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The solutions of many issues, of the ongoing efforts to make deformed graphene a tabletop
quantum field theory in curved spacetimes, are presented. A detailed explanation of the special
features of curved spacetimes, originating from embedding portions of the Lobachevsky plane into
R3, is given, and the special role of coordinates for the physical realizations in graphene is explicitly
shown, in general, and for various examples. The Rindler spacetime is reobtained, with new
important differences with respect to earlier results. The de Sitter spacetime naturally emerges, for the
first time, paving the way to future applications in cosmology. The role of the Bañados, Teitelboim,
and Zanelli (BTZ) black hole is also briefly addressed. The singular boundary of the pseudospheres,
“Hilbert horizon,” is seen to be closely related to the event horizon of the Rindler, de Sitter, and BTZ
kind. This gives new, and stronger, arguments for the Hawking phenomenon to take place. An
important geometric parameter, c, overlooked in earlier work, takes here its place for physical
applications, and it is shown to be related to graphene’s lattice spacing, l. It is shown that all surfaces
of constant negative curvature, K ¼ −r−2, are unified, in the limit c=r → 0, where they are locally
applicable to the Beltrami pseudosphere. This, and c ¼ l, allow us (a) to have a phenomenological
control on the reaching of the horizon; (b) to use spacetimes different from the Rindler spacetime for
the Hawking phenomenon; and (c) to approach the generic surface of the family. An improved
expression for the thermal LDOS is obtained. A nonthermal term for the total LDOS is found. It takes
into account (i) the peculiarities of the graphene-based Rindler spacetime; (ii) the finiteness of a
laboratory surface; and (iii) the optimal use of the Minkowski quantum vacuum, through the choice
of this Minkowski-static boundary.
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I. INTRODUCTION

The intertwining between different branches of physics
has always proven fruitful, from the Anderson [1] and
Higgs [2] mechanisms to the now well established research
on the gravity analogue systems (see, e.g., [3]). In recent
years, this approach had a new boost with Maldacena’s
discovery of the correspondence between certain gauge and
gravity theories that goes under the generic name of AdS/
CFT correspondence [4].
The results of this paper live at the crossroad of

condensed matter and high energy theory. This research
is carried out, mainly, as an attempt to construct with
graphene a real system as close as possible to what is
believed to be a quantum field in a curved spacetime. The
task is difficult, but very much worthwhile. Positive out-
comes can come on both sides.

As we shall recollect below, with graphene we have a
quantum relativisticlike Dirac massless field available on a
nearly perfectly two-dimensional sheet of carbon atoms.
While this special-relativistic-like behavior of a condensed
matter system is quite unusual (and it came as a surprise at
the time of its discovery [5]), it is, by now, a well
established experimental fact [6,7]. Building on our earlier
work [8–11], the new direction we want to probe here is the
emergence of gravitylike phenomena on graphene. In this
paper, we give a detailed and extensive description of what
needs to be done to see measurable effects of the quantum
field theory (QFT) in a curved spacetime description of the
electronic properties of graphene. We find here a number of
new results that bring this goal closer.
The low-dimensional (two- and three-dimensional) set-

ting is an extra bonus, as it points to the use of exact results,
both on the field theory side and on the gravity side. Not
least is the importance of Weyl symmetry [12] that points
toward the use of conformally flat spacetimes [8]. One
important issue, which we shall extensively deal with here,
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is that these spacetimes are in real terrestrial laboratories
that, spatially, areR3. For the sake of extracting measurable
effects, such as a Hawking-Unruh effect, a crucial role will
be played by surfaces of constant negative Gaussian
curvature. It is well known that those surfaces can only
be embedded into R3 at the price of essential singularities,
as proven in a theorem by Hilbert [13–15]. We shall then
have singularities all the time. We shall dedicate a big
portion of this paper to elucidate these points. Although
available in the mathematical literature, these results are
rarely used in the context of QFT in curved spacetime
because, there, n-dimensional spacetimes of constant neg-
ative curvature are usually seen as the result of embedding
into a flat ðnþ 1Þ-dimensional spacetime with signature
ðþ;−; � � � ;þÞ. Thus, when we point, for instance, to
delicate constructions like the Bañados, Teitelboim, and
Zanelli (BTZ) black hole [16] [besides the known subtleties
of the global identifications that make an anti–de Sitter
(AdS3) spacetime a true black hole [17,18] ], we have to
keep in mind here that even the standard AdS3, to start with,
is something to handle with care. Indeed, in a laboratory we
are bound to a spacetime with signature ðþ;−;−;−Þwhere
to embed the negative curvature spaces, and, in fact, we
shall show that it is de Sitter spacetime that emerges more
naturally. Furthermore, coordinates here have a more
important status than in the customary proper relativistic
setting, because the practical realization of this or the other
reference frame is something we must care about.
Another crucial issue for the implementation on gra-

phene of a sound QFT approach is that of the quantum
vacuum. The distinctive feature of a quantum field is the
excitation of particles out of the vacuum, through inter-
actions, something impossible to describe within the
formalism of quantum mechanics. In other words, in
QFT, for both flat and curved spacetimes, there are
choices of the ground state that are not equivalent, leading
to (unitarily) inequivalent quantization schemes [19,20]. As
is well known, this instance becomes central in QFT in
curved spacetimes, where those inequivalent vacua are
related to different observers, e.g., the inertial and the
Kruskal observers of the Schwarzschild spacetime; see,
e.g., [21–23]. That is at the core of the Hawking-Unruh
effect: an observer in A sees the quantum vacuum in the
frame B as a condensate of A particles. From preliminary
results [24] we see that, on curved graphene, some kind of
this nonequivalence is present, due to the topological
disclination defects necessary for intrinsic curvature.
Even though the system has finite degrees of freedom,
defects introduce singularities in the domain of the Dirac
operator; hence, through, e.g., the self-adjoint extension
method [25], one can see inequivalent quantizations of the
same topological nature as those appearing in the quanti-
zation of a particle on a circle [26]; see also [27].
There are other reasons to be careful with the choice of

the quantum vacuum here. As just recalled, in standard

QFT in curved spacetimes one deals with various quanti-
zation schemes, each valid within a certain frame (say
Minkowski and Rindler), but the field is always the same.
The nature of the quantum field is not fundamentally
changed in going from one frame to another. The notions
of positive frequency, of vacuum, of creation and annihi-
lation operators, etc., change [21], but we shall never end
up with, say, a massive scalar field if we started with a
massless spinor field. This obvious consideration does not
apply to the field-theoretical description of graphene. The
pseudoparticles only live on the graphene sheet; i.e., their
existence is due to the structure of the lattice. So, after that
“object” has left the graphene sample and has reached the
outside world, its description changes dramatically. It turns
into a massive, (3þ 1)-dimensional, nonrelativistic (in the
sense of c, speed of light) electron for which the whole
description we are concerned about is gone forever. All of
that needs to be taken into account in this hybrid approach,
where pure QFT in curved spacetimes and condensed
matter effective descriptions merge. The issue was faced
in [9] and will be further addressed here. The solution we
have found is to use, in all cases, the (2þ 1)-dimensional
Minkowski inertial vacuum, hence relativistic, but in the
sense of vF, Fermi velocity, as the reference vacuum for the
computation of all Green functions.
Local Weyl symmetry will play an important role in this

work. This is a symmetry of the massless Dirac action
under transformations that, in (2þ 1) dimensions, take the
following form1:

gμνðxÞ → ϕ2ðxÞgμνðxÞ and ψðxÞ → ϕ−1ðxÞψðxÞ; ð1Þ

note that all the quantities are computed at the same point x
in spacetime.
To appreciate the physical meaning of this symmetry, it

should be considered that it relates the physics in a given
spacetime (metric gμν) to the physics in a different space-
time (metric ϕ2gμν). For instance, when the background
spacetime gμν is curved but conformally flat, since we can
take advantage from the privileged link with the flat

1Here are our notations: ϕðxÞ is a scalar field (conformal
factor), μ; ν ¼ 0; 1;…; n − 1 are Einstein indices, responding
to diffeomorphisms, a; b ¼ 0; 1;…; n − 1 are flat indices, re-
sponding to local Lorentz transformations, while α; β are spin
indices. The covariant derivative is ∇μψα ¼ ∂μψα þΩμ

β
αψβ with

∇a ¼ Eμ
a∇μ, Ωμ

β
α ¼ 1

2
ωab
μ ðJabÞβα, where ðJabÞβα are the Lorentz

generators in spinor space, and ωμ
a
b ¼ eaλ ðδλν∂μ þ Γλ

μνÞEν
b is the

spin connection, whose relation to the Christoffel connection
comes from the metricity condition ∇μeaν ¼ ∂μeaν − Γλ

μνeaλ þ
ωa
μbe

b
ν ¼ 0. We also introduced the vielbein eaμ (and its inverse

Eμ
a), satisfying ηabeaμebν ¼ gμν, eaμEν

a ¼ δνμ, eaμE
μ
b ¼ δab, where

ηab ¼ diagð1;−1;…Þ. The Weyl dimension of the Dirac field
ψ in n dimensions is dψ ¼ ð1 − nÞ=2. In this paper n ¼ 3, and we
can move one dimension up (embedding) or down (boundary).
More on the notations is in [8,28].
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spacetime counterpart, Weyl symmetry might allow for
exact nonperturbative results in the computation of the
Green functions [8], a very difficult task to accomplish by
other means [21]. When we are dealing with a conformally
invariant field in a conformally flat spacetime, this is
sometimes referred to as conformal triviality [21], a name
that emphasizes the simplest possible case of QFT in
curved space, but, perhaps, does not do justice to the fact
that the key features are indeed at work. If the spacetime is
only curved in a conformally flat fashion, the effects of
curvature are null on the classical physics of a massless
Dirac field. To spot the effects of curvature we need to
move to the quantum regime.
Another reason for considering conformally flat space-

times is that, in this case, the chiral term mixing the two
Dirac spinors, ϵabcωabcðψ̄þσ3ψ− þ ψ̄−σ3ψþÞ, is identically
zero (see Sec. 2 and [28]).
A further reason for considering the conformally flat

cases lies with the gravitational analogues of these settings.
For instance, there are interesting configurations, such as
the mentioned (2þ 1)-dimensional BTZ black hole (see
[29] for a study of graphene and the BTZ black hole that
follows our approach) and the gravitational kink of [30],
which are conformally flat configurations. For all these
reasons, in this paper we shall almost entirely focus on the
conformally flat cases. Nonetheless, many of the arguments
presented here apply to the general case.

II. DIRAC FIELD DESCRIPTION
OF DEFORMED GRAPHENE

Graphene is an allotrope of carbon. It is one atom thick;
hence it is the closest in nature to a two-dimensional object.
It was first theoretically speculated about [31,32] and,
decades later, experimentally found [5]. The honeycomb
lattice of graphene is made of two intertwined triangular
sublattices; see Fig. 1. Of the carbon’s four electrons
available to form covalent bonds, three are put in common
with the three nearest neighbors (one each), forming what

are known as σ bonds (the molecular-level merging of the
atomic 2s orbitals). These bonds are responsible for the
elastic properties of the membrane. The fourth electron
also forms a covalent bond, called the π bond, but only with
one of the three neighbors. Furthermore, being the π
orbitals of the molecular-level merging of the atomic 2p
orbitals, it has nodes on the membrane, and the electrons
there are much more free to “hop.” Thus, the latter bond (π)
is of a much weaker kind than the former (σ). The
electronic properties of graphene are due to the electrons
belonging to the π orbitals.
In this paper we deal with the electrons of the π orbitals.

