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We consider the two most general families of the (1 + 1)D Dirac systems with transparent scalar
potentials and two related families of the paired reflectionless Schrodinger operators. The ordinary A/ = 2
supersymmetry for such Schrodinger pairs is enlarged up to an exotic N' = 4 nonlinear centrally extended
supersymmetric structure, which involves two bosonic integrals composed from the Lax-Novikov
operators for the stationary Korteweg—de Vries hierarchy. Each associated single Dirac system displays
a proper N = 2 nonlinear supersymmetry with a nonstandard grading operator. One of the two families of
the first- and second-order systems exhibits the unbroken supersymmetry, while another is described by
the broken exotic supersymmetry. The two families are shown to be mutually transmuted by applying a
certain limit procedure to the soliton scattering data. We relate the topologically trivial and nontrivial
transparent potentials with self-consistent inhomogeneous condensates in the Bogoliubov—de Gennes and
Gross-Neveu models and indicate the exotic ' = 4 nonlinear supersymmetry of the paired reflectionless

Dirac systems.
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I. INTRODUCTION

The Schrodinger and Dirac equations with reflectionless
or soliton potentials are exactly solvable. The reflectionless
potentials of a general form for the one-dimensional
Schrodinger equation were obtained for the first time by
Kay and Moses by solving the problem of a theoretical
construction of a solid dielectric medium which is perfectly
transparent to electromagnetic radiation [1]. Such perfectly
transparent potentials appear in the (1 + 1)-dimensional
Gross-Neveu (GN) model [2-4] and are closely related
with a nonlinear problem of self-consistency of the
Bogoliubov—de Gennes (BdG) equations [5—7]. They find
applications in the description of a broad spectrum of
phenomena in diverse areas of physics such as conducting
polymers [8—13], charge fractionalization [14-17], and
superconductivity [5-7], [18-22], just to mention a few.
There is also a great interest in supersymmetry associated
with fermions in soliton backgrounds [23-28].

Reflectionless potentials play a fundamental role in the
theory of integrable systems. They appear as soliton
solutions, particularly, to the Korteweg—de Vries (KdV)
and modified Korteweg—de Vries (mKdV) equations. Their
explicit form can be obtained by means of the inverse
scattering method, by Bécklund transformation, or by
Darboux-Crum transformations [1], [29-41]. A character-
istic feature of the two last methods is a possibility to
construct these potentials from simple (formal) solutions of
the free particle.
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In the present work, we focus on the Darboux trans-
formations. In this picture, there appear the first-
order differential operators, which intertwine reflectionless
Schrodinger and perfectly transparent Dirac Hamiltonians.
This will allow us, following the line of Refs. [34-36,42—45],
to study the interrelations between the exotic nonlinear
supersymmetric structures emerging in the first- and
second-order quantum reflectionless systems of the most
general form corresponding to the KdV and mKdV
solitons.' We also will observe an interesting phenomenon
of transmutation of supersymmetry associated with the
soliton scattering and will relate the construction to the
self-consistent inhomogeneous condensates appearing in
the GN and BdG models.

A relation of the soliton potentials with the GN model [2]
goes back to the famous result of Dashen, Hasslacher, and
Neveu [3], who found that minimizing the effective action
of the model for the “condensate function” o(x) = —gpy
results in the condition that the Schrodinger potentials
U.(x) given in terms of the Miura transformation [40],
U, (x) = g°6*(x) + gdo(x)/dx, have to be reflectionless.
On the other hand, the Dirac system with transparent
potential o(x) appears in the Takayama-Lin-Liu—Maki
(TLM) model for conducting polymers [8], which is a
continuous model for solitons in polyacetylene, where the
kink and kink-antikink solutions were found [12]. Though
these two models have distinct physical interpretations,

'For the earlier studies related to the appearance of the exotic
extended supersymmetric structure in such a class of systems
characterized by the presence of the nontrivial Lax-Novikov
integral, see also Refs. [46-50].
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they are equivalent mathematically, and the methods
developed in the context of the GN model were applied
in the study of the TLM model [9,11,13]. In general, the
self-consistent solutions of the GN model are related with
the Ablowitz-Kaup-Newell-Segur hierarchy [45,51] and by
the same reason are intimately related with integrable
systems in 1+ 1 dimensions. Particularly, some solu-
tions to the GN model were found to be related with the
breather-type solutions of the sinh-Gordon and nonlinear
Schrodinger equations [52].

The integrability of the equations of the KdV and mKdV
hierarchies can be associated with the existence of an
auxiliary spectral problem given in terms of the spectral
operator H and the evolution generator P;. The consistency
condition appears there in the form of the equation for the
Lax pair (H, P j), Z—g =[H,P j}, which is equivalent to the
corresponding evolution equation. For the jth equation of
the KdV hierarchy, H = —;—; + U 1is the Schrodinger

operator, while P;, j = 0, 1, ..., is an anti-Hermitian monic
. . 2j+1 2j-1
differential operator of the form P; = % +axi_y % +

.-+ ao with coefficient functions a; given in terms of
the potential U and its x derivatives. The case of the
KdV equation corresponds to j =1, and its n-soliton
solution U, (x, ) satisfies simultaneously the equation
[£,,H,] =0, which is the nonlinear ordinary differential
equation of the order of 2n + 1 in the x variable. This is the
nth stationary equation for the KdV hierarchy, in which
t; = t plays a role of an external parameter. The operator

_ n—1 :
L,=P,+> 20 c;P;, where c; are some real coefficients,

is the Lax-Novikov nontrivial integral of motion for H, =

- dd—;z + U, [32,33,48]. According to a celebrated result of

Burchnall and Chaundy [41], the square of the order of
the 2n + 1 differential operator £, reduces to a certain
polynomial in H,,.

One can construct the pair (H,,, £,,) corresponding to an
n-soliton potential U, recursively, starting from the free
particle case with Hy = —d"—; and Ly = d—“; (Uy=0) and
using the Darboux transformations. If we restrict ourselves
by regular on the x-axis potentials, then at each step,

(1) from U,, we construct an almost isospectral reflec-
tionless potential U, ;| with one more bound state in
comparison with U,, and from the Lax-Novikov
integral £, for H, = —dd—; + U,, we obtain the
integral £, for reflectionless Schrodinger system
H n+1-

The interesting point here is that having reflectionless
Schrodinger potential U, of a general form, by applying the
Darboux transformation of another nature,

(i) we can construct from U,, another n-soliton potential
U, to be completely isospectral to U,,, and from L,
we can obtain the corresponding integral £, for H,,.

