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We compute the full one loop correction to the quartic vertex of QCD at the fully symmetric point.
This allows us to define a new momentum subtraction (MOM) scheme in the class of schemes introduced
by Celmaster and Gonsalves. Hence using properties of the renormalization group equation, the two loop
renormalization group functions for this scheme are given.
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I. INTRODUCTION

In recent years there has been interest in studying the
vertex structure of quantum chromodynamics (QCD)
which is the quantum field theory corresponding to the
strong nuclear force. The gluon and quark fields which
are the constituent fields and which behave as free
entities at high energy are not, however, observed in
nature. This is due to confinement or infrared slavery. To
understand why such approximately free particles are
restricted to dwell inside the nucleons of the atomic
nucleus requires studying their properties at low energy.
Theoretically one uses the underlying quantum field
theory, QCD, and endeavors to ascertain the nonpertur-
bative behavior of the basic quanta interactions. The main
computational tools for such investigations are lattice
gauge theory and Schwinger-Dyson methods. Both tech-
niques complement each other. For instance, there has
been a large activity in extracting the zero momentum
limit of the gluon and Faddeev-Popov ghost propagators
in the Landau gauge. See, for example, various recent
articles, [1-10]. While there is a good degree of agree-
ment there is now interest in extending such analyses to
the 3-point and 4-point vertex functions [11,12]. This is a
level of difficulty beyond the 2-point function studies.
While certain lattice data is available for several vertex
functions [13—15], in say the Landau gauge, with general
qualitative agreement between lattice and Schwinger-
Dyson methods, the exploration of these vertex functions
is not as mature a field as that for propagator analyses.
Though, it should be emphasized that lattice gauge theory
studies should improve with refined algorithms and
supercomputers. While the infrared structure is related
to confinement issues detailed knowledge is important
when considering models of hadrons. These physical
states of the theory can be examined by modeling the
dynamics and interactions of the constituent fields via
nonperturbative knowledge of the vertex functions.

From the point of view of perturbation theory, one can
compute the vertex functions order by order in the loop
expansion. Such a field theoretic program has been
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ongoing over several decades. For instance, the one loop
structure of the 3-point vertices has been studied in [16]
at the fully symmetric point for the external momenta
squared and for more general momentum configurations
in [17]. Various extensions have been provided for a
variety of cases. These include two loop corrections with
one or more external legs on-shell [18-22]. Moreover,
massive quarks have been included in some cases
[23,24]. More recently the one loop analysis of [16]
was extended to two loops in [25] with the momentum
subtraction (MOM) scheme renormalization group func-
tions determined for a linear covariant gauge. To assist
model building and to allow Schwinger-Dyson practi-
tioners to examine whether certain of their truncating
approximations or vertex ansitze are reliable, the full off-
shell massless vertex functions for each of the three QCD
vertices were determined in [26]. Having completed the
3-point analysis the next stage is to examine the quartic
vertex to complete the set. This is the purpose of this
article where we consider the massless 4-point gluon
vertex at the fully symmetric point, which is a nonexcep-
tional point, for a general linear covariant gauge. While
the extra leg on the Green’s function sets it apart from the
other vertices its Feynman rule does not contain a
derivative and hence it should not be as problematic
in that sense as the triple gluon vertex for, say, a lattice
analysis. We note that, by contrast, in nonlinear covariant
gauges one can have a quartic ghost vertex. Thus, in
such gauges one would have to consider additional
4-point vertex computations. Previous work on the
quartic gluon vertex has not been as intense as the
3-point ones. Though, we note the earlier relevant work
of [18,27-30]. For instance, the quartic vertex with
several on-shell gluons was studied in [27], while a
Schwinger-Dyson analysis of the quartic vertex was
considered in [28]. However, that analysis was not at
the fully symmetric point but was for several nonexcep-
tional momenta configurations. Moreover, an effective
running coupling constant based on the vertex function
was constructed [28]. An alternative recent approach to
vertex functions has been provided in [29,30] using string
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theory methods. Based on the triple gluon vertex expe-
rience of [29], off-shell quartic vertices have been studied
in, for example, N =4 supersymmetric Yang-Mills
theories in [30]. By contrast, in [18] the coupling
constant renormalization constant was extracted for what
was termed the Weinberg scheme. Though, unlike what
we will present here no information on the full quartic
vertex structure at the symmetric point was recorded as it
was not required for the problem which was at hand.
Here we will give the full structure. That this is possible
is due to progress in recent years with computer algebra
leading to automatic symbolic manipulation programs as
well as with multiloop algorithms. One of the key ones
has been the provision of the Laporta algorithm [31],
which has been implemented in various computer pack-
ages including REDUZE [32]. While we report only on a
one loop analysis which demonstrates the viability of
studying the full quartic vertex and thus its potential
extension to two loops, we will also provide a new
renormalization scheme in the MOM class of schemes.
This will be termed the MOMgggg scheme which will
have the same ethos of definition as the three MOM
schemes of [16] which was based on each of the 3-point
QCD vertices. Although we do not envisage such a
scheme overtaking the modified minimal subtraction,
MS, scheme which is the standard renormalization
scheme, it in some sense completes the set begun in
[16]. As a byproduct of the scheme definition we will
determine its A parameter and evaluate it in relation
to Ayg. Moreover, once the one loop MOMgggg
scheme renormalization of the QCD Lagrangian has
been completed we will use the renormalization group
equation to determine all the fwo loop renormalization
group functions without having to complete an explicit
two loop calculation. Such information will be the
bedrock for any future computations at this order.
Equally our values for the full quartic vertex will serve
as an independent check if the fully off-shell vertex
function is found at one loop.

The article is organized as follows. The background for
the quartic vertex computation is discussed in Sec. II
together with the relevant group theory and master inte-
grals. Section III is devoted to explicit results for the
4-point function at the fully symmetric point while the
MOMgggg scheme is defined in Sec. IV. There the two
loop MOMgggg renormalization group functions are
recorded. We provide conclusions in Sec. V while an
Appendix records the full tensor basis into which we
decompose our results.

II. BACKGROUND

In this section we discuss the technical details to
our computations. First, the Green’s function we will
consider is
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(2.1)
where p, g and r are the external momentum and we have
substituted the momentum for the leg with color label d in
terms of the others from energy-momentum conservation.
The label symm indicates the fully symmetric point which
is defined by

1
pq=pr=qr= gﬂzv (2.2)

where p is a mass scale. Following the same approach as
[25,33] we use the same scale to ensure the coupling
constant is dimensionless in d dimensions as we will
regularize dimensionally throughout with d =4 —2e.
This external momentum configuration is the same as
[18] and we note that the Mandelstam variables are then

1 1 1
s=5(p+aP. 1=3(q+r) u=5(p+r)? (23)
implying
s=t=u=——u’. (2.4)

In (2.1) the right-hand side represents the Lorentz and color
structure. For the 3-point vertices the color dependence, at
least to low loop order, involves only one color tensor
which can be readily factored off so that the focus is purely
on the Lorentz component. For the quartic vertex there is
more than one color structure as will be evident from later
discussions. Therefore, for the moment we indicate how we
extract the different Lorentz channels in (2.1). We follow
the same method of [25] and use a projection method.
Making no a priori assumptions about the final tensor
structure of the vertex we formally write (2.1) in terms of a
basis of 138 Lorentz tensors. This is the number of rank 4
Lorentz tensors that one can build from the three indepen-
dent external momenta p, g and r as well as the metric 7,,,..
Given the size of this basis, the explicit forms given in
terms of the labeling we use are recorded in the Appendix
and denoted by P 4),,0,(P, g, r) Where k is our label with
1 < k < 138. With these then we rewrite (2.1) as