Hence, although the effects of the deformations of the
membrane will be duly taken into account, the elastic
properties are not our direct concern. We shall propose
various morphologies, for reasons that are on the theoretical
side, but we shall not prove whether those shapes are
elastically permitted or feasible from the practical/engineer-
ing point of view. On the other hand, we are not making
impossible requests, because, graphene being the thinnest
material in nature, it is reasonable to think that it might be
forced to have a variety of shapes. Surely, suspended
graphene’s samples come with corrugations and ripples
[33], and many deformations have been induced to study
the effects of curvature and strain on the electronic proper-
ties, a central issue in the ongoing studies of graphene on
the condensed matter side; see, e.g., [34]. Recalling that our
main goal here is to show how graphene can be used to very
effectively mimic a quantum field on a curved spacetime,
the fact that we have to force a little the material in that
direction comes as a fair price to pay. Furthermore, we shall
make here the greatest effort, on the theoretical side, to
simplify the requests for the occurrence of these exotic
behaviors on graphene to “simply” curve the material in
specific ways.
As is by now well known, graphene’s lattice structure is

behind a natural description of its electronic properties in
terms of massless, ð2þ 1Þ-dimensional, Dirac (hence,
relativisticlike) pseudoparticles [7]. In the honeycomb
lattice, there are two inequivalent sites per unit cell, the
white and black spots in Fig. 1, that do not refer to different
atoms (they all are carbons) but to their topological
inequivalence. Contrary to a square lattice, the basis
vectors, ð~a1; ~a2Þ, are not enough to reach all the points
(black and white), and an extra set of vectors, ð~s1; ~s2; ~s3Þ, is
needed. That is how the two-component Dirac spinor
emerges. Hence, the Dirac description is resistent to
changes of the lattice that preserve this aspect of the
structure. See, e.g., the developments in [35], where the
authors discuss graphyne, by departing from the hexagonal
structure but retaining the two inequivalent sites per unit

cell, and hence the Dirac description. In ~k space, the
valence band and the conductivity band touch in two

inequivalent points (we use ℏ ¼ 1) ~kD� ¼ ð� 4π
3
ffiffi
3

p
l
; 0Þ, with

FIG. 1. Our choice for the basis vectors of the honeycomb
graphene lattice.
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l ≃ 1.4Å, and near those points the spectrum is linear,

E� ≃ �vFj~kj, where vF ¼ 3ηl=2 ∼ c=300 is the Fermi
velocity, with η ≃ 2.8 eV the nearest-neighbor hopping
energy. This behavior is expected in a relativistic theory,
whereas, in a nonrelativistic system, the dispersion rela-
tions are usually quadratic. Hence, if one linearizes around
~kD�: ~k� ≃ ~kD� þ ~p, one can write the Hamiltonian in terms
of ~p within the range given by

El ∼ vF=l ∼ 4.2 eV: ð2Þ
Notice that El ∼ 1.5η and that the associated wavelength,
λ ¼ 2π=j~pj ≃ 2πvF=E, is 2πl. The electrons’ wavelength,
at energies below El, is large compared to the lattice length,
λ > 2πl. Those electrons see the graphene sheet as a
continuum; hence, over the whole linear regime, the
following Hamiltonian well captures the physics:

H ¼ −ivF
Z

d2xðψ†
þ~σ · ~∂ψþ þ ψ†

−~σ� · ~∂ψ−Þ; ð3Þ

where ~σ ≡ ðσ1; σ2Þ, ~σ� ≡ ð−σ1; σ2Þ, with σi the Pauli
matrices, and with ψ� ≡ ða�; b�ÞT the two-component
Dirac spinors, as appropriate for this ð2þ 1Þ-dimensional

system, and we are in configuration space, ~p → −i~∂.
Long before the advent of graphene, a field theoretical

Dirac approach has also been successfully put forward on
“inflated” buckyball fullerenes [36] (carbon structures that
can be thought of as graphene sheets, warped to make
spheres). Later, this approach was extended to curved
graphene; see, e.g., Ref. [37], where spatial curvatures
in this Dirac field theoretical model were taken into
account. Those can surely be taken as pioneering steps
towards a QFT in curved spacetimes description of the
electronic properties of graphene. Nonetheless, as recalled
earlier, the distinctive features of a quantum field in curved
spacetimes are as follows: the role of the nontrivial vacua,
their relation to different quantization schemes for different
observers, and a full inclusion of the time in a relativistic-
like description. Each of the above finds its synthesis in the
Unruh or the Hawking effects, which to many (see, e.g.,
[38]) are the clearest and unmistakable experimental
signature of QFT in curved spacetime. That is the road
pursued in [9], which we want to pursue further here.
To include time in a more democratic fashion, let us

consider the action, rather than the Hamiltonian [8]

A ¼ vF

Z
d3xðiψ† _ψ −HÞ ¼ ivF

Z
d3xψ̄γa∂aψ ; ð4Þ

where x0 ≡ vFt and the γ matrices, γ0 ¼ σ3, γ1 ¼ iσ2,
γ2 ¼ −iσ1, obey all the standard properties, e.g.,
½γa; γb�þ ¼ 2ηab (see [28]). Notice that, as we do not
consider phenomena mixing the two Fermi points, we
focus on a single one, hence, say, ψ ≡ ψþ.

Besides the scale introduced above, we also have a
second scale. When we introduce intrinsic curvature, El is
beyond our reach. It is our “high energy regime.” This is so
because we ask the curvature to be small compared to a
limiting maximal curvature, 1=l2, otherwise (i) it would
make no sense to consider a smooth metric, and (ii) r < l
(where 1=r2 measures the intrinsic curvature) means that
we should bend the very strong σ bonds, an instance that
does not occur. Therefore, our second reference energy is

Er ∼ vF=r; ð5Þ
with Er ¼ l=rEl < El. Taking, e.g., r ≃ 10l as a small
radius of curvature (high intrinsic curvature), this energy is
Er ∼ 0.4 eV, while for r ∼ 1 mm ∼ 106 l, Er ∼ 0.6 μ eV.
Energies below Er are our “low energy regime.” The
considerations of this paper apply there.
To find the action that, when the graphene membrane is

deformed, well captures the physics of the electrons in the π
bonds with very large wavelengths (λ > 2πr), we need to
know how possible deformations can be encoded within the
Dirac field formalism. As we are in a weak scatterers
regime [39,40], where the Born approximation is valid,2

there are three kinds of deformation that can still be at work
[7]: intrinsic curvature, extrinsic curvature, and strain. The
intrinsic curvature is clearly an inelastic deformation of the
lattice. This is customarily described in elasticity theory
(see, e.g., [41,42]) by the (smooth) derivative of the
(noncontinuous) SO(2)-valued rotational angle ∂iω≡ ωi,
where i ¼ 1; 2 is a curved spatial index (see footnote 1 for
notation on indices, etc.). The corresponding (spatial)
Riemann curvature tensor is easily obtained,

Rij
kl ¼ ϵijϵklϵ

mn∂mωn ¼ ϵijϵlk2K; ð6Þ
whereK is the Gaussian (intrinsic) curvature of the surface.
In our approach we include time, although the metric we
shall adopt is

ggrapheneμν ¼

0
B@

1 0 0

0

0

gij

1
CA; ð7Þ

i.e., the curvature is all in the spatial part, and ∂tgij ¼ 0.
Since the time dimension is included, the SO(2)-valued
(Abelian) disclination field has to be lifted up to a SO(1,2)-
valued (non-Abelian) disclination field,3 ωμ

a, a ¼ 0; 1; 2,
with ωa

μ ¼ ebμωa
b, and the expression

ωd
a ¼

1

2
ϵbcdðeμa∂bE

μ
c þ eμb∂aE

μ
c þ eμc∂bE

μ
aÞ ð8Þ

2On these points, we greatly benefited from correspondence
with Paco Guinea.

3Recall that in three dimensions ωμ ab ¼ ϵabcωμ
c.
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gives the relation between the disclination field and the
metric (dreibein). All the information about intrinsic
curvature does not change. For instance, the Riemann
curvature tensor, Rλ

μνρ, has only one independent compo-
nent, proportional to K, just as in (6) (see [8]). What we
gain here is the possibility to use a full relativistic approach
where, for instance, a change of frame (or the inclusion of
an external potential, mimicking the gravitational potential)
might change g00 in (7). In the next sections we shall
exploit these features.
Notice that different methods of preparation of the

samples lead to different defect concentrations, and, even
if the lattice effects can be neglected at these wavelengths,
if defects are too highly concentrated we cannot assume a
smoothly curved metric as that in (7) to describe this
situation. We shall then assume that the defects are
homogenously distributed, and not too much concentrated
to avoid interactions among defects. This is yet another
reason not to consider too big curvatures (the density of
defects per unit area grows with r−2).
Summarizing, the effects of intrinsic curvature on the

electronic properties of graphene can be included, within
the Dirac description, through the substitution

∂μ → ∂μ þ Ωμ; ð9Þ

with Ωμ ≡ ωμ
aJa, and Ja the generators of SO(1,2), the

local Lorentz transformations (see [28] for details). On the
gauge field approach, see, e.g., [43].
The other two deformations are elastic, and, in this

paper, we are looking for the effects of intrinsic
curvature. Thus, as clarified in the previous paragraphs,
we have to focus on electrons with very large wave-
lengths, and our energies range only up to Er. For these
energies, the inelastic effects will dominate over the
elastic ones, but, by focusing only on the former it is an
approximation. As such, in an experiment, we might see
the effects of these strain-induced fields; see, e.g.,
[44,45]. Work is in progress to duly describe also
purely elastic deformations, within the Weyl symmetry
approach [46].
With this in mind, the very long wavelength/very small

energy electronic properties of graphene are well described
by the following action:

A ¼ ivF

Z
d3x

ffiffiffi
g

p
ψ̄γμð∂μ þΩμÞψ ; ð10Þ

which we shall use from now on.
While, of course, the

ffiffiffi
g

p
needs be there for a

diffeomorphic covariant action in the presence of cur-
vature, and hence it would need no further justification,
our construction of (10) entirely from graphene-related
quantities might appear incomplete if we do not justify
this factor too. Indeed, this factor, combined with the
constant vF, can give rise to a space dependent Fermi

velocity4 vFðxÞ. This feature also emerges from a pure
tight-binding computation [47], and it is further con-
sidered in [46].
One last issue needs to be mentioned before proceeding.

We are focusing on phenomena that do not mix the two
Fermi points, and, in general, curvature could spoil that by
producing a chiral term in the action. This term would
take into account well-known features of graphene with
ð2nþ 1Þ-folded disclination defects. In those cases,
because of a flipping along the dislocation line, one needs
to take into account both Fermi points. This is better seen in
the four component Dirac spinor language, where the two
Dirac points are treated at once. That way one obtains a
chiral term in the action of the form

Aχ ¼
1

4

Z
d3x

ffiffiffi
g

p
ϵabcωa bcðψ̄þσ3ψ− þ ψ̄−σ3ψþÞ: ð11Þ

Nonetheless, we take advantage from the fact that this
term is identically zero for the conformally flat case of
interest here. Indeed, it can be proved that the total number
of “flipping” dislocation lines is even in the ideal case.
Hence, when all the surface is considered, the total effect
is gone. In the continuous metric language, this is seen
by noticing that, when gμν ¼ ϕ2ημν, one has ωμbc ¼
δaμðηabδνc − ηacδ

ν
bÞð∂ν lnϕÞ. This approximation can also

affect the experiments when the observables are measured
along the dislocation lines. On all this see [28].

III. MERGING CURVED GRAPHENE
AND QFT IN CURVED SPACETIMES

Bearing in mind the previous discussion, to extract
experimental predictions from the hypothesis that graphene
conductivity electrons realize a quantum field on a curved
background, described by the action (10), we proceed as
follows.
First of all, we focus on surfaces of constant K. As

recalled at the end of the Introduction, and as explained in
[8], to make the most of the Weyl symmetry of (10), we
better focus on conformally flat metrics. The simplest
metric to obtain in a laboratory is of the kind (7). For this
metric the Ricci tensor is Rμ

ν ¼ diagð0;K;KÞ. This gives,
as the only nonzero components of the Cotton tensor,
Cμν ¼ ϵμσρ∇σRρ

ν þ μ ↔ ν, the result C0x ¼ −∂yK ¼ Cx0

and C0y¼∂xK¼Cy0. Since conformal flatness in ð2þ 1Þ
dimensions amounts toCμν ¼ 0, this shows that all surfaces
of constant K give rise in (7) to conformally flat ð2þ 1Þ-
dimensional spacetimes [note that the result holds for

