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We consider the two most general families of the ð1þ 1ÞD Dirac systems with transparent scalar
potentials and two related families of the paired reflectionless Schrödinger operators. The ordinary N ¼ 2

supersymmetry for such Schrödinger pairs is enlarged up to an exoticN ¼ 4 nonlinear centrally extended
supersymmetric structure, which involves two bosonic integrals composed from the Lax-Novikov
operators for the stationary Korteweg–de Vries hierarchy. Each associated single Dirac system displays
a proper N ¼ 2 nonlinear supersymmetry with a nonstandard grading operator. One of the two families of
the first- and second-order systems exhibits the unbroken supersymmetry, while another is described by
the broken exotic supersymmetry. The two families are shown to be mutually transmuted by applying a
certain limit procedure to the soliton scattering data. We relate the topologically trivial and nontrivial
transparent potentials with self-consistent inhomogeneous condensates in the Bogoliubov–de Gennes and
Gross-Neveu models and indicate the exotic N ¼ 4 nonlinear supersymmetry of the paired reflectionless
Dirac systems.
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I. INTRODUCTION

The Schrödinger and Dirac equations with reflectionless
or soliton potentials are exactly solvable. The reflectionless
potentials of a general form for the one-dimensional
Schrödinger equation were obtained for the first time by
Kay and Moses by solving the problem of a theoretical
construction of a solid dielectric medium which is perfectly
transparent to electromagnetic radiation [1]. Such perfectly
transparent potentials appear in the ð1þ 1Þ-dimensional
Gross-Neveu (GN) model [2–4] and are closely related
with a nonlinear problem of self-consistency of the
Bogoliubov–de Gennes (BdG) equations [5–7]. They find
applications in the description of a broad spectrum of
phenomena in diverse areas of physics such as conducting
polymers [8–13], charge fractionalization [14–17], and
superconductivity [5–7], [18–22], just to mention a few.
There is also a great interest in supersymmetry associated
with fermions in soliton backgrounds [23–28].
Reflectionless potentials play a fundamental role in the

theory of integrable systems. They appear as soliton
solutions, particularly, to the Korteweg–de Vries (KdV)
and modified Korteweg–de Vries (mKdV) equations. Their
explicit form can be obtained by means of the inverse
scattering method, by Bäcklund transformation, or by
Darboux-Crum transformations [1], [29–41]. A character-
istic feature of the two last methods is a possibility to
construct these potentials from simple (formal) solutions of
the free particle.

In the present work, we focus on the Darboux trans-
formations. In this picture, there appear the first-
order differential operators, which intertwine reflectionless
Schrödinger and perfectly transparent Dirac Hamiltonians.
This will allow us, following the line of Refs. [34–36,42–45],
to study the interrelations between the exotic nonlinear
supersymmetric structures emerging in the first- and
second-order quantum reflectionless systems of the most
general form corresponding to the KdV and mKdV
solitons.1 We also will observe an interesting phenomenon
of transmutation of supersymmetry associated with the
soliton scattering and will relate the construction to the
self-consistent inhomogeneous condensates appearing in
the GN and BdG models.
A relation of the soliton potentials with the GNmodel [2]

goes back to the famous result of Dashen, Hasslacher, and
Neveu [3], who found that minimizing the effective action
of the model for the “condensate function” σðxÞ ¼ −gψ̄ψ
results in the condition that the Schrödinger potentials
U�ðxÞ given in terms of the Miura transformation [40],
U�ðxÞ≡ g2σ2ðxÞ � gdσðxÞ=dx, have to be reflectionless.
On the other hand, the Dirac system with transparent
potential σðxÞ appears in the Takayama–Lin-Liu–Maki
(TLM) model for conducting polymers [8], which is a
continuous model for solitons in polyacetylene, where the
kink and kink-antikink solutions were found [12]. Though
these two models have distinct physical interpretations,
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1For the earlier studies related to the appearance of the exotic
extended supersymmetric structure in such a class of systems
characterized by the presence of the nontrivial Lax-Novikov
integral, see also Refs. [46–50].
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they are equivalent mathematically, and the methods
developed in the context of the GN model were applied
in the study of the TLM model [9,11,13]. In general, the
self-consistent solutions of the GN model are related with
the Ablowitz-Kaup-Newell-Segur hierarchy [45,51] and by
the same reason are intimately related with integrable
systems in 1þ 1 dimensions. Particularly, some solu-
tions to the GN model were found to be related with the
breather-type solutions of the sinh-Gordon and nonlinear
Schrödinger equations [52].
The integrability of the equations of the KdVand mKdV

hierarchies can be associated with the existence of an
auxiliary spectral problem given in terms of the spectral
operatorH and the evolution generator Pj. The consistency
condition appears there in the form of the equation for the
Lax pair ðH;PjÞ, dH

dtj
¼ ½H;Pj�, which is equivalent to the

corresponding evolution equation. For the jth equation of
the KdV hierarchy, H ¼ − d2

dx2 þU is the Schrödinger
operator, while Pj, j ¼ 0; 1;…, is an anti-Hermitian monic

differential operator of the form Pj ¼ d2jþ1

dx2jþ1 þ a2j−1
d2j−1

dx2j−1 þ
� � � þ a0 with coefficient functions ai given in terms of
the potential U and its x derivatives. The case of the
KdV equation corresponds to j ¼ 1, and its n-soliton
solution Unðx; tÞ satisfies simultaneously the equation
½Ln; Hn� ¼ 0, which is the nonlinear ordinary differential
equation of the order of 2nþ 1 in the x variable. This is the
nth stationary equation for the KdV hierarchy, in which
t1 ¼ t plays a role of an external parameter. The operator
Ln ¼ Pn þ

P
n−1
j¼0 cjPj, where cj are some real coefficients,

is the Lax-Novikov nontrivial integral of motion for Hn ¼
− d2

dx2 þ Un [32,33,48]. According to a celebrated result of
Burchnall and Chaundy [41], the square of the order of
the 2nþ 1 differential operator Ln reduces to a certain
polynomial in Hn.
One can construct the pair (Hn, Ln) corresponding to an

n-soliton potential Un recursively, starting from the free
particle case with H0 ¼ − d2

dx2 and L0 ¼ d
dx (U0 ¼ 0) and

using the Darboux transformations. If we restrict ourselves
by regular on the x-axis potentials, then at each step,

(i) from Un, we construct an almost isospectral reflec-
tionless potential Unþ1 with one more bound state in
comparison with Un, and from the Lax-Novikov
integral Ln for Hn ¼ − d2

dx2 þUn, we obtain the
integral Lnþ1 for reflectionless Schrödinger system
Hnþ1.

The interesting point here is that having reflectionless
Schrödinger potentialUn of a general form, by applying the
Darboux transformation of another nature,
(ii) we can construct fromUn another n-soliton potential

~Un to be completely isospectral to Un, and from Ln
we can obtain the corresponding integral ~Ln for ~Hn.

The latter construction can be realized by applying a
certain limit procedure for soliton scattering data of the

reflectionless potential Unþ1. By a similar limit procedure,
one can also relate ~Un with Un−1, and Un with Un−2. In
both cases (i) and (ii) above, one can associate with the
corresponding pairs of the reflectionless second-order
Hamiltonians the exotic N ¼ 4 nonlinear supersymmetry
that includes two bosonic integrals composed from
Lax-Novikov integrals for the partner subsystems.
Exploiting the knowledge of the Darboux transforma-

tions for the KdV, one can generalize the construction for
the case of the mKdV to get the transparent Dirac systems
with the multikink scalar potentials and to identify for each
such single first-order matrix system a proper exoticN ¼ 2

supersymmetry. As in the Schrödinger case, the transparent
Dirac multikink potentials are separated into two groups:
one of them is formed by topological and another by
nontopological scalar potentials. The topological potentials
are associated with case (i) above and represent the
configurations of n kinks and n� 1 antikinks. The non-
topological transparent potentials correspond to case
(ii) and represent a certain superposition of n kinks and
n antikinks. We shall show how the kinks and antikinks in
transparent Dirac potentials gather together in such a way
that their amplitudes and phases are fixed by supersym-
metry of the paired reflectionless Schrödinger systems.
The paper is organized as follows. In Sec. II, we review

shortly the recursive construction of the multisoliton
Schrödinger potentials of the most general form in terms
of the Darboux transformations and describe the spectra of
the corresponding reflectionless Schrödinger operators. We
identify there the independent differential operators of the
orders of 1 and 2n, which intertwine the neighbor in a
recursive chain Schrödinger Hamiltonians Hn and Hn−1,
and find the Lax-Novikov integral of differential order
2nþ 1 for Hn. In Sec. III, we describe another unique
family of the reflectionless pairs (Hn, ~Hn) with completely
isospectral partners, which are also intertwined by the
Darboux generators to be differential operators of the same
orders 1 and 2n, and find a certain limit procedure, related
to the soliton scattering, which mutually transmutes the
two indicated families of the pairs of the transparent
Schrödinger systems. In Sec. IV, we study the exotic
nonlinear supersymmetries of the two families of the
Schrödinger systems composed from the reflectionless
isospectral (Hn, ~Hn) and almost isospectral (Hn, Hn−1)
pairs and observe the transmutations between these two
families through the soliton scattering. In Sec. V, we study
the transparent Dirac systems associated with the two
families of the superextended reflectionless Schrödinger
systems, where we show that each single transparent Dirac
system possesses its own exotic nonlinear supersymmetry.
Section VI is devoted to the discussion of the obtained
results and outlook. There we relate the perfectly trans-
parent scalar Dirac potentials with the self-consistent
inhomogeneous condensates appearing in the BdG and
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GN models and indicate the exotic N ¼ 4 nonlinear
supersymmetry of the paired reflectionless Dirac systems.