138
Zngg(p’ q’ r) |symm = Zp(k)yvap (p’ q’ r)zl(l]?)L‘d(pv Q7 r)|
k=1

symm’
(2.5)

where Zz‘lf)"d( p,q,r) are the Lorentz scalar but colorful

amplitudes which will be determined. We could choose to
write each Lorentz scalar in terms of color scalars.
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However, as this emerges naturally from the color group algebra within the computation for the choice of SU(N.) we have
not chosen to proceed that way. Moreover, as the computational method we will use requires Lorentz scalar Feynman
integrals and the color structure factors off each integral the projection into Lorentz scalars is more crucial. For this we

follow the earlier method of [25] and first construct the 138 x 138 matrix N, defined by

i =P i pvop
kl P(k)ﬂllap(p’ q, r)P(1> (p,q, r)|symm, (26)
If we denote the inverse of A/ 21 by Mfd then the latter is the projection tensor we use. In other words,
S0 pg. )| = Mu(Pl™ (0.4 ) (AL DAL @AS(DAL(~p = a = DI @7)

gives each individual amplitude and there is a sum over L

Once this projection or decomposition (2.7) of the
Green’s function has been established we need to organize
the actual computation. At one loop there are 24 Feynman
graphs contributing to the quartic function which are
generated using the QGRAF package [34]. Although this
is a relatively small number given the number of tensors in
the projection basis there are a large number of individual
Feynman integrals within each graph to compute. The
effect of the projection is to produce scalar integrals which
have at most scalar products in the numerator which depend
on the loop momentum and the three external momenta. To
proceed these are rewritten in terms of the possible
propagators that arise. The reason for this is that to perform
the large number of integrals we chose to use the Laporta
algorithm [31], for which this is the first step. The
algorithm uses integration by parts to establish linear
relations between integrals within a specific topology.
These can be solved systematically to produce relations
between all the integrals and a relatively small set of
integrals which cannot be reduced to any other integrals.
These are known as master integrals and they have to be
evaluated by direct techniques not involving integration by
parts. For the quartic vertex we have followed this Laporta
approach and used its implementation in the REDUZE
package [32]. It is a C++ based program which uses
GINAC [35]. This allows the user to build a database of
requisite integrals from which one can extract the relations
necessary for the particular Green’s function of interest. In
order to complete the automatic computation we use FORM
and its threaded version TFORM [36,37] to handle the
algebra. The REDUZE package allows for the integral
relations to be extracted in FORM syntax. Indeed FOrRM
is used to process the rearrangement of the scalar products
in each Feynman graph into REDUZE input notation and
REDUZE extracts the correct relations from the database but
in FOrRM syntax. After applying the REDUZE algorithm [32],
there are several basic classes of master integrals to insert
from direct evaluation. If we regard the number of
propagators as defining a class then the first set is those
integrals with two propagators. This is the simple one loop

bubble. However, there are two specific integrals which are
dependent on the value of the square of the momentum
flowing through the graph and derive from how the basic
one loop box of four propagators is shrunk. In one instance
three of the original external legs of the box can be at one
external point to the bubble and in the other case the
external legs of the 2-propagator bubble are two pairs of the
full box. For the 3-propagator master, given the symmetry
of the squared momenta of the external legs there is one
master. Here two of the legs are at (—u?) while the other is
the corresponding Mandelstam variable and the value was
given in [38—40]. Finally, the 4-propagator case is the basic
one loop box. The general off-shell expression was
provided in [41]. The explicit forms of the masters in
the last two classes will be discussed in detail when the
results are presented later. As a final part of the automatic
computation setup description we note that to perform the
renormalization we follow the method of [42]. This
involves performing the calculation in terms of bare
parameters throughout. Then the counterterms are auto-
matically introduced by replacing the bare quantities
with the renormalized counterparts and associated renorm-
alization constant. Those renormalization constants, such
as the wave function and gauge parameter, which are
already known from the renormalization of 2-point func-
tions are included in this redefinition. Hence, one fixes
the unknown renormalization constant associated with the
4-point function with the divergences which remain after
the rescaling.

As we will only be considering SU(N,) as the color
rather than a general Lie group we recall key properties
relevant to corrections to the quartic vertex which are based
on [18,43]. As part of the QGRAF and FORM setup the color
and Lorentz indices are appended to the QGRAF output
before the projection and the application of the group
theory FORM module. First, we recall that the product of
two SU(N,.) group generators, 7%, can be decomposed as

1 1 [
TaTh — 5ab *d“bCTC = athc,
+ +of

T : (2.8)
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where f9b¢ are the structure functions and d“*¢ is a totally
symmetric tensor. The latter vanishes in SU(2). For the
other product of generators, we have

1 1
) 61.0ks — ﬁ‘sufsm

c

(2.9)

a a
TIJTKL_

solely for SU(N.). To simplify notation we introduce
related group tensors defined by

dabcd — dabedcde eabcd — dabefcde
4 - ’ 4 - .

beCd = fabefcde
(2.10)

So the Jacobi identities [43] are readily expressed as

egbcd + eicad + eiabd — 0’

fabed 4 pacdp  gadbe () (2.11)

From [43] we note the relation between two products,

zhcd 2 [5ac6bd

_ 5ad5bc] 4 dZde _ dzdhc.

(2.12)

c

Also since there will be box diagrams with closed quark
loops we need the decomposition of various traces over the
group generators in the fundamental representation. From
[18,43] we use

1|4
i éabécd _
16 NC[

+ 2[dgbed —

Tr(TaTchTd> — 5ac5bd 4 5ad5bc]

dZd)d + dzdbc}

+ 21[ abed __ acdb + eadbc]

(2.13)

In choosing to rewrite such tensors we are in effect making
a choice of how to express the group structure of the graphs
in the computation. In other words we eliminate all
products of group generators in favor of products which
involve at least one rank three symmetric tensor or the unit
matrix. While this is a suitable choice of color tensor basis,
from the point of view of defining a MOM-type renorm-
alization scheme it is more appropriate to reexpress the
final vertex function after computation in terms of the color
tensor structures that are present in the original vertex in the
Lagrangian which is f¢%“¢ and one permutation of the
indices. The Jacobi identity (2.11) can be used to recover
the third tensor. However, due to the symmetry of the
quartic vertex other tensor structures arise at one loop
which are not unrelated to the unit matrices in (2.12) and
(2.13). One could retain these as was the case in [18] but we
have preferred to use the rank four fully symmetric tensors
introduced in [44]
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1 1
d%hcd _ g TF(TuT(bTCTd)), dzhcd _ 6 Tr(Ta ( TL T ))

(2.14)

where the subscript A in the latter denotes the adjoint
representation of the group generator. Hence, we have to
express d4“? in terms of these additional color tensors
which is straightforward to do. We have

ddbed = % { abed Ni[éacabd 5ad5bc}:|
% { achd Ni sabsed _ 5ad5bc}:|
+8 |:d%cbd v ——[5%5¢d 4 sacsbd 5ad5bc]:| ’
dadbe — % - abed _ Nic (59 — 6ad5hc}:|
_% acbd _ N_C [5ebsed — 5ad5bc]:|
+8 dochd — v [5eb5ed 4 gacghd 4 sad 5;;6]}

(2.15)

which we use for diagrams involving quark loops and

1 2
deCd — _ § |: Zlbcd N_ [50051)[1 5ad5bc}:|
2 2
+ g |: Zlchd N_ [66{/75Ld 6uzl§bc}:|
4
+ N_ |:df‘0bd _ g [5ab56d + 5ac5bd + 5ad5bc]:| ,
dzdbc — _% |: abed Ni [5a05bd _ 5ud5hc}:|
% |: acbd Ni [5ab5cd 5ad5bc]:|
4 "bd 2 b scd bd d sbe
+N_ dgc _5{50 66‘ _|_5(1C6 +5a 5c]

(2.16)

for one loop graphs which do not depend on N . Useful
identities in constructing these mappings were [43]

[N — 4

dizbcc — 07 dZCbC — 5ab’
N,

V2 - 12]

dzpbq dzdpq _ o

dabed (2.17)

in the present notation. This completes the summary of the
computational setup for the quartic vertex function.
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III. AMPLITUDES