4For instance, for a conformally flat spacetime, gμν ¼ ϕ2ημν;
hence

ffiffiffi
g

p ¼ ϕ3. Considering ψ ¼ ϕ−1ψ 0 [see (1)], a rough
estimate in (10) gives vFðxÞ ∼ ϕ3ϕ−2vF ¼ ϕðxÞvF, which is in
agreement with the more sophisticated results we shall obtain
later.
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ðþ;−;−Þ and for ðþ;þ;þÞ]. This means that we focus on
surfaces of constant Gaussian curvature.
The result Cμν ¼ 0 is intrinsic (it is a tensorial equation,

true in any frame), but to exploit Weyl symmetry to extract
nonperturbative exact results, we need to find the coor-
dinate frame, say Qμ ≡ ðT; X; YÞ, where

ggrapheneμν ðQÞ ¼ ϕ2ðQÞgflatμν ðQÞ: ð12Þ

Here, besides the technical problem of finding these
coordinates, the issue is as follows: what is the physical
meaning of the coordinates Qμ and their practical
feasibility.
Tightly related to the previous point is the issue of a

conformal factor that makes the model globally predictive,
over the whole surface/spacetime. The simplest possible
solution would be a single-valued and time independent
ϕðqÞ, already in the original coordinates frame,
qμ ≡ ðt; u; vÞ, where t is the laboratory time, and, e.g.,
u; v the meridian and parallel coordinates of the surface.
Here we are dealing with a spacetime that is embedded

into the flat ð3þ 1Þ-dimensional Minkowski. Although, as
said, we shall focus on intrinsic curvature effects, just as in
a general relativistic context, issues related to the embed-
ding, even just for the spatial part, are important. For
instance, when the surface has negative curvature, we need
to move from the abstract objects of non-Euclidean
geometry (say the coordinates of the upper-half plane
model of Lobachevsky geometry) to objects measurable
in a Euclidean real laboratory. This will involve the last
issue above about global predictability and, in the case of
negative curvature, will necessarily lead to singular boun-
daries for the surfaces, as proved in a theorem by Hilbert;
see, e.g., [15,38,48]. Even the latter fact is, in a sense, a
coordinates effect, due to our insisting on embedding inR3,
and it clarifies the hybrid nature of these pseudorelativistic
settings. Nonetheless, once we are inR3, there is no way to
remove such singularities; we can only relocate them by
changing the surface (see later).
We then need to find the quantum vacuum of the field to

properly take into account the following: (a) the measure-
ments, as for any QFT on a curved spacetime, and (b) the
graphene hybrid situation. As is well known, in QFT, in
general, we have choices of the ground states that are not
equivalent; i.e., they are not connected through a non-
singualar unitary transformation [19,20]. This instance
becomes particularly important in QFT in curved space-
times, where those inequivalent vacua are related to differ-
ent observers; see, e.g., [21–23].
Having in mind that the clearest prediction of QFT on a

curved spacetime is the Hawking effect, if we want to prove
beyond doubt that graphene realizes such a system, we
shall have to face the challenge to reproduce on graphene
the conditions for this effect to take place. Thus, one of the
main challenges is to realize the conditions for which an

event horizon appears. Having confined ourselves to
metrics of the kind (7) the task is indeed a difficult one,
and, since we shall focus on surfaces of constant negative
K, we have to face the fact that the surface might end before
the horizon is reached; see [29]. In [9], for one specific
case, and in the following, for more cases, we show that
these problems can be solved.
Of course, we do not argue that this procedure is the only

one leading to an experimental test of the validity of the
QFT in a curved spacetime description of the physics of
graphene’s π bonds. One could depart from the beginning
from the metric (7), for instance by applying external
electromagnetic fields, or imagining more or less exotic
situations where the g00 ≠ 1. Nonetheless, acting as
explained above merges two goals: to be experiments
friendly, and to keep on board as many as possible of
the crucial aspects of QFT in curved spacetimes.
Let us now face all the issues of this list, starting from the

first set, i.e., what we might call the “geometric” and the
“relativity” issues.

IV. THE GEOMETRIC ISSUES: LOBACHEVSKY
GEOMETRY IN THE LAB

Our focus will be on the surfaces of constant Gaussian
curvature, one of the subject matters of the classic studies of
differential geometry [13,49]. Let us recall here the main
facts about them that we shall need in the following.
In general, there is no single parametrization good for all

surfaces. In fact, for the surfaces of revolution, there is one
such parametrization, sometimes called “canonical,” that
we now introduce. Surfaces of revolution are the surfaces
swapped by a (profile) curve, say in the plane ðx; zÞ, rotated
of a full angle around the z axis. All such surfaces (both of
constant and nonconstant K) can be parametrized in R3 as

xðu; vÞ ¼ RðuÞ cos v; yðu; vÞ ¼ RðuÞ sin v;

zðuÞ ¼ �
Z

u ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R02ðūÞ

q
dū; ð13Þ

where the prime denotes the derivative with respect to the
argument, v ∈ ½0; 2π� is the parallel coordinate (angle), and
u is the meridian coordinate whose range is fixed by the
knowledge of RðuÞ, i.e., of the type of surface, through the
request that zðuÞ ∈ R. The relation between z and R comes
from the constraint R02ðuÞ þ z02ðuÞ ¼ 1, which amounts to
a choice (that we are free to make) for the coefficients of
Gauss’s first fundamental form given by [49] E ¼ 1;
F ¼ 0; G ¼ RðuÞ. A direct proof of this last statement is
obtained by considering the embedded line element
descending from (13),

dl2 ≡ dx2 þ dy2 þ dz2 ¼ du2 þ R2ðuÞdv2: ð14Þ
The expression on the far right side above is the typical line
element of a surface of revolution. We shall always deal
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with such type of line element, for the spatial part. The way
the surface of revolution can be plotted via the line element
(14) is by drawing successive circular (v ∈ ½0; 2π�) slices of
varying radii RðuÞ.
The Gaussian curvature is given by the simple

expression [49]

K ¼ −
R00ðuÞ
RðuÞ : ð15Þ

Thus, the knowledge of RðuÞ amounts to the knowledge of
the surface of revolution. WhenK is constant, Eq. (15) is an
easy equation to solve

RðuÞ ¼ c cosðu=rþ bÞ for K ¼ 1

r2
; ð16Þ

RðuÞ ¼ c1 sinhðu=rÞ þ c2 coshðu=rÞ for K ¼ −
1

r2
;

ð17Þ
where r ∈ R is constant, and c; b; c1; c2 are also real
constants that determine the type of surface, and/or set
the zero and scale of the coordinates.
When K ¼ 1=r2, one first chooses the zero of u in

such a way that b in (16) is zero, and then distinguishes
three cases, c ¼ r, c > r, c < r. The first case is the
sphere of radius r, and the other two surfaces are
applicable to the sphere through a redefinition of the

meridian coordinate v → ðc=rÞv. With these, zðuÞ ¼R
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðc2=r2Þ sin2ðū=rÞ

p
dū, and the range of u changes

according to the relation between c and r, being
zðuÞ ¼ r sinðu=rÞ, with u=r ∈ ½−π=2;þπ=2� for the
sphere.
When K ¼ −1=r2, all the surfaces described by (17) can

be applied to one of the following three cases: c1 ¼ c2 ≡ c,
giving

RðuÞ ¼ ceu=r; ð18Þ

or c1 ¼ 0, c2 ≡ c, giving

RðuÞ ¼ c coshðu=rÞ; ð19Þ

or c2 ¼ 0, c1 ≡ c, giving

RðuÞ ¼ c sinhðu=rÞ: ð20Þ

They are called the Beltrami, the hyperbolic, and the elliptic
pseudospheres, respectively, and the corresponding expres-
sions for zðuÞ are given by substituting RðuÞ in the integral
in (13). Very important for us, all surfaces of constant
negative K, not only the surfaces of revolution, are
applicable to the Beltrami or the hyperbolic or the elliptic
pseudospheres; see, e.g., [13].
The condition z ∈ R gives the range of R and u in the

various cases

RðuÞ ∈ ½0; r�⇔u ∈ ½−∞; r lnðr=cÞ�; ð21Þ

RðuÞ ∈
h
c;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p i
⇔u ∈

h
−arccosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=c2

q �
;þarccosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=c2

q �i
; ð22Þ

RðuÞ ∈ ½0; r cos ϑ�⇔u ∈ ½0; arcsinh cot ϑ�; ð23Þ

where, in the first two cases, c is only bound to be a real
positive number, while in the last case 0 < c ¼ r sin ϑ < r.
Furthermore, in the second case, RðuÞ is an even function
of u, and hence, in the symmetric interval, reaches the
maximum twice. Notice also that the only case where the
range of R is independent from c is for the Beltrami surface.
More details of these surfaces are in the captions of the
relative figures; see Figs. 3, 4, and 5 below.
On the mathematics side, our goal is to find the

coordinate frame Qμ ≡ ðT; X; YÞ where the metric (7) is
explicitly conformally flat. On the physics side, we have to
understand what are the conditions that need to be realized
on graphene to correspond to this frame, and how feasible
this is.
One problem to solve, on the spatial part, is to combine

the canonical parametrization (13), for which it is imme-
diate to plot the surface, with the spatial isothermal

coordinates, ð~x; ~yÞ, where dl2¼φ2ð~x; ~yÞðd~x2þd~y2Þ, where
the task to find the coordinate frame Qμ is easier. Indeed,

ggrapheneμν ¼ diagð1;−φ2ð~x; ~yÞ;−φ2ð~x; ~yÞÞ
¼ ϕ2ðT; X; YÞdiagð1;−1;−1Þ; ð24Þ

hence, using the standard gμνðQÞ ¼ ð∂Qμ=∂qλÞ×
ð∂Qν=∂qκÞgλκðqÞ, the system of partial differential equa-
tions to solve simplifies to

ϕ2ðT2
t − X2

t − Y2
t Þ ¼ 1;

ϕ2ðT2
~y − X2

~y − Y2
~yÞ ¼ −φ2 ¼ ϕ2ðT2

~x − X2
~x − Y2

~xÞ; ð25Þ
TtT ~x − XtX ~x − YtY ~x ¼ TtT ~y − XtX ~y − YtY ~y

¼ T ~xT ~y − X ~xX ~y − Y ~xY ~y ¼ 0; ð26Þ
where Tt ≡ ∂tTðt; ~x; ~yÞ, etc.
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Isothermal coordinates can always be found for surfaces
of revolution, by using the meridian and parallel para-
metrization. To see it, use the following reparametrization
of (13):

xð ~R; vÞ ¼ ~R cos v; yð ~R; vÞ ¼ ~R sin v; zð ~RÞ ¼ fð ~RÞ;
ð27Þ

so that dl2≡dx2þdy2þdz2¼ð1þf02ð ~RÞÞd ~R2þ ~R2dv2,

and then use ~u≡ R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f02ð ~RÞ

q
= ~Rd ~R, which gives dl2 ¼

~R2ð ~uÞðd ~u2 þ dv2Þ with ~Rð ~uÞ obtained by inverting the
definition of ~u. Note that ~uðuÞ, and ~Rð ~uðuÞÞ ¼ RðuÞ. This
means that for surfaces of revolution5

φð~x; ~yÞ ¼ ~Rð ~uÞ: ð28Þ

Thus focusing on the surfaces of revolution (and of
constant K), we are moving in the right direction, but this
does not guarantee that we can always succeed to find
the coordinates Qμ this way.
For the sphere, it is easy to find the isothermal coor-

dinates

~x ¼ v; ~y ¼ ln

�
1þ 2

cotðu=2rÞ − 1

�
; ð29Þ

for which6

dl2 ¼ du2 þ r2 cos2
u
r
dv2 ¼ r2

cosh2 ~y
ðd~x2 þ d~y2Þ; ð30Þ

hence7 φ2ð~yÞ ¼ r2= cosh2 ~y ¼ r2 cos2 u
r ¼ φ2ðuÞ. One can

also check that the Liouville equation is satisfied.8

Later we shall show that there is no horizon in this case,
and hence no Hawking phenomenon takes place. This
makes the sphere a case less apt for the emergence of
unmistakable signatures of QFT in curved spacetime. All of
this makes us focus on the cases of constant negative
curvature. Before moving to those cases, let us add here that
the formulas for the sphere we have reobtained above are
well known; see, e.g., [13]. The reason for showing them
here is that they illustrate, in a very familiar case, that
having found the isothermal coordinates, ð~x; ~yÞ, their link
with Euclidean coordinates (those measurable in a lab)
needs to be made explicit. The expressions (29) are one
example. This issue, for the sphere, has been solved over
the centuries by map makers.9 Less usual is to find
solutions for the surfaces of our interest, of which we
shall discuss next.

A. Surfaces with K ¼ constant < 0

For these surfaces, the spatial part of the metric of
graphene can be written, in isothermal coordinates, as

dl2 ¼ r2

~y2
ðd~x2 þ d~y2Þ; ð31Þ

where ~x; ~y are the abstract coordinates of the Lobachevsky
geometry in the upper half-plane (~y > 0) model. One then
immediately realizes that our goal is nearer. Indeed, the full
line element is

ds2graphene ¼
r2

~y2

�
~y2

r2
dt2 − d~x2 − d~y2

�
; ð32Þ

where the line element in square brackets is flat. This
apparently solves our problem: the coordinates Qμ appear
to be ðt; ~x; ~yÞ, as there we shall always have the explicit
conformal factor φ2ð~yÞ ¼ r2=~y2 to implement the Weyl
symmetry. Furthermore, the line element in square brackets
is of the Rindler kind (see, e.g., [21]); hence it is pointing
toward a Unruh kind of effect available for all surfaces of
this family. Nonetheless, although this is an important
indication, we cannot conclude yet for any Unruh-Hawking
kind of effect, hidden in the line element (32), until we
make contact with what can be seen in a real laboratory (not
in a “Lobachevsky laboratory,” so to speak).