II. REFLECTIONLESS SCHRÖDINGER
POTENTIALS AND DARBOUX-CRUM

TRANSFORMATIONS

Let Hn ¼ −d2=dx2 þ UnðxÞ be a reflectionless
Schrödinger system with a potential of a general 2n-
parametric form UnðxÞ ¼ Unðx; κ1; τ1;…; κn; τnÞ such that
UnðxÞ → 0 for x → �∞. Parameters κj, j ¼ 1; 2;…; n,
0 < κ1 < � � � < κn, correspond to the energy levels of the n
bound states, Ej ¼ −κ2j . They also define the transmission
amplitude in the scattering sector with E ¼ k2 ≥ 0:

tðkÞ ¼Qn
j¼1

kþiκj
k−iκj

, and so jtðkÞj ¼ 1 for any real value of

the wave number k. The parameters τj are related to the
norming constants of the bound state solutions [33,53], and
their variation provides an isospectral deformation of the
quantum system.
From the viewpoint of the inverse scattering method,

function Unðx; κ1; τ1;…; κn; τnÞ corresponds to the instant
image of the n-soliton solution Unðx; tÞ to the KdV
equation ut − 6uux þ uxxx ¼ 0. For large negative and
positive values of time t, the Unðx; tÞ can be represented
as a superposition of n one-soliton solutions of the
amplitudes 2κ2j propagating to the right at speeds vj ¼ 4κ2j :

Unðx; tÞ ¼ −
Xn
j¼1

2κ2jsech
2κjðx− 4κ2j t−φ�

j Þ for t→�∞:

ð2:1Þ

The phases φ�
j defined for t → �∞ are given by [33,53]

φ�
l ¼ τ0l �

1

2κl

�Xn
j¼lþ1

log

���� κl þ κj
κl − κj

���� −Xl−1
j¼1

log

���� κl þ κj
κl − κj

����
�
;

ð2:2Þ

where it is implied that for l ¼ n and l ¼ 1 the first and,
respectively, the second sum disappears. The parameter τ0l
corresponds to the mean of the asymptotic phases,
τ0l ¼ 1

2
ðφþ

l þ φ−
l Þ. According to (2.2), the solitons demon-

strate in some sense a fermionlike behavior: jφ�
l j; jφ�

lþ1j →
∞ as soon as κl → κlþ1. In the two-soliton case, (2.2)
gives

φ�
1 ¼ τ01 �

1

2κ1
log

���� κ1 þ κ2
κ1 − κ2

����;
φ�
2 ¼ τ02∓ 1

2κ2
log

���� κ1 þ κ2
κ1 − κ2

����: ð2:3Þ

Our consideration will be based on the method of iterated
Darboux transformations (or, that is the same, the Darboux-
Crum transformations) [29], by which the quantum
mechanical reflectionless system with n bound states can
be constructed from a free particle system H0 ¼ − d2

dx2:

Hn ¼ H0 þ UnðxÞ; Un ¼ −2
d2

dx2
logWn: ð2:4Þ

Here Wn is the Wronskian of n formal (nonphysical)
eigenstates ψ j of H0, H0ψ j ¼ −κ2jψ j:

Wn ¼ Wðψ1;…;ψnÞ ¼ detA;

Aij ¼
di−1

dxi−1
ψ j; i; j ¼ 1;…; n; ð2:5Þ

which are chosen as follows:

ψ j ¼
�
coshðκjðxþ τjÞÞ for j ¼ odd;

sinhðκjðxþ τjÞÞ for j ¼ even;
0 < κ1 < κ2 < � � � < κj−1 < κn: ð2:6Þ

Eigenfunctions Ψ0ðx;EÞ ≠ ψ j of H0, H0Ψ0ðx;EÞ ¼
EΨ0ðx;EÞ, are mapped into the eigenfunctions Ψnðx;EÞ
of Hn, HnΨnðx;EÞ ¼ EΨnðx;EÞ, by means of the
Wronskian fractions:

Ψnðx;EÞ ¼ Wðψ1;…;ψn;Ψ0ðEÞÞ=Wn: ð2:7Þ

The eigenfunctions in the scattering sector with E ¼
k2 ≥ 0, k ≥ 0, and (not normalized) bound states with
energies Ej ¼ −κ2j , j ¼ 1;…; n, of the systemHn are given
then by the relations

Ψ�
n ðk2Þ ¼ Wðψ1;…;ψn; e�ikxÞ=Wn;

Ψnð−κ2jÞ ¼ W
�
ψ1;…;ψn;

dψ j

dx

�
=Wn: ð2:8Þ

The derivative dψ j

dx is a nonphysical eigenfunction of H0

which is linearly independent from the corresponding
nonphysical eigenfunction ψ j from (2.6).
Coherently with (2.4), we put W0 ¼ 1 and define the

prepotentials Ωn, n ¼ 0; 1;…:
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Ωn ¼ −
d
dx

logWn ⇒
d
dx

Ωn ¼
1

2
Un: ð2:9Þ

Then we introduce the first-order differential operators

An ¼
d
dx

þWn; Wn ¼ Ωn −Ωn−1; ð2:10Þ

where, particularly, W1 ¼ Ω1 ¼ −κ1 tanh κ1ðx þ τ1Þ.
These operators and their conjugate ones factorize the
reflectionless systems Hn−1 and Hn having the ðn − 1Þ-
and n-soliton potentials Un−1ðx; κ1; τ1;…; κn−1; τn−1Þ and
Unðx; κ1; τ1;…; κn−1; τn−1; κn; τnÞ:

A†
nAn ¼ Hn−1 þ κ2n; AnA

†
n ¼ Hn þ κ2n; ð2:11Þ

and intertwine them:

AnHn−1 ¼ HnAn; A†
nHn ¼ Hn−1A

†
n: ð2:12Þ

The operator An can be presented equivalently as
An¼ΨA

n−1
d
dxð1=ΨA

n−1Þ, whereΨA
n−1≡ Wn

Wn−1
is a nodeless non-

physical eigenfunction of Hn−1, Hn−1ΨA
n−1 ¼ −κ2nΨA

n−1.
This function is a formal (exponentially blowing up at
x ¼ �∞) zero mode of the first-order differential operator
An, AnΨA

n−1 ¼ 0. Any other (physical or nonphysical)
eigenstate Ψn−1ðEÞ of Hn−1, Hn−1Ψn−1ðEÞ ¼ EΨn−1ðEÞ,
is mapped by An into the eigenstate of Hn:

ΨnðEÞ ¼ AnΨn−1ðEÞ; ð2:13Þ

with the same eigenvalue, HnΨnðEÞ ¼ EΨnðEÞ.
By iteration of (2.12), reflectionless system Hn can be

related with the free particle H0:

AnH0 ¼ HnAn; A†
nHn ¼ H0A

†
n; ð2:14Þ

where An is the differential operator of the order of n:

An ≡ An…A1: ð2:15Þ

In terms of (2.15), we define the differential operator of the
order of 2n:

B1 ¼ A1

�
−

d
dx

þ κ1

�
;

Bn ¼ An

�
−

d
dx

þ κn

�
A†

n−1 for n ¼ 2;…: ð2:16Þ

The iteration of relations (2.12) shows that Bn and B†
n also

intertwine reflectionless Hamiltonians Hn and Hn−1:

BnHn−1 ¼ HnBn; B†
nHn ¼ Hn−1B

†
n: ð2:17Þ

Unlike An and A†
n, they do this not directly but via the

“virtual” free particle system H0, for which the first-order
differential operator d

dx appearing explicitly in the structure
of Bn is an integral of motion. Instead of (2.11), we have the
relations

BnB
†
n ¼

Yn
j¼1

ðHn þ κ2jÞ2; B†
nBn ¼

Yn
j¼1

ðHn−1 þ κ2jÞ2:

ð2:18Þ

The operator (2.15) also allows us to find a nontrivial
integral for reflectionless system Hn:

Ln ¼ AnpA
†
n; L†

n ¼ Ln; ½Ln;Hn� ¼ 0: ð2:19Þ

This differential operator of the order of 2nþ 1 is the Lax-
Novikov integral for the Hn. It is a Darboux-dressed form
of the integral p ¼ −i d

dx for the free particle system H0,
which satisfies the nonlinear supersymmetry-type relation

L2
n ¼ Hn

Yn
i¼1

ðHn þ κ2i Þ2: ð2:20Þ

The property of commutativity of Ln with Hn means that
the potential Un ¼ 2 d

dxΩn is a solution of the nth member
of the KdV stationary hierarchy.2

Using analogs of the integrals (2.19) for Hl with
0 < l < n, one could try to construct the operators inter-
twiningHn−1 andHn with n > 1 via a virtualHl system. In
such a way we obtain, however, a combination of Bn and
An with a coefficient before the latter operator to be a
polynomial of the order of ðn − 1Þ in Hn−1. For instance,
−iAnLn−1 is the differential operator of the order of 2n,
which, like Bn, intertwines Hn−1 with Hn but reduces to
−iAnLn−1 ¼ Bn − κnAn

Q
n−1
i¼1 ðHn−1 þ κ2i Þ and, so, is not a

new, independent intertwining operator. At the same time,
note that the intertwining operators An and Bn, and the
integral Ln are related with the Hamiltonian Hn by the
identity

BnA
†
n þ iLn ¼ κn

Yn
i¼1

ðHn þ κ2i Þ: ð2:21Þ

In conclusion of this section, it is worth stressing once
more that the existence of the nontrivial, order 2n inter-
twining operator Bn in addition to the first-order Darboux
generator An as well as of the order 2nþ 1 integral Ln
originates from the fact that the reflectionless system Hn is
related to the free particleH0 by the chain of the subsequent
Darboux transformations, and theH0 possesses a nontrivial
integral of motion p ¼ −i d

dx.

2Note that, unlike Sec. 1, we take Ln here in a Hermitian form.
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III. SOLITON SCATTERING AND DARBOUX
TRANSFORMATIONS

Besides the discussed pairs (Hn, Hn−1) of reflectionless
Schrödinger systems related by the first-order Darboux
intertwining operators, there is another class of such
systems, for which the paired Hamiltonians are also
interrelated by the first-order Darboux generators. Unlike
the described case, the reflectionless partners in these
pairs are completely isospectral. The corresponding
n-soliton partner potentials Unðx; κ1; τ1;…; κn; τnÞ and
Unðx; κ1; ~τ1;…; κn; ~τnÞ are characterized by the same scal-
ing parameters κi, i ¼ 1;…; n, but different sets of the
translation parameters correlated as follows [35]:

τi − ~τi ¼
1

κi
arctanh

κi
C
¼ 1

2κi
log

C þ κi
C − κi

; ð3:1Þ

where C is an additional real parameter such that jCj > κn.
A comparison of the quantities (3.1) and (2.3) indicates that
(3.1) can be related somehow to the effect of the scattering
of solitons. In this section, we show how each indicated
family of the paired reflectionless systems, with partners
intertwined by the first-order Darboux generators, can be
transformed into another by a certain limit procedure,
which admits a soliton scattering interpretation.
To this aim, we first consider the limits τn → �∞

applied to the reflectionless system Hn. To study the
induced deformation of the potential Un and superpotential
Wn (the latter will play a role of the potential for an

associated Dirac system), it is sufficient to investigate the
limits of the prepotential Ωn because of the relations
2 d
dxΩn ¼ Un and Ωn − Ωn−1 ¼ Wn. We shall demonstrate

that Ωn ¼ − d
dx logWn → ~Ωn−1ðCÞ − C for τn → �∞,

where C ¼ �κn and ~Ωn−1 is identical to Ωn−1 with τi,
i ¼ 1;…; n − 1, changed for ~τi ¼ τi − 1

2κi
log Cþκi

C−κi
. From

here, it follows also that if we apply subsequently another
limit κn → κn−1, or that is the same, ~τn−1 → ∓∞, the
deformed (by κ-dependent τ displacements) prepotential
transforms as ð ~Ωn−1 − CÞ → Ωn−2. So, the effect of sending
subsequently the two solitons with indices n and n − 1 to
infinity in opposite directions results in the disappearance
of the two bound states from the spectrum, without
changing the rest of the 2ðn − 2Þ soliton parameters in
the reflectionless potential Un−2. This corresponds to a
fermionlike behavior of solitons already mentioned
below Eq. (2.2).
In the limit τn → �∞, for the prepotential

Ωn ¼ −ðlogWðψ1;…;ψnÞÞx we find that
Ωn → −ðlogWðψ1;…;ψn−1; C�

n e�κnxÞÞx, where C�
n ¼

ϵ�n 1
2
e�κnτn is an exponentially divergent multiplicative

factor with ϵþn ¼ 1 and ϵ−n ¼ ð−1Þnþ1. By the Wronskian
properties, we have Wðψ1; …; ψn−1; C�

n e�κnxÞ ¼
C�
nWðψ1; …; ψn−1; e�κnxÞ. The logarithmic derivative

eliminates the x-independent divergent multiplicative
factor C�

n , and in the limit τn → �∞ we obtain
Ωn → −ðlogWðψ1;…;ψn−1; e�κnxÞÞx. We note now that
Wðψ1;…ψn−1; e�κnxÞ ¼ e�κnx det ∥W♮

n∥, where

∥W♮
n∥ ¼

0
BBBBB@

chκ1x1 shκ2x2 … ψn−1 1

κ1shκ1x1 κ2chκ2x2 ∂xψn−1 �κn

..

. . .
. ..

. ..
.

∂n−1
x chκ1x1 ∂n−1

x shκ2x2 … ∂n−1
x ψn−1 ð�1Þn−1κn−1n

1
CCCCCA ð3:2Þ

and xi ≡ xþ τi. By changing the rows Lj, j ¼ 1;…; n − 1, of the matrix (3.2) for the linear combinations:

Lj → κnLj∓Ljþ1, we find that ðlog det ∥W♮
n∥Þx ¼ ðlog det ∥Ŵn∥Þx where

∥Ŵn∥ ¼

0
BBBBBB@

Ch∓1 Sh∓2 Ch∓3 … 0

κ1Sh
∓
1 κ2Ch

∓
2 κ3Sh

∓
3 … 0

κ21Ch
∓
1 κ22Sh

∓
2 κ23Ch

∓
3 … 0

: : … :

∂n−1
x cosh κ2x2 ∂n−1

x sinh κ2x2 ∂n−1
x cosh κ3x3 … ð�1Þn−1κn−1n

1
CCCCCCA
: ð3:3Þ

Here we denote Ch∓i ¼ κn cosh κixi ∓ κi sinh κixi and Sh∓i ¼ κn sinh κixi ∓ κi cosh κixi, i ¼ 1;…; n − 1, where the signs
− andþ correspond to the limits τn → þ∞ and τn → −∞, respectively. These functions can be represented equivalently
as Ch∓i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2n − κ2i

p
cosh κiðxþ τi∓φiÞ and Sh∓i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2n − κ2i

p
sinh κiðxþ τi∓φiÞ, where φi ¼ 1

2κi
log κnþκi

κn−κi
,

i ¼ 1;…; n − 1. As a consequence, we find that ðlogWðψ1;…;ψn−1; e�κnxÞÞx ¼ �κn þ ðlogWð ~ψ1;…; ~ψn−1ÞÞx, where
~ψ i is identical to ψ i but with τi, i ¼ 1;…; n − 1, changed for
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~τi ¼ τi∓ 1

2κi
log

κn þ κi
κn − κi

for τn → �∞; ð3:4Þ

that translates finally into the transformation
Ωn !