The latter construction can be realized by applying a
certain limit procedure for soliton scattering data of the
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reflectionless potential U, . By a similar limit procedure,
one can also relate f]n with U,_;, and U, with U,_,. In
both cases (i) and (ii) above, one can associate with the
corresponding pairs of the reflectionless second-order
Hamiltonians the exotic N' = 4 nonlinear supersymmetry
that includes two bosonic integrals composed from
Lax-Novikov integrals for the partner subsystems.
Exploiting the knowledge of the Darboux transforma-
tions for the KdV, one can generalize the construction for
the case of the mKdV to get the transparent Dirac systems
with the multikink scalar potentials and to identify for each
such single first-order matrix system a proper exotic N = 2
supersymmetry. As in the Schrodinger case, the transparent
Dirac multikink potentials are separated into two groups:
one of them is formed by topological and another by
nontopological scalar potentials. The topological potentials
are associated with case (i) above and represent the
configurations of n kinks and n 4 1 antikinks. The non-
topological transparent potentials correspond to case
(i1) and represent a certain superposition of n kinks and
n antikinks. We shall show how the kinks and antikinks in
transparent Dirac potentials gather together in such a way
that their amplitudes and phases are fixed by supersym-
metry of the paired reflectionless Schrodinger systems.
The paper is organized as follows. In Sec. II, we review
shortly the recursive construction of the multisoliton
Schrodinger potentials of the most general form in terms
of the Darboux transformations and describe the spectra of
the corresponding reflectionless Schrodinger operators. We
identify there the independent differential operators of the
orders of 1 and 2n, which intertwine the neighbor in a
recursive chain Schrodinger Hamiltonians H,, and H,_;,
and find the Lax-Novikov integral of differential order
2n+1 for H,. In Sec. III, we describe another unique
family of the reflectionless pairs (H,,, H,) with completely
isospectral partners, which are also intertwined by the
Darboux generators to be differential operators of the same
orders 1 and 2n, and find a certain limit procedure, related
to the soliton scattering, which mutually transmutes the
two indicated families of the pairs of the transparent
Schrodinger systems. In Sec. IV, we study the exotic
nonlinear supersymmetries of the two families of the
Schrodinger systems composed from the reflectionless
isospectral (H,, Hn) and almost isospectral (H,, H,_;)
pairs and observe the transmutations between these two
families through the soliton scattering. In Sec. V, we study
the transparent Dirac systems associated with the two
families of the superextended reflectionless Schrédinger
systems, where we show that each single transparent Dirac
system possesses its own exotic nonlinear supersymmetry.
Section VI is devoted to the discussion of the obtained
results and outlook. There we relate the perfectly trans-
parent scalar Dirac potentials with the self-consistent
inhomogeneous condensates appearing in the BdG and

025008-2



TRANSMUTATIONS OF SUPERSYMMETRY THROUGH ...

GN models and indicate the exotic N =4 nonlinear
supersymmetry of the paired reflectionless Dirac systems.

II. REFLECTIONLESS SCHRODINGER
POTENTIALS AND DARBOUX-CRUM
TRANSFORMATIONS

Let H,=-d?/dx*+U,(x) be a reflectionless
Schrodinger system with a potential of a general 2n-
parametric form U, (x) = U, (x;ky, 7y, ..., K, T,) such that

U,(x) = 0 for x - +oo. Parameters k;, j=1,2,....n,
0 <k <--- <k,, correspond to the energy levels of the n
bound states, £ = —sz-. They also define the transmission

amplitude in the scattering sector with E = k> > 0:

ki,
1(k) = ITj= l:zl::j’

the wave number k. The parameters 7; are related to the
norming constants of the bound state solutions [33,53], and
their variation provides an isospectral deformation of the
quantum system.

From the viewpoint of the inverse scattering method,
function U, (x; ky, 7y, ..., K,, T,) corresponds to the instant
image of the n-soliton solution U,(x,7) to the KdV
equation u, — 6uu, + u,,, = 0. For large negative and
positive values of time 7, the U,(x,?) can be represented
as a superposition of n one-soliton solutions of the
amplitudes 2«7 propagating to the right at speeds v; = 4«7

and so |7(k)| =1 for any real value of

U,(x,1)= —Z2Kfsech21<j(x—4kat—qof) for t— +oo.
=

(2.1)

The phases ¢ defined for # — F-co are given by [33,53]

-1

1 & K+ K; K+ K;
+_ 0 J J
o =1 :I:—{ log| ——| — log—},
! 72k, j.;l K| — K;j ; K| —Kj
(2.2)
J
for j = odd,

o {cosh(Kj(x+rj))
Vi sinh(x;(x + 7;))

Eigenfunctions W (x;E) #y; of H,, Hy¥y(x;E)=
E¥(x; E), are mapped into the eigenfunctions ¥, (x; E)
of H,, H,V,(x;E)=EVY,(x;E), by means of the
Wronskian fractions:

U, (5 E) = Wy, ...y, Uo(E)) /W, (2.7)
The eigenfunctions in the scattering sector with E =
k>0, k>0, and (not normalized) bound states with
energies E; = —K?,j =1, ...,n, of the system H,, are given
then by the relations

for j = even,
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where it is implied that for [ = n and [ = 1 the first and,
respectively, the second sum disappears. The parameter 1?
corresponds to the mean of the asymptotic phases,
™) =1 (o] + ¢7). According to (2.2), the solitons demon-
strate in some sense a fermionlike behavior: |7, |7 || —
oo as soon as k; — k;.1. In the two-soliton case, (2.2)
gives

1
ggzltzf(l)j:_log m’

2/('1 K1 — Ky

1 K|+ K
= 07— log| 2| 2.3
2 =¥ logl L — (23)

Our consideration will be based on the method of iterated
Darboux transformations (or, that is the same, the Darboux-
Crum transformations) [29], by which the quantum
mechanical reflectionless system with n bound states can

be constructed from a free particle system H, = —%:

d2

Hn:H0+Un(X), Un:—ZWIOan (24)
X

Here W, is the Wronskian of n formal (nonphysical)
eigenstates y; of Hy, Hoyy; = —K7y;:

W, = W(wy,...,,) = det A,

di—l o
Al‘j:Wl//j, iLj=1,...n, (2.5)
which are chosen as follows:
0 <k <ky<-<Kj_j <Ky (2.6)
[
Ui (k) = Wy, ..o, €55) /W,
dy;
\I]n(_K?) = W(l//], <o l//md—xj>/ n (28)

The derivative % is a nonphysical eigenfunction of H
which is linearly independent from the corresponding
nonphysical eigenfunction y; from (2.6).

Coherently with (2.4), we put Wy, = 1 and define the

prepotentials Q,, n =0,1, ...
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d d 1
Qn:—alogwn iagn :EUn. (29)

Then we introduce the first-order differential operators

d
Ay =—4W,, W, =Q,-Q,, 2.10
i + 1 (2.10)
where, particularly, W; = Q; = —k, tanhk;(x + 7).

These operators and their conjugate ones factorize the
reflectionless systems H,_; and H, having the (n—1)-

and n-soliton potentials U,_;(x;ky, 7y, ..., K,_1, T,—1) and
Un(.x;Kl,Tl, ...,Kn_l,Tn_l,Kn,Tn):
AJA, =H,_, +&%,  AA,=H,+«2  (211)
and intertwine them:
AH, , =H,A,  AlH,=H, A} (2.12)
The operator A, can be presented equivalently as
A, =V (104 ), where ¥/ 1:W\WN" is a nodeless non-

physical eigenfunction of H,_;, H, |V} | = -0 .
This function is a formal (exponentially blowing up at
X = Fo0) zero mode of the first-order differential operator

A,, A, ¥4 =0. Any other (physical or nonphysical)

elgenstate an—l( ) of Hn—l’ n—l\Iln—l( ) qun—l( )
is mapped by A,, into the eigenstate of H ,:

\Iln(E) = An\Iln—l(E)’ (213)
with the same eigenvalue, H,V,(E) = EV,(E).