5For a generic surface, i.e., not a surface of revolution, this
is not the case. If we could have the general procedure to go
from a parametrization of the surface where the visualization
is easy [the canonical parametrization (13) being one exam-
ple], to the isothermal coordinates that give the conformal
factor φ2, we would immediately know the profiles that
graphene should have in order to correspond to important
algebraic structures, such as the Virasoro algebras (for K ¼ 0)
and the Liouville structures (for K ≠ 0), which naturally
emerge here in terms of the conformal factor φ2; see [8].
Among the latter, for instance, particularly rich are the vortex
solutions of the Liouville equation found in [50].

6To see the full match with (28) let us consider, for
simplicity, a unit sphere, r ¼ 1, centered at the origin, and
let us use the standard parametrization x¼sinθcosχ,
y ¼ sin θ sin χ, z ¼ cos θ. For this, ~Rð ~uðθÞÞ ¼ sin θ. Hence,

from x2 þ y2 þ z2 ≡ ~R2 þ z2 ¼ 1, one gets z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~R2

p
¼

fð ~RÞ ¼ cos θ. Applying the procedure above, ~u ¼R
1= ~R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~R2=ð1 − ~R2Þ

q
¼ ln tanðθ=2Þ, or θ ¼ 2 arctan e ~u,

which gives ~R ¼ sin θ ¼ 1= cosh ~u (that is also a nice formula
to relate trigonometric and hyperbolic functions without resort-
ing to complex numbers). Then, defining ~u ¼ ~y and v ¼ ~x, one
gets the line element (30).

7We used here that, when u ¼ 2r arccotð 2
e~y−1 þ 1Þ,

cosðu=rÞ ¼ 1= cosh ~y.
8In the isothermal coordinates ð~x; ~yÞ, the Liouville equation is

K ¼ − 1
2φ ðlnφÞ00. With φ ¼ r2= cosh2 ~y, one immediately finds

the result K ¼ 1=r2.
9For instance, the Mercator projection is precisely the ~x ¼ v,

~y ¼ ln tanðθ=2Þ discussed in the footnote.
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As said, we need to refer to coordinates measurable in
the Euclidean spaceR3 of the laboratory; hence we have to
specify ~x and ~y in terms of coordinates measurable using
the Euclidean distance (embedding), say the ðu; vÞ coor-
dinates. If we are lucky, the result will be globally valid
already in the frame ðt; u; vÞ. Otherwise, we need to change
coordinates again, and this means, in general, that we have
to abandon the lab time t.
Let us recall here the basic facts of Lobachevsky

geometry; for more details see [28]. In particular, we focus
on the subtle points of embedding this geometry into the
Euclidean space. The upper-half plane, fð~x; ~yÞj~y > 0g,
equipped with the metric (31), represents Lobachevsky
geometry, both locally and globally. All other realizations
(the Poincarè disk and the Minkowski model, being the
other most used two) are related to it; see, e.g., [28]. The
geodesics for (31) are semicircles, starting and ending on
the “absolute,” the boundary of the space, namely the ~x
axis. Every surface of constant negative Gaussian curva-
ture is locally isometric to the upper-half plane with metric
(31). This means that we can work with this metric but
have to remember its abstract nature. If we explicitly have
~x or ~y in a formula, when it is time to measure, we have to
express them in terms of Euclidean coordinates. Since,
from (32) we already have the explicit conformal factor
we wanted, that is r2=~y2, we have to focus on the ~y
coordinate. Indeed, we might run into troubles when we
write the specific ~y for the given surface. The reason is
that non-Euclidean geometry objects are “intruders” in a
Euclidean world.
In the literature, when a spacetime of negative curvature

in n dimensions (such as the anti–de Sitter, AdSn), is
considered, the embedding is done in the unphysical
higher dimensional flat spacetime with signature, e.g.,
ðþ;−; � � � ;−;þÞ; see, e.g., [16,17]. This could be
described, for instance, by a spacetime with all real
coordinates, say t; x;…; y ∈ R, but one spatial coordinate
that necessarily is imaginary, say z ¼ iζ; ζ ∈ R. Here, as
we want to realize such spacetimes in a real lab, we shall
always embed in the physical spacetime ðþ;−;−;−Þ, i.e.,
t; x; y; z ∈ R. On this we shall elaborate more in the
following section.

1. Beltrami pseudosphere: Global predictability
in the simplest frame

Let us now see how all the above comes about in
practice. We focus on the Beltrami pseudosphere. If we take
~y in (31) such that

ln ~y ¼ −ðu=rþ ln cÞ; ð33Þ

then d~y=~y ¼ −du=r, or du2 ¼ ðr2=~y2Þd~y2, so the choice

~x ¼ v
r
; ~y ¼ 1

c
e−u=r; ð34Þ

in (31) gives the line element of the Beltrami pseudosphere

dl2 ¼ du2 þ c2e2u=rdv2: ð35Þ

The equations above connect “unmeasurable” objects, ~x, ~y,
to measurable ones, u and v, the meridian and the parallel
coordinates. Up to now, it does not appear to be such a
different situation as the one depicted before for the sphere;
see (29). In fact, the big difference is that we can only
represent a tiny sector of the Lobachevsky plane into R3,
namely what is called a “horocyclic sector”; see Fig. 2. This
fact is governed by a deep result of Hilbert that says
[15,51]: There exists no analytic complete surface of
constant negative Gaussian curvature in the Euclidean
three-dimensional space. By “complete” it is meant a
surface that does not exhibit singularities.
The horocycles, in the upper-half-plane model, are

curves whose normals all converge asymptotically. Since
the geodesics here are the following: (a) semicircles starting
and ending on the ~x axis, and (b) half-lines starting on the ~x
axis (that are just the limiting case of the former case), we
have two kinds of horocycles—full circles tangent to the
absolute for (a), and lines parallel to the absolute for (b).
Sectors of horocycles are, essentially, the Lobachevsky
version of stripes; see Fig. 2 and [28]. Once one realizes
that it is impossible to represent the whole of the
Lobachevsky geometry on a real surface, the next most
natural thing to try is to see whether, at least, a stripe can be
represented. This is, essentially, what Beltrami discovered.
The details about the actual construction of this pseudo-
sphere from the Lobachevsky plane are in Fig. 2, and the
details on the parametric expression in R3 are in Fig. 3.
One important point for us is that, by looking at the

expressions (34), we see that ~y is a smooth, well-behaved,
single-valued function, and, to take a full turn on a parallel,
~x → ~xþ 2π=r, has no effects on ~y. For this coordinate, the
only thing we need to care about is that the surface ends
abruptly at ~ymin ¼ 1=r, corresponding to the maximal
circle, Rðu ¼ r ln r

cÞ ¼ r. This maximal circle is what we
call the “Hilbert horizon,” to recall that it is an effect of the
Hilbert theorem on the embedding inR3, and that there the
Beltrami spacetime ends. This notion of horizon will be put
in contact with that of a proper event horizon in the
following. Let us notice here that not always are the
singular boundaries one has to expect for a generic surface
of this family so clean. In general, they could be a discrete
set of points, open/closed curves, self-intersecting open/
closed curves, or a combination of these. This depends on
the particular embedding, which can be quite involved (see,
e.g., [48]). Thus, not always is it such an easy task to
identify a Hilbert horizon.
For the Beltrami surface, all the geometrical problems

are solved at once: we have an explicit conformal factor
that, through the realization (34), is well defined all over
the nonsingular part of the surface (and the singular
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boundary is a circle), already in the frame of reference
qμ ¼ ðt; u; vÞ, where the time is exactly the lab time. For
this surface, then, using the Weyl symmetry, we can extract
sensible predictions based on the line element in square
brackets in (32). The latter line element, for this

pseudosphere, coincides with a proper Rindler line
element, modulo some differences; see [9] and the next
section. Based on this fact, the event horizon we evoked in
[9] for the Beltrami spacetime is of the Rindler type,
reached at future null infinity, i.e., time-wise. Nonetheless,
later we shall show that, by properly taking into account the
physical relevance of the parameter c, the Rindler horizon
can also be reached space-wise, and it coincides with the
Hilbert horizon.
We shall discuss all these points in the next section.

Before that, let us have a closer look at the other surfaces of
this family.

2. Hyperbolic and elliptic pseudospheres, and other
pseudospherical surfaces

For the hyperbolic pseudosphere, we need to solve

dl2 ¼ r2

~y2
ðd~x2 þ d~y2Þ≡ du2 þ c2cosh2

u
r
dv2; ð36Þ

which gives

~x ¼ ecv=r tanhðu=rÞ; ~y ¼ ecv=r
1

coshðu=rÞ : ð37Þ

From here it is evident that, in the frame qμ ¼ ðt; u; vÞ,
contrary to the Beltrami pseudosphere, we do not have
a globally predictive power. The conformal factor, r2=~y2,
at a fixed value of the meridian, ū, will jump out of
e−4πc=rr2 cosh2ðū=rÞ after a complete turn from 0 to 2π;
see Fig. 4.

FIG. 3 (color online). The Beltrami pseudosphere is an
infinite surface. It is identified by RðuÞ ¼ ceu=r, with c any
positive real constant, and r ¼ ffiffiffiffiffiffiffi

−K
p

. We have that
RðuÞ ∈ ½0; r� as u ∈ ½−∞; r lnðr=cÞ�. The R3 coordinates
(embedding) are xðu; vÞ ¼ ceu=r cos v, yðu; vÞ ¼ ceu=r sin v,
zðuÞ ¼ rð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðc2=r2Þe2u=r

p
− arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðc2=r2Þe2u=r

p
Þ. The

surface is not defined for R > r [zðuÞ becomes imaginary], and
this fixes the range of u, the singular boundary being the circle
R ¼ r at u ¼ r lnðr=cÞ. The range of v is ½0; 2π�. In the plot
r ¼ 1 ¼ c and u ∈ ½−3.37; 0�, v ∈ ½0; 2π�.

FIG. 2 (color online). Here we build explicitly the Beltrami pseudosphere from the horocyclic sector indicated in the figure. The
boundaries to be identified are the indicated portions of the normals n2 and n3. The point at infinity here is ~ymax ¼ ∞, and it would be the
same for any choice of horocycles of this kind. The other end of the surface, corresponding to ~ymin ¼ 1=r, is a singular boundary, as
predicted by the Hilbert theorem. The range of the meridian coordinate is, of course, v ∈ ½0; 2π�, while the range of the parallel
coordinate u is obtained through the equation ~yðuÞ ¼ 1=RðuÞ, and RðuÞ ¼ ceu=r; see Eqs. (34).
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This does not mean that we cannot do anything with this
pseudosphere. We have three roads to follow: (a) we make
locally valid predictions in the coordinates qμ; (b) we find a
new coordinate system, where Weyl symmetry gives a
globally well defined conformal factor, but points to a
curved spacetime, rather than to a flat spacetime; (c) we
find coordinates Qμ for which we have both things at work,
Weyl symmetry linking this spacetime to the flat one, and a
global predictive conformal factor. Later we shall use a
mixture of the options (a) and (b), but let us illustrate the
strategy (c) at work for yet another pseudosphere, the elliptic.
To solve

dl2 ¼ r2

~y2
ðd~x2 þ d~y2Þ≡ du2 þ c2sinh2

u
r
dv2 ð38Þ

is cumbersome, because the most natural model for this
pseudosphere is the Poincaré disk model, rather than the
upper half-plane. The results for ~xðu; vÞ and ~yðu; vÞ are too
messy to show here, and, in any case, as for the previous
pseudosphere, they also exhibit multivaluedness of the ~y
coordinate. On the other hand, by solving (a system related
to) (25) and (26), we find that the following coordinates:

T ¼ ret=r cosh
�u
r

�
; X ¼ ret=r sinh

�u
r

�
cos

�
c
v
r

�
;

Y ¼ ret=r sinh
�u
r

�
sin

�
c
v
r

�
; ð39Þ

with 0 < c < r, give a perfectly well defined conformal
factor ϕ for the ð2þ 1Þ-dimensional metric [see last
expression in (24)]

ϕ2 ¼ r2=ðT2 − X2 − Y2Þ ¼ e−2t=r: ð40Þ

One can surely imagine a physical situation where those
coordinates make physical sense, but we shall not follow
this road because its experimental realization does not look
easy. In fact, there is the same alternative road as for the
previous pseudosphere, involving another curved space-
time and the Beltrami spacetime, that gives sensible results
There are many examples in the literature of the other

pseudospherical surfaces, infinite in number; see, e.g.
[15,48]. From there, one immediately realizes that the
tasks we have accomplished in such a clean way with the
Beltrami spacetime are, in general, much more difficult.
Nonetheless, all those surfaces are described by the line

element (31), and hence the general result of geometry
recalled earlier comes in hand [13]: The line element of any
surface of constant negative Gaussian curvature, not
necessarily a surface of revolution, is reducible to the line
element of the Beltrami or the hyperbolic or else the elliptic
pseudospheres, given here by (14) with (18), (19), and (20),
respectively. This is achieved by having the geodesics
system of the given surface coincide (though a mapping)

FIG. 4 (color online). The hyperbolic pseudosphere is, in
general, a finite surface. It is identified by RðuÞ ¼
c coshðu=rÞ, with c any positive real constant, and r ¼ ffiffiffiffiffiffiffi

−K
p

.
The range of R is R ∈ ½c;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
�. According to the general

results, the R3 coordinates are [13] xðu; vÞ ¼ c coshðu=rÞ cos v,
yðu; vÞ ¼ coshðu=rÞ sin v, zðuÞ¼−iE

R ½iðu=rÞ;−ðc=rÞ2�, where
the last symbol is the elliptic integral. In the plot r ¼ 1 ¼ c, and
u ∈ ½−arc cosh ffiffiffi

2
p

;þarc cosh
ffiffiffi
2

p �, v ∈ ½0; 2π� and the range of u
is dictated by the condition that z ∈ R in terms of the elliptic
integral. The singular boundaries in this case are the two extremal
circles R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
¼ ffiffiffi

2
p

, where u ¼ �arc cosh
ffiffiffi
2

p
.

