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We revisit the classic OðNÞ symmetric scalar field theories in d dimensions with interaction ðϕiϕiÞ2. For
2 < d < 4 these theories flow to the Wilson-Fisher fixed points for any N. A standard large N
Hubbard-Stratonovich approach also indicates that, for 4 < d < 6, these theories possess unitary UV
fixed points. We propose their alternate description in terms of a theory of N þ 1 massless scalars with the
cubic interactions σϕiϕi and σ3. Our one-loop calculation in 6 − ϵ dimensions shows that this theory has an
IR stable fixed point at real values of the coupling constants for N > 1038. We show that the 1=N
expansions of various operator scaling dimensions match the known results for the critical OðNÞ theory
continued to d ¼ 6 − ϵ. These results suggest that, for sufficiently large N, there are 5-dimensional unitary
OðNÞ symmetric interacting conformal field theories (CFTs); they should be dual to the Vasiliev higher-
spin theory in AdS6 with alternate boundary conditions for the bulk scalar. Using these CFTs we provide a
new test of the 5-dimensional F theorem, and also find a new counterexample for the CT theorem.
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I. INTRODUCTION AND SUMMARY

Among the many physical applications of quantum field
theory (QFT), an important role is played by its description
of the second order phase transitions. These transitions are
ubiquitous in statistical systems, such as the three-
dimensional Ising model whose second order transition
describes, for example, the critical point in the water-vapor
phase diagram. The vicinity of the critical point may be
described by the three-dimensional Euclidean QFTof a real
scalar field, ϕ, with a λϕ4 interaction. Such a QFT is weakly
coupled at short distances (in the UV), where the scaling
dimension of the ϕ4 operator is 2, but it becomes strongly
coupled at long distances (in the IR). It is the long-distance
regime that is needed for describing the critical behavior,
but perturbation theory in λ cannot be used there.
Luckily, theorists have invented ingenious expansion

schemes that have led to good approximations for the IR
scaling dimensions of composite operators. One of them is
dimensional continuation: instead of working directly in
d ¼ 3, it is fruitful to study the physics as a function of
the dimension d. In the ϕ4 theory there is evidence that the
IR critical behavior occurs for 2 < d < 4, and significant
simplification occurs for d ¼ 4 − ϵ where ϵ ≪ 1. Then the
IR stable fixed point of the renormalization group (RG)
occurs for λ of order ϵ, so that a formal Wilson-Fisher
expansion in ϵ may be developed [1]. The coefficients of
the first few terms fall off rapidly, so that setting ϵ ¼ 1
provides a rather precise approximation that is in good
agreement with the experimental and numerical results [2].
Another important idea has been the large N expansion in

the OðNÞ symmetric QFT of N real scalar fields ϕi,
i ¼ 1;…; N, with interaction λ

4
ðϕiϕiÞ2. For small values of

N there are physical systems whose critical behavior is
described by this d ¼ 3 QFT. Furthermore, using a
generalized Hubbard-Stratonovich transformation with an
auxiliary field σ, it is possible to develop expansion in powers
of 1=N (for a comprehensive review, see [3]).
The large N expansion may be developed for a range of d
[4–12] and compared with the regimes where other pertur-
bative expansions are available. In particular, for d ¼ 4 − ϵ,
the Wilson-Fisher ϵ expansion may be developed for any N
[2], and the results have tomatchwith the largeN techniques.
Also, for d ¼ 2þ ϵ the large N results match with the
perturbative UV fixed point of the OðNÞ nonlinear sigma
model (NLσM). Using the first few terms in the large N
expansion directly in d ¼ 3 provides another approach to
estimating the scalingdimensions for lowvalues ofN. Thus, a
combination of the large N and ϵ expansions provides good
approximations for the critical behavior in the entire range
2 < d < 4. One should note, however, that both expansions
are not convergent but rather provide asymptotic series. There
are continued efforts towards obtaining a more rigorous
approach to the OðNÞ symmetric conformal field theories
(CFTs) using conformal bootstrap ideas [13–16], and recently
it has led to more precise numerical calculations of the
operator scaling dimensions in three-dimensional CFTs
[17,18]. The bootstrap approach may, in fact, be applied in
the entire range 2 < d < 4 [19].
In this paper we will discuss extensions of these results

to interacting OðNÞ models in d > 4. At first glance, such
extensions seem impossible: the ðϕiϕiÞ2 interaction is
irrelevant at the Gaussian fixed point, since it has scaling
dimension 2d − 4. Therefore, the long-distance behavior
of this QFT is described by the free field theory. However,
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at least for large N, the theory possesses a UV stable fixed
point whose existence may be demonstrated using the
Hubbard-Stratonovich transformation. At the interacting
fixed point, the scaling dimension of the operator ϕiϕi is
2þOð1=NÞ for any d. For d > 6, this dimension is below
the unitarity bound d=2 − 1. It follows that the interesting
range, where the UV fixed point may be unitary, is [20–23]

4 < d < 6: ð1:1Þ

We will examine the structure of the OðNÞ symmetric
scalar field theory in this range from various points of view.
We first note that the coefficients in the 1=N expansions

derived for various quantities in [4–12] may be continued to
the range (1.1) without any obvious difficulty. Thus, the
UV fixed points make sense at least in the 1=N expansion.
In Sec. II we present a review and discussion of the 1=N
expansion, with emphasis on the range 4 < d < 6.
However, one should be concerned about the stability of
the fixed points in this range of dimensions at finite N. In
d ¼ 4þ ϵ, where the UV fixed point is weakly coupled, it
occurs for the negative quartic coupling λ� ¼ − 8π2

Nþ8
ϵþ

Oðϵ2Þ [24,25]. Thus, it seems that the UV fixed point
theory is unlikely to be completely stable, although it may
be metastable. In order to gain a better understanding of
the fixed point theory, it would be helpful to describe it via
RG flow from another theory. In such a “UV complete”
description, theOðNÞ symmetric theory we are after should
appear as the conventional IR stable fixed point.
Our main result is to demonstrate that such a UV

completion indeed exists: it is the OðNÞ symmetric theory
of N þ 1 scalar fields with the Lagrangian

L ¼ 1

2
ð∂μϕ

iÞ2 þ 1

2
ð∂μσÞ2 þ

g1
2
σϕiϕi þ g2

6
σ3: ð1:2Þ

The cubic interaction terms are relevant for d < 6, so that
the theory flows from the Gaussian fixed point to an
interacting IR fixed point. The latter is expected to be
weakly coupled for d ¼ 6 − ϵ. The idea to study a cubic
scalar theory in d ¼ 6 − ϵ is not new. Michael Fisher has
explored such an ϵ expansion in the theory of a single scalar
field as a possible description of the Yang-Lee edge
singularity in the Ising model [26]. In that case, which
corresponds to the N ¼ 0 version of (1.2), the IR fixed
point is at an imaginary value of g2.

1 This is related to the
lack of unitarity of the fixed point theory. Using the one-
loop beta functions for g1 and g2, we will show in Sec. III
that for large N the IR stable fixed point instead occurs for
real values of the couplings, thus removing conflict with
unitarity. Remarkably, such unitary fixed points exist only
for N > 1038. As we show in Sec. IV, for N ≤ 1038 the IR

stable fixed point becomes complex, and the theory is no
longer unitary. Thus, the breakdown of the large N
expansion in d ¼ 6 − ϵ occurs at a very large value,
Ncrit ¼ 1038. We will provide evidence, however, that
for the physically interesting dimension d ¼ 5, Ncrit is
much smaller.
Besides its intrinsic interest, the OðNÞ invariant scalar

CFT in d ¼ 5 has interesting applications to higher-spin
AdS/CFT dualities. There exists a class of Vasiliev theories
in AdSdþ1 [30–35] that is naturally conjectured to be dual
to the OðNÞ singlet sector of the d-dimensional CFT of N
free scalars [25,36]. In order to extend the duality to
interacting CFTs, one adds the OðNÞ invariant term
λ
4
ðϕiϕiÞ2. For d ¼ 3 this leads to the well-known

Wilson-Fisher fixed points [1,2]. In the dual description
of these large N interacting theories, it is necessary to
change the r−Δ boundary conditions on the scalar field in
AdS4 from the Δ− ¼ 1 to Δþ ¼ 2þOð1=NÞ [36]. The
situation is very similar for the d ¼ 5 case, which should
be dual to the Vasiliev theory in AdS6 [25]. One can adopt
the Δþ ¼ 3 boundary conditions on the bulk scalar, which
are necessary for the duality to the free OðNÞ theory.
Alternatively, the Δ− ¼ 2þOð1=NÞ are allowed as well
[37,38]. This suggests that the dual interacting OðNÞ CFT
should exist in d ¼ 5, at least for large N [24,25]. Our RG
calculations lend further support to the existence of this
interacting d ¼ 5 CFT.
In Secs. III and V, using one-loop calculations for the

theory (1.2) in d ¼ 6 − ϵ, we find some IR operator
dimensions to order ϵ, while keeping track of the depend-
ence on 1=N to any desired order. We will then match our
results with the 1=N expansions derived for the ðϕiϕiÞ2
theory in [4–12], evaluating them in d ¼ 6 − ϵ. The perfect
match of the coefficients in these two 1=N expansions
provides convincing evidence that the IR fixed point of the
cubic OðNÞ theory (1.2) indeed describes the same physics
as the UV fixed point of the ðϕiϕiÞ2 theory. Our results thus
provide evidence that, at least for large N, the interacting
unitary OðNÞ symmetric scalar CFTs exist not only for
2 < d < 4, but also for 4 < d < 6. In Fig. 1 we sketch the
entire available range 2 < d < 6, pointing out the various
perturbative descriptions of the CFTs where ϵ expansions
have been developed.
In Sec. VI we discuss the large N results for CT, the

coefficient of the two-point function of the stress-energy
tensor [12]. We note that, as d approaches 6, CT approaches
that of the free theory of N þ 1 scalar fields. This gives
further evidence for our proposal that the IR fixed point of
(1.2) describes theOðNÞ symmetric CFT. We show that the
RG flow from this interacting CFT to the free theory of N
scalars provides a counterexample to the conjectured CT
theorem. On the other hand, the five-dimensional version of
the F theorem [39] holds for this RG flow.
Our discussion of the ðϕiϕiÞ2 scalar theory in the range