We now turn to the task of recording our results and concentrate first on the amplitudes. Given the size of the final
expression for all 138 channels for a nonzero gauge parameter @ we focus on key parts and relegate the full results to
the attached data file [45]. (The Landau gauge corresponds to a = 0.) To give a flavor of the analytic structure which is
typical of each channel we record the expressions for those which correspond to the Feynman rules for the quartic

gluon vertex. For the MS scheme we find

S (p.q.1) = f + e
Qe 193, T 3+4311n 4 27ln
0 16" "30% T80 3
253 (4 9 (4 7219 9 9 2700 (9 9
Sl Y ) P A PY ) P Bl 37 5 (L 2V F0 g (2 2\
200“(3)“ 300 “(3) 38400 1(16 16> 2560 1<16’16>a+12800 1(16’16)“
351 9O 9\, 8 _(33\ 5 (33 9 (33 ]
12800(1)‘(16’16)“ 1920 (4 4) 3 <4 4> +64(I)‘<4’4>“] AN
2 7 (4 1_ (9 9\ 7 _ (33
I _ — P, —. = __(I) acbd
N {3 6“<3>+24 1(16’16) 24 <4 4>]f Ny
Lt 193, 7 L 431 4\ 27 (4
—t—a——a®+— —In{=]—-=In a
80 167 80" "80” T75 "\3) "0 '\3
253 (4 9 (4 7219 9 9 2709 /9 9
~——In —1In 3 - BT 5 (22 =, (=, = |a?
200 <3> 00" (3> 38400 ( > 2560 1<16’16>a+12800 1<16’16>“
351 9 9\, 8 _ (33 9 133\ ,] e
12800®1<16’16)a 102 1 (4 4) 2 ( ) T (4’4)“]f4 Ne
2 7 (4 1_ (9 9
— _ — P, (=, = adbc
+{3 6ln<3>+24 ‘(16’16) < )]f“ Ny
3577 123 21 , 15 3+243 . 28113 (4
———oa+—a - +—a +——In( >
1920 160" " 64” T32% Tea0” T 3200 \3
003 (4) 867 (4) , 27, (4\ . 1701 (4) . 115493 (9 9
——In{<z|Ja—=—In{=z |e* —=In|= | + ——In[ = |a* + —— —,—
400 "\3/)% 7320 "\3 20 "\3 3200 '\3 102400 '\16'16
5841 /9 9 16443 (9 9 1701 (9 9 17739 (9 9
S S ) P S Bl 1o kit S i P o (=2 )a
25600 1<16’16>a+10240 1(16’16)0‘ 5120 ‘<16’16>“ 102400 1<16’16>0‘
145 (3 3\ 147 (3 3\ 243 (33 81 (33
=, (== P, (2= b % i 2 — P i 3 dabcd
128 '(4’4>+128 ‘<4’4>“ 128 '(4 4)“ s ‘(4 4)“} A
8 4 9 9),5, (33
—— =061 | =P, | = = _(I) abcd 1

where we have used the Jacobi identity at one loop to
recover the symmetry structure of the quartic vertex
Feynman rule. For the other two channels given the
similarity of the expressions we note that they satisfy

abcd
Z0)

abcd
ZG)

Z(p.q.r),

i (p.g.r)

(p.q.7) =

(p.q.r) = (3.2)

which is a useful check on the computation. Other checks
include the fact that the one loop Green’s function is finite
when the MS gluon wave function and coupling constant
renormalization constants are included. The two specific
values of the function ®,(x,y) appearing in (3.1) derive
from the two master integrals referred to already. The
general expression for @, (x, y) includes the usual dilogar-
ithm function Li,(z) via [38,39]
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Py (x.y) = ! {2Li2(—Px) + 2Liy (—py)

7
+1n @) In <%) + In(px) In(py) +%2 :
(3.3)
where
Mxy)=VAhg,  plry) = i _x_y2+ o)
(3.4)
and

Ag(x,y) =x* =2xy +y* —2x -2y + 1 (3.5)
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is the Gram determinant. The appearance of ®;(x,y) at
two different but symmetric arguments arises from two
masters in the Laporta sense. One is for the 3-point
function where the squares of the external momenta are
p?, ¢* and s and is ®,(3.3). The other is for the pure
symmetric scalar box which was computed in [41]
corresponding to <I>1(19—6,f—6). When one evaluates these
functions from (3.3) the dilogarithms involve the Clausen
function, Cl,(6), since the argument of the dilogarithm is
complex. Though, the expression for each is ultimately
real. In particular the argument of each dilogarithm
function is £ (1 + 2v/2i) for the triangle master and J (1 +

4v/5i) for the box master. Using the more symmetric
definition of ®,(x,y) given in [46], our two basic master
values can be written as

n(3:3) =2l (2o (5) ) v ) )

o)l ) s ()]

Though, for compactness in presenting results we will
use the shorthand notation ®;(3.3) and @(%.7%%)
throughout.

The other main check on our one loop expression is to
compare with the early work of [18]. In that article the
quartic vertex was used to construct a renormalization
scheme motivated by ideas of Weinberg [47]. More
specifically a coupling constant renormalization, denoted
there by Zs, for this Weinberg scheme was recorded for an
arbitrary a and we have been able to virtually reproduce it.
However, in order to do so we have had to convert to the
same color tensor basis as [18] which involved d?*¢ and
the unit matrix rather than our {424, d4b<d, d4b<d} basis.
This is straightforward to do. Also we have had to map
our two main master functions to those present in [18]
which are R(3) and K(3) in the notation of [18]. The
relations between these and those which appear in our
computation are

2 3 33
R@ _Z@(Z,Z),

2 2 15 9 9O
K(E) —R@ ‘iq’l(ﬁ’ﬁ)'

However, in [18] the values of the functions were only
expressed numerically and not in analytic form involving
Liy(z). Using (3.3) we have checked that the numerical
values of (3.7) are in agreement with the values given in

(3.7)

(3.6)

[18]. For completeness and for a numerical evaluation we
note that

33 9 9
$,(2,2) =2.83204 &, (=, — ) =3.403614.
1(4,4) 832045, 1<16,16> 3.4036

(3.8)

In extracting the same renormalization constant Zs as [18]
from our analysis we find agreement with all the terms
given in Eq. (3.10) of [18], including that noted in the
erratum associated with [18], except for two coefficients in
the term linear in what corresponds to our a. Given that we
get agreement with the other 18 coefficients which have
various powers of a we assume that there is a minor
discrepancy in [18]. For the interested reader we believe

the correct coefficients are obtained if 3 and {53 given in
84

[18] are replaced by % and % respectively. Although we
are not in a position to comment on the effect these
changes would have on the subsequent analysis performed
in [18], we note that the numerical value of this term linear
in a increases by about 10% primarily due to the large
drop in the second value. Aside from these two terms and
in light of the exact agreement with the other terms in Zs
of [18], we believe we have the correct form for the one
loop amplitudes.