By iteration of (2.12), reflectionless system H, can be
related with the free particle H:

A,Hy=H,A,.  AlH, = HA}. (2.14)

where A, is the differential operator of the order of n:
A,=A,... Al (2.15)

In terms of (2.15), we define the differential operator of the
order of 2n:

d
B, :A1<—a+’<1>v
d
:A _——
R

The iteration of relations (2.12) shows that 15, and B} also
intertwine reflectionless Hamiltonians H,, and H,_;:

K,,)At;_l for n=2,.... (2.16)

B,H,,=H,8,,  BiH,=H, B} (2.17)
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Unlike A,, and Al they do this not directly but via the
“virtual” free particle system H, for which the first-order
differential operator appearing explicitly in the structure
of B,, is an integral of motlon Instead of (2.11), we have the
relations

leBn = H (Hn—l =+ K?>2'

=1 j=1

BB, =
(2.18)

The operator (2.15) also allows us to find a nontrivial
integral for reflectionless system H,;:

L,=A,pAj, Lh==L,, L, H, =0. (2.19)
This differential operator of the order of 2n + 1 is the Lax-
Novikov integral for the H,,. It is a Darboux-dressed form
of the integral p = —idix for the free particle system H,
which satisfies the nonlinear supersymmetry-type relation

n
i=1

The property of commutativity of £, with H, means that
the potential U, = 2 78, isa solutlon of the nth member
of the KdV statlonary hlerarchy

Using analogs of the integrals (2.19) for H; with
0 <[ < n, one could try to construct the operators inter-
twining H,_; and H,, with n > 1 via a virtual H, system. In
such a way we obtain, however, a combination of B, and
A, with a coefficient before the latter operator to be a
polynomial of the order of (n — 1) in H,_,. For instance,
—iA,L,_; is the differential operator of the order of 2n,
which, like Bn, intertwines Hn 1 with Hn but reduces to
—iA L,y = B, —k,A, [1'=} (H,_, +«?) and, so, is not a
new, independent 1ntertw1n1ng operator. At the same time,
note that the intertwining operators A, and B,, and the
integral £, are related with the Hamiltonian H, by the
identity

(2.20)

n

B, A} +iL, =k, [ [(H, + ).

i=1

(2.21)

In conclusion of this section, it is worth stressing once
more that the existence of the nontrivial, order 2n inter-
twining operator B, in addition to the first-order Darboux
generator A, as well as of the order 2n + 1 integral L,
originates from the fact that the reflectionless system H,, is
related to the free particle H by the chain of the subsequent
Darboux transformations, and the H, possesses a nontrivial

integral of motion p = —i d{(

“Note that, unlike Sec. 1, we take £,, here in a Hermitian form.
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III. SOLITON SCATTERING AND DARBOUX
TRANSFORMATIONS

Besides the discussed pairs (H,,, H,_;) of reflectionless
Schrodinger systems related by the first-order Darboux
intertwining operators, there is another class of such
systems, for which the paired Hamiltonians are also
interrelated by the first-order Darboux generators. Unlike
the described case, the reflectionless partners in these
pairs are completely isospectral. The corresponding
n-soliton partner potentials U, (x;ky, 7y, ...,k,,7,) and
U,(x;xy,71, ..., Kk, T,) are characterized by the same scal-
ing parameters k;, i = 1,...,n, but different sets of the
translation parameters correlated as follows [35]:

C+K,'
C—Ki’

1 K; 1
— %, = —arctanh— = — 3.1
T — 7T -arctanh o og (3.1)

K;

where C is an additional real parameter such that |C| > ,,.
A comparison of the quantities (3.1) and (2.3) indicates that
(3.1) can be related somehow to the effect of the scattering
of solitons. In this section, we show how each indicated
family of the paired reflectionless systems, with partners
intertwined by the first-order Darboux generators, can be
transformed into another by a certain limit procedure,
which admits a soliton scattering interpretation.

To this aim, we first consider the limits 7, — +o0
applied to the reflectionless system H,. To study the
induced deformation of the potential U, and superpotential
W, (the latter will play a role of the potential for an
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associated Dirac system), it is sufficient to investigate the
limits of the prepotential €, because of the relations
240, =U,and Q, - Q,_; = W,. We shall demonstrate

that Q,=-2logW, > Q, [(C)-C for 7, *oo,

where C = +«, and fzn_l is identical to Q,_; with 7;,
=
here, it follows also that if we apply subsequently another
limit x, — k,_;, or that is the same, 7,_; - Foo, the
deformed (by x-dependent z displacements) prepotential
transforms as (Q,_; — C) — Q,_,. So, the effect of sending
subsequently the two solitons with indices n and n — 1 to
infinity in opposite directions results in the disappearance
of the two bound states from the spectrum, without
changing the rest of the 2(n —2) soliton parameters in
the reflectionless potential U,_,. This corresponds to a
fermionlike behavior of solitons already mentioned
below Eq. (2.2).

i=1,...n—1, changed for 7; =7, — 5-log From

In the limit 7, > 4+o0, for the prepotential
Q, = —(logW(yy,....,w,)), we find that
Q, > —(logW(yy,...,w,_1,Cte™)) , where Ci =

er1e™™ ™ is an exponentially divergent multiplicative
factor with €;; = 1 and €, = (—1)""!. By the Wronskian
properties, we have W(yy, ..., y,_;, Cfe™¥) =
CEW(y 1, ...y Wy, €%). The logarithmic derivative
eliminates the x-independent divergent multiplicative
factor CF, and in the limit 7, - £co we obtain
Q, - —(logW(y,...,y,_1,e*)) .. We note now that
Wy, ...y, €55%) = e det |Wh||, where

chkyxy shk,xy Wi 1
K1shik;x, Kychiyx, O W,_i +k,

IWall = (3.2)

0" 'chk;x; 07 'shiyx, Oy (1)t
and x; =x + ;. By changing the rows L;, j=1,...,n—1, of the matrix (3.2) for the linear combinations:

L; - x,L;FL;, we find that (logdet ||W51||)x = (logdet||W,||), where

Chy Shy Chi 0

k1 Shi k,Chy k3Shy 0
Wl = K2Ch} K2Sh} K2ChT 0 (3.3)

07 'coshkyx, 00 'sinhiyx, 077! coshksxs (£1) Tyt

Here we denote Ch;” = k, coshk;x; F k; sinhk;x; and Sh = k,, sinhk;x; F k; coshk;x;, i = 1,...,n — 1, where the signs

— and + correspond to the limits 7, — +o0 and 7, - —oo, respectively. These functions can be represented equivalently

as  Chj = ./k2 —«?coshk;(x + 7,F¢;) and Shi = \/k2 —«7sinhk;(x + 7;F¢;), @; = 5-log

i=1,...,n—1. As a consequence, we find that (logW(y{, ..., y,_;, ), = +x, + logW(Jy, ..., ¥,_1)),, where
y; is identical to y; but with z;, i = 1,...,n — 1, changed for

where
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. 1 ;
Ti = Ti:F z—logkn + Kl
Ki Ky —K;

for 7, - +oo,

(3.4)

that translates finally into the transformation

Q, — Q,,F«k, Note that 7, —7; given by (3.4)

7,—~+o00
corresponds to the change of the phase in the two-soliton
scattering given by the first relation in (2.3), with indices
1 and 2 changed for i and n, respectively.

