/PhysRevD.82.125018
http://arXiv.org/abs/1102.2779
http://arXiv.org/abs/1102.2779
http://dx.doi.org/10.1103/PhysRevD.87.036004
http://dx.doi.org/10.1016/S0370-1573(01)00098-9
http://dx.doi.org/10.1016/S0370-1573(01)00098-9
http://dx.doi.org/10.1016/j.aop.2007.01.007
http://dx.doi.org/10.1016/j.aop.2007.01.007
http://dx.doi.org/10.1007/978-3-642-27320-9
http://dx.doi.org/10.1103/PhysRevD.82.065010
http://dx.doi.org/10.1103/PhysRevD.83.085024
http://dx.doi.org/10.1103/PhysRevD.83.125016
http://dx.doi.org/10.1103/PhysRevD.9.3320
http://dx.doi.org/10.1088/1126-6708/2007/08/007
http://dx.doi.org/10.1590/S0103-97331997000300006
http://dx.doi.org/10.1590/S0103-97331997000300006
http://dx.doi.org/10.1103/PhysRevE.65.056112
http://dx.doi.org/10.1063/1.1705112
http://dx.doi.org/10.1063/1.1664927
http://dx.doi.org/10.1063/1.1664927
http://dx.doi.org/10.1063/1.1665328
http://dx.doi.org/10.1063/1.1665328
http://dx.doi.org/10.1063/1.1665596
http://dx.doi.org/10.1016/0550-3213(82)90477-1
http://dx.doi.org/10.1016/0370-1573(79)90083-8
http://dx.doi.org/10.1016/0370-1573(79)90083-8
http://dx.doi.org/10.1103/PhysRevD.18.2982
http://dx.doi.org/10.1006/aphy.1998.5900
http://dx.doi.org/10.1103/PhysRevE.61.6392
http://dx.doi.org/10.1103/PhysRevD.20.505
http://dx.doi.org/10.1088/0953-8984/7/41/003
http://dx.doi.org/10.1103/PhysRevA.60.3429
http://dx.doi.org/10.1103/PhysRevA.60.3429