τn→�∞
~Ωn−1 ∓ κn. Note that ~τi − τi given by (3.4)

corresponds to the change of the phase in the two-soliton
scattering given by the first relation in (2.3), with indices
1 and 2 changed for i and n, respectively.
In the limit τn → þ∞ we find that

An ¼
d
dx

þWn →
d
dx

− Δn−1ðκnÞ ¼ −X†
n−1ðκnÞ; ð3:5Þ

where

Xn−1 ¼
d
dx

þ Δn−1;

Δn−1ðκnÞ ¼ Ωn−1 − ~Ωn−1ðκnÞ þ κn: ð3:6Þ

The subsequent application of the limit κn → κn−1
gives

Xn−1ðκnÞ → An−1; ~An−1 → Xn−2ðκn−1Þ; ð3:7Þ

where the first-order operator ~An−1 is of the same form as
An−1 but with the parameters τi changed for ~τi ¼
τi − 1

2κi
log Cþκi

C−κi
. The relations corresponding to the limit

τn → −∞ can be written down explicitly in a similar way.
Since the n-soliton potentials are given by the relation

Un ¼ 2 d
dxΩn, by taking the limit τn → þ∞ we eliminate

the bound state with En ¼ −κ2n from the spectrum of Hn
and obtain a new Hamiltonian with ðn − 1Þ bound states,
which we call ~Hn−1. This Hamiltonian is isospectral to
Hn−1, but each soliton in it is displaced with a phase
dependent on κn:

HnðτiÞ !
τn→þ∞

Hn−1ð~τiÞ≡ ~Hn−1ðκnÞ;

~τi ¼ τi −
1

2κi
log

κn þ κi
κn − κi

: ð3:8Þ

The limit τn → −∞ corresponds to the change of κn for −κn
in (3.8). In general, from the viewpoint of ~Hn−1, the κn
(or −κn) is just an additional parameter, and from now
on we call ~Hn−1 ≡ ~Hn−1ðCÞ, assuming for the sake of
definiteness that C > κn−1.
On the other hand, both the Hamiltonians Hn in the limit

κn → κn−1 and ~Hn−1 in the limit C → κn−1 correspond to a
Hamiltonian Hn−2:

Hn !
κn→κn−1

Hn−2; ~Hn−1ðCÞ !
C→κn−1

Hn−2: ð3:9Þ

As analogs of factorizations (2.11), we obtain

X†
nXn ¼ ~Hn þ C2; XnX

†
n ¼ Hn þ C2; ð3:10Þ

where Xn is defined in (3.6) with index n − 1 changed for n,
and it is assumed here that C2 > κ2n. In correspondence with
(3.10), Xn and X†

n not only factorize the isospectral
Hamiltonians, but also intertwine them: Xn

~Hn ¼ HnXn,
X†
nHn ¼ ~HnX

†
n. We also have the factorization relations

~An
~A†
n ¼ ~Hn þ κ2n; ~A†

n
~An ¼ ~Hn−1 þ κ2n: ð3:11Þ

Using these last relations, one can construct the generators
which intertwine ~Hn and Hn, being the differential oper-
ators of the order of 2n:

Yn ¼ An
~A†
n; Y†

n ¼ ~AnA
†
n; ð3:12Þ

Yn
~Hn ¼ HnYn, Y

†
nHn ¼ ~HnY

†
n, where ~An is defined as in

(2.15) but with Ai changed for ~Ai.
Another pair of important identities is

AnXn−1 ¼ Xn
~An; X†

nAn ¼ ~AnX
†
n−1: ð3:13Þ

The operators appearing in the first equality intertwine
the Hamiltonians ~Hn−1 and Hn, ðAnXn−1Þ ~Hn−1 ¼
HnðAnXn−1Þ, ðXn

~AnÞ ~Hn−1 ¼ HnðXn
~AnÞ, and the equal

operators from the other relation intertwine in a similar
manner Hn−1 and ~Hn. The Hermitian conjugate forms of
the operators from (3.13) intertwine the indicated pairs of
the Hamiltonians in the opposite direction. The relations in
(3.13) are equivalent to the identity

ðCþΩn−1− ~ΩnÞðΩn − ~Ωn−Ωn−1þ ~Ωn−1Þ ¼ ð ~Ωn−Ωn−1Þx;
ð3:14Þ

which, in turn, is reduced to trigonometric identities [35]. In
the limit τn → ∞, we find then that the intertwining
between Hn−1 and Hn operator Bn [see Eq. (2.17)] trans-
forms into

Bn → ð ~Hn−1ðκnÞ þ κ2nÞY†
n−1ðκnÞ

− 2κn

�Yn−1
i¼1

ð ~Hn−1ðκnÞ þ κ2i Þ
�
X†
n−1ðκnÞ: ð3:15Þ

This is a reducible intertwining operator for a pairHn−1 and
~Hn−1. From (3.15) we extract the irreducible operators
Y†

n−1 and X†
n−1ðκnÞ which intertwine the Hamiltonians

Hn−1 and ~Hn−1. At the same time, for the Lax-Novikov
integral Ln we have
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Ln → ð ~Hn−1ðκnÞ þ κ2nÞ ~Ln−1; ð3:16Þ

that provides us with the irreducible nontrivial integral ~Ln−1
for ~Hn−1.

3

Figures 1 and 2 illustrate different limits for super-
potentials Wn and Δn, while Figs. 3 and 4 show the
transformations between potentials Un and ~Un.
We have considered the limit when the translation

parameter τn in the n-soliton potential Un tends to infinity.
It is interesting to see what happens with reflectionless
system Hn when we take the limit τj → �∞ with j < n.
Considering the same procedure as in the case j ¼ n, we
find that the prepotential Ωn changes for Ω0

n−1, in which
instead of (3.4) the arguments τi are replaced by

τi
0 ¼

8>><
>>:

τi∓ 1
2κi

log κjþκi
κj−κi

for i < j;

τi � 1
2κi

�
log κjþκi

κi−κj
þ iπ

�
for i > j:

ð3:17Þ

For i > j we have cosh κiðxþ τ0iÞ ¼ �i sinh κiðxþ τ̂iÞ,
sinh κiðxþ τ0iÞ ¼ �i cosh κiðxþ τ̂iÞ, where

τ̂i ¼ τi∓ 1

2κi
log

���� κj þ κi
κj − κi

����: ð3:18Þ

The effect of the limit τj → �∞ results then in the re-
duction of the reflectionless system Hnðx; κ1; τ1;…; κn; τnÞ
into the reflectionless system Ĥn−1, where the latter
Hamiltonian is given by the set of parameters κi and τ̂i
with i ¼ 1;…; j − 1; jþ 1;…; n. It is also easy to check
that the application of the limit κj → κjþ1, with j taking one
of the values from the set 1;…; n − 1, transforms Hn
into Hn−2, where the latter reflectionless Hamiltonian is
characterized by the parameters κi and τi with
i ¼ 1;…; j − 1; jþ 1;…; n. The same effect can be
obtained if we apply subsequently two limits, first τj →
þ∞ (or τj → −∞) and then τ̂j−1 → −∞ (or τ̂j−1 → þ∞),
i.e. sent the soliton j and the transformed one with index
j − 1 to infinity in the opposite directions.
Note here that, applying appropriately the described

limits with τj tending to þ∞ or −∞, we can reproduce
exactly the phases from (2.2), which correspond to the
soliton scattering picture in the n-soliton solution for the
KdV equation. Indeed, let us fix index i ¼ l, where

FIG. 1 (color online). In the limit τn → ∞, a topologically
nontrivial superpotentialWn (being also the corresponding scalar
Dirac potential) with asymptotic behavior limx→−∞WnðxÞ ¼
−limx→þ∞WnðxÞ ¼ κn > 0 transforms (asymptotically)
into a topologically trivial superpotential −Δn−1 such that
limx→−∞Δn−1ðxÞ ¼ limx→þ∞Δn−1ðxÞ ¼ κn > 0. This corre-
sponds to sending the nth kink to x ¼ −∞. The figure corre-
sponds to the case n ¼ 2 and shows the superpotential W2 as a
function of x and τ2.

FIG. 2 (color online). A topologically trivial superpotential Δn
transforms into a topologically nontrivial superpotential Wn
through the limit j~τnj → ∞, which is equivalent to the limit
C2 → κ2n. The figure illustrates the case when the kink-antikink
Dirac potential with n ¼ 1 transforms in the limit C → κ1 into the
antikink potential.

FIG. 3 (color online). For the particular case of n ¼ 2, the
figure illustrates the transformation of the Schrödinger n-soliton
potential Un into the ðn − 1Þ-soliton potential ~Un−1 in the
limit τn → ∞.