FIG. 5 (color online). The elliptic pseudosphere is, in general, a
finite surface. It is identified by RðuÞ ¼ c sinhðu=rÞ, with c < r,
and r ¼ ffiffiffiffiffiffiffi

−K
p

. A good parametrization of the constants, due to
Ricci [13], is c ¼ r sin ϑ (note that c ¼ r is a degenerate case,
giving a circle), and hence the range of R is ½0; r cos ϑ�. The R3

coordinates can be obtained from the general results,
xðu;vÞ¼rsinϑsinhðu=rÞcosv, yðu; vÞ ¼ r sin ϑ sinhðu=rÞ sin v,
with zðuÞ given in terms of elliptic integrals through
z ¼ � R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − R02ðuÞ
p

. In the plot r ¼ 1, ϑ ¼ π=4 and
u ∈ ½0; 2�, v ∈ ½0; 2π�, and the range of u is dictated by the
condition that z ∈ R. The singular boundaries in this case are the
point R ¼ 0, corresponding to u ¼ 0, and the maximal circle of
radius R ¼ r cos ϑ, corresponding to umax.
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with the geodesics system of the particular pseudosphere
[13]. To this well-known result that points toward three
surfaces only, we want to add the following considerations
that merge the three into one: the Beltrami. This shows that
to consider the Beltrami means to consider, at least locally,
all the surfaces of the family.
In general, the three pseudospheres (18)–(20) differ

importantly from each other, and the previous theorem is
one example of this. Indeed, besides the differences just
discussed about their natural coordinate systems in a
ð2þ 1Þ-dimensional spacetime, the Beltrami surface is
infinite, while the other two are not. Furthermore, the
Beltrami surface has one singular boundary only, at
R ¼ r, while the other two pseudospheres have two
singular boundaries: the hyperbolic pseudosphere when

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
, the elliptic at R ¼ 0 and at R ¼ r cosϑ.

Nonetheless, in the limit of very small c=r, the three
surfaces have very similar behavior. This can be seen by
the inspection of the expressions in (18)–(23) and is
depicted in the plots of Fig. 6 that have to be compared
with the plot in Fig. 3. In the limit c=r → 0, the range of u is
infinite for all, the range of R is ½0; r� for all, and in the
positive u sector, they all approach the same form [see
(18)–(20)]

RðuÞ ∼ ceu=r ∈ ½0; r� when u ∈ ½0;þ∞� ð41Þ

(we shall be more precise in the following section about the
actual limits of the range of u that crucially depend upon
the physics of the application to graphene).
With this in mind, we shall mostly focus on the Beltrami

spacetime, as the results are the cleanest there and can serve
as a guide for the other (infinite number of) cases too. On
the other hand, the mappings among the three different
pseudospheres will reinforce the conclusions of [9] about
the existence of an event horizon on the Beltrami space-
time, as we shall show next.

V. RELATIVITY ISSUES: THE HORIZON

There are various kinds of horizon in general relativity,
sometimes differing for very subtle reasons; see, e.g.,
[52–54]. We do not yet have at our disposal the gravity/
geometrical theory that describes the dynamics of the
elastic membrane of graphene (the effective description
of the dynamics of the σ bonds), and thus we cannot yet
embark in such subtle distinctions. One distinction we can
attempt to make, though, is between the singular boundary
of the surfaces of constant negative curvature that we call
the Hilbert horizon (when it is possible to identify it as
the end of the spacetime, as, e.g., the circle R ¼ r of the
Beltrami surface) and a standard event horizon (e.g., the
horizon of Rindler spacetime). These two types of horizon,
for a generic surface of constant negative Gaussian curva-
ture, are in principle different. But, below, we shall show
that, in the case of a Beltrami spacetime, in the physically
appropriate limit of small c=r, the two horizons coincide
within very reasonable experimental errors. Furthermore, in
that limit, the same Hilbert horizon, R ¼ r, is (Weyl)
related to three standard event horizons: the Rindler kind,
the cosmological kind, and the black-hole kind (although,
in this latter case, in the limit of vanishing black-hole
mass). To the latter two cases are dedicated Appendix A
and Appendix B, respectively.
Let us start by finding some general results, valid for the

infinite number of cases of constant negative Gaussian
curvature. We need to consider the line element (32)

ds2graphene ¼
r2

~y2

�
~y2

r2
dt2 − d~y2 − d~x2

�
;

FIG. 6 (color online). In these two examples, one-half of the
hyperbolic pseudosphere (above) and the full elliptic pseudo-
sphere (below), for small values of c=r. It is evident that both
cases are similar to the Beltrami case of Fig. 3, as discussed in the
text. For the half of the hyperbolic pseudosphere, the plot here is
for r ¼ 1 and c ¼ 0.01. For the elliptic pseudosphere, the plot
here is for r ¼ 1, and ϑ ¼ π=50 ≃ 0.06 ≃ c.
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and either study separately the Rindler-like spacetime and
the conformal factor or study directly the full line element
dt2 − ðr=~yÞ2ðd~x2 þ d~y2Þ (the results are, of course,
the same). The null geodesics10 of both spacetimes are
of this form

~xðtÞ ¼ const and ~yðtÞ ¼ ~y0e�vFt=r; ð42Þ

where we have, momentarily, reintroduced vF (our “speed
of light”), and þ (−) is for the outgoing (ingoing)
trajectories (for antiparticles signs swap). The actual
Euclidean length can be obtained only when the
Lobachevsky coordinate ~y has been expressed in terms
of Euclidean measurable spatial coordinates, hence when
the surface has actually been specified. On the other hand,
to make general statements we look at the Lobachevsky
length. Equations (42) identify a straight line of the
degenerate type in the Lobachevsky plane, and the
Lobachevsky distance between two points is

dð~yðt2Þ; ~yðt1ÞÞ ¼ arccosh

�
1þ ð~yðt2Þ − ~yðt1ÞÞ2

2~yðt2Þ~yðt1Þ
�

¼ vF
r
jt2 − t1j; ð43Þ

with ~yðtÞ in (42).
The above discussion means that the pseudoparticles,

on a generic graphene surface of constant negative curva-
ture, see

~y ¼ 0

as an event horizon: (a) the metric elements are singular
there, and (b) it can only be reached asymptotically at
future null infinity (it can never be crossed). Thus, one
thing we learn from the above discussion is that, even when
only spatial curvature is present, and all metric variables are
time independent, an event horizon is indeed possible. The
issue here is, does the curve11 ~y ¼ 0 belong to the
spacetime?
First of all, by the very definition of the Lobachevsky

plane, strictly speaking, ~y ¼ 0 is excluded from the mani-
fold. It is the absolute12 of the upper-half plane model, and
hence all considerations about having it into the spacetime
have to be about limiting processes. Nonetheless, this
situation is common to standard event horizons, when
the coordinates are such that the inner region beyond the

horizon is out of reach. Awell-known example is the event
horizon for a spherically symmetric black hole in the
Schwarzschild coordinates.
In this latter case, the coordinates can be changed, for

instance to the Eddington-Finkelstein coordinates, and the
singular behaviors of infinite geodesic distance and infinite
metric elements (that we just used to identify ~y ¼ 0 as an
event horizon) go away, changing the properties of a
horizon into those of a one-way membrane [or “one-brane,”
for this ð2þ 1Þd case]: ingoing particles can cross the
horizon, but outgoing cannot.
In our case there is no equivalent of the Eddington-

Finkelstein coordinates. The horizon can never be crossed,
no matter the coordinates. The coordinates, though, are
crucial, because only when we specify the surface (i.e.,
when we find the Euclidean coordinates to realize a portion
of the Lobachevsky plane in the R3 of the laboratory) we
can face the questions on whether (i) the Hilbert horizon is
a well defined object, and (ii) it is close enough to the event
horizon.
In all cases, the Hilbert horizon is located where its

smaller ~y coordinate, say it is ~yHh, is strictly bigger than that
of the event horizon, ~yHh > 0. In general, we cannot say
whether the Hilbert horizon is close to or far from the event
horizon. Indeed, this depends on the fine details of the
given surface. Each of the infinite surfaces has its own
structure of singularities. It might well be that there is more
than one Hilbert horizon (see, e.g., the hyperbolic pseudo-
sphere in Fig. 4), or it might even happen that it is not easy
to identify a reasonable Hilbert horizon, i.e., a curve where
the spacetime ends. What we shall see now is the following:
(a) for the Beltrami spacetime the Hilbert horizon is a clean
object and, in the limit of small c=r, Weyl related to a very
reasonable Rindler event horizon; (b) for the elliptic
pseudosphere the Hilbert horizon is a clean object and,
in the same limit, Weyl related to a reasonable cosmologi-
cal (de Sitter) event horizon; (c) for the hyperbolic pseudo-
sphere, the Hilbert horizon is a clean object and in the same
limit, Weyl related to a black hole (BTZ) event horizon,
although in the limiting case of vanishing mass. In the last
two cases, as already shown, in the limit of small c=r,
the spacetime tends to the Beltrami spacetime13; hence the
surface and the Hilbert horizon, in all cases, are the
same ones.
These results will, on the one side, reinforce and improve

the results of [9] on the Rindler horizon for the Beltrami
spacetime. On the other side, since all surfaces of constant
negative Gaussian curvature are locally isometric to the
Beltrami pseudosphere, these results also are an empirical
proof that when on one surface of the family the conditions

10Our considerations refer to the pseudoparticles of graphene
that are massless (Dirac) excitations.

11By “curve” we mean the set of points in the Euclidean
coordinates that are a solution of ~y ¼ 0 for the given surface/
spacetime. Strictly speaking, there is no such solution.

12This makes clear that the choice of other models for
Lobachevsky geometry would make no difference in this im-
portant respect.

13There are, though, some global differences: the elliptic
pseudosphere is singular also at the tip of the tail (R ¼ 0), while
the hyperbolic pseudosphere tends to two Beltramis joined at
R ¼ 0 (see Fig. 10), hence evoking a wormhole-type of spacetime
with two Hilbert/event horizons.
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for a horizon are reached, and the results about thermal
Green functions found for the Beltrami spacetime [9] can
be used, although their validity might be confined to a small
neighbor. On this latter point we shall come back later. We
want to prove now the previous statements about the
Rindler horizon (Appendixes A and B are dedicated to
the de Sitter and BTZ horizons, respectively).

A. The Rindler-like horizon of Beltrami spacetime

By using the expressions (34) in (32), and by introducing
the correct dimensionality for the coordinates, so that the
conformal factor is dimensionless,14 the line element of the
Beltrami spacetime is

ds2B ¼ c2

r2
e2u=r

�
r2

c2
e−2u=rðdt2 − du2Þ− r2dv2

�
≡ φ2ðuÞds2R;

ð44Þ

with φðuÞ≡ c=reu=r, and

ds2R ≡ r2

c2
e−2u=rðdt2 − du2Þ − r2dv2; ð45Þ

where the subscript “R” stands for Rindler, and from now
on we take

c < r; ð46Þ

so that lnðr=cÞ is always greater than zero.
Just like in the standard case, the line element ds2R in (45)

describes both the left and the right Rindler wedges.
Indeed,

η≡ r
c
t ∈ ½−∞;þ∞� and v ∈ ½0; 2π� ð47Þ

but, for a≡ c=r2 > 0

ξ≡ −
r
c
u ∈ ½−ðr2=cÞ lnðr=cÞ;þ∞�; ð48Þ

while, for a≡ −c=r2 < 0

ξ≡ r
c
u ∈ ½−∞;þðr2=cÞ lnðr=cÞ�; ð49Þ

so that

~y ¼ 1

c
e−u=r ¼

8>><
>>:

þ 1
ar2 e

aξ > 0 right wedge;

or

− 1
ar2 e

aξ > 0 left wedge.