4 < d < 6 is analogous to the much earlier results [3,40,41]
1Renormalization group calculations for similar cubic theories

in d ¼ 6 − ϵ were carried out in [27–29].
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about the Gross-Neveu (GN) model [42] in the range
2 < d < 4. The latter is a Uð ~NÞ invariant theory of ~N Dirac
fermions with an irrelevant quartic interaction ðψ̄ iψ iÞ2.
Using the Hubbard-Stratonovich transformation, it is not
hard to show that this model has a UV fixed point, at least
for large ~N [3]. This CFT was conjectured [43,44] to be
dual to the type B Vasiliev theory in AdS4 with appropriate
boundary conditions. An alternative, UV complete descrip-
tion of this CFT is via the Gross-Neveu-Yukawa (GNY)
model [3,40,41], which is a theory of ~N Dirac fermions
coupled to a scalar field σ with Uð ~NÞ invariant interactions
g1σψ̄ iψ i þ g2σ4=24. This description is weakly coupled in
d ¼ 4 − ϵ, and it is not hard to show that the one-loop beta
functions have an IR stable fixed point for any positive ~N.
The operator dimensions at this fixed point match the large
~N treatment of the Gross-Neveu model [45]. These results
will be reviewed in Sec. VII, where we also discuss tests of
the 3d F theorem [39,46] provided by the GNY model.

II. REVIEW OF LARGE N RESULTS FOR THE
CRITICAL OðNÞ CFT

Letusconsider theEuclidean field theoryofN realmassless
scalar fields with an OðNÞ invariant quartic interaction

S ¼
Z

ddx

�
1

2
ð∂ϕiÞ2 þ λ

4
ðϕiϕiÞ2

�
: ð2:1Þ

As follows from dimensional analysis, the interaction term is
relevant for d < 4 and irrelevant for d > 4. Hence, for
2 < d < 4, it is expected that the quartic interaction generates
a flow from the free UV fixed point to an interacting IR fixed
point. In d ¼ 4 − ϵ this fixed point can be studied perturba-
tively in theframeworkof theWilson-Fisherϵexpansion[1,2].
Indeed, the one-loop beta function for the theory ind ¼ 4 − ϵ
reads

βλ ¼ −ϵλþ ðN þ 8Þ λ2

8π2
; ð2:2Þ

and there is a weakly coupled IR fixed point at

λ� ¼
8π2

N þ 8
ϵ: ð2:3Þ

Higher order corrections in ϵ will change the value of the
critical coupling, but not its existence, at least in perturbation
theory.Theanomalousdimensionsof the fundamental fieldϕi

and the composite ϕiϕi at the fixed point can be computed to
be, to leading order in ϵ

γϕ ¼ N þ 2

4ðN þ 8Þ2 ϵ
2 þOðϵ3Þ;

γϕ2 ¼ N þ 2

N þ 8
ϵþOðϵ2Þ; ð2:4Þ

corresponding to the scaling dimensions

Δϕ ¼ d
2
− 1þ γϕ ¼ 1 −

ϵ

2
þ N þ 2

4ðN þ 8Þ2 ϵ
2 þOðϵ3Þ; ð2:5Þ

Δϕ2 ¼ d − 2þ γϕ2 ¼ 2 −
6

N þ 8
ϵþOðϵ2Þ: ð2:6Þ

Note that thedimensionof theϕiϕi operator is2þOð1=NÞ to
leading order at largeN, a result that follows from the largeN
analysis reviewed below. Higher order corrections in ϵ for
general N may be derived by higher loop calculations in the
theory (2.1), and they are known up to order ϵ5 [47,48].
For d > 4, the interaction is irrelevant and so the IR fixed

point is the free theory; however, one may ask about the
existence of interacting UV fixed points. Working in
d ¼ 4þ ϵ for small ϵ, one indeed finds a perturbative
UV fixed point at (see, for example [25])

λ� ¼ −
8π2

N þ 8
ϵ: ð2:7Þ

The anomalous dimensions at this critical point are given
by the same expressions (2.4) with ϵ → −ϵ. Note that,
because γϕ starts at order ϵ2, the dimension of ϕ stays above
the unitarity bound for allN, at least for sufficiently small ϵ.
However, since the fixed point requires a negative coupling,
one may worry about its stability, and it is important to
study this critical point by alternative methods.
A complementary approach to the ϵ expansion that

can be developed at arbitrary dimension d is the large N
expansion. The standard technique to study the theory (2.1)
at large N is based on introducing a Hubbard-Stratonovich
auxiliary field σ as

FIG. 1 (color online). Interacting unitary OðNÞ symmetric scalar CFTs exist for dimensions 2 < d < 6, with d ¼ 4 excluded. In 6 − ϵ
and 4 − ϵ dimensions they may be described as weakly coupled IR fixed points of the cubic and quartic scalar theories, respectively. In
4þ ϵ and 2þ ϵ dimensions they are weakly coupled UV fixed points of the quartic theory and of the OðNÞ nonlinear σ model,
respectively.
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S ¼
Z

ddx

�
1

2
ð∂ϕiÞ2 þ 1

2
σϕiϕi −

σ2

4λ

�
: ð2:8Þ

Integrating out σ via its equation of motion σ ¼ λϕiϕi, one
gets back to the original Lagrangian. The quartic inter-
action in (2.1) may in fact be viewed as a particular example
of the double trace deformations studied in [49]. One can
then show that at large N the dimension of ϕiϕi goes from
Δ ¼ d − 2 at the free fixed point to d − Δ ¼ 2 at the
interacting fixed point. At the conformal point, the last term
in (2.8) can be dropped,2 and the field σ plays the role of the
composite operator ϕiϕi. One may then study the critical
theory using the action

Scrit ¼
Z

ddx

�
1

2
ð∂ϕiÞ2 þ 1

2
ffiffiffiffi
N

p σϕiϕi

�
ð2:9Þ

where we have rescaled σ by a factor of
ffiffiffiffi
N

p
for reasons that

will become clear momentarily. The 1=N perturbation
theory can be developed by integrating out the fundamental
fields ϕi. This generates an effective nonlocal kinetic term
for σ

Z ¼
Z

DϕDσe−
R

ddxð1
2
ð∂ϕiÞ2þ 1

2
ffiffi
N

p σϕiϕiÞ

¼
Z

Dσe
1
8N

R
ddxddyσðxÞσðyÞhϕiϕiðxÞϕjϕjðyÞi0þOðσ3Þ ð2:10Þ

where we have assumed large N and the subscript “0”
denotes expectation values in the free theory. We have

hϕiϕiðxÞϕjϕjðyÞi0 ¼ 2N½Gðx − yÞ�2;

Gðx − yÞ ¼
Z

ddp
ð2πÞd

eipðx−yÞ

p2
: ð2:11Þ

In momentum space, the square of the ϕ propagator reads

½Gðx − yÞ�2 ¼
Z

ddp
ð2πÞd e

ipðx−yÞ ~GðpÞ

~GðpÞ ¼
Z

ddq
ð2πÞd

1

q2ðp − qÞ2

¼ −
ðp2Þd=2−2

2dð4πÞd−32 Γðd−1
2
Þ sinðπd

2
Þ ð2:12Þ

and so from (2.10) one finds the two-point function of σ in
momentum space

hσðpÞσð−pÞi ¼ 2dþ1ð4πÞd−32 Γ
�
d − 1

2

�
sin

�
πd
2

�
ðp2Þ2−d

2

≡ ~Cσðp2Þ2−d
2: ð2:13Þ

The corresponding two-point function in coordinate space
can be obtained by Fourier transform and reads

hσðxÞσðyÞi ¼ 2dþ2Γðd−1
2
Þ sinðπd

2
Þ

π
3
2Γðd

2
− 2Þ

1

jx − yj4 ≡
Cσ

jx − yj4 :

ð2:14Þ

Indeed, this is the two-point function of a conformal scalar
operator of dimension Δ ¼ 2. Note also that the coefficient
Cσ is positive in the range 2 < d < 6.
The large N perturbation theory can then be developed

using the propagator (2.13)–(2.14) for σ, the canonical
propagator for ϕ and the interaction term σϕiϕi in (2.9).
For instance, the 1=N term in the anomalous dimension of
ϕi can be computed from the one-loop correction to the ϕ
propagator

1

N

Z
ddq
ð2πÞd

1

ðp − qÞ2
~Cσ

ðq2Þd2−2þδ
; ð2:15Þ

where we have introduced a small correction δ to the power
of the σ propagator as a regulator.3 Doing the momentum
integral by using (A1), one obtains the result

~Cσ

N
ðd − 4Þ

ð4πÞd2dΓðd
2
Þ ðp

2Þ1−δΓðδ − 1Þ ð2:16Þ

where we have set δ ¼ 0 in the irrelevant factors. The 1=δ
pole corresponds to a logarithmic divergence and is
canceled as usual by the wave function renormalization
of ϕ. Defining the dimension of ϕ as

Δϕ ¼ d
2
− 1þ 1

N
η1 þ

1

N2
η2 þ… ð2:17Þ

the one-loop calculation above yields the result

η1 ¼
~Cσðd − 4Þ
ð4πÞd2dΓðd

2
Þ ¼

2d−3ðd − 4ÞΓðd−1
2
Þ sinðπd

2
Þ

π
3
2Γðd

2
þ 1Þ : ð2:18Þ

Setting d ¼ 4 − ϵ and expanding for small ϵ, it is straight-
forward to check that this agrees with the 1=N term of (2.5).
The leading anomalous dimension of σ also takes a simple
form [4,11,12]

2This applies formally to both IR and UV fixed points.