3The questions of redundancy of nonlinear supersymmetric
algebra in a general context were studied in [50]; see also the
recent review [54]. The very nontrivial picture of redundancy and
transmutations appearing in the completely isospectral super-
symmetric pairs of reflectionless systems was investigated in
detail in [34,35].
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1 ≤ l ≤ n. For the sake of generality, assume that
1 < l < n. Now, let us take a limit τn → þ∞. The
displaced value of τl will be given by the upper sign case
of Eq. (3.18) with i ¼ l and j ¼ n. Then we send
subsequently to þ∞ the soliton indexed by j ¼ n − 1,
then j ¼ n − 2, etc., till j ¼ lþ 1. Repeating the analogous
procedure with sending to −∞ first the soliton with j ¼ 1,
then with j ¼ 2, etc., till j ¼ l − 1, the resulting changed
translation parameter will be given exactly by Eq. (2.2)
corresponding to the case t → −∞ with τ0l changed for our
initial value τl. The minus sign in the limit t → −∞ (in
comparison with the sign in the limit τn → þ∞) is
associated with the minus sign appearing in Eq. (2.1)
before the term 4κ2kt.
Considering the pairs of reflectionless Hamiltonians

ðHn;Hn−1Þ or ðHn; ~HnÞ, the partners of which are related
by the first-order Darboux intertwining generators, we shall
see below that the limits τn → �∞ induce the trans-
mutation of the type of the supersymmetry, interchanging
the cases of the unbroken and broken supersymmetries.
On the other hand, the application of the limits τj → �∞
with j < n reduces only the number of the bound states
in the partner Hamiltonians but does not change the type
of the corresponding supersymmetry of the extended
reflectionless system.
The difference of the corresponding supersymmetries in

the two cases can be explained by the different nature of the
first-order Darboux intertwining generators. In the case of
the pairs ðHn;Hn−1Þ, the intertwining generators An and A

†
n

are constructed in terms of the superpotential Wn [see
Eq. (2.10)], for which WnðxÞ → ∓κn for x → �∞. This
superpotential takes asymptotically the constant values of

the opposite signs and is topologically nontrivial. The
Witten index for such an extended system takes a nonzero
value, and the associated first-order supersymmetry (see the
next section) is unbroken [24,25]. The isospectral partners
in the pairs ðHn; ~HnÞ are intertwined by the first-order
Darboux generators Xn and X†

n, constructed in terms of the
superpotential ΔnðCÞ; see Eq. (3.6) with n − 1 changed for
n. Since limx→þ∞Δn ¼ limx→−∞Δn ¼ C with C2 > κ2n > 0,
the superpotential ΔnðCÞ is topologically trivial, and the
corresponding first-order supersymmetry will be broken in
correspondence with the zero value of the Witten index.

IV. EXOTIC SUPERSYMMETRY OF
REFLECTIONLESS SYSTEMS WITH
THE FIRST-ORDER SUPERCHARGES

Consider now an extended 2 × 2 matrix Hamiltonian
H ¼ diagðH;H0Þ with H and H0 to be reflectionless
systems and identify Γ ¼ σ3 as a Z2-grading operator.
As it was shown in [34], in the general case such a system is
characterized by exotic nonlinear supersymmetry with two
pairs of supercharges, which are the matrix higher-order
derivative operators of the antidiagonal form, constructed
from the Darboux-Crum intertwiners. The symmetry struc-
ture ofH also has to include two higher-order Lax-Novikov
integrals of the subsystems H and H0. Within this class of
the extended reflectionless systems, there exist two
special families, for which a pair of fermionic integrals
are the first-order matrix differential operators of the form
Sa ¼ S†a ¼ σadiagðD;D†Þ, a ¼ 1; 2, which satisfy the
relations ½Sa;H� ¼ 0 and fSa; Sbg ¼ 2δabðHþ constÞ.
The operators D and D† in this case not only intertwine
the Hamiltonian operators H and H0, but also factorize
them, H ¼ D†Dþ const and H0 ¼ DD† þ const.4

Without loss of generality, one can chooseH ¼ Hn to be
a reflectionless Hamiltonian with an n-soliton potential.
Then there are only three possibilities to choose H0 such
that H and H0 can be related by the intertwining operators
of the first order. These possibilities are H0 ¼ Hn−1,
H0 ¼ Hnþ1, or H0 ¼ ~HnðCÞ. The trivial case of a free
particle, H0, is exceptional : for it there are only two
possibilities, H0 ¼ H1 and H0 ¼ H0, due to the translation
invariance of H0.
Having this picture in mind, we first consider a class of

the extended reflectionless ð2nþ 1Þ-parametric systems
composed from isospectral Hamiltonians each having n
bound states. It is convenient to shift the Hamiltonian
operators for an additive constant term and take

H̆n ¼
�
HC

n 0

0 ~HC
n

�
ð4:1Þ

FIG. 4 (color online). As an illustration for the second limit in
(3.9), the transformation is shown of the one-soliton potential
~U1ðx; CÞ into the zero potential of the free particle case in the limit
C → κ1. Note that in another limit C → ∞, we have ~Hn → Hn,
but the intertwining operator Xn blows up. Changing Xn for
the rescaled operator X̂n ¼ 1

CXn, we get in the indicated limit
the trivial operator X̂n → 1, as an intertwiner between the
two identical copies of the reflectionless Schrödinger
Hamiltonian Hn.

4The supercharges, which are the higher-order derivative
operators, factorize certain polynomials of the partner Hamil-
tonians in correspondence with relations of the form (2.18).
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as the extended Hamiltonian, where HC
n ¼ Hn þ C2,

~HC
n ¼ ~Hn þ C2. A real constant C is restricted here by

the condition C2 > κ2n, and ~Hn ¼ ~HnðCÞ is the reflection-
less system isospectral to Hn but with the parameters τi in
the n-soliton potential changed for the shifted set of
translation parameters ~τi given by Eq. (3.1). The spectra
of the isospectral partner Hamiltonians are

σðHC
nÞ ¼ σð ~HC

nÞ ¼ C2 − κ2n ∪ � � � ∪ C2 − κ21 ∪ ½C2;∞Þ:
Each discrete energy level C2 − κ2i , i ¼ 1;…; n, of the
extended system (4.1) as well as the energy level E ¼ C2 at
the edge of the continuous part of the spectrum are doubly
degenerate. At the same time, each energy level inside the
conduction band ðC2;∞Þ of H̆n is fourfold degenerate. The
set of the nontrivial integrals of motion (in addition to
the trivial integral Γ ¼ σ3) of the supersymmetric system
(4.1) consists of the two matrix differential operators of the
first order composed from the Darboux intertwining gen-
erators of the form (3.6) (with index n − 1 changed for n):

S̆n;1 ¼
�

0 Xn

X†
n 0

�
; S̆n;2 ¼ iσ3S̆n;1: ð4:2Þ

We have also two matrix integrals to be differential
operators of the order of 2n constructed from the inter-
twines (3.12):

Q̆n;1 ¼
�

0 Yn

Y†
n 0

�
; Q̆n;2 ¼ iσ3Q̆n;1: ð4:3Þ

In addition, the system is characterized by the two diagonal
matrix integrals constructed from the Lax-Novikov inte-
grals (2.19) of the subsystems, which are the differential
operators of the order of 2nþ 1:

P̆n;1 ¼
�
Ln 0

0 ~Ln

�
; P̆n;2 ¼ σ3P̆n;1: ð4:4Þ

With the chosen Z2-grading operator Γ ¼ σ3, operators
(4.2) and (4.3) are identified as the fermionic integrals, and
(4.4) are identified as the bosonic generators. They,
together with the Hamiltonian H̆n, generate the exotic
superalgebra, whose nonzero (anti)commutation relations
are given by

fS̆a; S̆bg ¼ 2δabH̆; fQ̆a; Q̆bg ¼ 2δabP̆
2;

fS̆a; Q̆bg ¼ 2δabCP̆þ 2ϵabP̆1; ð4:5Þ

½P̆2; S̆a� ¼ 2iðH̆Q̆a − CP̆S̆aÞ;
½P̆2; Q̆a� ¼ 2iP̆ðCQ̆a − P̆S̆aÞ; ð4:6Þ

where P̆n ¼
Q

n
j¼1ðH̆n − C2 þ κ2jÞ and to simplify the

expressions we omitted the index n in (4.5) and (4.6).