In the limit 7, - +oco0 we find that

d d
An :E+Wn _)a_An—l(Kn) = _XZ—I(KH)’ (35)
where
d
X,.1=—+A4,_4,
n—1 dx+ n—1

An—1<Kn> =Q, 1 —Q,, (Kn) + Ky (36)

The subsequent application of the limit k, — k,_;
gives

Xn—l(Kn) - An—l’ An—l - Xn—Z(Kn—l)7 (37)

where the first-order operator An_ | is of the same form as

A,_; but with the parameters 7; changed for 7; =
T; —ilogg:’:". The relations corresponding to the limit

7, — —oo can be written down explicitly in a similar way.

Since the n-soliton potentials are given by the relation
U,=24Q,, by taking the limit 7, - +co we eliminate
the bound state with E, = —«2 from the spectrum of H,
and obtain a new Hamiltonian with (n — 1) bound states,
which we call H,_;. This Hamiltonian is isospectral to
H,_,, but each soliton in it is displaced with a phase
dependent on «,,:

Hn(Ti) . —:)-oo Hn—l(%i) = I:In—l(Kn)7
1 .

P log i T (3.8)
K; Ky, —K;

The limit 7, — —oo corresponds to the change of k,, for —x,,
in (3.8). In general, from the viewpoint of H,_;, the «,
(or —k,) is just an additional parameter, and from now
on we call H,_; =H,_,(C), assuming for the sake of
definiteness that C > «,,_;.

On the other hand, both the Hamiltonians H,, in the limit
K, — K,_1 and H »—1 in the limit C — k,,_; correspond to a
Hamiltonian H,,_,:

PHYSICAL REVIEW D 90, 025008 (2014)

Hn — Hn—2’ I:In—l (C> - Hn—2' (39)
Kn=Kn—1 C—kymy
As analogs of factorizations (2.11), we obtain
XiX,=H,+C  X,X,=H,+C, (3.10)

where X, is defined in (3.6) with index n — 1 changed for n,
and it is assumed here that C*> > 2. In correspondence with
(3.10), X,, and X}, not only factorize the isospectral
Hamiltonians, but also intertwine them: X, H, = H,X,,
XiH 0= H,,XZ. We also have the factorization relations
AA=H,+x2, AA,=H,,+x2.  (3.11)
Using these last relations, one can construct the generators
which intertwine H,, and H,, being the differential oper-
ators of the order of 2n:
Y, =AA" Vi =A,A], (3.12)
)J”H,, =H,Y,, y;Hn = I:I,,yj;,Nwhere An is defined as in
(2.15) but with A; changed for A;.
Another pair of important identities is
AXo = X,A,, XA, =AX . (3.13)
The operators appearing in the first equality intertwine
the Hamiltonians_ H,_; and H,, (A, X, )H,.; =
H,(A,X,-1), (X,A,)H,_, =H,(X,A,), and the equal
operators from the other relation intertwine in a similar
manner H,_; and H,. The Hermitian conjugate forms of
the operators from (3.13) intertwine the indicated pairs of
the Hamiltonians in the opposite direction. The relations in
(3.13) are equivalent to the identity

(C+Qn—l _Qn)(gn _Qn _Qn—l +Qn—l) = (Qn _Qn—l)x7
(3.14)

which, in turn, is reduced to trigonometric identities [35]. In
the limit 7z, - co, we find then that the intertwining
between H,_; and H, operator 3, [see Eq. (2.17)] trans-
forms into

Bn - (Hn—1<Kn> + K%)y;—locn)

=20, (T () 400 X)) (315)

i=1

This is a reducible intertwining operator for a pair H,_; and
H,_;. From (3.15) we extract the irreducible operators
V!, and X/ (x,) which intertwine the Hamiltonians

H,_, and H,_,. At the same time, for the Lax-Novikov
integral £, we have
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FIG. 1 (color online). In the limit 7, — oo, a topologically
nontrivial superpotential VW, (being also the corresponding scalar
Dirac potential) with asymptotic behavior lim,_ W, (x) =
—lim,_,, WV, (x) =k, >0 transforms (asymptotically)
into a topologically trivial superpotential —A,_; such that
lim,__A,_;(x) =lim,, o A,_(x) =k, >0. This corre-
sponds to sending the nth kink to x = —oco. The figure corre-
sponds to the case n = 2 and shows the superpotential WV, as a
function of x and 7,.

‘Cn - (Hn—l(Kn) +K%L)£n—lv (316)
that provides us with the irreducible nontrivial integral Zn_]
for H n— 1.3

Figures 1 and 2 illustrate different limits for super-
potentials W, and A,, while Figs. 3 and 4 show the
transformations between potentials U, and U,,.

We have considered the limit when the translation
parameter 7, in the n-soliton potential U, tends to infinity.
It is interesting to see what happens with reflectionless
system H, when we take the limit 7; — 400 with j < n.
Considering the same procedure as in the case j = n, we
find that the prepotential Q, changes for Q/,_;, in which
instead of (3.4) the arguments z; are replaced by

7 S log
I _—
i = 1 KK . . . <317)
Tiiz_xi logKiTKj—l—m for i > j.

for i < j,

For i > j we have coshk;(x+ 7}) = +isinhk;(x + %;),
sinhk;(x + 7}) = +icoshk;(x + %;), where

1
2]('[

Kj“rK'[

Kj_Ki

log . (3.18)

T =7iF

The questions of redundancy of nonlinear supersymmetric
algebra in a general context were studied in [50]; see also the
recent review [54]. The very nontrivial picture of redundancy and
transmutations appearing in the completely isospectral super-
symmetric pairs of reflectionless systems was investigated in
detail in [34,35].

PHYSICAL REVIEW D 90, 025008 (2014)

FIG. 2 (color online). A topologically trivial superpotential A,
transforms into a topologically nontrivial superpotential W,
through the limit |7,| - oo, which is equivalent to the limit
C? — k2. The figure illustrates the case when the kink-antikink
Dirac potential with n = 1 transforms in the limit C — k, into the
antikink potential.

FIG. 3 (color online). For the particular case of n =2, the
figure illustrates the transformation of the Schrédinger n-soliton
potential U, into the (n — 1)-soliton potential U,_; in the
limit 7, — oo.

The effect of the limit 7; — d-co results then in the re-
duction of the reflectionless system H,(x; Ky, Ty, ..., Ky, T,)
into the reflectionless system H,_;, where the latter
Hamiltonian is given by the set of parameters k; and 7;
withi=1,...,j—1,j+1,...,n It is also easy to check
that the application of the limit k; — k;,, with j taking one
of the values from the set 1,...,n— 1, transforms H,
into H,_,, where the latter reflectionless Hamiltonian is
characterized by the parameters «; and 7; with
i=1,....j—1,j+1,...,n. The same effect can be
obtained if we apply subsequently two limits, first 7; —
+oo (or 7; - —oo0) and then 7;_; — —oo (or 7;_; — +00),
i.e. sent the soliton j and the transformed one with index
Jj — 1 to infinity in the opposite directions.

Note here that, applying appropriately the described
limits with 7; tending to 400 or —oo, we can reproduce
exactly the phases from (2.2), which correspond to the
soliton scattering picture in the n-soliton solution for the
KdV equation. Indeed, let us fix index i =1, where
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1

FIG. 4 (color online). As an illustration for the second limit in
(3.9), the transformation is shown of the one-soliton potential
U, (x, C) into the zero potential of the free particle case in the limit
C — k. Note that in another limit C - oo, we have H,, - H,,
but the intertwining operator X, blows up. Changing X, for
the rescaled operator A)A(n = éX,l, we get in the indicated limit
the trivial operator X, — 1, as an intertwiner between the
two identical copies of the reflectionless Schrodinger
Hamiltonian H,,.