ð50Þ

Here a is the value of the proper acceleration αðξÞ evaluated
at the origin of the Rindler spatial coordinate, ξ ¼ 0, and
the proper acceleration is defined in accordance to the line
element

ds2R ¼ e2aξðdη2 − dξ2Þ − r2dv2; ð51Þ

so that e−aξ is the appropriate Tolman factor

αðξÞ ¼ ae−aξ: ð52Þ

Now we focus on the line element (51), knowing that this
spacetime differs from a standard Rindler spacetime only
with respect to the range of the ξ coordinate (and for the fact
that the “speed of light” here is vF; on this see the next
section). In the standard Rindler spacetime, the event
horizon is identified space-wise by

ξEh ¼ −∞ right wedge and ξEh ¼ þ∞ left wedge;

ð53Þ

and time-wise by

η ¼ þ∞: ð54Þ

In [9] we focused only on the latter. Here, in the spirit of the
previous general discussion, we want to focus on the
former, to see under which conditions the event horizon
is within the reach of the Beltrami spacetime, and its
relationship to the Hilbert horizon, located at

ξHh ¼ −
r2

c
lnðr=cÞ right wedge and

ξHh ¼ þ r2

c
lnðr=cÞ left wedge: ð55Þ

Clearly, ξHh → ξEh for c → 0. Let us now investigate the
physics of this limit. For definitiveness, we shall consider
the right wedge for the rest of this section.
In the standard Rindler case, the inertial observer is the

one for which the proper acceleration is zero, i.e.,

14This amounts to introducing Lobachevsky coordinates of
dimension of (length) ~x → r2 ~x and ~y → r2 ~y. Having done
that, though, there is a more straightforward choice than (44)
to have a dimensionless conformal factor multiplying a line
element of the right dimensions of ðlengthÞ2, namely
ds2B ¼ e2u=r½e−2u=rðdt2 − du2Þ − c2dv2�. For the latter choice,
the conformal factor, evaluated at the Hilbert horizon, diverges
for c → 0, φðu ¼ r lnðr=cÞÞ ¼ r=c → ∞. This is as it must be for
a proper event horizon, and it can also be taken as a piece of
evidence of the coincidence of Hilbert and event horizons in the
limit for c → 0. Nonetheless, the metric elements (see the angular
part c2dv2) make no sense in the limit c → 0, no matter whether
one is at the horizon. Thus we prefer the choice (44), along with a
redefinition of the coordinates [t → ðr=cÞt, u → ðr=cÞu, see
later], so that the divergent behavior in the c → 0 limit is passed
on from the metric elements to the range of the coordinates. The
choice (44) gives a conformal factor that, at the horizon, is always
finite, φðu ¼ r lnðr=cÞÞ ¼ 1. No matter the choice, though, the
indication of how close the Hilbert horizon of the Beltrami
spacetime is to the event horizon of a Rindler spacetime is always
given by how small is c=r, as will be clear from the following.
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ξmax ¼ þ∞. Thus, the range of ξ is dictated by the
following two conditions: (i) its minimum corresponds
to the event horizon, and there the acceleration reaches its
maximum; (ii) its maximum corresponds to the inertial
observer (α ¼ 0)

ξ ∈ ½−∞;…; 0;…;þ∞� ⇒ αðξÞ ∈ ½þ∞;…; a;…; 0�;
ð56Þ

where we included the middle range value, important for
us, and wrote the range of αðξÞ so that it corresponds to the
range of ξ. An observer at standard Rindler space coor-
dinate ξ is constantly at a distance

dðξÞ≡ 1=αðξÞ − 1=αmax ¼ 1=αðξÞ; ð57Þ

from the horizon. The inertial observer is infinitely far
away, dðξmax ¼ þ∞Þ ¼ ∞, and dðξEh ≡ ξmin ¼ −∞Þ ¼ 0.
For our spacetime, the ranges in (56), for finite c < r,
become

ξ ∈
�
−
r2

c
lnðr=cÞ;…; 0;…;þ∞

�
⇒ αðξÞ

∈ ½1=r;…; a ¼ c=r2;…; 0�: ð58Þ

If we now consider the mathematical limit c → 0, with
r finite, we see two things. First a → 0; hence it is
ξ ¼ 0 (corresponding to α ¼ a → 0), the coordinate cor-
responding to the inertial observer. Second, the lower
bound of the range, corresponding to the Hilbert horizon,
is −ðr2=cÞ lnðr=cÞ → −∞, and there α ¼ 1=r. So, the
range of ξ gets halved, and the maximal acceleration is
finite and related to the curvature

ξ ∈ ½−∞; 0� ⇒ αðξÞ ∈ ½1=r; 0� when c → 0: ð59Þ

In the limit c → 0, ξHh → ξEh, and an observer with space
coordinate ξ is constantly at a distance

dðξÞ ¼ 1=αðξÞ − 1=αmax ¼ 1=αðξÞ − r ð60Þ

from the horizon. Thus, the inertial observer is infinitely far
away, dðξmax ¼ 0Þ ¼ ∞, while dðξHh ≡ ξmin ¼ −∞Þ ¼ 0.
It is important to notice that, even in the limit c → 0, we

are not changing the location of the Hilbert horizon in terms
of the Lobachevsky coordinate, as this is once and for all
given by ~yHh ≡ ~yðumax ¼ r lnðr=cÞÞ ¼ 1=r. We are chang-
ing its location in terms of the coordinate u.
It is crucial to implement the limit c → 0 physically, i.e.,

to have c small compared to the only physical scale we have
used, that is r, and thus, the crucial parameter is c=r, rather
than c. In a moment we shall identify the physical and
geometrical meaning of c for the graphene membrane, and
we shall fix this length. Thus, we shall have that ξHh →

−∞ ¼ ξEh only approximately. Furthermore, to make c=r
small we have to make r big.
To understand the physical and geometrical role of c for

the Beltrami spacetime, one recalls that RðuÞ ¼ ceu=r;
hence we see that c fixes the origin of the u coordinate

c ¼ Rðu ¼ 0Þ; ð61Þ

and this explains, from the point of view of the geometry of
the pseudosphere, why, when c → 0, the range of u gets
halved: in that limit, the value R ¼ 0 is reached already at
u ¼ 0. On the other side of the range there is r, and

r ¼ Rðumax ¼ r lnðr=cÞÞ: ð62Þ

Thus the pace at which one reaches the end of the surface,
starting from the origin of the Euclidean measurable
coordinate u, is fixed by c: the smaller c, the farther away
is the end of the surface, i.e., the more u steps are necessary
to reach there. In the limit c → 0 the number of steps is
infinite. The most natural choice for c, then, is to link it to
the natural pace of the graphene membrane, which is the
lattice spacing. Thus, we choose

c ¼ l: ð63Þ

There is also another reason, perhaps clearer, to fix c ¼ l,
that comes from the geometry of the hyperbolic pseudo-
sphere. There, c ¼ Rðu ¼ 0Þ always corresponds to the
minimum value of R; see Fig. 4. Hence, one cannot think of
going below R ¼ l for the real membrane. Since, as
shown, in the limit of small c=r the two surfaces (and
the elliptic pseudosphere) become, in a way, the same
surface, and that argument can be imported here too.
This choice of c fits very well our requests of small

curvatures (r > l), necessary for the approach based on the
action (10) to work.
Of course, even the choice c ¼ l is an idealization, and it

must serve only as a guide for the real situation. In fact, our
approximations on the dynamics of the conductivity
electrons of graphene cannot hold down to such small
radii of the pseudosphere. For instance, the distance
between different sides of the membrane will become
too small to ignore out-of-surface interactions, not to
mention the distortions in the lattice structure to make a
section of radius [11] R ¼ l. Nonetheless, as can easily be
read off from Table I, the approximations within which the
Hilbert horizon and the event horizon coincide are so good
that even a much larger c would not change our con-
clusions. That is why we prefer to present the values for the
choice c ¼ l that can easily be adapted to a realistic
engineering of the graphene membrane, rather than the
present values for a choice c ¼ δl, with δ a number that, at
the present level of experimental and theoretical knowledge
on the manipulation of graphene in order to induce different
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shapes and patterns, is simply a number that one has
to guess.
Since the event horizon of a Rindler spacetime is at

1=ξEh ¼ 0, a way to quantify how good are our approx-
imations for the Beltrami spacetime is to see how close to
zero, in units of l, is 1=ξHh, which is the dimensionless
parameter ζB ≡ −ðl=rÞ2= lnðr=lÞ. Some values are shown
in Table I.
Notice that the bigger r, the closer is the horizon. This

could have been guessed immediately from ~yHh ¼ 1=r.
Nonetheless, we have to measure in terms of the u
coordinate, so even a finite and not too small 1=r can still
give a very good approximation. For instance, already at
r ¼ 20Å, that gives a large value 0.1 for l=r; the error in
identifying R ¼ r as the Rindler event horizon is of a more
reasonable four parts per 1000. On the other hand, at a more
realistic value of r ¼ 1 μm, that error becomes a reassuring
five parts per one billion. For experimental detections of
Hawking phenomena associated with the existence of this
horizon, we need to compromise between a large enough r
for a good horizon and a small enough r for a detectable
Hawking temperature, T ∼ 1=r. As already seen in [9], and
will be further addressed later in this paper, r’s in the range
of 1 μm–1 mm are good for the latter purpose and are
shown in Table I to be good for the former purpose too.

VI. THE QUANTUM VACUA
AND THE MEASUREMENTS

Let us now come to the key issue of which quantum
vacuum we need to refer to when computing our Green
functions. For this section only, with c we indicate the
speed of light in vacuum.
The first thing to consider is that this is a very peculiar

situation, with two spacetimes of different natures that
come into contact. On the one hand, we have the spacetime
of the laboratory, which is ð3þ 1Þ dimensional and non-
relativistic in the sense of c as the limiting speed

ds2lab ¼ c2dt2 − dx2 − dy2 − dz2; ð64Þ

so, here the 0th component of the position vector is
X0 ≡ ct. Nonrelativistic means that the transformations
associated with this line element are “small” SO(3,1)
transformations,15 i.e., for instance, for a boost along the
first axis

Λfull ¼

0
BBB@

γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1

1
CCCA ∈ SOð3; 1Þc

⇒ Λsmall ≃

0
BBB@

1 −β 0 0

−β 1 0 0

0 0 1 0

0 0 0 1

1
CCCA ∈ SOð3; 1Þsmall

c ;

ð65Þ

where β≡ v=c, and γ ≡ ð1 − β2Þ−1=2, so that, at the Oðβ2Þ
approximation, the line element (64) is invariant under
Λsmall, and one sees that

ct0 ¼ ct − βx⇔t0 ¼ tþOðβ2Þ ≃ t; ð66Þ

x0 ¼ x − βct ¼ x − vt; ð67Þ

the transformations reduce to Galilei’s (far right side);
hence time is untouched. The notation SOð3; 1Þc is just to
remind one that the elements of the group have c, but
group-wise the object is the standard SO(3,1). Similar
considerations hold for SOð3; 1Þsmall

c .

We call this spacetime Rð3;1Þ
c small, where “small” refers to

the associated nonrelativistic transformations. This is an
abuse of notation, as the spacetime is, once and for all,

Rð3;1Þ
c , but this way we emphasize the fact that, at small

velocities compared to c, time decouples entirely from
space (t0 ¼ t), and the very same concept of spacetime has
no meaning. Thus a nonrelativistic spacetime is not a
Euclidean spacetime [that would amount to have SO(4) as
an invariance group, and hence a like-sign signature, e.g.,
ðþ;þ;þ;þÞ], but a spacetime for which the light cone is
so far away from the worldlines that the effects of linking
together space and time are negligible, and they are
effectively separated entities. The ψ electrons of graphene
that move at the Fermi speed vF ∼ c=300, when considered
from the laboratory frame, fit this nonrelativistic scenario
very well, since for them Oðβ2Þ ∼ 10−8.
On the other hand, we have the effective spacetime of

planar graphene, which is ð2þ 1Þ dimensional and rela-
tivistic in the sense of vF, Fermi velocity, as limiting speed

TABLE I. Quantification of how good it is to approximate the
Hilbert horizon of the Beltrami spacetime, R ¼ r, with a Rindler
event horizon. The closer ζB ≡ −ðl=rÞ2= lnðr=lÞ is to zero, the
better is the approximation. In the table we indicate three values
of r, the corresponding values of ζB, and we also explicitly
indicate the corresponding values of l=r (recall that l ≃ 2Å).
This latter parameter is also a measure of how close to zero is
~yHh ¼ 1=r, in units of the lattice spacing l: 1=ðr=lÞ. The values
are all approximate.

r ζB l=r

20Å −4 × 10−3 0.1
1 μm −5 × 10−9 2 × 10−4

1 mm −3 × 10−15 2 × 10−7

15We do not consider here the translations, an issue that for
graphene deserves further study [46].