Though our construction with the two Schrödinger sub-
systems HC

n and ~HC
n corresponds to the usual N ¼ 2

supersymmetry generated by the two supercharges S̆n;a
to be matrix differential operators of the first order, we have
obtained the exotic supersymmetric structure with the two
additional supercharges Q̆n;a to be the higher-order differ-
ential operators. In addition, being the extended reflection-
less system, it also possesses two bosonic integrals of
motion. The peculiarity of the present exotic supersym-
metric structure is that the bosonic integral P̆n;1 commutes
with all the other integrals of motion and plays a role of the
central charge operator of the nonlinear superalgebra.5

Another bosonic integral P̆n;2 realizes a rotation of the
pairs of the supercharges S̆n;a and Q̆n;a by means of
the commutation relations (4.6) with the Hamiltonian-
dependent structure coefficients.
Since the doublet of the ground states of H̆n has positive

energy C2 − κ2n > 0, the first-order supercharges S̆n;a do not
annihilate them either, and the N ¼ 2 Lie subsuperalgebra
generated by S̆n;a and H̆n corresponds to the phase of the
broken supersymmetry. At the same time, according to
Eq. (2.20), the doublet of the ground states is annihilated by
the bosonic integrals P̆n;a. Because of the second relation
from (4.5), they are also annihilated by the higher-order
supercharges Q̆n;a. One can conclude therefore that the
obtained exotic nonlinear N ¼ 4 supersymmetry of the
extended reflectionless system H̆n is partially broken.
Let us apply now the limit C2 → κ2n, associated with the

soliton scattering, to the system H̆n. For the sake of
definiteness, let us assume that C is positive and consider
the limit C → κn, which corresponds to the limit ~τn → −∞
for the subsystem ~HC

n. In this limit, the Hamiltonian (4.1)
and integrals of motion are transformed into

Hn ¼
�
Hκn

n 0

0 Hκn
n−1

�
; Sn;1 ¼

�
0 An

A†
n 0

�
; ð4:7Þ

Qn;1 ¼
�

0 Bn

B†
n 0

�
; Pn;1 ¼

�
L2nþ1 0

0 Hκn
n−1L2n−1

�
;

ð4:8Þ

and the integrals with index a ¼ 2 are obtained by the same
rule as in (4.2)–(4.4), where the notations Hκn

n ¼ Hn þ κ2n
and Hκn

n−1 ¼ Hn−1 þ κ2n are used. To obtain the limit we
have taken into account the relations (3.7), (3.12), and
(2.16). The Hamiltonian Hn and its integrals of motion
generate the nonlinear superalgebra of the form similar to
(4.5) and (4.6), but with corresponding changes of the
operators on the right-hand sides, and with the C changed
for κn.

5This is not so in a general case of the extended system
composed from the two n-soliton Schrödinger subsystems; see
Ref. [34].
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Note that the lower matrix element in the integral Pn;1
(and, similarly, in Pn;2) is factorized into the subsystem’s
Hamiltonian Hκn

n−1 and the corresponding Lax-Novikov
integral. The multiplicative factor Hκn

n−1 could be omitted
there without changing the property of commutativity of
the diagonal matrix operators with the Hamiltonian Hn.
However, this would change the property that the upper
and lower matrix elements in the integrals Pn;a are the
differential operators of the same order of 2nþ 1 and,
as a consequence, would complicate the form of the
superalgebra.
In spite of a similar form of the superalgebra (with C

changed for κn), the superextended system we have here is
essentially different from the previous one. Indeed, the
system Hn, unlike the H̆n, possesses now the nondegen-
erate ground state of zero energy, which corresponds to the
lowest bound state of the upper subsystemHκn

n . This state is
annihilated by all four supercharges and the two bosonic
integrals, and the exotic nonlinear supersymmetry we
have here corresponds to the unbroken phase. Therefore,
the limit we considered provokes the transmutation
of the partially broken exotic supersymmetry into the
unbroken one.
Also, there exists a limit, associated with the soliton

scattering, which transmutes the exotic nonlinear super-
symmetry from the unbroken phase into the partially
broken exotic supersymmetry. To see this, we apply to
the system (4.2) and (4.8) the limit τn → ∞, which
corresponds to sending the soliton with index n in the
subsystem Hκn

n to infinity. We find then with the help of
(3.15) and (3.16) that

Hn !
τn→∞

H̆⋄
n−1; Sn;a !

τn→∞
S̆⋄
n−1;a; ð4:9Þ

Pn;a !
τn→∞

H̆⋄
n−1P̆

⋄
n−1;a;

Qn;a !
τn→∞

− H̆⋄
n−1Q̆

⋄
n−1;a þ 2κnP̆

⋄
n−1S̆

⋄
n−1;a: ð4:10Þ

Here we have used the notation F⋄ ¼ σ2Fσ2, which
corresponds to a unitary transformation between the matrix
operators

F ¼
�
α β
γ δ

�
and F⋄ ¼

�
δ −γ
−β α

�
;

and imply that the operators indexed by n − 1 are given by
the same expressions as the operators associated with H̆n,
but with the parameter C changed in the structure of the
latter operators for C ¼ κn. As a consequence, we also
obtain a four-term chain of the limits

Hn !
τn→∞

H̆⋄
n−1 !

κn→κn−1
H⋄

n−1 !
τn−1→∞

H̆n−2: ð4:11Þ

Note that the multiplicative factor H̆⋄
n−1 in the limit of the

operatorsPn;a andQn;a in (4.10) corresponds to a reduction
of the order of the integrals that is related with the loss of
the one eigenvalue of zero energy in comparison with the
spectrum of the system Hn.

V. TRANSPARENT DIRAC SYSTEMS

We have discussed the Darboux-Crum transformations,
the exotic supersymmetric structure based on them, and
transmutations of supersymmetry in the reflectionless
systems described by the 2 × 2 matrix second-order
Schrödinger Hamiltonian operators. One can take one of
the two first-order Hermitian supercharges appearing in
these second-order systems and consider it as a first-order
matrix Hamiltonian for the ð1þ 1Þ-dimensional Dirac
system. We can identify then the Darboux-Crum gener-
ators, which intertwine such reflectionless first-order
matrix Hamiltonians. This opens a possibility to investigate
exotic supersymmetry and its transmutations in the trans-
parent Dirac systems.
Let us take the first-order supercharge S̆n;1 from (4.2)

and identify it as the Dirac Hamiltonian: H̆D
n ≡ S̆n;1. This

system corresponds to the ð1þ 1Þ-dimensional Dirac
particle in a scalar potential ΔnðxÞ ¼ Ωn − ~Ωn þ C with
asymptotic behavior ΔnðxÞ → C for x → �∞. Because of
the relation of commutativity ½S̆n;1; P̆n;1� ¼ 0, the potentials
of this form correspond to the solutions of the multikink-
antikink type for the stationary mKdV hierarchy [35].
The Dirac Hamiltonian H̆D

n has 2n bound states, and its
spectrum is symmetric:

σðH̆D
n Þ¼ð−∞;−C�∪ Ĕ−

1 ∪���∪ Ĕ−
n ∪ Ĕþ

n ∪ ���∪ Ĕþ
1 ∪ ½C;∞Þ;

ð5:1Þ

where Ĕ�
i ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − κ2i

p
, i ¼ 1;…; n, and semi-infinite

intervals ½C;∞Þ and ð−∞;−C� correspond to the doubly
degenerate continuous parts of the spectrum. In the limit
C → κn, we have H̆

D
n → HD

n ¼ Sn;1, where Sn;1 is defined
in (4.7). A scalar potential takes here the form
WnðxÞ ¼ Ωn −Ωn−1, with WnðxÞ → ∓κn for x → �∞.
The potentials of this form are, again, the solutions of the
kink (or antikink) type for the stationary mKdV hierarchy
due to the relation ½Sn;1;Pn;1� ¼ 0. The spectrum of the
Dirac Hamiltonian HD

n has 2n − 1 bound states, including
one bound state of zero energy:

σðHD
n Þ ¼ ð−∞;−κn�∪ E−

1 ∪ � � � ∪ E−
n−1 ∪ 0∪ Eþ

n−1 ∪ � � � ∪ Eþ
1 ∪ ½κn;∞Þ; ð5:2Þ
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where E�
i ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2n − κ2i

p
, i ¼ 1;…; n − 1. The two discrete

energy levels Ĕ−
n and Ĕþ

n of the system H̆D
n merge in the

limit C → κn and transform into a nondegenerate zero
energy level of the bound state for the system HD

n .

A. First-order matrix Darboux intertwiners
for Dirac systems

Let us return to the identity (3.13),

Anðx; τiÞXn−1ðx; τi; CÞ ¼ Xnðx; τi; CÞAnðx; ~τiÞ; ð5:3Þ
where Xnðx; τi; CÞ ¼ d

dx þ Δnðx; τi; CÞ and

Δnðx; τi; CÞ ¼ Ωnðx; τiÞ −Ωnðx; ~τiÞ þ C;

~τi ¼ τi − φiðCÞ; φiðCÞ ¼
1

2κi
ln
C þ κi
C − κi

:

ð5:4Þ

If in (5.3) we change τi → τi þ φiðCÞ, then make a
replacement C → −C, and take into account that
φið−CÞ ¼ −φiðCÞ and that Xn satisfies the relation
Xnðx; τi − φiðCÞ;−CÞ ¼ −X†

nðx; τi; CÞ, we obtain the
identity

Anðx; ~τiÞX†
n−1ðx; τi; CÞ ¼ X†

nðx; τi; CÞAnðx; τiÞ: ð5:5Þ

By using the notations An ≡ Anðx; τiÞ, ~AnðCÞ≡ Anð~τiÞ, and
XnðCÞ≡ Xnðx; τi; CÞ, Eqs. (5.3)–(5.5) and their Hermitian
conjugate give us the relations