1 <I<n. For the sake of generality, assume that
1 <l<n. Now, let us take a limit 7, - +oco. The
displaced value of z; will be given by the upper sign case
of Eq. (3.18) with i=1[ and j=n. Then we send
subsequently to +oo the soliton indexed by j=n—1,
then j = n — 2, etc., till j = [ + 1. Repeating the analogous
procedure with sending to —oo first the soliton with j = 1,
then with j = 2, etc., till j = [ — 1, the resulting changed
translation parameter will be given exactly by Eq. (2.2)
corresponding to the case t — —oo with r([) changed for our
initial value 7z;. The minus sign in the limit # - —oo (in
comparison with the sign in the limit 7z, - 4o0) is
associated with the minus sign appearing in Eq. (2.1)
before the term 4«3 1.

Considering the pairs of reflectionless Hamiltonians
(H,,H,_,) or (H,, H,), the partners of which are related
by the first-order Darboux intertwining generators, we shall
see below that the limits 7, - *oco induce the trans-
mutation of the type of the supersymmetry, interchanging
the cases of the unbroken and broken supersymmetries.
On the other hand, the application of the limits 7; — 400
with j < n reduces only the number of the bound states
in the partner Hamiltonians but does not change the type
of the corresponding supersymmetry of the extended
reflectionless system.

The difference of the corresponding supersymmetries in
the two cases can be explained by the different nature of the
first-order Darboux intertwining generators. In the case of
the pairs (H,, H,_, ), the intertwining generators A, and A},
are constructed in terms of the superpotential W, [see
Eq. (2.10)], for which W, (x) - F«k, for x - £oo. This
superpotential takes asymptotically the constant values of
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the opposite signs and is topologically nontrivial. The
Witten index for such an extended system takes a nonzero
value, and the associated first-order supersymmetry (see the
next section) is unbroken [24,25]. The isospectral partners
in the pairs (H,, H,) are intertwined by the first-order
Darboux generators X,, and X j,, constructed in terms of the
superpotential A, (C); see Eq. (3.6) with n — 1 changed for
n. Since lim,_, , A, = lim,_,_ A, = C with C? > k2 > 0,
the superpotential A,(C) is topologically trivial, and the
corresponding first-order supersymmetry will be broken in
correspondence with the zero value of the Witten index.

IV. EXOTIC SUPERSYMMETRY OF
REFLECTIONLESS SYSTEMS WITH
THE FIRST-ORDER SUPERCHARGES

Consider now an extended 2 x 2 matrix Hamiltonian
H = diag(H,H') with H and H' to be reflectionless
systems and identify I' = o3 as a Z,-grading operator.
As it was shown in [34], in the general case such a system is
characterized by exotic nonlinear supersymmetry with two
pairs of supercharges, which are the matrix higher-order
derivative operators of the antidiagonal form, constructed
from the Darboux-Crum intertwiners. The symmetry struc-
ture of H also has to include two higher-order Lax-Novikov
integrals of the subsystems H and H'. Within this class of
the extended reflectionless systems, there exist two
special families, for which a pair of fermionic integrals
are the first-order matrix differential operators of the form
S, = 8§ = o,diag(D,D"), a=1,2, which satisfy the
relations [S,,H] =0 and {S,.S,} = 268,,(H + const).
The operators D and DT in this case not only intertwine
the Hamiltonian operators H and H’, but also factorize
them, H = D'D + const and H' = DD" + const.*

Without loss of generality, one can choose H = H, to be
a reflectionless Hamiltonian with an n-soliton potential.
Then there are only three possibilities to choose H' such
that H and H’ can be related by the intertwining operators
of the first order. These possibilities are H' = H,_,,
H =H,,,, or H = H,(C). The trivial case of a free
particle, H,, is exceptional: for it there are only two
possibilities, H' = H, and H' = H,,, due to the translation
invariance of H,,.

Having this picture in mind, we first consider a class of
the extended reflectionless (27 + 1)-parametric systems
composed from isospectral Hamiltonians each having n
bound states. It is convenient to shift the Hamiltonian
operators for an additive constant term and take

y HS 0
H, = .
0 HS

“The supercharges, which are the higher-order derivative
operators, factorize certain polynomials of the partner Hamil-
tonians in correspondence with relations of the form (2.18).

(4.1)
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as the extended Hamiltonian, where HS =H, +(C?,
HS =H, +C* A real constant C is restricted here by
the condition C> > k2, and H, = H,(C) is the reflection-
less system isospectral to H,, but with the parameters z; in
the n-soliton potential changed for the shifted set of
translation parameters 7; given by Eq. (3.1). The spectra
of the isospectral partner Hamiltonians are
o(HS) = a(flg) =C-k2U - - UC*-KU[C? ).

Each discrete energy level C? —K%, i=1,...,n, of the
extended system (4.1) as well as the energy level E = C? at
the edge of the continuous part of the spectrum are doubly
degenerate. At the same time, each energy level inside the
conduction band (C2, o) of H,, is fourfold degenerate. The
set of the nontrivial integrals of motion (in addition to
the trivial integral I' = o3) of the supersymmetric system
(4.1) consists of the two matrix differential operators of the
first order composed from the Darboux intertwining gen-
erators of the form (3.6) (with index n — 1 changed for n):

o 0 X, " .
Sn,l = X; 0 ’ Sn,2 = 163811,1' (42)
We have also two matrix integrals to be differential
operators of the order of 2n constructed from the inter-
twines (3.12):

) 0o, L
Qn,l = <y;T1 0 >7 Qn,2 = lG3Qn,l' (43)

In addition, the system is characterized by the two diagonal
matrix integrals constructed from the Lax-Novikov inte-
grals (2.19) of the subsystems, which are the differential
operators of the order of 2n + 1:

y L, O y b
Pn.l = < 0 Zn>v Pn,Z = 63Pn,1'

(4.4)
With the chosen Z,-grading operator I' = o3, operators
(4.2) and (4.3) are identified as the fermionic integrals, and
(4.4) are identified as the bosonic generators. They,
together with the Hamiltonian H, generate the exotic
superalgebra, whose nonzero (anti)commutation relations
are given by

{‘éa’ Sb} = 25abﬂ7 {Qa’ Qb} = 25abp2ﬂ

{S,. Qp} = 26,,CP + 2¢,,P. (4.5)
[P,.8,] = 2i(HQ, — CPS,),
[P,, Q,] = 2iP(CQ, — PS,), (4.6)

where Hi’n:H;?:l(ﬁn—C2+K]2-) and to simplify the
expressions we omitted the index n in (4.5) and (4.6).
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Though our construction with the two Schrodinger sub-
systems HS and Hﬁ corresponds to the usual N =2
supersymmetry generated by the two supercharges S’M
to be matrix differential operators of the first order, we have
obtained the exotic supersymmetric structure with the two
additional supercharges Q, , to be the higher-order differ-
ential operators. In addition, being the extended reflection-
less system, it also possesses two bosonic integrals of
motion. The peculiarity of the present exotic supersym-
metric structure is that the bosonic integral 75,1.1 commutes
with all the other integrals of motion and plays a role of the
central charge operator of the nonlinear superalgebra
Another bosonic integral 73”2 realizes a rotation of the
pairs of the supercharges Sn . and Q,, « by means of
the commutation relations (4.6) with the Hamiltonian-
dependent structure coefficients.