In order to gauge the structure of the full one loop vertex
function we have evaluated it numerically in the Landau
gauge and find
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2P (P, q,1)|ao = FMP o) = P + £ Py = Pyl + £ [Py = Pyl
+ [[5.021026P ;) + 5.021026P 3, + 5.021026P ) + 4.028121P ) + 6.174705P 5, — 1.359046P )
+6.174705P ) + 4.028121P 5, — 1359046 P o) + 3.872502P 10, + 3.872502P 11, +2.513456P 1,
+4.028121P 13, — 1359046P 1) + 6.174705P 15, + 3.872502P 16, + 2.513456P 17,
+3.872502P 15 + 6.174705P 1) — 1.359046P ) +4.028121P ) — 4293168 5,
— 2. 146584P 53 — 2.146584P 5 — 2.146584P o5) +4.028121P ) + 5.387167P
— 2.146584P 55, + 01556 18P g, -+ 4.028121P 30, +2.513456P 31 + 3.872502P 3,
+3.872502P 33, — 1 359046P 35, +4.028121P 35, + 6.174705P 35) — 1.359046P 37,
+6.174705P 35) +4.028121P 39 + 4.028121P 40y — 2.146584P ) +0.155618P 4,
— 21465847 43, — 4293168 P 45 — 2.146584P 45, -+ 5.387167P 45, — 2.146584P 4,
+4.028121P g, +4.028121P 49 + 0.155618P 50, — 2.146584P s, + 5.387167P s,
+4.008121P 53 — 2. 146584P ;) — 2.146584P 55, — 2.146584P 55 — 4.293168P 57,
+0.397845P 55, +0.397845P 59 + 0.397845P ) + 249371 1P 51, + 0.198922P 3,
+0.198922P 53, — 2.005866P g5, -+ 2.49371 1P g5, + 0.198922P 5, + 0.198922P g,
— 2.095866P g5, + 2493711 P9, +0.198922P ) — 2.095866P 71, -+ 0.198922P 15,
+2.493711P 73, — 2.005866P 74) +0.198922P 75, + 0.198922P 5, +2.493711P 7,
—2.095866P 75, + 0.198922P 79, +0.198922P 50, + 2493711 P (g, +0.198922P 5,
—2.095866P g3 +0.198922P g, +0.198922P g5, -+ 2.493711P g5, — 2.095866P s,
+2.49371 1P g5) — 2.095866P g9, +0.198922P 00, +2.493711P(q,, +0.198922P oy,
—2.095866P(05) +2.493711P gy +0.198922P g5 — 2.095866P ) +2.493711P (07,
— 2.095866P o) -+0.198922P99) +0.198922P 100, + 249371 1P 1) — 2095866103,
+3.917581P3) -+ 2.663405P 10 — 0.956684P 15, +0.681225P 105 + 0.368706P 107,
+ 1.622792P 105, + 2.663495P109) + 3.917581P119) — 0.956684P 111, — 22107707, 13
+ 1.622792P 115, +0.368706P 14 + 2.663495P,115) — 0.956684P 11, +3.917581P 117,
+1.622792P115) — 2.210770P 1) + 1.622792P 130, + 3.917581P 121 — 0.956684P 1)
+2.663495P 153, + 0.368706P154) +0.681225P 115 +0.368706P 1) — 0.956684P 1)
+3.917581P135) -+ 2.663405P 19, + 1.622792P 13, +0.368706P 13, + 0.681225P 131,
— 0.956684P 153+ 2.663495P34) +3.917581P 135 +0.368706P 13 + 1.622792P 13
—2.210770P35)]d%<4
+[=0.716260P ;) — 0.716260P 5, — 0.716260P 3, — 2.38295TP ;) —4.268597P s, +4.502776P
—4.268597P ;) —2.382957P(5) +4.502776P5) — 2.217185P, 1) — 2.217185P, 1}, + 2.285591 Py,
—2.382957Py3) + 4.502776P 1) — 4.268597P 15 — 2.217185P 1) + 2.285591P 17, — 2.217185P 15
—4.268597P19) +4.502776P yg) — 2.38295TP 31 + 3.771280P 5 + 1.885640P 53 + 1.885640P s
+1.885640P 35) — 2.382957P ) — 6.885733P 7, + 1.885640P pg) — 0.165772P ) — 2.382957P 30,
+2.285591P ) — 2.217185P 33) — 2217185 33, + 4.502776P 34) — 2.382957P 35, — 4.268597P 35,
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+ 4.502776P 37) — 4.268597P35) — 2.382957P 39) — 2.382957P40) + 1.885640P4;) — 0.165772P 4

+ 1.885640P 43) 4 3.771280P44) + 1.885640P 45) — 6.885733P 4 + 1.885640P 47) — 2.382957P 43,
—2.382957P 49) — 0.165772P 50, + 1.885640Ps1) — 6.885733P5) — 2.382957Ps3) + 1.885640Ps4)

+ 1.885640Ps5) 4 1.885640Ps6) + 3.771280P 57, — 1.307807P(s5) — 1.307807P 59 — 1.307807P 0

— 0.838049P 4}y — 0.653903P g3 — 0.653903P3) — 0.469758P g4 — 0.838049P65) — 0.653903P 5

— 0.653903P7) — 0.469758P 55) — 0.838049P 9) — 0.653903P ) — 0.469758P 71 — 0.653903P 7,

— 0.838049P73) — 0.469758P 74) — 0.653903P75) — 0.653903P 76 — 0.838049P77) — 0.469758 P 75

— 0.653903P(79) — 0.653903P5) — 0.838049P 5;) — 0.653903P55) — 0.469758P 3, — 0.653903P 3y

— 0.653903Ps5) — 0.838049P 56) — 0.469758P 57) — 0.838049P 55) — 0.469758P59) — 0.653903P 99

— 0.838049P g}y — 0.653903P 9 — 0.469758P g3) — 0.838049P 94 — 0.653903Pg5) — 0.469758P 95

— 0.838049P g7) — 0.469758P 45) — 0.653903P 99) — 0.653903P19) — 0.838049P 191 — 0.469758P1»

+ 5.472775P 103) — 0.497317TP 104 — 2. 746924 P 105) — 0.497317P106) — 0.313172P 147, + 5.656920P 15
— 0.497317P109) + 5.472775P 110) — 2.746924P 111 — 8.717016P 115 + 5.656920P113) — 0.313172P 114,
— 0.497317P(115) — 2.746924P 116) + 5.4727T75P 117 + 5.656920P 115) — 8.717016P(119) + 5.656920P 159,
+ 5.472775P (151) — 2.746924P 125) — 0.497317P 123 — 0.313172P 154) — 0.497317P155) — 0.313172P 1)
— 2.746924P (17) + 5.4T2775P 18) — 0.497317P 139) + 5.656920P139) — 0.313172P131) — 0.497317P ;3
— 2.746924P133) — 0.497317P 134 + 5.472775P 135) — 0.313172P 136 + 5.656920P 137,

— 8.717016P 135 d"“' N

+ [-0.353158P3) + 0.353158P3) 4 0.396705P4) — 0.086664P5) + 0.374322P ) 4 0.861923P7)
—0.009757Pg) — 0.032141P(9) 4 0.545727P 1) + 0.139265P 1) + 0.513587P15) — 0.386947P 3,

— 0.342181P 14 — 0.775260P15) — 0.684993P 1) — 1.027174P 17, — 0.684993P 15 — 0.775259P 10

— 0.342181P ) — 0.386947P ) — 0.388312P ) + 0.076906P 13y + 0.483368P 24 — 0.8716807P 55
—0.009757P36) + 0.022383P 27) — 0.465218P 55) — 0.149022P 29 4 0.396704P39) + 0.513586P 3,

+ 0.139265P (35 4 0.545727P(33) — 0.032140P 34) — 0.009757P 35) + 0.861923P36) + 0.374321P3;)

— 0.086664P(35) + 0.396704P 39) — 0.386947P 49 + 0.388311P41) + 0.298045P 43 + 0.388311P 43,
+0.776623P (44) + 0.388311P45) — 0.044766P 45) + 0.388311P47) — 0.386947P45) + 0.396704P 49,

— 0.149022P5) — 0.465218P sy + 0.022383P55) — 0.009757Ps3) — 0.871680Ps4) + 0.4833687Ps5)

+ 0.076906P (56) — 0.388311Ps57) + 0.553863Ps5) — 1.107726P59) + 0.553863P50) + 0.596522P 4

+ 0.844398P 63 4 0.168365P (63) — 0.048819P 64) + 0.6026827P 65) + 0.385497P ) — 0.290535P 47,

— 0.042659P5) — 1.199205P 59 — 0.553863P (79 + 0.091478P 71y — 0.553863P7) + 0.5965227P 73

— 0.048819P(74) + 0.168365P75) + 0.844398P 75) + 0.6026827P 77) — 0.042659P (75) — 0.290535P 79,
+0.385497P(50) — 1.199205P 51 — 0.553863P55) + 0.091478P53) — 0.553863P 54, + 0.953329P 55
—0.157073Pg5) + 0.060111P g7, + 0.307987P (55) — 0.1263827P 59) — 0.585230P 9 — 0.150913P oy