AnXn−1 ¼ Xn
~An; A†

nXn ¼ Xn−1 ~A
†
n; ð5:6Þ

~AnX
†
n−1 ¼ X†

nAn; ~A†
nX

†
n ¼ X†

n−1A
†
n: ð5:7Þ

Using these relations, we can define the intertwining
operator between the Dirac Hamiltonians H̆D

n and H̆D
n−1,

which also is the intertwining operator between the
extended (supersymmetric) Schrödinger Hamiltonians H̆n
and H̆n−1:

Ăn ¼
�
An 0

0 ~An

�
; ĂnH̆

D
n−1 ¼ H̆D

n Ăn;

ĂnH̆n−1 ¼ H̆nĂn: ð5:8Þ

In the limit C → κn, the relations in (5.6) are transformed
into the trivial identity AnXn−1ðκnÞ ¼ AnXn−1ðκnÞ, and the
relation

A†
nAn ¼ Xn−1ðκnÞX†

n−1ðκnÞ ¼ Hn−1 þ κ2n; ð5:9Þ

where we have used the limits (3.7). These identities allow
us to construct a new operator of intertwining between the
Dirac systems HD

n and H̆D
n−1 and between the superex-

tended Schrödinger Hamiltonians Hn and H̆n−1:

An ¼
�
An 0

0 Xn−1ðκnÞ

�
; AnH̆

D
n−1ðκnÞ¼HD

nAn;

AnH̆n−1ðκnÞ¼HnAn; ð5:10Þ

where we indicated a dependence of the corresponding
operators on κn ¼ C.
This construction corresponds here to the Darboux

transformations for reflectionless Dirac systems and,
particularly, gives us a possibility to construct analytically
the states of HD

n and H̆D
n in terms of the eigenstates Φ̆0 of

the matrix operator H̆D
0 ¼ −σ2pþ σ1C:

H̆D
0 ðCÞ ¼

�
0 d

dx þ C
− d

dx þ C 0

�
; ð5:11Þ

which corresponds to the Hamiltonian of the free massive
Dirac particle. The eigenstates Φ̆n of H̆D

n can be presented
in the form Φ̆n ¼ ĂnĂn−1…Ă1Φ̆0, while the eigenstates of
HD

n are constructed in the formΦn ¼ AnĂn−1Ăn−2…Ă1Φ̆0

in terms of the eigenstates Φ̆0 of the Dirac Hamiltonian
H̆D

0 ðκnÞ ¼ −σ2pþ σ1κn. The explicit forms of the scatter-
ing states and 2n bound states of the H̆D

n are given by

Φ̆ϵ
nðĔ�ðk2ÞÞ ¼

 
Ψϵ

nðk2Þ
�

ffiffiffiffiffiffiffiffiffi
C−iϵk
Cþiϵk

q
~Ψε
nðk2Þ

!
;

Φ̆nðĔ�
i Þ ¼

�
Ψnð−κ2i Þ
� ~Ψnð−κ2i Þ

�
; ð5:12Þ

where H̆D
n Φ̆nðĔÞ ¼ ĔΦ̆nðĔÞ, Ĕ�ðk2Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ k2

p
, Ĕ�

i ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − κ2i

p
, i ¼ 1;…; n, Ψn are Schrödinger eigenstates

defined in (2.8), and the parameter ϵ ¼ �1 corresponds to
the two possible directions in which the waves can
propagate. The two discrete energy levels Ĕ�

n ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − κ2n

p
merge in the limit C → κn, and two corre-

sponding eigenstates of H̆D
n reduce to the unique state of

zero energy of the Dirac Hamiltonian HD
n :

Φ̆nðĔ�
n Þ ¼

�
Ψnð−κ2nÞ
� ~Ψnð−κ2nÞ

�
→ Φnð0Þ ¼

�
Ψnð−κ2nÞ

0

�
:

ð5:13Þ

B. Exotic supersymmetry of reflectionless Dirac systems

The matrix operator P̆n;1 and the Dirac Hamiltonian H̆D
n

correspond to the Lax pair for the nth member of the
stationary mKdV hierarchy, and the scalar Dirac potential
ΔnðxÞ is identified as the corresponding soliton (multikink-
antikink type) solution. Since ½P̆n;1; H̆

D
n � ¼ 0, the P̆n;1 is a

nontrivial integral for the Dirac system H̆D
n . It is the

Darboux-dressed momentum operator of the free Dirac
massive particle (5.11). The interesting point is that for the
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reflectionless Dirac system H̆D
n one can identify an addi-

tional integral of motion Γ̆, which satisfies the identity
Γ̆2 ¼ 1 and anticommutes with P̆n;1. As a consequence, the
reflectionless Dirac system H̆D

n can be characterized by the
proper exotic nonlinear supersymmetry. Indeed, consider
the operator Γ̆ ¼ Rσ3, whereR is the operator of reflection
in x, τi, and C, which satisfies the relations Rz ¼ −zR,
R2 ¼ 1, where z ¼ x; τi, or C. Because of the relations
½Γ̆; H̆D

n � ¼ 0 and fΓ̆; P̆n;1g ¼ 0, the H̆D
n and P̆n;1 are

identified as bosonic and fermionic operators, respectively.
They generate a nonlinear N ¼ 1 superalgebra

½P̆n;1;H̆
D
n �¼0; fP̆n;1;P̆n;1g¼2P2ð2nþ1ÞðH̆D

n Þ; ð5:14Þ

where

P2ð2nþ1ÞðH̆D
n Þ≡ ððH̆D

n Þ2 − C2Þ
Yn
j¼1

ððH̆D
n Þ2 − ðC2 − κ2jÞÞ2:

ð5:15Þ
The 2ðnþ 1Þ zeros of the polynomial in HD

n operator
(5.15) correspond to the energies of the singlet states of the
reflectionless Dirac system, where Ĕ�

i ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − κi

p
,

i ¼ 1;…; n, are the energies of the bound states, while
�C correspond to the two singlet states at the edges of the
continuous parts of the spectrum.6 In accordance with (2.8),
the left- and right-moving waves in (5.12) of the scattering
sector, which correspond to doubly degenerate energy
levels Ĕ�ðk2Þ of H̆D

n , are distinguished by the supercharge
P̆n;1: they are its eigenstates of the opposite sign eigen-
values. By supplementing the integral P̆n;1 with a (non-
local) integral P̆n;2 ¼ iΓ̆P̆n;1, the N ¼ 1 exotic nonlinear
supersymmetry of the reflectionless Dirac system H̆D

n can
be extended to N ¼ 2: fP̆n;a; P̆n;bg ¼ 2δabP2ð2nþ1ÞðH̆D

n Þ.
Applying the limit C → κn, we identify the proper exotic

supersymmetric structure of HD
n . In this case, the zero

energy eigenstate (5.13) of HD
n is also the zero mode of the

supercharge Pn;1. In both Dirac reflectionless systems H̆D
n

and HD
n , the supercharges detect all the nondegenerate

eigenvalues of the Hamiltonians by annihilating the cor-
responding eigenstates, which are the bound states and the
states at the edges of the continuous parts of the spectra.
Since the zero energy eigenvalue belongs to the spectrum of
HD

n but is not present in the spectrum of H̆D
n , the proper

exotic supersymmetry of the Dirac system H̆D
n is of the

broken nature, while that of HD
n corresponds to the

unbroken phase. In correspondence with the second rela-
tion from (4.9), the limit τn → ∞ applied to the Dirac
systemHD

n with the unbroken proper exotic supersymmetry
will produce the system H̆⋄D

n−1 ¼ S̆⋄
n−1;1 [see Eq. (4.9)],

characterized by the broken exotic supersymmetry.