3One may perform the calculation using a momentum cutoff,
yielding the same final result.
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Δσ ¼ 2þ 1

N
4ðd − 1Þðd − 2Þ

d − 4
η1 þO

�
1

N2

�
ð2:19Þ

and can be seen to precisely agree with (2.6) in d ¼ 4 − ϵ.
Note that the anomalous dimension of ϕi (2.18) is

positive for all 2 < d < 6. Thus, while the focus of most
of the existing literature is on the range 2 < d < 4, we see
no obvious problems with unitarity in continuing the large
N critical OðNÞ theory to the range 4 < d < 6.4 A plot of
η1 and of the σ two-point function coefficient Cσ is given in
Fig. 2, showing that they are both positive for 2 < d < 6.

At higher orders in the 1=N expansion, a straight-
forward diagrammatic approach becomes rather cumber-
some. However, the conformal bootstrap method
developed in papers by A. N. Vasiliev and collaborators
[4–6] has allowed us to compute the anomalous dimen-
sion of ϕi to order 1=N3 and that of σ to order 1=N2.
These results have been successfully matched to all
available orders in the d ¼ 2þ ϵ and d ¼ 4 − ϵ expan-
sions, providing a strong test of their correctness. The
explicit form of η2 in general dimensions, defined as in
(2.17), reads [4,5]5

η2 ¼ 2η21ðf1 þ f2 þ f3Þ;

f1 ¼ v0ðμÞ þ μ2 þ μ − 1

2μðμ − 1Þ ; f2 ¼
μ

2 − μ
v0ðμÞ þ μð3 − μÞ

2ð2 − μÞ2 ; f3 ¼
μð2μ − 3Þ
2 − μ

v0ðμÞ þ 2μðμ − 1Þ
2 − μ

;

v0ðμÞ ¼ ψð2 − μÞ þ ψð2μ − 2Þ − ψðμ − 2Þ − ψð2Þ; ψðxÞ ¼ Γ0ðxÞ
ΓðxÞ ; μ ¼ d

2
: ð2:20Þ

The expressions for the dimension of σ at order 1=N2 [5]
and for the coefficient η3 [6] in arbitrary dimensions
are lengthy and we do not report them explicitly here.6

However, since they are useful to test our general
picture, we write below the explicit ϵ expansions of Δϕ

and Δσ in d ¼ 6 − ϵ, including all known terms in the 1=N
expansion:

Δϕ ¼ 2 −
ϵ

2
þ
�
1

N
þ 44

N2
þ 1936

N3
þ…

�
ϵ

−
�

11

12N
þ 835

6N2
þ 16352

N3
þ…

�
ϵ2 þOðϵ3Þ ð2:21Þ

and

Δσ ¼ 2þ
�
40

N
þ 6800

N2
þ…

�
ϵ

−
�
104

3N
þ 34190

3N2
þ…

�
ϵ2 þOðϵ3Þ: ð2:22Þ

In the next section, we will show that the order ϵ terms
precisely match the one-loop anomalous dimensions at the
IR fixed point of the cubic theory (1.2) in d ¼ 6 − ϵ. Higher
orders in ϵ should be compared to higher loop contributions
in the d ¼ 6 − ϵ cubic theory, and it would be interesting to
match them as well.

6Note that [5] derives a result for the critical exponent ν,
which is related to the dimension of σ by Δσ ¼ d − 1

ν. We also
note that a misprint in Eq. (22) of [6] has been later corrected in
Eq. (11) of [45].

5Reference [5] contains an apparent typo: in the definition of
the function v0ðμÞ given in Eq. (21), α ¼ μ − 1 should be replaced
by α ¼ μ − 2. The correct formula for η2 may be found in the
earlier paper [4].

4Recall that the unitarity bound for a scalar operator is
Δ ≥ d=2 − 1. One can also check that the order 1=N term in
the anomalous dimension of the OðNÞ invariant higher-spin
currents, given in [10], is positive in the range 2 < d < 6,
consistently with the unitarity bound Δs ≥ sþ d − 2 for spin s
operators (s > 1=2).

2 3 4 5 6
d

0.1

0.0

0.1

0.2

0.3
1

-
2 3 4 5 6

d0

5

10

15

20

C

FIG. 2 (color online). The 1=N anomalous dimension of ϕi and the coefficient of the two-point function of σ in the large N critical
OðNÞ theory for 2 < d < 6.
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Using the results in [4–6,45] we may also compute the dimension of ϕi and σ directly in the physical dimension d ¼ 5.
The term of order 1=N3 depends on a nontrivial self-energy integral that was not evaluated for general dimension in [6]. An
explicit derivation of this integral in general d was later obtained in [50]. Using that result, we find in d ¼ 5

Δϕ ¼ 3

2
þ 32

15π2N
−

1427456

3375π4N2

þ
�
275255197696

759375π6
−
89735168

2025π4
þ 32768 ln 4

9π4
−
229376ζð3Þ

3π6

�
1

N3
þ…

¼ 3

2
þ 0.216152

N
−
4.342
N2

−
121.673

N3
þ… ð2:23Þ

and

Δσ ¼ 2þ 512

5π2N
þ 2048ð12625π2 − 113552Þ

1125π4N2
þ… ¼ 2þ 10.3753

N
þ 206.542

N2
þ…: ð2:24Þ

We note that the coefficients of the 1=N expansion are
considerably larger than in the d ¼ 3 case.7 Assuming the
result (2.23) to order 1=N3, one finds that the dimension of
ϕi goes below unitarity at Ncrit ¼ 35. This is much lower
than the value Ncrit ¼ 1038 that we will find in d ¼ 6 − ϵ.
This is just a rough estimate, since the 1=N expansion is
only asymptotic and should be analyzed with care. Note
for instance that in the d ¼ 3 case, a similar estimate to
order 1=N3 would suggest a critical value Ncrit ¼ 3, while
in fact there is no lower bound: at N ¼ 1 we have the 3d
Ising model, where it is known [17,18,51,52] that
Δϕ ≈ 0.518 > 1=2. Nevertheless, the reduction from a very
large value Ncrit ¼ 1038 in d ¼ 6 − ϵ to a much smaller
critical value in d ¼ 5 is not unexpected. For instance, an
analogous phenomenon is known to occur in the Abelian
Higgs model containing Nf complex scalars. A fixed point
in d ¼ 4 − ϵ exists only for Nf ≥ 183 [3,53], while non-
perturbative studies directly in d ¼ 3 suggest a much lower
critical value ofNf.

8 Some evidence for the reduction in the
critical value of Nf as d is decreased comes from
calculations of higher order corrections in ϵ [54]. It would
be nice to study such corrections for the OðNÞ theory in
6 − ϵ dimensions. It would also be very interesting to
explore the 5d fixed point at finite N by numerical boot-
strap methods similar to what has been done in d ¼ 3 in
[18]. For the nonunitary theory with N ¼ 0 such bootstrap
studies were carried out very recently [55].9

The large N criticalOðNÞ theory in general dwas further
studied in a series of works by Lang and Ruhl [7–10]
and Petkou [11,12]. Using conformal symmetry and self-
consistency of the operator product expansion, various

results about the operator spectrum of the critical theory
were derived. As an example of interest to us, [10] derived
an explicit formula for the anomalous dimension of the
operator σk (the kth power of the auxiliary field), which
reads

ΔðσkÞ ¼ 2k −
2kðd − 1Þððk − 1Þd2 þ dþ 4 − 3kdÞ

d − 4

η1
N

þO
�

1

N2

�
ð2:25Þ

where η1 is the 1=N anomalous dimension of ϕi given in
(2.18). In d ¼ 6 − ϵ, this gives

ΔðσkÞ ¼ 2kþ ð130k − 90k2Þ ϵ
N
þOðϵ2Þ: ð2:26Þ

For k ¼ 2, 3, we will be able to match this result with the
one-loop operator mixing calculations in the cubic
theory (1.2).
In [11,12], explicit results for the 3-point function

coefficients gϕϕσ and gσ3 were also derived. These are
defined by the correlation functions

hϕiðx1Þϕjðx2Þσðx3Þi ¼
gϕϕσ

jx12j2Δϕ−Δσ jx23jΔσ jx13jΔσ
δij;

hσðx1Þσðx2Þσðx3Þi ¼
gσ3

ðjx12jjx23jjx13jÞΔσ
: ð2:27Þ

The coefficient gϕϕσ was given in [11,12] to order 1=N2 and
arbitrary d. Expanding that result to leading order in
ϵ ¼ 6 − d, we find

g2ϕϕσ ¼
6ϵ

N

�
1þ 44

N
þO

�
1

N2

��
: ð2:28Þ

This result indeed matches the value of the coupling g21 in
(1.2) at the IR fixed point, as will be shown in the next
section. To leading order in 1=N, the 3-point function
coefficient gσ3 is related to gϕϕσ by [11]

7In d ¼ 3, one finds [4–6] (see also [18]) Δϕ ¼ 1
2
þ 0.135095

N −
0.0973367

N2 − 0.940617
N3 þOð1=N4Þ and Δσ ¼ 2 − 1.08076

N − 3.0476
N2 þ

Oð1=N3Þ.
8We thank D. T. Son for bringing this to our attention.
9After the original version of this paper appeared, a bootstrap

study of the OðNÞ model in d ¼ 5 was carried out in [56] with
very encouraging results.
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gσ3 ¼ 2ðd − 3Þgϕϕσ; ð2:29Þ

which, as we will see, is precisely consistent with the ratio
g�
2

g�
1

¼ 6þOð1=NÞ of the coupling constants at the d ¼
6 − ϵ IR fixed point.