Since the doublet of the ground states of 7:(,, has positive
energy C> — k2 > 0, the first-order supercharges S'M do not
annihilate them either, and the N =2 Lie subsuperalgebra
generated by S, , and H,, corresponds to the phase of the
broken supersymmetry. At the same time, according to
Eq. (2.20), the doublet of the ground states is annihilated by
the bosonic integrals 75“. Because of the second relation
from (4.5), they are also annihilated by the higher-order
supercharges QM. One can conclude therefore that the
obtained exotic nonlinear N' = 4 supersymmetry of the
extended reflectionless system 7Vi,, is partially broken.

Let us apply now the limit C? — &2, associated with the
soliton scattering, to the system 7,. For the sake of
definiteness, let us assume that C is positive and consider
the limit C — «,,, which corresponds to the limit 7, - —oo
for the subsystem Hﬁ In this limit, the Hamiltonian (4.1)
and integrals of motion are transformed into

HY 0 0 A,
Hn = ( K )7 Sn.l = < ¥ )5 (47)
0 H" A, O

n—1

0 Bn £2n+1 0 )
n g B s Pn e
Q ! (Br‘l 0 ) ! ( O n 1£2n 1

(4.8)

and the integrals with index @ = 2 are obtained by the same
rule as in (4.2)—(4.4), where the notations Hy" = H, + k>
and H'" , = H,_; + k3 are used. To obtain the limit we
have taken into account the relations (3.7), (3.12), and
(2.16). The Hamiltonian H,, and its integrals of motion
generate the nonlinear superalgebra of the form similar to
(4.5) and (4.6), but with corresponding changes of the
operators on the right-hand sides, and with the C changed
for x,,.

>This is not so in a general case of the extended system
composed from the two n-soliton Schrodinger subsystems; see
Ref. [34].
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Note that the lower matrix element in the integral P, ;
(and, similarly, in P, ,) is factorized into the subsystem’s
Hamiltonian H", and the corresponding Lax-Novikov
integral. The multiplicative factor H," , could be omitted
there without changing the property of commutativity of
the diagonal matrix operators with the Hamiltonian H,.
However, this would change the property that the upper
and lower matrix elements in the integrals P, , are the
differential operators of the same order of 2n + 1 and,
as a consequence, would complicate the form of the
superalgebra.

In spite of a similar form of the superalgebra (with C
changed for «,)), the superextended system we have here is
essentially different from the previous one. Indeed, the
system H,, unlike the 7:[,,, possesses now the nondegen-
erate ground state of zero energy, which corresponds to the
lowest bound state of the upper subsystem Hj;". This state is
annihilated by all four supercharges and the two bosonic
integrals, and the exotic nonlinear supersymmetry we
have here corresponds to the unbroken phase. Therefore,
the limit we considered provokes the transmutation
of the partially broken exotic supersymmetry into the
unbroken one.

Also, there exists a limit, associated with the soliton
scattering, which transmutes the exotic nonlinear super-
symmetry from the unbroken phase into the partially
broken exotic supersymmetry. To see this, we apply to
the system (4.2) and (4.8) the limit 7, — oo, which
corresponds to sending the soliton with index n in the
subsystem H" to infinity. We find then with the help of
(3.15) and (3.16) that

9

W 3
Hn - Hn—l? Sn.a - Sn—l.uv (49)
7,00 7,—00
0 PO
Pn.a - Hn—lpn—l,a’
Tp—00
WIS Do Qo
Qn,a - _Hn—IQn—],a+2Knpn—18n—l,a' (410)

T,—>00

Here we have used the notation F° = 6,Fo,, which
corresponds to a unitary transformation between the matrix
operators

_ (Zﬂ o o d
F_<}/ 5) and F_<—[3 a)’

and imply that the operators indexed by n — 1 are given by
the same expressions as the operators associated with 7:[n,
but with the parameter C changed in the structure of the
latter operators for C = k,. As a consequence, we also
obtain a four-term chain of the limits

6(HP) = (=00, —k,JUETU -+~ UE,_UOUE U -
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H, — H_, — H, — H, (4.11)

Ty Kp—=Kp—1 Tp-17>00

0o

Note that the multiplicative factor 7{_; in the limit of the
operators P, , and Q,, , in (4.10) corresponds to a reduction
of the order of the integrals that is related with the loss of
the one eigenvalue of zero energy in comparison with the
spectrum of the system H,,.

V. TRANSPARENT DIRAC SYSTEMS

We have discussed the Darboux-Crum transformations,
the exotic supersymmetric structure based on them, and
transmutations of supersymmetry in the reflectionless
systems described by the 2 x 2 matrix second-order
Schrodinger Hamiltonian operators. One can take one of
the two first-order Hermitian supercharges appearing in
these second-order systems and consider it as a first-order
matrix Hamiltonian for the (1 + 1)-dimensional Dirac
system. We can identify then the Darboux-Crum gener-
ators, which intertwine such reflectionless first-order
matrix Hamiltonians. This opens a possibility to investigate
exotic supersymmetry and its transmutations in the trans-
parent Dirac systems.

Let us take the first-order supercharge 3,1.1 from (4.2)

and identify it as the Dirac Hamiltonian: H? = 5’”.1. This
system corresponds to the (14 1)-dimensional Dirac
particle in a scalar potential A,(x) = Q, —Q, +C with
asymptotic behavior A, (x) — C for x - +oo. Because of
the relation of commutativity [S 1> Pp1] = 0, the potentials
of this form correspond to the solutions of the multikink-
antikink type for the stationary mKdV hierarchy [35].

The Dirac Hamiltonian A2 has 2n bound states, and its
spectrum is symmetric:

9

o(HP)=(—00,~CJUETU--UEUE U - UES U[C.o0).
(5.1)

where £ = 4,/C? —«2, i=1,....n, and semi-infinite
intervals [C, o) and (—o0,—C] correspond to the doubly
degenerate continuous parts of the spectrum. In the limit
C = k,, we have H? — HP = S, |, where 8,1 1s defined
in (47). A scalar potential takes here the form
W,(x) =Q, -Q,_;, with W,(x) - Fk, for x - +oo.
The potentials of this form are, again, the solutions of the
kink (or antikink) type for the stationary mKdV hierarchy
due to the relation [S, |, P, ] =0. The spectrum of the
Dirac Hamiltonian HY has 2n — 1 bound states, including
one bound state of zero energy:

- U& Ulk,, ), (5.2)
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where £F = +4/k2 — KJ i=1,...,n—1.Thetwo discrete
energy levels &, and & of the system HP merge in the
limit C - «, and transform into a nondegenerate zero
energy level of the bound state for the system H?.