— 0.368098P(g2) + 0.066271Pg3) — 0.150913P 94 — 0.368098P 95 4 0.066271P96) 4 0.307987P g7,

— 0.126382Pg5) — 0.585230P 99) + 0.953329P199) — 0.157073P191) + 0.060111P 1) + 1.184049P 3,
+0.149792P104) — 0.270205P105) + 0.149792P16) — 0.0673927P 17, + 0.290831P145) + 0.454011P 19
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— 0.447757P110) + 0.127260P 111y — 0.137716P 1 15) — 0.199881P13) + 0.025854P 14 — 0.603803P 5,
+ 0.142944P 1 16) — 0.736292P 117 — 0.090950P 1 15) + 0.275433P19) — 0.090950P159) — 0.736292P 121
+0.142944P 1) — 0.603803P153) + 0.041538P 124y — 0.299584P 15) + 0.041538P156) + 0.127260P 17,
— 0.447757P 128) + 0.45401 1P 129) + 0.290831P 139, — 0.067392P13) + 0.149792P;35) — 0.270205P 33,
+0.149792P 134) + 1.184049P;35) + 0.025854P 136 — 0.199881P 137 — 0.137716P135)] f1°“N

+ [5.316244P ) — 5.316244P3) — 1.778964P ) — 3.517872P 5 — 1.937055P ) — 1.712767P5,

— 0.894191P ) — 1.052282Pg) — 2.0647027P ;) — 1.179930P ;1) — 3.116984P 1) + 2.673156P 13
+2.989336P14) + 5.230640P;5) + 3.244632P 1) + 6.233969P;7) + 3.244632P 15) + 5.230640P 19
+2.989336P 2 + 2.673156P 21 + 2.557484P 29) + 2.623681P 23) + 1.738908P 24) + 0.818576P 15

— 0.894191P36) + 0.158090P 27 — 0.066197P 55) + 0.285738P59) — 1.778964P 39 — 3.116984P 3

— 1.179930P 35 — 2.0647027P 33) — 1.052282P 34 — 0.894191P 35 — 1.712767P36) — 1.937055P 37,

— 3.517872P35) — 1.778964P 39) + 2.673151P 4g) — 2.557486P 41y — 0.57147TP 4 — 2.557486P 43,

— 5.114962P 4y — 2.557486P 43) — 0.316180P45) — 2.557486P 47) + 2.673151P 45y — 1.778964P 49,

+ 0.285732P ) — 0.066193P 5 + 0.158090P5) — 0.894194P 53 + 0.818572Ps4) + 1.738904P 55

+ 2.623680P 56) + 2.557486P (57 — 1.805822P s5) + 3.611644P59) — 1.805822P ) — 3.549941P 4,

— 3.526038P ) + 0.227060P g3y — 0.573359P 54) — 1.232465P 5) — 2.032884P ) + 1.720206P 47,

+ 1.744128P 65) + 4.782416P g9) + 1.8058227P 1) — 1.170762P 7 + 1.8058227P ) — 3.549941P 73

— 0.573359P7) + 0.227060P75) — 3.526038P 75 — 1.232465P 77 + 1.744128P 75) + 1.720208P 79
—2.032883Pg9) + 4.782416P g, + 1.805823P g5) — 1.170769P 53 + 1.805823P g4) — 3.819839P g5
+0.193345P g — 0.867162Pg7) — 0.843246P g5) — 0.583153P g9, -+ 2.109430P 99 + 0.649901P gy

+ 1.710409P 95 + 1.450315Pg3) + 0.649901P g4) + 1.710409P g5) + 1.450315P 95) — 0.843246P 97,

— 0.583153Pg5) + 2.109430P 99) — 3.819839P199) + 0.193345P191) — 0.867162P12) — 5.621879P 103,
— 0.081106P104) + 2.826341P 105, — 0.701413P06) — 0.881520P 17, — 2.669203P 5y — 1.720159P 100
+ 1.457590P119) — 1.492175P 111y + 0.463316Pj12) + 1.481505Pj13) + 2.056848Pj14) + 1.801265P ;)
— 1.334166P 1) + 4.164290P ;17 + 1.187697P;15) — 0.926631P 119) + 1.187697P159) + 4.164290P 15y
— 1.334166P122) + 1.801265P123) — 1.175328P 124) + 1.402826P 125) — 1.175328P156) — 1.492175P 1)
+ LA57590P 18) — 1.720159P159) — 2.669203P;30) — 0.881520P 13y — 0.701413P13) + 2.826341P ;33
— 0.081106P134) — 5.621879P 135 + 2.056848P36) + 1.481505P 137) + 0.463316P35)] f47
+[-0.353158P;) + 0.353158P3) — 0.386947P4) — 0.775259P5) — 0.342181P ) — 0.775259P 7,
—0.386947P g, — 0.342181P9) — 0.684993P 1) — 0.684993P ;1) — 1.027174P 1) + 0.396705P 3
+0.374322P14) — 0.086664P;5) + 0.545727P 1) + 0.513587P17, + 0.139265P 15 + 0.861923P 19,

— 0.032141P 59 — 0.009757P 3}y — 0.388312P 53 — 0.465219P 23) — 0.871681P 14 + 0.483369P 1)
+0.396705P 6) + 0.0223837P 27, + 0.076907P 5) — 0.149023P29) — 0.009757P 39) + 0.513587P 3y

+ 0.545727P 3) + 0.139265P 33) + 0.374321P 34) + 0.396705P 35, — 0.086664P 35 — 0.032141P 35,

+ 0.861923P35) — 0.009757P39) + 0.396705P 49) — 0.465219P 4 — 0.149023P 42 + 0.483369P 43

— 0.388312P4y) + 0.076907P 45 + 0.0223837P 45 — 0.871681P47) — 0.009757P 45) — 0.386947P 49,
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+0.298046P59) + 0.388312P 5, — 0.044766P 5 — 0.386947P 53 + 0.388312Ps4) + 0.388312P 55

+ 0.388312P56) + 0.776624Ps7) + 0.553863Ps5) + 0.553863Ps59) — 1.107727P 5 + 0.602682P 1,
—0.290535P2) + 0.385497P 3, — 0.042659P g4) + 0.596523P 65, + 0.168366P46) + 0.844399P 4,

— 0.048819Pgg) + 0.596523Pg9) + 0.168366P ) — 0.048819P7) + 0.844399P ) — 1.199205P 73

+ 0.091478P 74 — 0.553863P75) — 0.553863P 75 — 1.199205P 77y + 0.091478P 75, — 0.553863P 79

— 0.553863Pg9) + 0.602682P5)) — 0.290535P g) — 0.042659P g3 + 0.385497P 3) — 0.368099P g5,

= 0.150914Pg5) + 0.066271P 7 — 0.150914P g5) -+ 0.06627 1P 59) — 0.368099P ) — 0.157073P gy
+0.953329P g3) + 0.060111P93) + 0.307987P 94y — 0.585230P 95, — 0.1263827P 96) — 0.157073P 97,
+0.060111Pg5) + 0.953329Pg9) — 0.585230P10) + 0.307987P101) — 0.126382P 1) — 0.447757P 15,
+ 0.454011P 104y + 0.127261P105) + 0.149792P 16 + 0.025855P 17, — 0.199881P5) + 0.1497927P 0
+ 1.184049P;19) — 0.270205P 111y — 0.137716P112) + 0.2908327P 13, — 0.067392P 114 + 0.149792P ;5
—0.270205P114) + 1.184049P 17, + 0.290832P ;15 — 0.137716P 1 19) — 0.199881P 159 — 0.447757P 121
+ 0.12726 1P 129) + 045401 1P j3) + 0.025855P 124) + 0.1497927P 125 — 0.067392P156) + 0.142944P 57,
— 0.736292P125) — 0.603804P129) — 0.090951P139) -+ 0.041538P131) — 0.299585P;32) + 0.142944P 33,
— 0.603804P134) — 0.736292P 135 + 0.041538P136) — 0.090951P137) + 0.275433P 135 | f4PN ¢