III. THE IR FIXED POINT F THE CUBIC
THEORY IN d ¼ 6 − ϵ

In this section, we show that the interacting scalar theory
with Lagrangian (1.2) has a perturbative large N IR fixed
point in d ¼ 6 − ϵ, and compute the anomalous dimensions
of the fundamental fields ϕi and σ at the fixed point. The
theory (1.2) has an obvious OðNÞ symmetry, with the N-
component vector ϕi, i ¼ 1;…; N transforming in the
fundamental representation. Note that g1 and g2 are classi-
cally marginal in d ¼ 6, and have dimension ϵ

2
in d ¼ 6 − ϵ.

The Feynman rules of the theory are shown in Fig. 3.
It is not hard to compute the one-loop beta functions β1,

β2 for the couplings g1, g2. The relevant one-loop diagrams
needed to compute the counterterms δϕ, δσ , δg1 for the σϕϕ
coupling, and δg2 for the σ3 coupling are given in Fig. 4.
Note that Gm;n denote the Green’s function with m ϕ fields
and n σ fields. The one-loop diagrams are labeled 1 through
7 for convenience.
Let us begin with the computation of diagram 1 in

Fig. 410

D1 ¼ ð−g1Þ2
Z

ddk
ð2πÞd

1

ðpþ kÞ2
1

k2
¼ −g21I1

¼ −
p2

ð4πÞ3
g21
6

Γð3 − d=2Þ
ðM2Þ3−d=2 : ð3:1Þ

Here we have used the renormalization condition p2 ¼ M2.
This has a 1=ϵ pole in d ¼ 6 − ϵwhich must be canceled by
the counterterm −p2δϕ. So we get

δϕ ¼ −
1

ð4πÞ3
g21
6

Γð3 − d=2Þ
ðM2Þ3−d=2 : ð3:2Þ

For δσ, we have two one-loop diagrams (2 and 3).
However, other than having different coupling constant
factors, the integrals are identical to diagram 1. Note that
these two diagrams have a symmetry factor of 2, and there
is a factor of N associated with the ϕ loop in diagram 3. So,
we have

D2 þD3 ¼
1

2
ð−g2Þ2I1 þ

N
2
ð−g1Þ2I1 ¼ −

Ng21 þ g22
2

I1:

ð3:3Þ

We arrive at the following expression for δσ:

δσ ¼ −
1

ð4πÞ3
Ng21 þ g22

12

Γð3 − d=2Þ
ðM2Þ3−d=2 : ð3:4Þ

Now let us compute corrections to the 3-point functions.
Diagram 4 gives

D4 ¼ ð−g1Þ2ð−g2Þ
Z

ddk
ð2πÞd

1

ðk − pÞ2
1

ðkþ qÞ2
1

k2

¼ −g21g2I2 ¼
−g21g2
2ð4πÞ3

Γð3 − d=2Þ
ðM2Þ3−d=2 ; ð3:5Þ

where I2 is computed in the Appendix. Diagram 5 is again
exactly the same as diagram 4, except for the coupling
factors:

FIG. 3. Feynman rules of the theory in Euclidean space.

FIG. 4. Diagrams contributing to the 1-loop β functions.

10We will state approximate expressions for the one-loop
integrals I1 and I2 that are sufficient for extracting the logM2

terms in d ¼ 6 − ϵ. The more precise expressions are given in the
Appendix.
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D5 ¼ ð−g1Þ3
Z

ddk
ð2πÞd

1

ðk − pÞ2
1

ðkþ qÞ2
1

k2

¼ −g31I2 ¼
−g31

2ð4πÞ3
Γð3 − d=2Þ
ðM2Þ3−d=2 : ð3:6Þ

The divergences in D4 and D5 must be canceled by the
−δg1 counterterm. So we get

δg1 ¼ −
g31 þ g21g2
2ð4πÞ3

Γð3 − d=2Þ
ðM2Þ3−d=2 : ð3:7Þ

Finally, we calculate δg2. The diagrams have the same
topology, and just differ in the coupling factors. Also, in
diagram 6, we have a factor of N from the ϕ loop. So we
find

D6 þD7 ¼ Nð−g1Þ3I2 þ ð−g2Þ3I2
¼ −ðNg31 þ g32ÞI2 ¼

−ðNg31 þ g32Þ
2ð4πÞ3

Γð3 − d=2Þ
ðM2Þ3−d=2 :

ð3:8Þ

This term is canceled by −δg2, so we have

δg2 ¼ −
Ng31 þ g32
2ð4πÞ3

Γð3 − d=2Þ
ðM2Þ3−d=2 : ð3:9Þ

The Callan-Symanzik equation for the Green’s function
Gm;n is�

M
∂
∂M þ β1

∂
∂g1 þ β2

∂
∂g2 þmγϕ þ nγσ

�
Gm;n ¼ 0:

ð3:10Þ

Let’s first apply it to G2;0. Then, to leading order in
perturbation theory, the Callan-Symanzik equation simpli-
fies to

−
1

p2
M

∂
∂M δϕ þ 2γϕ

1

p2
¼ 0; ð3:11Þ

which gives the anomalous dimension of ϕi

γϕ ¼ 1

2
M

∂
∂M δϕ ¼ 1

ð4πÞ3
g21
6
: ð3:12Þ

Note that γ1 > 0 as long as the coupling constant g1 is real.
Analogously, we obtain the σ anomalous dimension

γσ ¼
1

2
M

∂
∂M δσ ¼

1

ð4πÞ3
Ng21 þ g22

12
: ð3:13Þ

Now we can compute the β functions for g1 and g2.
We have

β1 ¼ −
ϵ

2
g1 þM

∂
∂M

�
−δg1 þ

1

2
g1ð2δϕ þ δσÞ

�
; ð3:14Þ

where the first term accounts for the bare dimension of g1 in
d ¼ 6 − ϵ. After some simple algebra, we obtain

β1 ¼ −
ϵ

2
g1 þ

ðN − 8Þg31 − 12g21g2 þ g1g22
12ð4πÞ3 : ð3:15Þ

Notice that when N ≫ 1, β1 is positive.
Finally, let us compute β2. The Callan-Symanzik equa-

tion gives

β2 ¼ −
ϵ

2
g2 þM

∂
∂M

�
−δg2 þ

1

2
g2ð3δσÞ

�
; ð3:16Þ

and so

β2 ¼ −
ϵ

2
g2 þ

−4Ng31 þ Ng21g2 − 3g32
4ð4πÞ3 : ð3:17Þ

As a check, let us note that for N ¼ 0 the beta function for
g2 in d ¼ 6 reduces to

β2 ¼ −
3g32

4ð4πÞ3 ; ð3:18Þ

which is the correct result for the single scalar cubic field
theory in d ¼ 6.
The single scalar cubic field theory in d ¼ 6 − ϵ has

no fixed points at real coupling, due to the negative sign
of the beta function (3.18). It has a fixed point at
imaginary coupling, which is conjectured to be related
by dimensional continuation to the Yang-Lee edge
singularity [26]. However, as we now show, for suffi-
ciently large N, our model has a stable interacting IR
fixed point. Note that for large N the beta functions
simplify to

β1 ¼ −
ϵ

2
g1 þ

Ng31
12ð4πÞ3 ð3:19Þ

β2 ¼ −
ϵ

2
g2 þ

−4Ng31 þ Ng21g2
4ð4πÞ3 : ð3:20Þ

This can be solved to get11

g�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r
ð3:21Þ

g�2 ¼ 6g�1: ð3:22Þ

11There is also a physically equivalent solution with the
opposite signs of g1, g2.
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It is straightforward to compute the subleading correc-
tions at large N by solving the exact beta function
equations (3.15), (3.17) in powers of 1=N. This yields

g�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r �
1þ 22

N
þ 726

N2
−
326180

N3
þ…

�
ð3:23Þ

g�2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r �
1þ 162

N
þ 68766

N2
þ 41224420

N3
þ…

�
:

ð3:24Þ
Note that the coefficients in this expansion appear to
increase quite rapidly. This suggests that the large N
expansion may break down at some finite N. Indeed, we
will see in Sec. IV that this large N IR fixed point
disappears at N ≤ 1038 (the coupling constants go off to
the complex plane). For all values of N ≥ 1039, the fixed
point has real couplings and is IR stable; see Sec. IV. At
large N, the IR stability of the fixed point can be seen
from the fact that the matrix ∂βi∂gj evaluated at the fixed
point has two positive eigenvalues. These eigenvalues are
in fact related to the dimensions of the two eigenstates
coming from the operator mixing of σ3 and σϕiϕi

operators, as will be discussed in more detail in
Sec. V B.
We can now use the values of the fixed point couplings

to compute the dimensions of the elementary fields ϕi and σ
in the IR. From (3.12) and (3.13) we obtain

Δϕ ¼ d
2
− 1þ γϕ ¼ 2 −

ϵ

2
þ 1

ð4πÞ3
ðg�1Þ2
6

¼ 2 −
ϵ

2
þ ϵ

N
þ 44ϵ

N2
þ 1936ϵ

N3
þ… ð3:25Þ

and

Δσ ¼
d
2
− 1þ γσ ¼ 2 −

ϵ

2
þ 1

ð4πÞ3
Nðg�1Þ2 þ ðg�2Þ2

12

¼ 2þ 40ϵ

N
þ 6800ϵ

N2
þ…: ð3:26Þ

Note that both dimensions are above the unitarity bound
in d ¼ 6 − ϵ, namely Δ > d