A. First-order matrix Darboux intertwiners
for Dirac systems

Let us return to the identity (3.13),

An(x’Ti)Xn—l(xv Tivc) = Xn(xv Ti’C>An(x7 %i>7 (53)
where X, (x,7;,C) =4 + A, (x,7;,C) and
An(x’Thc) = Qn(x’ Ti) - Qﬂ(x7 %l) + C
5 1St ki
7 =1—¢i(C), 9:i(C) = 2K C—K,-'
(5.4)

If in (5.3) we change 7; — 7; + ¢;(C), then make a
replacement C — —C, and take into account that

@i(—=C) = —@;(C) and that X, satisfies the relation
X,(x,7; — 9;(C),—C) = —Xl}(x, 7;,C), we obtain the
identity

An(xv%i)XJr (x TZ’C) (X Ti )An(xv7i>' (55)

By using the notations A, = A, (x.7;), A,(C) = A, (;), and
X,(C) =X, (x,7;,C), Egs. (5.3)—(5.5) and their Hermitian
conjugate give us the relations

ALX, = X,_, A},

Aan—l = XnAm (56)

AXI | =XIA,, AlXh =X AL (5.7)
Using these relations, we can define the intertwining
operator between the Dirac Hamiltonians A2 and H?_,,
which also is the intertwining operator between the
extended (supersymmetric) Schrédinger Hamiltonians H,

and H,_:

. A, 0
a=(7 5)
0 A,

A}zﬁn—l = ,F{n“an .

AHI:IQ—I = I:Ilr-t)“an’
(5.8)

In the limit C — «,,, the relations in (5.6) are transformed
into the trivial identity A,X,_; (x,) = A, X,_1(x,), and the
relation

Athn = Xn—l (Kn)X;:—l (Kn) = Hn—l + K%w (59)
where we have used the limits (3.7). These identities allow
us to construct a new operator of intertwining between the
Dirac systems H2 and H? | and between the superex-
tended Schrodinger Hamiltonians ‘H, and Hn 1
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A 0 .
-An: < ! )v -AanD—1<Kn):H€An’
0 Xn—l (Kn)
A Ho1 (k) = Hy A, (5.10)

where we indicated a dependence of the corresponding
operators on k, = C.

This construction corresponds here to the Darboux
transformations for reflectionless Dirac systems and,
particularly, gives us a possibility to construct analytically
the states of H? and H? in terms of the eigenstates &, of
the matrix operator HY = —6,p + 6,C:

. 0 4. c

which corresponds to the Hamiltonian of the free massive
Dirac particle. The eigenstates <I>,1 of HY can be presented
in the form &, = A, A,_;... A, $, while the eigenstates of
HP are constructed in the form ®, = A, A, A, ,...A,®,
in terms of the eigenstates <I)0 of the Dirac Hamiltonian
H(I)) (k,) = —02p + 01k, The explicit forms of the scatter-
ing states and 2n bound states of the H? are given by

L v (k)
(DZ(gi(kz)) - <:|: zek\ljs(k2)>
C+l€k

B,(25) = (ir_)))

(5.11)

(5.12)

where HP®, (&) = £3,(E), EX(K) = £V/CF+ K2, EF =
+/C*—«k?, i=1,...,n, ¥, are Schrodinger eigenstates
defined in (2.8), and the parameter ¢ = +1 corresponds to
the two possible directions in which the waves can

levels a‘vf,jf =
C? — k2 merge in the limit C — k,, and two corre-

sponding eigenstates of A2 reduce to the unique state of
zero energy of the Dirac Hamiltonian HZ:

- () -wio- (%5%)

(5.13)

propagate. The two discrete energy

B. Exotic supersymmetry of reflectionless Dirac systems

The matrix operator 75,1,1 and the Dirac Hamiltonian 72
correspond to the Lax pair for the nth member of the
stationary mKdV hierarchy, and the scalar Dirac potential
A, (x) is identified as the corresponding soliton (multikink-
antikink type) solution. Since [P, |, 2] = 0, the P, is a
nontrivial integral for the Dirac system HY. It is the
Darboux-dressed momentum operator of the free Dirac
massive particle (5.11). The interesting point is that for the
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reflectionless Dirac system H? one can identify an addi-
tional integral of motion I', which satisfies the identity
I? = 1 and anticommutes with 75n_1. As a consequence, the
reflectionless Dirac system H? can be characterized by the
proper exotic nonlinear supersymmetry. Indeed, consider
the operator I' = Ro3, where R is the operator of reflection
in x, 7;, and C, which satisfies the relations Rz = —zR,
R? =1, where z = x,7;, or C. Because of the relations
[[,H2]=0 and {IP,,;} =0, the HY and P, are
identified as bosonic and fermionic operators, respectively.
They generate a nonlinear A/ = 1 superalgebra

[7511,177:{5] =0, {75n,1775n,1} :2P2(2n+1)(ﬁnD)’ (514)
where
Pansty(F) = ()2 = C) [T (FD)? = (€2 = 3))%.
J=1
(5.15)

The 2(n+ 1) zeros of the polynomial in H2 operator
(5.15) correspond to the energies of the singlet states of the
reflectionless Dirac system, where E',i = +./C* - Ki,
i=1,...,n, are the energies of the bound states, while
=+C correspond to the two singlet states at the edges of the
continuous parts of the spectrum.6 In accordance with (2.8),
the left- and right-moving waves in (5.12) of the scattering
sector, which correspond to doubly degenerate energy
levels £ (k%) of HP, are distinguished by the supercharge
75n1 they are its eigenstates of the opposite sign eigen-
values. By supplementrng the integral 73,,1 with a (non-
local) integral P, 2= zFPn 1, the N/ =1 exotic nonlinear
supersymmetry of the reflectionless Dirac system H? can
be extended to N = 2: {P, ., P,,} = 25‘,,,P2(2n+1)(7vif).
Applying the limit C — «,,, we identify the proper exotic
supersymmetric structure of H?. In this case, the zero
energy eigenstate (5.13) of H? is also the zero mode of the
supercharge P, ;. In both Dirac reflectionless systems HP
and HP, the supercharges detect all the nondegenerate
eigenvalues of the Hamiltonians by annihilating the cor-
responding eigenstates, which are the bound states and the
states at the edges of the continuous parts of the spectra.
Since the zero energy eigenvalue belongs to the spectrum of
HP but is not present in the spectrum of H?, the proper
exotic supersymmetry of the Dirac system H? is of the
broken nature, while that of H? corresponds to the
unbroken phase. In correspondence with the second rela-
tion from (4.9), the limit 7, — oo applied to the Dirac
system H2 with the unbroken proper exotrc supersymmetry
will produce the system Hn \ =S,_11 [see Eq. (4.9)],
characterized by the broken exotic supersymmetry.

®Besides a bound state, each double root £E, i = 1,...,n, of
the polynomial on the left- hand side of (5.15) corresponds also to
a nonphysical eigenstate of 7.
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VI. DISCUSSION AND OUTLOOK

We have considered the two related families of the
(14 1)D Dirac reflectionless systems. Each such system
corresponds to a fermion in a background of a multisoliton
solution (of the kink or kink-antikink type) of the mKdV
equation. In one of these two families, the n-soliton
potential VP(x) = A,(x) or —A,(x), where A,(x)=
A, (XK1, 71, s K Ty, C), C2 > K2, is (21 + 1) parametric,
while in the second family the potential VP (x) is 2n
parametric and corresponds to the function W,(x) or
-W,(x), where W, (x) =W, (x;k1,71,...,K,, T,). From
the viewpoint of the associated extended Schrodinger
systems, whose matrix 2 x 2 Hamiltonians are given by
a square of the corresponding Dirac Hamiltonian
HP =iy % + 6,VP(x), the Dirac potential V?(x) is a
superpotential. The peculiarity of the considered reflection-
less families is that in the case of the supersymmetric
Schrodinger systems, in addition to the two first-order
supercharges HP and ic;HP, they are characterized by the
two supercharges to be matrix differentials operators of the
order of 2n. Furthermore, they possess two nontrivial
bosonic integrals to be differential operators of the order
of 2n + 1, which are constructed from the Lax-Novikov
integrals of the Schrodinger subsystems. One of these two
bosonic integrals is a central charge of the exotic nonlinear
superalgebra. The same higher-order central charge can be
identified as the supercharge (a fermionic generator) of the
proper exotic nonlinear supersymmetry of the reflectionless
Dirac system. In the case of V?(x) = £A,(x), the exotic
nonlinear supersymmetries of the Schrodinger and Dirac
systems are spontaneously broken, and the quantity
(C* —«2) > 0 measures the scale of the breaking. The
choices VP (x) = £W,(x) correspond, on the other hand,
to the unbroken exotic supersymmetries. The interesting
point is that there exists a limit procedure, admitting the
interpretation in the context of a soliton scattering, which
relates the two indicated families of the exotic super-
symmetric reflectionless systems. One can define a kind
of a topological charge by a relation