ALFREDO IORIO AND GAETANO LAMBIASE PHYSICAL REVIEW D 90, 025006 (2014)

025006-16



ds2graphene ¼ v2Fdt
2 − dx2 − dy2; ð68Þ

hence, here the 0th component of the position vector is
x0 ≡ vFt. We choose the planar graphene case, as that is the
important case for our considerations. This line element is
invariant under SOð2; 1ÞvF , with the same notation as
before; hence, for the boost along x, the matrix is

Λfull ¼

0
B@

γ −βγ 0

−βγ γ 0

0 0 1

1
CA ∈ SOð2; 1ÞvF ; ð69Þ

but now β≡ v=vF. We call this spacetime Rð2;1Þ
vF , with the

notation explained earlier.
Thus, the same time label t enters two dramatically

different spacetimes

X0 ≡ ct ∈ Rð3;1Þ
c small and x0 ≡ vFt ∈ Rð2;1Þ

vF : ð70Þ
From the point of view of the ψ electrons of graphene, t
enters the variable x0, which is the time part of a proper
spacetime distance. The same variable t, for the laboratory
observer, enters a different variable X0 and, being part of a
line element that transforms under Galilei transformations,
does not contribute to a spacetime but only to a time
distance, as there space and time are decoupled.
This shows that the inner time variable x0, although

numerically given by vF times the same parameter of the
outside clocks, is intrinsically different from the external
time variable X0, from a relativistic point of view.
Nonetheless, we have to account for the numerous exper-
imental observations of the vF-relativistic effects of the ψ
electrons of graphene. Within the picture illustrated above,
the simplest way is to describe the external observer/lab

spacetime as Rð2;1Þ
vF , and this must hold no matter which

spacetime is effectively reached by the ψ electrons of
graphene, including curved spacetimes. Notice that, when
the spacetime curvature effects occur on graphene (even
only of a spatial kind), it makes no sense to insist on
identifying the two spacetimes, the inner and the outer. This
would imply a curved laboratory spacetime. Evidently, the
only issue is with the time variable, as one can easily
envisage an observer constrained to be on a two-dimensional
spatial slice. The previous discussion shows that indeed
the 0th components on the two sides (graphene and lab)
have a different interpretation; hence, when the 0th compo-
nent on the graphene side can be seen, e.g., as related to a
Rindler time (see the previous section and [9]), the 0th
component on the laboratory is, once and for all, a ð2þ 1Þ-
dimensional vF-Minkowski time variable.
The role of the third spatial dimension is not completely

gone in this picture, so we do reproduce some physics of
the extra dimension. Indeed, in all the previous discussions
about the embedding, we have considered Rð3;1Þ

vF . In fact,
the role of this larger space is seen only in the effects of

embedding the surfaces in spatial R3 (Hilbert horizons, dS
vs AdS, etc.). Once the surface is obtained, and the
peculiarities of the embedding are taken into account in
the resultant ð2þ 1Þ-dimensional curved spacetime, the

external observer/lab spacetime is modeled as Rð2;1Þ
vF .

We could use Rð3;1Þ
c , although this choice is less natural

for nonrelativistic (in the sense of c) electrons. This choice
would evoke quantum gravity scenarios, where indeed
universes with different constants of nature are contem-
plated. Here we would have two such universes, with
different “speeds of light,” that get in contact.16 We shall
not proceed this way here and shall use instead the
operationally valid Ansatz illustrated above.
It is perhaps worth clarifying that this procedure should

in no way be taken seriously from a general point of view.
For a generic phenomenon, e.g., the dynamics of a classic
nonrelativistic marble rolling on the graphene sheet, the
graphene surface is just a surface in a nonrelativistic
spacetime. What matters to us is that the procedure works
well for the case in point of the ψ electrons of our concern.
It is only for them that the spacetime of graphene is vF
relativistic, and not for the classic marble. Furthermore, the
ψ electrons here, within the limits of the model illustrated
in Sec. II, are the quanta of a quantum field. The procedure
then is satisfactory implemented when we prescribe that
the structure of the n-point functions is always of the
following kind:

Sanyðq1;…; qnÞ≡ h0Mjψðq1Þ � � � ψ̄ðqnÞj0Mi; ð71Þ
where ψðqÞ, with qμ ¼ ðvFt; u; vÞ, is the Dirac quantum
field associated with any graphene surface, while j0Mi is
demanded to be always the quantum vacuum for the

Dirac field of the flat spacetime, Rð2;1Þ
vF , that mimics the

laboratory frame.
Another issue that is possible to face with the choice (71)

is that of the inequivalent quantization schemes for fields in
the presence of curvature. When we use the continuum field
approximation to describe the dynamics of the electrons of
the π orbitals of graphene, we not only need to demand the
wavelengths to be bigger than the lattice length, λ > 2πl,
we also (and, perhaps, most importantly) need to have the
conditions for the existence of unitarily inequivalent vacua,
the most distinctive feature of QFT (on the general issue
see, e.g., [19,20], and, for an application to supersymmetry
breaking, see [57]). Only then can we be confident to have
reobtained the necessary conditions for typical QFT phe-
nomena to take place on a “simulating device,” as we
propose graphene to be.
The matter deserves a thorough investigation [24];

nonetheless, for the moment, we can take advantage of

16Quantum gravity scenarios also might enter due to the nature
of these Dirac fields, generated by a more elementary (and
discrete) structure of the spacetime itself.
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the results of [25]. There it is proved that, when the
singularity associated with a conical defect is properly
taken into account, through the self-adjoint extension of the
Hamiltonian operator, inequivalent quantization schemes
naturally emerge in graphene. This inequivalence is of the
same topological nature as the one arising in the quantiza-
tion of a particle constrained to move on a circle [26]. Thus,
although the system in point has a finite number of degrees
of freedom, the Stone–von Neumann theorem of quantum
mechanics is violated much in the same way as for a system
with an infinite number of degrees of freedom [58]. We
shall not make direct use of those results here, but our logic,
in this respect, is as follows.
In this paper, we are interested in reproducing the

conditions for a standard QFT in a curved spacetime
description of the electronic properties of graphene. As
clarified before, this means that we shall focus on the
effects of the intrinsic curvature, so that the action to
consider can be taken to be the standard action (10). For the
hexagonal lattice of graphene, intrinsic curvature means
disclination defects, five-folded for positive curvature and
seven-folded for negative curvature. Those are topological
defects, carrying a singularity of a similar nature as the one
associated with the conical defects [see, e.g., [25], and our
discussion around Eq. (6)]. Hence, intrinsic curvature here
is tightly linked to the unitarily inequivalent representations
necessary for a proper QFT in curved spacetime.With this in
mind, we take for granted here that quantum vacua asso-
ciated with the curved graphene spacetime in point, e.g., the
Beltrami spacetime, are unitarily inequivalent to the quan-
tum vacuum associated with the flat graphene spacetime of
interest. Furthermore, we assume that the Rindler vacuum
(emerging in the way illustrated in the previous section,
when negative curvature is present), and the Minkowski
vacuum are too. This last assumption relies on the fact that
this fictitious Rindler spacetime emerges also from the
curvature of the graphene sheet, and hence the topological
inequivalence mentioned above applies here too.
The assumptions described in this section are summa-

rized in Fig. 7 for the case of the Beltrami spacetime, and
for a STM measurement. The STM closely follows the
profile of a Beltrami pseudosphere; hence the spatial
coordinates are the same for both, the ψ electrons on the
surface and the tip of the STM. The time label, t, is also
the same for both, but it enters a “Beltrami time” (related to
the Rindler time; see previous section) when considered
from the ψ-electron point of view, and it enters a
Minkowski time when considered from the laboratory
point of view. This hybrid situation is taken care of by
the choice of the vacuum. The “curved” electron, ψB (the
wavy line), is supposed to tunnel into the measuring device
and is indicated in the zoomed part of the figure (the circle
in the middle). The final stage is indicated at the far right,
Fig. 7(c). There the “ψ description” ceases to be valid, and
we are left with standard electrons. The core of the

assumptions is in Fig. 7(b), and, as explained, it consists
of modeling the measuring process as an hybrid (i) of an
operation happening in the graphene curved spacetime
(same qμ for graphene and for the device), and (ii) of setting

a Minkowski vacuum j0iM (relative to Rð2;1Þ
vF ) as the

vacuum of reference during the measuring process. The
latter vacuum is assumed to be nonequivalent to j0iB (and
to j0iR).

VII. THE HAWKING EFFECT ON GRAPHENE

As shown in Sec. 5, we can reproduce, on suitably
curved graphene sheets, conditions for the existence of
event horizons. These horizons coincide, within experi-
mental limits, with the “end of the world” represented by
the Hilbert horizon. The appearance of the cosmological
type of horizon, and even the fact that a BTZ black-hole
horizon might be in sight, together with the fact that the
physical end of (any) surface (always) comes with a
potential barrier, indicates that, when the QFT description
of action (10) and of the quantum vacuum of the previous
section holds, the mechanisms of pair creation and quantum
tunneling through the horizon should take place here too,
giving rise to a Hawking type of effects, interpreted in the
spirit of Parikh and Wilczek [59]. In this approach, the
other side of the horizon (the “out” region) is beyond where
the surface has ended. The entanglement, necessary for the
effect to take place, is between the particle that has left the

FIG. 7 (color online). A graphene quasiparticle (wavy line)
enters the measuring device [the tip of a scanning tunneling
microscope (STM) in the picture], from the Beltrami spacetime
(this is obtained by properly setting the polarity of the bias
voltage of the STM). This quasiparticle is described by a (pseudo)
relativistic, massless, Dirac field, ψB, living in a ð2þ 1Þ-dimen-
sional curved spacetime (a). Provided the tip closely follows the
surface, geometrically the device has the same coordinates qμ as
the Beltrami spacetime, but the quantum vacuum of reference for
it is the inertial (flat) ð2þ 1Þ-dimensional vacuum j0Mi for the
Dirac field ψ with action (4) (b). This model for the measuring
process takes into account that what is moving along worldlines
of a curved spacetime, from the point of view of the electrons on
graphene, is, at the same time, part of an inertial frame, from the
point of view of the laboratory.
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graphene membrane and the hole/antiparticle that it has left
behind, and vice versa.
Although we evoked also other types of horizons, the

cleanest horizon we have found is of the Rindler type (see
Sec. 5 A), and hence we shall focus on that one. The
entanglement now is between particles (antiparticles) of
one wedge and the corresponding antiparticles (particles) of
the other wedge. The above picture holds all the way. One
needs to consider that, after a long enough Rindler time η
(future or past null infinity, for particles and antiparticles,
respectively) the particles/antiparticles reach the Hilbert/
event horizon (see discussion about the geodesics of
Beltrami spacetime in Sec. 5), and, through quantum
tunneling, leave the surface, giving rise to the same
mechanism described above. Recall that, in the mathemati-
cal limit c → 0, the future/past null infinity is reached
always, η ¼ r=ct. For the physical case c ¼ l, the lab time
t it takes to reach the horizon is still short (see [9]), but the
best interpretation of this fact is to say, yet from another
perspective, that the effect takes place for particles and
antiparticles of very small energy, E ∼ 1=η, i.e., of very
large wavelength, namely, large enough to feel the curva-
ture effects λ > r.
In what follows, we shall focus on the two point Green

function for the Beltrami spacetime that is related to the
important measurable quantity LDOS. We shall refine the
results on the Hawking effect obtained in [9] by including
the role of the c parameter in the analysis and by
considering the effects on the Green function of having
a boundary that takes into account the reduced range of ξ
with respect to the standard Rindler case. This latter
instance is a manifestation, in the ideal case, of the
peculiarities of the Rindler spacetime Weyl related to the
Beltrami spacetime (see Sec. 5 A), while, in the practical
case, it also faces the effects of the necessary truncation of
the Beltrami pseudosphere in laboratory realizations.
We shall then conclude this section by briefly consid-

ering the case of a generic surface of constant negative
Gaussian curvature.