+ [5.316244P ;) — 5.316244P3) + 2.673156P 4 + 5.230640P5) + 2.989336P4) + 5.230640P,7,
+2.673156P5) + 2.989336Pq) + 3.244632P 1) + 3.244632P 1) + 6.233969P 1) — 1.778964P 3,
—1.937055P 14 — 3.517872P;5) — 2.064702P 1) — 3.116984P 17, — 1.179930P ;) — 1.712767P 9

— 1.052282P5) — 0.894191P 3}y + 2.557484P 53 — 0.066197P 3, + 0.818576P 54) + 1.738908P 55

— 1.778964P 36) + 0.158090P 27) + 2.623681P a5) + 0.285738P 29) — 0.894191P 39, — 3.116984P 3,

— 2.064702P 33 — 1.179930P 33) — 1.937055P 34 — 1.778964P 35 — 3.517872P 3 — 1.052282P 37

— 1.712767P 35) — 0.894191P 39) — 1.778964P 49, — 0.066197P 4y + 0.285738P 42 + 1.7389087P 43,

+ 2.557484P 44) + 2.623681P45) + 0.158090P 45) + 0.818576P 47, — 0.894191P 4 + 2.673156P 49,

— 0.571476Ps50) — 2.557484Ps51) — 0.316181P55) + 2.673156Ps3) — 2.557484P 54 — 2.557484P 55

— 2.557484P56) — 5.114968Ps57) — 1.805823P55) — 1.805823Ps9) + 3.611646P ) — 1.232469P 4

+ 1.720208P 5) — 2.032883P(g3) + 1.744124P 54 — 3.549947P g5 + 0.227060P 56) — 3.526031P 7,

— 0.573354P g) — 3.549947P 59, + 0.227060P 7 — 0.573354P 71y — 3.526030P 1) + 4.782416P 73,

— 1.170770P74) + 1.805823P 75, + 1.805823P 75) + 4.782416P 77, — 1.170770P75) + 1.805823P 79

+ 1.805823P59) — 1.232470P gy + 1.720208P g2) + 1.744124P 53, — 2.032883P(g4) + 1.710409P g5,
+0.649901P56) + 1.450315P g7y + 0.649901Pg5) + 1.450315P 59) + 1.710409P 9) + 0.193345P gy

— 3.819839P9) — 0.8671627P g3y — 0.843246P g4) + 2.109430P g5, — 0.583153P95) + 0.193345P o5

— 0.867162Pgg) — 3.819839P g9 + 2.109430P199) — 0.843246P 1) — 0.583153P12) + 1.457590P 03,
— 1.720159P 104y — 1.492175P 105) — 0.701412P6) + 2.056848P17) + 1.481505P105) — 0.081106P ;o)
— 5.621879P110) + 2.826341P 111y + 0.463316P (115 — 2.669203P 3y — 0.881520P ;14 — 0.081106P 5
+2.826341P116) — 5.621879P117) — 2.669203P 1 15) + 0.463316P 1) + 1.481505P 129) + 1.457590P 121
— 1.492175P12) — 1.720159P153) + 2.056848P 124) — 0.701413P 155 — 0.881520Pj56) — 1.334166P17)
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+ 4.164290P 125, + 1.801265P129) + 1.187697P 130 — 1.175328P y3) + 1.402826P13) — 1.334166P 133,
+ 1.801265P 134) + 4.164290P 135 — 1.175328P136) + 1.187697P 137, — 0.926631P y3)] 1

+ [-0.353158P ;) + 0.353158P )| f47° N + [5.316244P,

where we have dropped the common argument of
P(k)(p,q, r) and have only used the Jacobi identity in
the channels with a nonzero tree term. Indeed for these
three channels, 1, 2 and 3, the symmetry associated with
color tensors d4°°? and d4P<¢ is evident.

IV. MOMgggg SCHEME

Having completely determined the 4-point function at
one loop in the MS scheme at the symmetric point we can
now consider the renormalization in other schemes. In [16]
the symmetric point renormalization of the 3-point vertices
led naturally into the definition of the momentum sub-
traction schemes. These are mass dependent schemes and
are constructed in such a way that after renormalization at
the subtraction point the respective vertices have no O(a)
corrections. This is in addition to the wave function
renormalization constants being defined in the same way
via the 2-point functions. As there are three 3-point vertices
in QCD this leads to three separate MOM schemes which
are denoted by MOMggg, MOMh and MOM(q based on the
respective triple gluon, ghost-gluon and quark-gluon ver-
tices [16]. In light of this and the fact that we have
considered the quartic gluon vertex at the fully symmetric
point we can define an analogous momentum subtraction
scheme which will be denoted by MOMgggg. More

|

1 11 a
ZI;IOMgggg =1+ [ng _ZNC] .

) — 5.316244P )| f49¢]a + O(a?),

(3.9)

|

specifically the scheme is defined as follows. We will
retain the wave function MOM renormalization scheme
approach. By this we mean that the 2-point functions are
rendered finite by ensuring that at the subtraction point
there are no O(a) corrections. This does not mean that the
wave function renormalization constants are the same as
the three MOM schemes of [16]. This is because as one
proceeds beyond one loop the renormalization constant of
the coupling constant is required and this is different in
different MOM schemes. Therefore, that observation will
equally apply to MOMgggg. However, for the MOMgggg
coupling constant renormalization its definition requires
some care. This is because unlike the 3-point vertices there
is more than one color tensor structure for the 4-point
function. Therefore, we require the quartic vertex function
to be written in terms of the color tensors of the original
quartic gluon Feynman rule for SU(N.) in contrast to [18].
This was one of the reasons for already presenting our
results in this format in the previous section. Thus the
MOMgggg scheme coupling constant renormalization is
defined so that after renormalization there are no O(a)
corrections to that part of the vertex function corresponding
to the original quartic vertex Feynman rule. With this
definition we find the coupling constant renormalization
constant is

5329 17 53 , 7 4 431 /4 27 (4
[_%_ﬁa 60% " 160% —ﬁln<§> +ﬁln<§>a
+%ln<g>a2—%ln<g>oﬁ+%®1<]—96,%>
5120 (76-76) =~ 25600 (7576) * 25600% (76 76)
it (33) ra (3o ()7
+ E—i—%ln(%) —%@1 (19_6’19_6) —l—%@l (;;%)]Nfa—'— 0(a?). (4.1)

Equipped with this renormalization constant we can construct the relation between the A parameters in MOMgggg and MS.

From standard formalism this ratio is defined as

AMOMggeg

AV eXp[

AMOMgggg(a, N f)]

by
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where we take

22

b() :_Nc __Nf

3

and AMOMeeee (¢ N +) is related to the finite part of the one loop coupling constant renormalization constant. From Z

we have
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1 4 4 4
IMOMESSE (0, N ) = s [2592 In (§> &N, — 1457281n <§> o®N, —388801In <§) aN,

4 4
+6620161n <§) N, — 134400 1n <§> N,

16716

9 9 9 9 9 9
- 31599, (_ —>a3NC + 243819, (E’E)ach — 403659, ( )aNC

9 9

9 9
— 216579, (E’1_6> N, + 4800, <—

16’1_6>Nf

33 33 33 33
+ 162009, (Z : Z) N, — 18000, (Z’Z) aN, — 510009, (Z’Z) N, — 336009, ( >Nf

+ 100806’ N, — 7632062, + 122400aN,, + 852640N,, — 179200N].