1 w dVP(x)
= d ,
I 2|v€|/_m T dx

where V8§ =lim,_,,VP(x). The case of the broken
supersymmetry with the kink-antikink type potential
VP (x) = +A,(x) is characterized then by ¢ = 0, while
the cases of the kink, VP (x) = -W,(x), and antikink,
VP (x) = W,(x), type potentials of the unbroken exotic
supersymmetries correspond to g =+1 and ¢ = —1,
respectively. The quantity 2|V¥| gives the gap that sepa-
rates the upper and lower continuous bands in the spectrum
of the Dirac systems and can be treated as a doubled mass
parameter of a fermion in an external scalar potential. The
mentioned supercharge of the Dirac system annihilates
all its nondegenerate energy states and, being the
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Darboux-dressed momentum operator of the free Dirac
particle (zero-soliton case), distinguishes the left- and right-
moving eigenstates corresponding to the doubly degenerate
energy values in the continuum bands of the spectrum.
The described transparent potentials V?(x) appear in
many physical applications in the form of stationary
solutions for inhomogeneous fermion condensates. Such
self-consistent condensates are described by the equations

VP = _92 Zzlpal//a' (61)

N
a=1 occ
Here the first equation with a generalized flavor index o =
1,..., N represents a system of (1 + 1)D Dirac equations,
the N_, corresponds to summation in degenerate states,
and )" .. corresponds to a sum over the completely filled
Dirac sea plus a sum over bound states, which usually are
partially occupied. Equations (6.1) appear particularly in
superconductivity, in the Gross-Neveu model, and in the
physics of conducting polymers. A famous method of
solution of (6.1) was realized by Dashen, Hasslacher, and
Neveu in [3], where this system of equations was rewritten
in terms of the scattering data for Schrodinger potentials
U, = (VP)2 £ 4 vP — (VE)2, and as aresult it was shown
that the reflection coefficient for both potentials U has to
be equal to zero. For some applications of this result, see
[55-59]. Using the ideas of supersymmetry, this picture
is equivalent to the search of the first-order operators
D and D', which intertwine and factorize corresponding
Schrodinger reflectionless Hamiltonians, H, = DD' — E,
y H_ = DD — E,,. As we have shown, there are only two
situations where such a factorization is possible.

(i) When H__ and H_ are completely isospectral, the V?
corresponds to the Dirac potentials characterized by
the topological charge ¢ = 0, which are given by
inhomogeneous condensates +A, with asymptotic
behavior A, — C for x — +co.

(ii) In the other possible case, the spectra of H, and H_
are different in one bound state only, and the
inhomogeneous condensate takes here the form
VP =-W, or VP =W,, where W, — Fk, for
x — +oo, and the topological charge ¢ takes the
values +1 or —1.

On the other hand, the occupation fraction for each
nondegenerate state defines the energy of the bound states.
Using the method of resolvent, Feinberg showed in [4] that
for all static condensates the following equality is valid:

2 K;
yi="cot" [ ——t ) i=1,.n, (62
o (=) 02

where v; can take the values v; = 0,%, NT_I, 1. This
result was reproduced in [58] for complex kinks in the
context of the Bogoliubov—de Gennes and chiral Gross-

Neveu systems.

PHYSICAL REVIEW D 90, 025008 (2014)

The case N =1, v=0,1 corresponds here to the
superconductivity. With these restrictions, the topologically
trivial homogeneous condensate is possible, VP =
+Ay = +VP, v, = 1 (free Dirac massive particle), as well
as the topologically nontrivial inhomogeneous condensate,
VD = :i:Wl, vy = O, K| = VOD

The case N =2, v =0,1/2, 1, corresponds to polymer
conductors in the context of the Takayama—Lin-Liu—Maki
model [8]; in addition to VP = £A,, =WV, also the case
vy =1/2, VP = 4+A, k; = %|V€| is possible. This last
solution is known as a polaron. The other topological
solution, which is kink + polaron (or antikink 4+ polaron),
corresponds to VP = FW, (x| = % |VP| and k, = |VE|).

In the ’t Hooft limit N — oo, the k; can take any value in
the interval 0 < k; < |VE|, that makes it possible to have
any stationary soliton solution. So, we see that for
the Gross-Neveu model, the Darboux transformations
provide a general method to generate real inhomogeneous
condensates for (6.1).

Equations (5.8) and (5.10) allow us to obtain a super-
symmetric system described by the extended first-order
matrix Hamiltonian composed from the two Dirac
Hamiltonians. In such a way, we can get two different
families of the extended systems. The first one realizes the
unbroken exotic supersymmetry and is given by the
Hamiltonian of the form

HD_(H,,D 0)
~\o g2, )

n—1

(6.3)

The matrix integrals for (6.3) given by the first-order
differential operators are

0 A
Sh=( . ") SP=i5sP. (64
o N S e
where %5 is a 4 x4 diagonal matrix of the form X; =

diag(1,,—1,) with 1, the unit 2 x 2 matrix. Another family
is given by the Hamiltonian of the form

ﬁD_<ﬁf )
N0 #2 )

and its analogous integrals are

(6.5)

N 0 A, . .
SD:(,Zﬂ o > SP =ixSP. (6.6)

The grading operator I' = X identifies the extended Dirac
Hamiltonians to be bosonic generators, while (6.4) and
(6.6) are identified as the fermionic generators. Then we
find that the indicated operators satisfy the nonlinear
supersymmetry relations to be of the order of 2 in the
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corresponding Hamiltonians: {S?, P} = 25,,(HP)?, and
{82, 8P} = 26,,((FP)* = C* + «2). Besides, in each of
the two cases, there exist bosonic integrals to be the matrix
differential operators of the order of 2n 4 1 and fermionic
integrals of the order of 2n.

Also, it is possible to construct supersymmetric Dirac
type systems with nonlinear superalgebraic relations of the
form {S,S} = 2f((HP)?), where f is a polynomial, by
taking in extended Hamiltonian H? a pair of reflectionless
Dirac Hamiltonians with distinct scattering data. The
picture has to be similar to that obtained in Ref. [34] for
the reflectionless Schrodinger systems.

PHYSICAL REVIEW D 90, 025008 (2014)

We are going to present the detailed investigation of such
supersymmetric pictures with extended Dirac Hamiltonians
elsewhere.

Note also that the last relations in (5.8) and (5.10) can be
used to construct further supersymmetric extensions of the
reflectionless Schrodinger systems, in particular, given by
4 x 4 matrix Hamiltonians.
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