VI. DISCUSSION AND OUTLOOK

We have considered the two related families of the
ð1þ 1ÞD Dirac reflectionless systems. Each such system
corresponds to a fermion in a background of a multisoliton
solution (of the kink or kink-antikink type) of the mKdV
equation. In one of these two families, the n-soliton
potential VDðxÞ ¼ ΔnðxÞ or −ΔnðxÞ, where ΔnðxÞ ¼
Δnðx; κ1; τ1;…; κn; τn; CÞ, C2 > κ2n, is ð2nþ 1Þ parametric,
while in the second family the potential VDðxÞ is 2n
parametric and corresponds to the function WnðxÞ or
−WnðxÞ, where WnðxÞ ¼ Wnðx; κ1; τ1;…; κn; τnÞ. From
the viewpoint of the associated extended Schrödinger
systems, whose matrix 2 × 2 Hamiltonians are given by
a square of the corresponding Dirac Hamiltonian
HD ¼ iσ2

d
dx þ σ1VDðxÞ, the Dirac potential VDðxÞ is a

superpotential. The peculiarity of the considered reflection-
less families is that in the case of the supersymmetric
Schrödinger systems, in addition to the two first-order
supercharges HD and iσ3HD, they are characterized by the
two supercharges to be matrix differentials operators of the
order of 2n. Furthermore, they possess two nontrivial
bosonic integrals to be differential operators of the order
of 2nþ 1, which are constructed from the Lax-Novikov
integrals of the Schrödinger subsystems. One of these two
bosonic integrals is a central charge of the exotic nonlinear
superalgebra. The same higher-order central charge can be
identified as the supercharge (a fermionic generator) of the
proper exotic nonlinear supersymmetry of the reflectionless
Dirac system. In the case of VDðxÞ ¼ �ΔnðxÞ, the exotic
nonlinear supersymmetries of the Schrödinger and Dirac
systems are spontaneously broken, and the quantity
ðC2 − κ2nÞ > 0 measures the scale of the breaking. The
choices VDðxÞ ¼ �WnðxÞ correspond, on the other hand,
to the unbroken exotic supersymmetries. The interesting
point is that there exists a limit procedure, admitting the
interpretation in the context of a soliton scattering, which
relates the two indicated families of the exotic super-
symmetric reflectionless systems. One can define a kind
of a topological charge by a relation

q ¼ 1

2jVD
0 j
Z

∞

−∞
dx

dVDðxÞ
dx

;

where VD
0 ¼ limx→þ∞VDðxÞ. The case of the broken

supersymmetry with the kink-antikink type potential
VDðxÞ ¼ �ΔnðxÞ is characterized then by q ¼ 0, while
the cases of the kink, VDðxÞ ¼ −WnðxÞ, and antikink,
VDðxÞ ¼ WnðxÞ, type potentials of the unbroken exotic
supersymmetries correspond to q ¼ þ1 and q ¼ −1,
respectively. The quantity 2jVD

0 j gives the gap that sepa-
rates the upper and lower continuous bands in the spectrum
of the Dirac systems and can be treated as a doubled mass
parameter of a fermion in an external scalar potential. The
mentioned supercharge of the Dirac system annihilates
all its nondegenerate energy states and, being the

6Besides a bound state, each double root Ĕ�
i , i ¼ 1;…; n, of

the polynomial on the left-hand side of (5.15) corresponds also to
a nonphysical eigenstate of H̆D

n .
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Darboux-dressed momentum operator of the free Dirac
particle (zero-soliton case), distinguishes the left- and right-
moving eigenstates corresponding to the doubly degenerate
energy values in the continuum bands of the spectrum.
The described transparent potentials VDðxÞ appear in

many physical applications in the form of stationary
solutions for inhomogeneous fermion condensates. Such
self-consistent condensates are described by the equations

ði∂ − VDÞψα ¼ 0; VD ¼ −g2
XN
α¼1

X
occ

ψ̄αψα: ð6:1Þ

Here the first equation with a generalized flavor index α ¼
1;…; N represents a system of ð1þ 1ÞD Dirac equations,
the
P

N
α¼1 corresponds to summation in degenerate states,

and
P

occ corresponds to a sum over the completely filled
Dirac sea plus a sum over bound states, which usually are
partially occupied. Equations (6.1) appear particularly in
superconductivity, in the Gross-Neveu model, and in the
physics of conducting polymers. A famous method of
solution of (6.1) was realized by Dashen, Hasslacher, and
Neveu in [3], where this system of equations was rewritten
in terms of the scattering data for Schrödinger potentials
U� ¼ ðVDÞ2 � d

dx V
D − ðVD

0 Þ2, and as a result it was shown
that the reflection coefficient for both potentials U� has to
be equal to zero. For some applications of this result, see
[55–59]. Using the ideas of supersymmetry, this picture
is equivalent to the search of the first-order operators
D and D†, which intertwine and factorize corresponding
Schrödinger reflectionless Hamiltonians, Hþ ¼ DD† − E0

y H− ¼ D†D − E0. As we have shown, there are only two
situations where such a factorization is possible.

(i) WhenHþ andH− are completely isospectral, the VD

corresponds to the Dirac potentials characterized by
the topological charge q ¼ 0, which are given by
inhomogeneous condensates �Δn with asymptotic
behavior Δn → C for x → �∞.

(ii) In the other possible case, the spectra of Hþ and H−
are different in one bound state only, and the
inhomogeneous condensate takes here the form
VD ¼ −Wn or VD ¼ Wn, where Wn → ∓κn for
x → �∞, and the topological charge q takes the
values þ1 or −1.

On the other hand, the occupation fraction for each
nondegenerate state defines the energy of the bound states.
Using the method of resolvent, Feinberg showed in [4] that
for all static condensates the following equality is valid:

νi ¼
2

π
cot−1

�
κiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVD
0 Þ2 − κ2i

p �
; i ¼ 1;…n; ð6:2Þ

where νi can take the values νi ¼ 0; 1N ;…
N−1
N ; 1. This

result was reproduced in [58] for complex kinks in the
context of the Bogoliubov–de Gennes and chiral Gross-
Neveu systems.

The case N ¼ 1, ν ¼ 0; 1 corresponds here to the
superconductivity. With these restrictions, the topologically
trivial homogeneous condensate is possible, VD ¼
�Δ0 ¼ �VD

0 , ν1 ¼ 1 (free Dirac massive particle), as well
as the topologically nontrivial inhomogeneous condensate,
VD ¼ �W1, ν1 ¼ 0, κ1 ¼ VD

0 .
The case N ¼ 2, ν ¼ 0; 1=2; 1, corresponds to polymer

conductors in the context of the Takayama–Lin-Liu–Maki
model [8]; in addition to VD ¼ �Δ0;�W1, also the case
ν1 ¼ 1=2, VD ¼ �Δ1, κ1 ¼ 1ffiffi

2
p jVD

0 j is possible. This last

solution is known as a polaron. The other topological
solution, which is kinkþ polaron (or antikinkþ polaron),
corresponds to VD ¼ ∓W2 (κ1 ¼ 1ffiffi

2
p jVD

0 j and κ2 ¼ jVD
0 j).

In the ’t Hooft limit N → ∞, the κi can take any value in
the interval 0 ≤ κi ≤ jVD

0 j, that makes it possible to have
any stationary soliton solution. So, we see that for
the Gross-Neveu model, the Darboux transformations
provide a general method to generate real inhomogeneous
condensates for (6.1).
Equations (5.8) and (5.10) allow us to obtain a super-

symmetric system described by the extended first-order
matrix Hamiltonian composed from the two Dirac
Hamiltonians. In such a way, we can get two different
families of the extended systems. The first one realizes the
unbroken exotic supersymmetry and is given by the
Hamiltonian of the form

HD ¼
�
HD

n 0

0 H̆D
n−1

�
: ð6:3Þ

The matrix integrals for (6.3) given by the first-order
differential operators are

SD
1 ¼

�
0 An

A†
n 0

�
; SD

2 ¼ iΣ3SD
1 ; ð6:4Þ

where Σ3 is a 4 × 4 diagonal matrix of the form Σ3 ¼
diagð12;−12Þ with 12 the unit 2 × 2matrix. Another family
is given by the Hamiltonian of the form

H̆D ¼
�
H̆D

n

0 H̆D
n−1

�
; ð6:5Þ

and its analogous integrals are

S̆D
1 ¼

�
0 Ăn

Ă†
n 0

�
; S̆D

2 ¼ iΣ3S̆
D
1 : ð6:6Þ

The grading operator Γ ¼ Σ3 identifies the extended Dirac
Hamiltonians to be bosonic generators, while (6.4) and
(6.6) are identified as the fermionic generators. Then we
find that the indicated operators satisfy the nonlinear
supersymmetry relations to be of the order of 2 in the
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corresponding Hamiltonians: fSD
a ;SD

b g ¼ 2δabðHDÞ2, and
fS̆D

a ; S̆
D
b g ¼ 2δabððH̆DÞ2 − C2 þ κ2nÞ. Besides, in each of

the two cases, there exist bosonic integrals to be the matrix
differential operators of the order of 2nþ 1 and fermionic
integrals of the order of 2n.
Also, it is possible to construct supersymmetric Dirac

type systems with nonlinear superalgebraic relations of the
form fS; Sg ¼ 2fððHDÞ2Þ, where f is a polynomial, by
taking in extended Hamiltonian HD a pair of reflectionless
Dirac Hamiltonians with distinct scattering data. The
picture has to be similar to that obtained in Ref. [34] for
the reflectionless Schrödinger systems.

We are going to present the detailed investigation of such
supersymmetric pictures with extended Dirac Hamiltonians
elsewhere.
Note also that the last relations in (5.8) and (5.10) can be

used to construct further supersymmetric extensions of the
reflectionless Schrödinger systems, in particular, given by
4 × 4 matrix Hamiltonians.
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