2
− 1, since the anomalous

dimensions are positive. Moreover, note that the order ϵ
term in the dimension of σ cancels out and we find
Δσ ¼ 2þOð1=NÞ. This is in perfect agreement with the
large N description of the critical OðNÞ CFT. In that
approach, the field σ corresponds to the composite operator
ϕiϕi, whose dimension goes from Δ ¼ d − 2 at the free
fixed point to d − ΔþOð1=NÞ ¼ 2þOð1=NÞ at the
interacting fixed point. Furthermore, comparing (3.25),
(3.26) with (2.21), (2.22), we see that the coefficients of
the 1=N expansion precisely match the available results for
the large N critical OðNÞ theory [4–6] expanded at

d ¼ 6 − ϵ. This is a strong test that the IR fixed point of
the cubic theory in d ¼ 6 − ϵ is identical at large N to the
dimensional continuation of the critical point of the ðϕiϕiÞ2
theory.
We may also match the values of the fixed point

couplings (3.23), (3.24) with the large N results (2.28),
(2.29) for the 3-point functions coefficients in the critical
OðNÞ theory. At leading order in ϵ, the 3-point functions in
our cubic model simply come from a tree level calculation,
and it is straightforward to verify the agreement of (3.23)
with (2.28),12 and that the ratio g�1=g

�
2 ¼ 6 at leading order

at large N agrees with (2.29).

IV. ANALYSIS OF FIXED PINTS
AT FINITE N

In this section we analyze the one-loop fixed points for
general N. First, let us define

g1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r
x; ð4:1Þ

g2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r
y: ð4:2Þ

After this, the vanishing of the β functions (3.15), (3.17)
gives

Nx ¼ ðN − 8Þx3 − 12x2yþ xy2; ð4:3Þ

Ny ¼ −12Nx3 þ 3Nx2y − 9y3: ð4:4Þ
These equations have 9 solutions if we allow x and y to

be complex. One of them is the trivial solution (0, 0). Two

of them are purely imaginary; they occur at ð0;�
ffiffiffi
N
9

q
iÞ.

There are no simple expressions for the remaining six
solutions, but it is straightforward to study them
numerically.
Two of them are real solutions in the second and fourth

quadrant: ð−x1; y1Þ and ðx1;−y1Þ, with x1, y1 > 0. They
exist for any N, but they are not IR stable (they are saddles,
i.e. there is one positive and one negative direction in the
coupling space). They can be seen in both the bottom left
and right graphs in Fig. 5, corresponding to N ¼ 2000 and
N ¼ 500 respectively.
The behavior of the remaining four solutions changes

depending on the value ofN. ForN ≤ 1038, we find that all
four solutions are complex. The bottom right graph of
Fig. 5 shows that forN ¼ 500 there are indeed only the two
real solutions present for any N discussed above.
For N ≥ 1039, all four of these solutions become real,

and they lie in the first and third quadrants: they have the

12An overall normalization factor comes from the normaliza-
tion of the massless scalar propagators in d ¼ 6.
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form ðx3; y3Þ, ðx4; y4Þ, ð−x3;−y3Þ, ð−x4;−y4Þ, with x3, y3,
x4, y4 > 0. To display the typical behavior of the solutions
with N ≥ 1039, in the bottom left graph of Fig. 5 we plot
the zeroes of β1, β2 for N ¼ 2000, with regions of their
signs labeled. Combining these, we can get the flow
directions in each of these regions in the bottom left graph.
We find that for all N ≥ 1039, we have two stable IR fixed
points that are symmetric with respect to the origin, and are
labeled as red dots in the figure. These correspond to the
large N solution (3.23)–(3.24), and its equivalent solution
with opposite signs of the couplings. For very large N, we
see that these solutions satisfy g�2 ¼ 6g�1 as in (3.22). The
origin is a UV stable fixed point, and from the direction of
the renormalization group flow we can see that all other
fixed points are saddle points: they have one stable
direction and one unstable direction.

It is interesting to treat N as a continuous parameter and
solve for the valueNcrit where the real IR stable fixed points
disappear. First, we notice that we can factor out x in (4.3),
effectively making it quadratic. Moreover, if we subtract
(4.4) from y

x times (4.3), we will cancel theNy term, making
the second beta function equation a homogeneous equation
of order 3. After some more manipulation, we obtain

N ¼ ðN − 44Þx2 þ ð6x − yÞ2 ð4:5Þ

Nx2ð6x − yÞ − yð4x2 − 4y2 þ ð6x − yÞyÞ ¼ 0: ð4:6Þ

It is convenient to rewrite these equations in terms of the
following variables:

x ¼ α; y ¼ β þ 6α: ð4:7Þ

FIG. 5 (color online). (a) Zeros of β1 at N ¼ 2000. (b) Zeros of β2 at N ¼ 2000. (c) RG flow directions at N ¼ 2000. (d) Only two
nontrivial real solutions at N ¼ 500.
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After some algebra, we get

ðN − 44Þα2 þ β2 ¼ N ð4:8Þ

840
α3

β3
þ ð464 − NÞ α

2

β2
þ 84

α

β
þ 5 ¼ 0: ð4:9Þ

Ncrit occurs when the curves defined by the two equations
are tangent to each other. Notice that we have effectively
decoupled the two equations, since if we write z ¼ β=α,
we get

α2ðN − 44þ z2Þ ¼ N ð4:10Þ

840z3 þ ð464 − NÞz2 þ 84zþ 5 ¼ 0: ð4:11Þ

We can just first solve the second equation, then easily
solve the first. To determine the critical N, we want the
second equation to have exactly one real root, thus we
require its discriminant to be zero:

Δ ¼ 18abcd − 4b3dþ b2c2 − 4ac3 − 27a2d2 ¼ 0;

ð4:12Þ

where a, b, c, d are the coefficients of the cubic equation:

a ¼ 840; b ¼ 464 − N; c ¼ 84; d ¼ 5:

ð4:13Þ

We then arrive at a cubic equation in terms of N:

Δ ¼ 20N3 − 20784N2 þ 19392N þ 1856 ¼ 0: ð4:14Þ

We can easily write down an analytic expression for N, and
we find

Ncrit ¼ 1038.2660492…: ð4:15Þ

Our numerical solution of the equations is consistent with
this value.
For completeness, we now discuss the large N behav-

ior of the four fixed points which are not IR stable
(two of them are present for any N, and two of them only
for N > Ncrit). They are obtained if we assume that, as
N → ∞, x is Oð1Þ and y is Oð ffiffiffiffi

N
p Þ. Then, at the leading

order in N, we get

Nx ¼ Nx3 þ xy2; Ny ¼ 3Nx2y − 9y3: ð4:16Þ

This can be solved to get four solutions:
� ffiffi

5
6

q
;
ffiffi
1
6

q ffiffiffiffi
N

p �
,�

−
ffiffi
5
6

q
;
ffiffi
1
6

q ffiffiffiffi
N

p �
,
� ffiffi

5
6

q
;−

ffiffi
1
6

q ffiffiffiffi
N

p �
,
�
−

ffiffi
5
6

q
;−

ffiffi
1
6

q ffiffiffiffi
N

p �
.

They correspond to the four real fixed points at large
N that are saddle points. Using the equation from β1, we
can also check that

Δσ ¼ 2 −
ϵ

2
þ ϵ

2

�
Nx2 þ y2

N

�
¼ 2�

ffiffiffi
5

pffiffiffiffi
N

p ϵþO
�
1

N

�
:

ð4:17Þ
The ϵffiffiffi

N
p correction does not correspond to the conven-

tional large N behavior.

V. OPERATINAL MIXING AND
ANOMALOUS DIMENSIONS

A. The mixing of σ2 and ϕiϕi operators

Let us compute the anomalous dimension matrix for
operators O1 ¼ ϕiϕiffiffiffi

N
p and O2 ¼ σ2, where the

ffiffiffiffi
N

p
in the

denominator is to ensure that the two-point functions of O1

and O2 are of the same order. They both have classical
dimension 4 − ϵ in d ¼ 6 − ϵ, so we expect them to mix.
Consider the operators O1 and O2 renormalized accord-

ing to the convention shown in Fig. 6.
LetOi

M denote the operator renormalized at scaleM, and
Oi

0 denote the bare operator. We are looking for expressions
similar to (18.53) of [57], i.e. of the form:

O1
M ¼ O1

0 þ δ11O1
0 þ δ12O2

0 þ δϕO1
0 ð5:1Þ

O2
M ¼ O2

0 þ δ21O1
0 þ δ22O2

0 þ δσO2
0: ð5:2Þ

The δij counterterms in the above equations are obtained
by extracting the logarithmic divergence from the diagrams
shown in Fig. 7, while the δϕO1

0 and δσO
2
0 terms correspond

to external leg corrections, which are omitted in Fig. 7.
Each of the terms δij is given by canceling the divergent

pieces of two of the above diagrams, as shown. For
example, let us compute the first diagram of the δ11

counterterm in Fig. 7. We have

D1 ¼ ð−g1Þ2
Z

ddk
ð2πÞd

1

ðk − pÞ2
1

ðkþ qÞ2
1

k2

¼ ð−g1Þ2I2 ¼
g21

2ð4πÞ3
Γð3 − d=2Þ
ðM2Þ3−d=2 : ð5:3Þ

FIG. 6. Renormalization conditions for the operators O1

and O2.
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Next, we compute the second diagram of the δ11 counter-
term. Notice that there is a symmetry factor of 2, and also a
factor of N from a closed ϕ loop.