To appreciate the behavior of AMOMegeg(q N ;) we have
computed it for various values of @ and N, and presented
the results in Table I. There we reproduce the correspond-
ing values for the three MOM schemes defined in [16] in
relation to MS rather than the original minimal subtraction
(MS) scheme values which were actually given there. For
instance, the Landau gauge values are lower than those for
MOMggg.

While we have introduced the new scheme MOMgggg
we have not presented the associated one loop renorm-
alization group functions for this scheme. This is because
at this order these functions are scheme independent.

TABLE L. Values of AMOMsgzg / AMS for §{(3) in comparison
with other MOM schemes of [16].

a Ny MOMgggg  MOMggg MOMh  MOMq
0 0 2.6551 3.3341 2.3236 2.1379
0 1 2.4965 3.0543 2.3250 2.1277
0 2 2.3274 2.7644 2.3267 2.1163
0 3 2.1474 2.4654 2.3286 2.1032
0 4 1.9560 2.1587 2.3308 2.0881
0 5 1.7529 1.8471 2.3336 2.0706
1 0 2.4543 2.8957 2.6166 1.9075
1 3 1.9506 2.0751 2.6924 1.8296
1 4 1.7631 1.7921 2.7265 1.7964
1 5 1.5658 1.5088 2.7670 1.7581
3 3 1.7693 1.8392 4.1918 1.3110
3 4 1.5868 1.5732 4.3978 1.2533
-2 4 2.6576 2.5437 2.0081 2.6597

4
4.3
3 (4.3)
MOMgggg
16°16
44
(4.4)

|

Beyond one loop the coefficients of each term in the
coupling constant expansion depend on the scheme. This
applies to the f function too. Though, in mass indepen-
dent renormalization schemes such as MS the two loop
term of the p function is also scheme independent in
theories with only one coupling constant [48]. However,
while we have performed a one loop computation it is
possible to construct the two loop renormalization group
functions in the MOMgggg scheme using properties of
the renormalization group. See, for example, [49] for
background to this. To achieve this we have to compute
the various conversion functions for each renormalization
group function which in essence are the ratios of the
respective renormalization constants in each scheme. In
particular,

MOM ZMOMezze
Cg gggg(a,a) -9 ,
ZMS
g
ZMOMgggg
MOM
Cy ¥ (a,0) = =
p ZMS
)
MOM ZMOMgggg ZW
(O (77} [ R a— 4.5
@ (a.a) ZMS Zi\‘/IOMgggg’ (4.5)
[04

where ¢ € {A, c,w} denote the gluon, ghost and quark
fields respectively. While in our conventions Z, will be
unity in a linear covariant gauge we have included it here
so as to be formally correct. There are (nonlinear
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covariant) gauges where the corresponding gauge param-
eter renormalization constant is not unity. It is important
to realize that in these formal definitions the perturbative
expansion is in powers of the coupling constant defined
in one scheme. (Our convention is that that scheme is
MS.) Otherwise the conversion functions would have
poles in e. Therefore, we have to relate the MOMgggg

|

4
aMOMgggg =a-+ |:2592 In <3> 0:3NC —

9 9\ , 9 9
~ 31599, (16 16) N, +24381®, <16 16)

9

9 9 9
— 216579, <16 16)N + 48009, (16 16>Nf

33 33
162009, (2,2 )a®N, — 18000®, ( >
+ 16200 1<4,4>aNL 8000 1(4,4)

4 4 4
145728 In <3) 2N, —388801In <3> aN, + 662016 1n (3) N,

PHYSICAL REVIEW D 90, 025011 (2014)

definition of the coupling constant to the MS one order
by order. This is achieved by

his : (4.6)

a =
MOMgggg (CEAOMgggg (a’ a) )2

For the MOMgggg scheme the explicit form of (4.1) gives

4
— 134400 1In <3) Ny

9 9
— 403659, <16 16)05N

33 33
51000@( 4> 33600<I>< 4>Nf

2

+0(d), (4.7)

+ 100800’ N, — 763200’ N, + 122400aN.. + 852640N . — 179200Nf] 115200 1;1200

where the one loop correction coefficient is in effect /IMOMgggg(a, Nf). In addition, from the one loop wave function
renormalization constants [16] we have

CYOVE (0, ) = 1 + 9N, + 18aN, + 97N, - 40N/) 5 + O(a?),
CYOMEE (4 o) = 1 + Noa + O(a 2)
CUI\I/IOMgggg(a,a) =1+a[-N2+1] 2). (4.8)

2N

Once these are known explicitly the two loop MOMgggg corrections to the respective renormalization group functions can

be computed from the formal relations

— dayiom dayiom

ﬂMOMgggg(aMOMgggg» aMOMgggg) = |:ﬁMS(aMS) —YOVEERE aMSy‘l (aM_S’ aM_S) ai—gggg B (4.9)

s IS 1 MS—MOMggge

and
MOM MOM
Y gggg(aMOMggggv aMOMgggg) [ MS (aMS) O In C¢ gggg(am’ Olm)
MS
0 MOM

+ o (“Ms’ ys) e InC, 45 (axs. “Ms)+7r/) (ans) | __ (4.10)

NS MS—-MOMgggg

which are constructed from the renormalization group
equation itself. In (4.9) and (4.10) we have labeled the
variables with the scheme they are defined in. In addition
to having a coupling constant defined in a scheme the
gauge parameter is also defined with respect to a scheme.
Though, from the construction the Landau gauge is
preserved between schemes. Also the renormalization

[
group functions are labeled with a scheme. However, the
mapping, MS—MOMagge® in (4.9) and (4.10) indicates that

after the left-hand side has been determined in MS variables
then they are mapped to their MOMgggg counterparts as

indicated by the arguments on the right-hand side. From
these expressions one can see that to construct the two loop
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corrections only the one loop conversion functions are [50-55], then we have all the required information to
required since each term involving such a function is  extract the fwo loop renormalization group functions.
multiplied by a function which is O(a). Further, as the Therefore, using this formalism and the explicit values
MS two loop renormalization group functions are available ~ for the conversion functions we have

|

yNOMEEE (4 ) = [3aN, — 13N, + 4Nf]%
4 473 4 3a73 4 3a72 4 2 A73
+ |=77761n( 5 ) a*N2 + 4708801n S @ NE — 103681In( 5 ) N3N, - 17778241n 5 ) N2
4 4 4 4
+5829121n S | N2, — 2491488 1In( 5 | aiV? + 5587201n (5 ) aN2N + 8606208 In 5 | V2
4 4 9 9 9 9
—43952641n ( = | N2N, + 5376001n = | NN + 94779, a*N? — 1142109, &N}
n<3> Nyt n<3> + <16 16) <16 16) ¢

9 9 9 9 9 9
126363, NN + 438048, @?N? — 975240 2NN
12636 <16 16) 7+ 438048 (16 l6> = 1(16 16) /
9 9 9 9 9 9
—459774® N? + 1470609, aN?N,; —281541®, N}
? ’(16 16)“ + (16 16> e <16 16>

9

9 33
+ 149028®, 16, >N2Nf 19200@( )N N3 - 48600<I>1<—,Z>a3N3

16716

44

( :

2 3 33 2 2 33 3
+ 2646000, 4, 4 N2 = 648000, ( 7.7 J@® NN, — 810009, aN?
+ 1728009, <

33 33 33
2 3 2 2
) aN2N ; — 6630009, ( 4> N3 — 2328009, <Z’Z> N2N; + 1344009, (Z’Z) NN}
— 3024004 N2 + 2736000 N3 — 403200 N2N ; — 10713600>N2 + 19008002N2N ; + 396480aN?
2

_ 2N, — 842080N3 + T36640N2N ; + 204 7 = 691200N | oo
336000aN?N; - 842080N? + T36640NZN  + 204800N N} = 691200N ] e

+ 0(a%),

(4.11)

rIOE (0 a) = [a 3] =

4 4 4
+ [—2592 In (3) a*N, + 153504 ln< ) &N, — 398304 1In <§> &N,
4 4 4
— 778656 1In (§> aN, + 134400 In ( > aN; + 1986048 In (5) N, —4032001n <§> N,