D2 ¼ N
2
ð−g1Þ2

Z
ddk
ð2πÞd

1

ðpþ kÞ2
1

k2
1

p2

¼ Ng21
2

I1
1

p2
¼ −

1

ð4πÞ3
Ng21
12

Γð3 − d=2Þ
ðM2Þ3−d=2 : ð5:4Þ

These two terms are canceled by δ11; therefore, to leading
order in ϵ we have

δ11 ¼
�
−

g21
2ð4πÞ3 þ

Ng21
12ð4πÞ3

�
Γð3 − d=2Þ
ðM2Þ3−d=2 : ð5:5Þ

Similarly, we can calculate the other three δij. The
integrals are the same, only the factors of coupling
constants and N (due to closed ϕ loops) are different.
With our normalization convention of O1, we need to
multiply δ12 by a factor of

ffiffiffiffi
N

p
, and divide δ21 by a factor offfiffiffiffi

N
p

. Then the matrix is symmetric, δ21 ¼ δ12, and we find

δ12 ¼
�
−

ffiffiffiffi
N

p
g21

2ð4πÞ3 þ
ffiffiffiffi
N

p
g1g2

1ð4πÞ3
�
Γð3 − d=2Þ
ðM2Þ3−d=2 ; ð5:6Þ

δ22 ¼
�
−

g22
2ð4πÞ3 þ

g22
12ð4πÞ3

�
Γð3 − d=2Þ
ðM2Þ3−d=2 : ð5:7Þ

Thus, the matrix δij is

δij ¼ 1

12ð4πÞ3
Γð3 − d=2Þ
ðM2Þ3−d=2

 
−6g21 þ Ng21 −6

ffiffiffiffi
N

p
g21 þ

ffiffiffiffi
N

p
g1g2

−6
ffiffiffiffi
N

p
g21 þ

ffiffiffiffi
N

p
g1g2 −6g22 þ g22

!
: ð5:8Þ

The anomalous dimension matrix is given by

γij ¼ M
∂
∂M ð−δij þ δijz Þ; ð5:9Þ

where we have defined

δijz ¼
�
δϕ 0

0 δσ

�
: ð5:10Þ

Now, using expressions for δϕ and δσ from (3.2), (3.4), we
get

γij ¼ −1
6ð4πÞ3

 
4g21 − Ng21 6

ffiffiffiffi
N

p
g21 −

ffiffiffiffi
N

p
g1g2

6
ffiffiffiffi
N

p
g21 −

ffiffiffiffi
N

p
g1g2 4g22 − Ng21

!
:

ð5:11Þ

The eigenvalues of this matrix will give the dimensions of
the two eigenstates arising from the mixing of operatorsO1

and O2.

After plugging in the coupling constants at the IR fixed
point from (3.23) and (3.24), and keeping its entries to
order 1=N, the matrix elements of γij become

γij ¼ −1
6ð4πÞ3

�
4g21 − Ng21 6

ffiffiffiffi
N

p
g21 −

ffiffiffiffi
N

p
g1g2

6
ffiffiffiffi
N

p
g21 −

ffiffiffiffi
N

p
g1g2 4g22 − Ng21

�

ð5:12Þ

¼ ϵ

 
1þ 40

N
840
N3=2

840
N3=2 1 − 100

N

!
: ð5:13Þ

To order 1=N, the off-diagonal terms do not affect the
eigenvalues, and we get the scaling dimensions

Δ− ¼ d − 2þ γ− ¼ 4 −
100ϵ

N
þO

�
1

N2

�

Δþ ¼ d − 2þ γþ ¼ 4þ 40ϵ

N
þO

�
1

N2

�
ð5:14Þ

FIG. 7. Matrix elements of operators O1 and O2 to 1-loop order.
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with the explicit eigenstates given by

Oþ ¼
ffiffiffiffi
N

p

6
O1 þO2 ð5:15Þ

O− ¼ −6ffiffiffiffi
N

p O1 þO2: ð5:16Þ

Satisfyingly, we see that to this order the dimension Δ−
precisely matches the dimension of the only primary field
of dimension near 4 in the large N UV fixed point of the
quartic theory. It was determined using large N methods in
[10], and corresponds to k ¼ 2 in (2.26). Since there are no
other primaries of dimension 4þOð1=NÞ in the critical
theory, we expect that the other dimension Δþ corresponds
to a descendant. Comparing (5.14) with (3.26), we see that
to this order Δþ ¼ 2þ Δσ, so that the eigenstate with
eigenvalue γþ is indeed a descendant of σ.
We can actually show that Δþ ¼ 2þ Δσ to all orders in

1=N (and for all fixed points) just using the β-function
equations. To start, we redefine our variables as (4.1), (4.2).
With this definition, the condition satisfied by x and y at the
IR fixed point is given in (4.3), (4.4), or

1 ¼ x2 −
8

N
x2 −

12

N
xyþ 1

N
y2 ð5:17Þ

1 ¼ −12
x3

y
þ 3x2 −

9

N
y2: ð5:18Þ

The anomalous dimension matrix in this notation becomes

γij ¼ ϵ

 
x2 − 4

N x
2 1ffiffiffi

N
p ðxy − 6x2Þ

1ffiffiffi
N

p ðxy − 6x2Þ x2 − 4
N y

2

!
; ð5:19Þ

which has eigenvalues

λ� ¼ ð2x2 − 4
N x

2 − 4
N y

2Þ � ffiffiffiffiffijγjp
2

ϵ; ð5:20Þ

where jγj is the determinant, given by

jγj ¼ 144

N
x4 −

48

N
x3yþ 4

N
x2y2 þ 16

N2
x4 −

32

N2
x2y2

þ 16

N2
y4: ð5:21Þ

Also, from the first line of (3.26), we see that in terms of x
and y the dimension Δσ becomes

Δσ ¼ 2 −
ϵ

2
þ ϵ

2
x2 þ ϵ

2N
y2; ð5:22Þ

Thus, we have to show that

Δσ þ 2 ¼ 4 − ϵþ λþ ð5:23Þ

which, after some algebra, is seen to imply

1 − x2 þ 4

N
x2 þ 5

N
y2 ¼

ffiffiffiffiffi
jγj

p
: ð5:24Þ

Replacing ð1 − x2Þ with (5.17), we have

−
4

N
x2 −

12

N
xyþ 6

N
y2 ¼

ffiffiffiffiffi
jγj

p
: ð5:25Þ

Squaring both sides, and plugging in the expression for jγj,
we get that the following equation is to hold for (5.23) to be
true:

36x4 − 12x3yþ x2y2

¼ 1

N
ð24x3yþ 32x2y2 − 36xy3 þ 5y4Þ: ð5:26Þ

To prove this equality, we again go back to (5.17) and
(5.18). If we multiply both of these equations by 3xy − y2

2

and subtract the former from the latter, we get exactly the
expression above. Thus, Δþ ¼ 2þ Δσ holds to all orders
in 1=N.

B. The mixing of σ3 and σϕiϕi operators

Next, we would like to calculate the mixed anomalous
dimensions of the Δ ¼ 6 operators, and show that they are
all slightly irrelevant in d ¼ 6 − ϵ. There are six operators
with Δ ¼ 6 at d ¼ 6; they are

O1 ¼ σðϕiÞ2ffiffiffiffi
N

p ; O2 ¼ σ3; ð5:27Þ

O3 ¼ ð∂ϕiÞ2ffiffiffiffi
N

p ; O4 ¼ ð∂σÞ2; ð5:28Þ

O5 ¼ ϕi□ϕiffiffiffiffi
N

p ; O6 ¼ σ□σ: ð5:29Þ

However, in d ¼ 6 − ϵ, O1 and O2 have bare dimensions
3 d−2

2
¼ 6 − 3

2
ϵ, whileO3,O4,O5,O6 have bare dimensions

2þ 2 d−2
2

¼ 6 − ϵ. Therefore, in d ¼ 6 − ϵ, O1 and O2 mix
with each other, and O3, O4, O5, O6 mix with themselves.
We will compute the mixed anomalous dimensions ofO1

and O2. Using the expressions for the β functions, (3.15),
(3.17), we can very simply compute the mixed anomalous
dimension matrix by differentiating them with respect to
appropriately normalized couplings (the rescaling is needed
because two-point functions of O1 and O2 are off by a
factor of 3N). After some algebra, we get
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Mij ¼

0
BBB@

−
ϵ

2
þ 3Ng21 − 24g21 − 24g1g2 þ g22

12ð4πÞ3
−12g21 þ 2g1g2

12ð4πÞ3
ffiffiffiffiffiffiffi
3N

p

−12g21 þ 2g1g2
12ð4πÞ3

ffiffiffiffiffiffiffi
3N

p
−
ϵ

2
þ Ng21 − 9g22

4ð4πÞ3

1
CCCA:

ð5:30Þ
We plug in the fixed point value of g1 and g2 from (3.23) and (3.24) to get

Mij ¼

0
BBB@

ϵ −
5040

N2
ϵþ…

840
ffiffiffi
3

p

N
ffiffiffiffi
N

p ϵþ…

840
ffiffiffi
3

p

N
ffiffiffiffi
N

p ϵþ… ϵ −
420

N
ϵ −

154560

N2
ϵþ…

1
CCCA: ð5:31Þ

Notice that at this IR fixed point, both eigenvalues of Mij

are positive, which implies that the fixed point is IR stable.
This matrix has eigenvalues

λ1 ¼ ϵ −
3780

N2
ϵþO

�
1

N3

�
ð5:32Þ

λ2 ¼ ϵ −
420

N
ϵ −

155820

N2
ϵþO

�
1

N3

�
: ð5:33Þ

The relation between scaling dimensions and the eigen-
values of the matrix is given by13

Δ ¼ dþ λ: ð5:34Þ
Thus, the scaling dimensions of the mixture of the two
operators are

Δ1 ¼ dþ λ1 ¼ 6þO
�

1

N2

�
ð5:35Þ

Δ2 ¼ dþ λ2 ¼ 6 −
420

N
ϵþO

�
1

N2

�
: ð5:36Þ

There are no OðϵÞ correction to the scaling dimensions, as
we expected. As a further check, we note that Δ2 agrees
with the dimension of the k ¼ 3 primary operator given in
(2.26). In the large N Hubbard-Stratonovich approach, this
operator is σ3 [10]. Our 1-loop calculation demonstrates the
presence of another primary operator whose dimension is
Δ1. Presumably, the corresponding operator in the
Hubbard-Stratonovich approach is ð∂μσÞ2.
We can also show that at the other fixed points discussed

in Sec. IV, Mij has one positive and one negative eigenval-
ues. If we use (4.1), (4.2) and plug them into (5.30), we get

Mij ¼

0
BB@

−
ϵ

2
þ ϵ

2N
ð3Nx2 − 24x2 − 24xyþ y2Þ ϵ

2N
ð−12x2 þ 2xyÞ

ffiffiffiffiffiffiffi
3N

p

ϵ

2N
ð−12x2 þ 2xyÞ

ffiffiffiffiffiffiffi
3N

p
−
ϵ

2
þ 3ϵ

2N
ðNx2 − 9y2Þ

1
CCA: ð5:37Þ

We have shown from solving (4.16) that

x ¼ �
ffiffiffiffiffiffiffiffi
5=6

p
; y ¼ �

ffiffiffiffiffiffiffiffi
1=6

p ffiffiffiffi
N

p
: ð5:38Þ

Plugging these in, we find that the eigenvalues of Mij at
these fixed points are

λ1 ¼ ϵ; λ2 ¼ −
5

3
ϵ; ð5:39Þ

which confirms our graphical analysis that all of these fixed
points are saddle points.

VI. COMMENTS ON CT AND 5D F THEOREM

A quantity of interest in a CFT is the coefficientCT of the
stress-tensor 2-point function, which may be defined by

hTμνðx1ÞTρσðx2Þi ¼ CT
Iμν;ρσðx12Þ

x2d12
; ð6:1Þ

where Iμν;ρσðx12Þ is a tensor structure uniquely fixed by
conformal symmetry; see e.g. [58]. For N free real scalar
fields in dimension dwith canonical normalization, one has
CT ¼ Nd

ðd−1ÞS2d
, where Sd is the volume of the d-dimensional

round sphere. In the critical OðNÞ theory, using large N
methods one finds the result [11,12]

13As a simple test of this formula, note that at the free UV fixed
point the eigenvalues of (5.30) are λ1 ¼ λ2 ¼ − ϵ

2
, giving dimen-

sions Δ1 ¼ Δ2 ¼ 3ðd=2 − 1Þ as it should be.
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CT ¼ Nd
ðd − 1ÞS2d

�
1þ 1

N
CT;1 þO

�
1

N2

��

CT;1 ¼ −
�
2CðμÞ
μþ 1

þ μ2 þ 3μ − 2

μðμ2 − 1Þ
�
η1; μ ¼ d

2
ð6:2Þ

where CðμÞ ¼ ψð3 − μÞ þ ψð2μ − 1Þ − ψð1Þ − ψðμÞ, and

ψðxÞ ¼ Γ0ðxÞ
ΓðxÞ . It is interesting to analyze the behavior of CT;1

in d ¼ 6 − ϵ. The anomalous dimension η1, given in (2.18),
is of order ϵ, but there is a pole in CðμÞ from the term
ψð3 − μÞ ∼ −2=ϵ. Hence, one finds at d ¼ 6 − ϵ

CT;1 ¼ 1 −
7

4
ϵþOðϵ2Þ ð6:3Þ

and so

CT ¼ d
ðd − 1ÞS2d

�
N þ 1 −

7

4
ϵ

�
þOðϵ2Þ: ð6:4Þ

Thus, as d → 6, we find the CT coefficient of N þ 1 free
real scalars. This provides a nice check on our description
of the critical OðNÞ theory via the IR fixed point of (1.2).
The OðϵÞ correction may be calculated in this description
as well, using the 1-loop fixed point (3.23), (3.24), but we
leave this for future work.
The appearance of an extra massless scalar field as

d → 6 is also suggested by dimensional analysis. The
dimension of σ is 2þOð1=NÞ in all d, so as d approaches
6, it becomes the dimension of a free scalar field. Then the
two-derivative kinetic term for σ (as well as the σ3

coupling) become classically marginal. Note also that
the negative sign of the order ϵ correction in (6.4) implies
that CT decreases from the UV fixed point of N þ 1 free
fields to the interacting IR fixed point, consistently with the
idea that CT may be a measure of degrees of freedom [12].
However, expanding CT in d ¼ 4þ ϵ, one finds

CT ¼ d
ðd − 1ÞS2d

�
N −

5

12
ϵ2
�
þOðϵ3Þ: ð6:5Þ

According to our interpretation, the critical theory in d ¼
4þ ϵ should be identified with the UV fixed point of the
−ϕ4 theory, while the IR fixed point corresponds to N free
scalars. Then, (6.5) is seen to violate CUV

T > CIR
T . A plot of

CT;1 in the range 2 < d < 6 is given in Fig. 8. Finally, let us
quote the value of CT in the interesting dimension d ¼ 5

Cd¼5
T ¼ 5

4S25

�
N −

1408

1575π2

�
: ð6:6Þ

Again, we observe that this value is consistent with CUV
T >

CIR
T for the flow from the free UV theory of N þ 1massless

scalars to the interacting fixed point, but not for the
flow from the interacting fixed point to the free IR theory
of N massless scalars. Thus, the latter flow provides a

nonsupersymmetric counterexample against the possibility
of a CT theorem (for a supersymmetric counterexample,
see [59]). In contrast, the 5-dimensional F theorem holds
for both flows, as we discuss below.
It was proposed in [39] (see also [60,61]) that, for any

odd dimensional Euclidean CFT, the quantity

~F ¼ ð−1Þdþ1
2 F ¼ ð−1Þd−12 logZSd; ð6:7Þ

should decrease under RG flows

~FUV > ~FIR: ð6:8Þ

Here F ¼ − logZSd is the free energy of the CFT on the
round sphere, which is a finite number after the power law
UV divergences are regulated away (for instance, by ζ
function or dimensional regularization). Note that when we
put the CFT on the sphere, we have to add the conformal
coupling of the scalar fields to the Sd curvature. This
effectively renders the vacuum metastable, both in the case
of the −ϕ4 theory and in the cubic theory. Similarly, the
CFT is metastable on R × Sd−1, which is relevant for
calculating the scaling dimensions of operators.
For d ¼ 3 (where ~F ¼ F), the F theorem (6.8) was

proved in [62]. However, higher dimensional versions are
less well established. Using the results of this paper, we can
provide a simple new test of the 5d version of the F
theorem (in this case ~F ¼ −F). As we have argued, the 5d
critical OðNÞ theory can be viewed as either the IR fixed
point of the cubic theory (1.2) or the UV fixed point of the
quartic scalar theory. This implies that ~F should satisfy

N ~Ffree sc < ~Fcrit < ðN þ 1Þ ~Ffree sc; ð6:9Þ
where ~Ffree sc is minus the free energy of a 5d free
conformal scalar [39]

3 4 5 6
d

1.0

0.5

0.5

1.0
CT,1

-

-

FIG. 8 (color online). The OðN0Þ correction CT;1 in the
coefficient CT of the stress-tensor two-point function in the
critical OðNÞ theory for 2 < d < 6; see (6.2). Note that CT;1 is
negative for 2 < d≲ 5.22, so that in this range of dimensions
Ccrit
T < NCfree sc

T for large N. Therefore, the CT theorem is
respected in 2 < d < 4, but violated for 4 < d≲ 5.22.
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~Ffree sc ¼
log 2
128

þ ζð3Þ
128π2

−
15ζð5Þ
256π4

≃ 0.00574: ð6:10Þ

The value of F at the critical point can be calculated
perturbatively in 1=N by introducing the Hubbard-
Stratonovich auxiliary field as reviewed in Sec. II. The
leading OðNÞ term is the same as in the free theory, while
theOðN0Þ term arises from the determinant of the nonlocal
kinetic operator for the auxiliary field [39,49,63]. The result
is [25]

~Fcrit ¼ N ~Ffree sc þ
3ζð5Þ þ π2ζð3Þ

96π2
þO

�
1

N

�
: ð6:11Þ

The same answer may be obtained by computing the ratio
of determinants for the bulk scalar field in the AdS6
Vasiliev theory with alternate boundary conditions [25].
We see that the left inequality in (6.9) is satisfied, since the
OðN0Þ correction in (6.11) is positive (this check was
already made in [25]). More nontrivially, we observe that
the right inequality also holds, because 3ζð5Þþπ2ζð3Þ

96π2
≃

0.001601 is smaller than the value of ~F for one free scalar,
Eq. (6.10).