9 9
3 2
) N+ 1135089, <16 16) a N,

9 9
16°16

9 9 9 9 9 9
—99438% — 48009, 49719, 144009,
99438 1(16 16>aN 800 <16 16>aNf 6497 (16 16>N + 14400 (16 16>N

33 33 33 33
- 16200@1 (Z,Z> (XBNC + 66600@1 (Z ,Z> (XzNC - 3000@1 <Z ,Z> aNC + 33600@1 <Z,Z> aNf

+ 31599, ( > a*N, — 33858, (

16°16

33 33
— 153000, <Z , Z) N, — 100800, <Z , Z) N —10080a*N, + 1353602°N,, — 293760¢N,

2

N,
—203840aN., + 51200aN ; — 43680N., — 384001\7} o) (4.12)

460800
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VOV (g, ) = (N2 = 1]

4 2N

4 4 4
+ [—2592 In (5) ' N* +2592 1n(§> N2+ 145728 1n (3) 3

AP 4 2N 4\ 5 5 AN
— 145728 In 3 a’ N7 + 388801n 3 a-N? — 38880 In 3 a N7 —6620161n 3 aN;

4 4 4
+ 1344001n<§)aN2Nf +6620161n 3>aN2 - 1344001n(3>aN Ny + 31599, (196 196) a*N*
9

9\ 4 374 9 9 BN2

31599, <16 16) @*N? — 243810, <16 16) NE 4243818, ( 2.1z Ja'N2
9 9 - 9 9\ .,

616 ,16> N+21657<I>1<16 16) aN*

9 9
16°16

+ 40365, ( ) PN — 40365,

9 9
) aN? + 48009, <16 16>aN Ny

33 33 33
— 162009, <Z’Z> @’ N* + 162009, ( 7 4) > N2 + 18000, ( E 4>a2N‘C‘—18000<I>1 <Z,Z>a2N§

(7
— 48009, < ) N3Nf 216579, (

16°16

4’4
— 10080a*N# + 10080a* N2 + 105120a° N* — 1051200° N? + 216000’ N4 — 21600a> N>
— 139040aN? 4 51200aN3N; + 139040aN? — 51200aN N + 633600N7 — 115200N3N ¢

2

a
T o), 4.13
23040082 T O@) (4.13)

33 33 33 33

— 547200N? + 115200N N, — 86400]

and

2
pMOMeeee (g a) = [-11N, + 2N/] %

4 4 4
+ {—2592 In <§> a*N? + 108384 1n (—) a’N> —34561n <§> @’ NZN;

W

4 4 4 4
—4080321In (§> a*N? +1295361n (—) azN%Nf —561601n (5) aN? + 17280 1n (5) aN%Nf

W

9 9 9 9 9 9
159®, N3 — 299430, N3 4 42129, N2
+3159 (16 16) N3 —29943 <16 16) N3+ (16 16) NN,

9 9 9 9 9 9
P, N3 — 216720, 2N2N o 3
+ 83889 (16 16) 6 (6 6> N2N; — 58305 1(16 16) aN3
9 9\ 33\ 5.4 33\ 5.4
+ 179409, (16 16>aN N — 108009, ( 4>a N3 + 528009, <4,4>a N3

33 33 33

—10080a*N? 4 945600> N2 — 13440a° N2N ; — 2612800’ N> 4 67840a>N2N ; + 176800aN?
c c ctvf ¢ N ¢

a3

- 4
7600w, + 0(a*). (4.14)

— 54400aN2N ; — 870400N2 4 332800N2N; — 76800Nf]

For more practical purposes the numerical values are beneficial and we have
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PMOVEEE (4, 1) |5 5) = [0.666667N  — 11.000000]a’

PHYSICAL REVIEW D 90, 025011 (2014)

+ [~0.008632a* — 0.0038362° N ; — 07922300 — 0.368726a>N s + 6.608703a> + 1.339388aN
— 13.059036a + 12.666667N ; — 102.000000]a’ + O(a*),

7 O (4, @) 5, = [1.500000a + 0.666667N ; — 6.500000]a
+ [~0.002877a* — 0.0012792° N ; — 1527349 — 0.684363a>N; + 8.561163a> + 3.535793aN
— 27.533402a + 0.976180N? — 3.284136N ; — 15.652749]a> + O(a*),

7 OMEE (g gr)|gy(3) = [0.750000a — 2.250000]a

+ [<0.001439a* + 0.359407a° + 3.254037a° + 1.098202aN ; — 15.132618a — 2.544606N ;

—2.475952]a® + O(d?),

},ul\lAOMgggg<a,a)|SU(3) = 1.333333aa

+ [=0.002557a* + 0.631274a° + 7.678777a° + 1.952359aN ; — 3.866103a — 1.333333N ,

+22.333333]a% + O(a?)

for the SU(3) color group. One can see, for instance, that in
the Landau gauge the usual two loop QCD g function of
[52,53] emerges for the MOMgggg scheme.

V. DISCUSSION

We have completed the full symmetric point evaluation
of the quartic vertex in QCD by providing the exact
decomposition of the vertex into the full tensor basis.
This extends the earlier work of [18] which was motivated
by a different interest. Broadly we have agreement with [18]
where there is overlap. One consequence of the determi-
nation of the full vertex structure is that we are able to define
a new momentum subtraction scheme in the same class as
those proposed in [16]. Unlike the 3-point vertices which the
schemes of [16] were based on, one has first to be careful in
organizing the color group tensors. In other words, one has
to write the vertex function in terms of the structure of the
original Feynman and a set of completely symmetric color
tensors. The latter are natural for the fully symmetric
momentum configuration. Once the preferred basis has
been determined the definition of the MOMgggg scheme
emerges naturally. Although we have carried out a one loop
renormalization properties of the renormalization group
equation have allowed us to construct all the two loop

|

(4.15)

I

renormalization group functions ahead of an explicit two
loop computation. Such an extension would require a sizable
calculation. Although there are a significantly large number
of graphs, some [41] but not all the basic two loop box
master integrals are known analytically at the fully sym-
metric point. This is not an insurmountable obstacle as a
numerical evaluation can suffice in the interim much as (3.7)
and (3.8) did for the one loop case. One reason why such a
two loop computation would be of interest, albeit at one
specific momentum point, is that it would give an estimate of
the extent that the two loop corrections are significant for,
say, Schwinger-Dyson comparisons. Though, a more gen-
eral computation of the fully off-shell quartic vertex would
support future Schwinger-Dyson analyses beyond that
carried out, for example, in [28].
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APPENDIX: TENSOR BASIS

In this Appendix we give the complete set of basis
tensors for the quartic vertex. We have

r°p’
P (peg.r) =wa?e PR (pagr) =wons PR (pager) =wrt P (pagor) = o
4 y_p”q/’ 4 po'r/) 4 qo—p/} J qo’q,}
Pls)’ (poa.r) =1 T Pl (prq.r) =n" 2 Py (p.q.r)=n" 2 Pl (p.q.1) = ’7’”’—”2 ;
qo'rp rapp }"gq‘o ra,.p
Ploy (p.q.1) =n" P Pioy (poa.r) = (e Pl (poa.r) = (e Pl (p.q.1) = (e
p'p’ P'q’ Vb Yo
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P ="LEE P =TT P =" P g =P
Pran ) =TT Pt g =P g =TT g =TT
Pl (pa.r) =T P g =P P =PI P g =P
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2 U H U
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P (g = 2L P g =T P ) =T P () =TT
Py pan="C0 0 PG e ="EE P =T P =P
Pt pan="CE PG e =" P g =TI P =T
e e (A1)

In previous similar and related work we have at this point given the corresponding projection matrix, M},, which allows
one to determine each channel of the Green’s function. However, due to the size of this matrix we have relegated the explicit

matrix elements to the data file.
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