VII. GROSS-NEVEU-YUKAWA MODEL
AND A TEST OF 3D F THEOREM

The action of the GN model [42] is given by

Sðψ̄ ;ψÞ ¼ −
Z

ddx

�
ψ̄ i∂ψ i þ 1

2N
gðψ̄ iψ iÞ2

�
: ð7:1Þ

Here N ¼ ~Ntr1, where tr1 is the trace of the identity in the
Dirac matrix space, and ~N is the number of Dirac fermion
fields ψ i (i ¼ 1;…; ~N). The parameter N counts the actual
number of fermion components, and it is the natural
parameter to write down the 1=N expansion (factors of
tr1 never appear in the expansion coefficients ifN is used as
the expansion parameter).
The beta functions and anomalous dimensions of this

model in d ¼ 2þ ϵ can be calculated to be (see, for
instance, [3])

βðgÞ ¼ ϵg − ðN − 2Þ g
2

2π
þ ðN − 2Þ g3

4π2
þOðg4Þ ð7:2Þ

ηψ ðgÞ ¼
N − 1

8π2
g2 −

ðN − 1ÞðN − 2Þ
32π3

g3 þOðg4Þ ð7:3Þ

ηMðgÞ ¼ N − 1

2π
g −

N − 1

8π2
g2 þOðg3Þ; ð7:4Þ

where ηM is related to the anomalous dimension of the
composite field σ ¼ ψ̄ψ . We can solve the beta function for
the critical value of g at the fixed point:

g� ¼ 2π

N − 2
ϵ

�
1 −

ϵ

N − 2

�
þOðϵ3Þ: ð7:5Þ

Plugging this value of g�, we can find the dimensions of the
fermion field and the composite field:

Δψ ¼ d − 1þ ηψðg�Þ ¼
1þ ϵ

2
þ N − 1

4ðN − 2Þ2 ϵ
2 þOðϵ3Þ;

ð7:6Þ

Δσ ¼ d − 1 − ηMðg�Þ ¼ 1 −
ϵ

N − 2
þOðϵ2Þ: ð7:7Þ

The UV fixed point of the GN model in 2 < d < 4
dimensions is related to the IR fixed point of the GNY
model, which has the following action [3,40,41]:

Sðψ̄ ;ψ ;σÞ ¼
Z

ddx

�
−ψ̄ ið∂ þ g1σÞψ i þ 1

2
ð∂μσÞ2 þ

g2
24

σ4
�
:

ð7:8Þ

In d ¼ 4 − ϵ, the one-loop beta functions of the GNY
model are given by

βg2
1
¼ −ϵg21 þ

N þ 6

16π2
g41 ð7:9Þ

βg2 ¼ −ϵg2 þ
1

8π2

�
3

2
g22 þ Ng2g21 − 6Ng41

�
: ð7:10Þ

For small ϵ, one finds that there is a stable IR fixed point for
any positive N:

ðg�1Þ2 ¼
16π2ϵ

N þ 6
ð7:11Þ

g�2 ¼ 16π2Rϵ; ð7:12Þ
where

R ¼ 24N

ðN þ 6Þ½ðN − 6Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ 132N þ 36

p
� : ð7:13Þ

The anomalous dimensions of the elementary fields are
given by

γψ ¼ 1

32π2
g21; γσ ¼

N
32π2

g21; ð7:14Þ

and plugging in the value of the fixed point couplings, one
obtains

Δψ ¼ d − 1

2
þ γψ ¼ 3

2
−

N þ 5

2ðN þ 6Þ ϵ ð7:15Þ

Δσ ¼
d − 2

2
þ γσ ¼ 1 −

3

N þ 6
ϵ: ð7:16Þ
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The large N expansion of the 3d critical fermion theory
may be developed in arbitrary dimension following similar
lines as in the scalar case reviewed in Sec. II: one introduces
an auxiliary field σ to simplify the quartic interaction, and
develops the 1=N perturbation theory with the effective
nonlocal propagator for σ and the σψ̄ψ interaction. The
anomalous dimensions of ψ and σ in the critical theory have
been calculated respectively to order 1=N3 and 1=N2, and
in arbitrary dimension d [45,64]. To leading order in 1=N,
the explicit expressions are given by

Δψ ¼ d − 1

2
−

Γðd − 1Þ sinðπd
2
Þ

πΓðd
2
− 1ÞΓðd

2
þ 1Þ

1

N
þO

�
1

N2

�
ð7:17Þ

Δσ ¼ 1þ 4ðd − 1ÞΓðd − 1Þ sinðπd
2
Þ

πðd − 2ÞΓðd
2
− 1ÞΓðd

2
þ 1Þ

1

N
þO

�
1

N2

�
: ð7:18Þ

Expanding these expressions in d ¼ 2þ ϵ and d ¼ 4 − ϵ,
one can verify the agreement with (7.7) and (7.16)
respectively. Note that both Δψ and Δσ go below their
respective unitarity bounds for d > 4; so, unlike in the
scalar case, there is no unitary critical fermion theory above
dimension four. One may check that the available sublead-
ing large N results [45,64] also precisely agree with the
1=N expansion of (7.7) and (7.16), giving strong support to
the fact that the 3d critical fermionic CFT may be viewed as
either the IR fixed point of the GNYmodel, or the UV fixed
point of the GN theory.
We may use the two alternative descriptions of the

critical fermion theory to provide a simple test of the 3d
F theorem, similar to the tests carried out in [39]. In the UV,
the GNY model (which has relevant interactions in d ¼ 3)
is a free theory of N fermions and one conformal scalar,

while the GN model is free in the IR. Thus, the value of F
for the critical fermion theory should satisfy

NFfree fermi < Fcrit fermi < NFfree fermi þ Ffree sc: ð7:19Þ

In d ¼ 3, one finds

Ffree sc ¼
log 2
8

−
3ζð3Þ
16π2

≃ 0.0638: ð7:20Þ

The value of F in the critical theory may be computed
perturbatively in the 1=N expansion, and one obtains the
result [39,63]

Fcrit fermi ¼ NFfree fermi þ
ζð3Þ
8π2

þO
�
1

N

�
: ð7:21Þ

Because ζð3Þ
8π2

≃ 0.0152 < Ffree sc, we see that indeed (7.19)
is satisfied in both directions.
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APPENDIX: SOME USEFUL INTEGRALS

Let us evaluate the following useful one-loop integral in
dimensional regularization

Iðα; βÞ ¼
Z

ddq
ð2πÞd

1

q2αðpþ qÞ2β

¼
Z

1

0

dxxα−1ð1 − xÞβ−1 Γðαþ βÞ
ΓðαÞΓðβÞ

Z
ddq
ð2πÞd

1

½q2 þ xð1 − xÞp2�αþβ

¼
Z

1

0

dx
xα−1ð1 − xÞβ−1

ΓðαÞΓðβÞ
Z

∞

0

dttαþβ−1
Z

ddq
ð2πÞd e

−tðq2þxð1−xÞp2Þ

¼ 1

ð4πÞd2
Γðd

2
− αÞΓðd

2
− βÞΓðαþ β − d

2
Þ

ΓðαÞΓðβÞΓðd − α − βÞ
�
1

p2

�
αþβ−d

2

: ðA1Þ

In the calculations in d ¼ 6 − ϵ, we often encounter the
case α ¼ 1, β ¼ 1, which gives

I1 ≡ Ið1; 1Þ ¼ 1

ð4πÞd2
Γð3 − d

2
ÞΓðd

2
− 1Þ2

ð2 − d
2
ÞΓðd − 2Þ

�
1

p2

�
2−d

2

: ðA2Þ

For the purpose of extracting the logarithmic terms in
d ¼ 6 − ϵ, it is sufficient to use the approximation

I1 → −
p2

6ð4πÞ3
Γð3 − d=2Þ
ðp2Þ3−d=2 : ðA3Þ

We will also need the following three-propagator integral:

I2 ¼
Z

ddk
ð2πÞd

1

ðk − pÞ2
1

ðkþ qÞ2
1

k2
ðA4Þ
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¼ 2

Z
1

0

dxdydzδð1 − x − y − zÞ

×
Z

ddk
ð2πÞd

1

½xðk − pÞ2 þ yðkþ qÞ2 þ zk2�3 ðA5Þ

¼ 2

Z
1

0

dxdydzδð1 − x − y − zÞ

×
Z

ddk
ð2πÞd

1

½k2 − 2xkpþ 2ykqþ xp2 þ yq2�3 : ðA6Þ

Defining l≡ k − xpþ yq, we get

I2 ¼ 2

Z
1

0

dxdydzδð1 − x − y − zÞ
Z

ddl
ð2πÞd

1

½l2 þ Δ�3
ðA7Þ

with Δ ¼ xð1 − xÞp2 þ yð1 − yÞq2 þ 2xypq. Evaluating
the standard momentum integral, we obtain

I2 ¼
Z

1

0

dxdydzδð1 − x − y − zÞ 1

ð4πÞd=2
Γð3 − d=2Þ
Δ3−d=2 :

ðA8Þ
In the RG calculations of Sec. III, we use the renormaliza-
tion conditions [57] p2 ¼ q2 ¼ ðpþ qÞ2 ¼ M2, which
imply 2p · q ¼ −M2, and hence Δ ¼ M2ðxð1 − xÞ þ
yð1 − yÞ − xyÞ. So we can write

I2 ¼
1

ð4πÞd=2
Γð3 − d=2Þ
ðM2Þ3−d=2

Z
1

0

dxdydzδð1 − x − y − zÞ

×
1

ðxð1 − xÞ þ yð1 − yÞ − xyÞ3−d=2 : ðA9Þ

In d ¼ 6 − ϵ the Feynman parameter integral becomes

Z
1

0

dxdydzδð1 − x − y − zÞ

×

�
1 −

ϵ

2
logðxð1 − xÞ þ yð1 − yÞ − xyÞ þOðϵ2Þ

�

¼ 1

2
þOðϵÞ: ðA10Þ

Thus,

I2 ¼
1

2ð4πÞ3
�
2

ϵ
− logM2 þ AþOðϵÞ

�
; ðA11Þ

where A is an unimportant constant. For the purpose of
extracting the logM2 terms in d ¼ 6 − ϵ, it is sufficient to
use the approximation

I2 →
1

2ð4πÞ3
Γð3 − d=2Þ
ðM2Þ3−d=2 : ðA12Þ
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