A. The Hawking-Unruh effect reproduced on the
Beltrami pseudosphere

We shall focus on the one particle Green function that
contains all the information on the single particle properties
of the system such as the LDOS, lifetime of the quasi-
particles and thermodynamic properties (specific heat). For
the reasons illustrated above (see the previous section), for
us this function is defined as

SðBÞðq1; q2Þ≡ h0Mjψ ðBÞðq1Þψ̄ ðBÞðq2Þj0Mi; ð72Þ

where with B we indicate the reference to the Beltrami
spacetime, and qμ ¼ ðt; u; vÞ. That is the positive frequency
Wightman function, in the language of QFT in curved
spacetimes [21–23]. To obtain this function, as announced

and prepared all along this paper, we use local Weyl
symmetry of the action (10), as this case is a perfect match
for its implementation [8]

gðBÞμν ¼ ϕ2ðuÞgðRÞμν ; ψ ðBÞ ¼ ϕ−1ðuÞψ ðRÞ; ð73Þ

with (see Sec. 5 A) ϕðuÞ ¼ l=reu=r and the Rindler type of
metric

gðRÞμν ðqÞ ¼ diag

�
r2

l2
e−2u=r;−

r2

l2
e−2u=r;−r2

�
ð74Þ

that was studied in detail earlier. The point we want to make
here is that local Weyl symmetry allows us to translate the
problem of computing (72) to the much easier task of
computing

SðRÞðq1; q2Þ≡ h0Mjψ ðRÞðq1Þψ̄ ðRÞðq2Þj0Mi; ð75Þ

because

SðBÞðq1; q2Þ ¼ ϕ−1ðq1Þϕ−1ðq2ÞSðRÞðq1; q2Þ: ð76Þ

Thus, our goal now is to compute (75).
First let us recall once more the peculiarity of the

Rindler-like spacetime (74). The time coordinate, in both
wedges, ranges as usual, η≡ ðr=lÞt ∈ ½−∞;þ∞�, while
the relevant space coordinate, taken for curvatures that give
a good ξHh ≃ ξEh (see Table I), ranges as follows:

ξ≡ −
r
l
u ∈ ½∼ −∞; 0� and ξ≡ r

l
u ∈ ½0;∼þ∞�;

ð77Þ

in the right wedge and in the left wedge, respectively. Of
course, everywhere, v∈ ½0;2π�. In both cases, αðξÞ¼ae−aξ,
but, in the right wedge, a≡ l=r2 > 0, whereas in the left
wedge, a ¼ −l=r2 < 0. The proper time is

τ ¼ eaξη ¼ r
l
e−u=rt: ð78Þ

The ranges of ξ in (77) indicate that we are in a case
where a boundary is present at ξ ¼ 0, and when
computing the Green function (75) we need to take into
account that the degrees of freedom of the quantum field
ψ , beyond that value of ξ, are absent. It is worth recalling
that ξ ¼ 0 ¼ u corresponds here to the smallest possible
value of the radius of the pseudosphere (see Fig. 3) that
we set as Rð0Þ ¼ l.
As explained in Sec. 5 A, at ξ ¼ 0, the proper accel-

eration is well approximated with α ≃ 0; i.e., it corresponds
to the inertial observer. Now we require that the measuring
procedure on the Beltrami spacetime reproduces, on the
associated Rindler spacetime just recalled, the conditions
for a worldline of constant acceleration. That is simply
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ξ ¼ const; ð79Þ

which means to keep the tip of the STM at a fixed value of
the meridian coordinate u, as explained also in Fig. 7 and
around there. So, at any given measurement, the distance to
which one has to compare how far is the boundary b is
dðξÞ ¼ α−1ðξÞ − r; see (60). Thus b, measured in units of
dðξÞ, is

bð0Þ ≃ 1 < bðξÞ < þ∞ ≃ bðξEhÞ: ð80Þ

We expect that the effects of the boundary are negligible
(the boundary is too far away) when the measurements are
taken near the Hilbert/event horizon ξEh and when b is
located at ξ ¼ 0, which is the ideal case of a nontruncated
surface. On the other hand, the boundary term also takes
into account the practical issue that the Beltrami surface,
when realized with the monolayer graphene, might be
truncated before ξ ¼ 0. It must be clear that all the
computations are done for the worldline of constant
acceleration, so that the conditions for the Unruh effect
on the Rindler-like spacetime are fulfilled. Hence ξ is going
to be constant all over.
With this in mind, the Green function SðRÞ that we

have to compute needs be evaluated at the same point
in space and at two different times, SðRÞðt;q;qÞ≡
h0Mjψ ðRÞðt1 ¼ 0;qÞψ̄ ðRÞðt2 ¼ t;qÞj0Mi, where the depend-
ence on t2 − t1 ≡ t is a result of the stationarity of the
worldline in point, and we have set the initial time to zero.
Eventually, what we have to consider is

SðRÞðτ;q;qÞ; ð81Þ

where the proper time is related to t through the relation
(78), and, for the Green function to be a proper positive
frequency Wightman function (see [21,22]), we need to
evaluate it at τ → τ − iε, with ε an infinitesimal positive
parameter. This also takes into account the nonzero size of
the detector.17

The power spectrum one obtains from SðRÞ is [21,22]

FðRÞðω;qÞ≡ 1

2
Tr

�
γ0

Z þ∞

−∞
dτe−iωτSðRÞðτ;q;qÞ

�
; ð82Þ

and, for graphene, besides inessential constants, it coin-
cides with the definition of the electronic LDOS [37,61],
ρðRÞðω;qÞ≡ 2

πF
ðRÞðω;qÞ. This is not yet the physical

LDOS, as the latter is only obtained once we move to
the Beltrami spacetime. Nonetheless, because of Weyl
symmetry, the latter step is very simple since the Weyl

factor in (76) is time independent, and it goes through the
Fourier transform, i.e., FðBÞðω;qÞ ¼ ϕ−2ðqÞFðRÞðω;qÞ,
with obvious notation; hence the physical LDOS is

ρðBÞðω;qÞ ¼ ϕ−2ðqÞρðRÞðω;qÞ: ð83Þ

Thus, the only necessary computation is that of FðRÞ in (82).
A direct computation of FðRÞ might be an interesting

calculation to perform in the future, because it might help in
clarifying the physical structure of the vacuum condensate.
Nonetheless, having carefully identified how to translate all
the peculiarities of this system into the proper QFT
counterparts, we have recast such a computation to that
of a very well-known case. We shall, then, resort to the
exact results (zero mass) obtained, e.g., in [22]. It should be
clear that, if one uses the identical overall conditions we
have (i.e., the Minkowski vacuum and the spacetime of
Sec. VA), the direct computation is bound to give the same
results. Hence, since our main interest here is not to probe
into the vacuum structure, but rather to produce a testable
prediction of the measurable LDOS, such direct calculation
is redundant, and we shall not perform it here.
Let us recall the main steps. First one uses the fact that, in

general, and for any spacetime dimension n, the Dirac (Sn)
and scalar (Gn) Green functions are related as Sn ¼ i∂Gn
(here m ¼ 0). With our choice of the worldline (i.e., for us,
of the measuring procedure) we then have the exact
expression

SðRÞn ðτÞ ¼ γ0∂zG
ðRÞ
n ðτÞ ¼ γ0λnG

ðRÞ
nþ1ðτÞ; ð84Þ

where z ¼ εþ 2iα−1 sinhðατ=2Þ and λn ¼ 2
ffiffiffi
π

p
×

Γðn=2Þ=Γððn − 1Þ=2Þ; see [22]. Thus, we see here that
to compute our three-dimensional Dirac Green functions
we need a four-dimensional scalar field. By taking in (84)
n ¼ 3, the Fourier transform, and the trace, as in (82), one
easily obtains

FðRÞðωÞ≡ FðRÞ
3 ðωÞ ¼ λ3B

ðRÞ
4 ðωÞ; ð85Þ

where BðRÞ
4 ðωÞ is the power spectrum of the four-

dimensional scalar field. Thus what is left to compute is

BðRÞ
4 ðωÞ≡ BðRÞ

thermalðωÞ þ BðRÞ
boundaryðωÞ; ð86Þ

which is made of two parts, one showing thermal features
and one due to the presence of the boundary in b, and this
splits into two all relevant quantities, FðRÞ, FðBÞ, ρðRÞ, and
the most important ρðBÞ.
The expression for BðRÞ

thermalðωÞ has been obtained in many
places. Here we use the notation of [22] that gives (see also

[9]) BðRÞ
thermalðωÞ ¼ ðω=2πÞ=ðe2πω=α − 1Þ. Using this in (85),

one immediately obtains

17For the STM experiment we have in mind, ε is the size, in
“natural units,” of the STM needle or tip. For a tungsten needle
ε ∼ 0.25 mm × v−1F ∼ 10−10 s, while for a typical tip ε ∼ 10Å ×
v−1F ∼ 10−15 s s (see, e.g., [60]). Those values of ε are indeed
infinitesimal.
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FðRÞ
thermalðω;qÞ ¼

ω=2

e2πω=α − 1
; ð87Þ

where we used λ3 ¼ π, an Unruh type of temperature
appears [62], and α is positive [22] [see also discussion
after (92) below],

T ≡ ℏvF
kB

α

2π
¼ ℏvF

kB

l
2πr2

eu=r; ð88Þ

with u ∈ ½0; r lnðr=lÞ�, and where the proper dimensional
units were reintroduced and a Tolman factor [52] eu=r ¼
e−aξ appears, as required by local measurements. The
expression for the thermal part of the physical LDOS is
then immediate [recall that ϕðuÞ ¼ l=r expðu=rÞ],

ρðBÞthermalðE; u; rÞ

¼ 4

π

1

ðℏvFÞ2
r2

l2
e−2u=r

E
exp ½E=ðkBT ðu; rÞÞ� − 1

; ð89Þ

where we included the g ¼ 4 degeneracy and the proper
dimensions, e.g., ω≡ ω=vF, E≡ ℏω. This is the LDOS
when boundary effects are absent.
The form of (89) is the same as the corresponding one

obtained in [9], as can be seen from Fig. 8, where we

plot ρðBÞthermal vs E, within the range of validity of our
model, jEj < Er, for three different values of u. There
are, though, some differences of interpretation, with
respect to [9], due to c ¼ l. The largest temperature

T is still reached at the Hilbert horizon, and the value is
the same here and there

T ðr lnðr=lÞÞ ¼ ℏvF
kB

1

2πr
; ð90Þ

but now the Hilbert and event horizons coincide. Notice
also that in (89) the factor r2=l2 ∼þ∞ is fully balanced
by the exponential factor next to it, e−2u=r, only on the
horizon u ¼ r lnðr=lÞ,

ðr2=l2Þe−2u=rju¼r lnðr=lÞ ¼ 1; ð91Þ

as could have been guessed by the fact that ϕjhorizon ¼ 1;
see footnote 14. These facts clarify that what we have
learned here is that the interesting phenomena happen
near the horizon. More indications of this come from the
considerations of the effects of the boundary, which we
shall face next.
A complete calculation of the effects of the boundary

would need the full knowledge of how the surface truly
ends on the thin side, and of how that can be described in
terms of our Rindler spacetime. There is an entire literature
on the effects of various shapes and locations of boundaries
and mirrors on the Unruh effect; see, e.g., [63] and
references therein. Here we shall follow [64], and we shall
consider the case of the static boundary in b. The formula
we shall obtain must not be trusted in all details but will
serve well the scope of showing how the nonthermal
features of the LDOS do not necessarily mean that our
approach, based on QFT in curved spacetime, is not
working. In fact, those nonthermal features can be under-
stood within this model.
The positive frequency Wightman function, for a four-

dimensional scalar field, evaluated along a worldline of
constant acceleration (that is the one obtained by measuring
at a fixed meridian coordinate on the surface), in the
presence of one static boundary, located at a (dimension-
less) distance b, in units of the distance of the point of
measurement from the horizon (see earlier discussion), is
given by [64]

GðRÞ
boundaryðτ; bÞ ¼ −

1

4π2
α2

4

1

½coshðατ − iεÞ − b�2 : ð92Þ

This result, as it stands, is for one boundary in one sector
(wedge) only. To adapt the results of [64] to our case, we
also need to consider another boundary in a symmetric
position, in the other sector (wedge). As explained at the
beginning of this section, our picture here is that the other
wedge is obtained by the existence of antiparticles, for
which the time flows in opposite directions, hence the
meaning of positive and negative frequency swap. Thus
what we have to do is consider both the positive frequency
and the negative frequency Wightman functions, and keep

FIG. 8 (color online). Plots of the thermal LDOS against E,
within the range of validity of our model, jEj < Er ∼ 6.3 μeV.
The curves are for the indicated values of the u coordinate on the
Beltrami surface and for a fixed radius of curvature r ¼ 10 μm.
We also plot the flat LDOS for comparison. This plot is in all
respects an important one, the same as the corresponding plot of
[9]. The only key difference lies in the fact that, due to the role of
c ¼ l, the Hilbert horizon plays a more prominent role. The
indicated temperature is the maximal temperature, reached at the
horizon, where u ¼ r lnðr=lÞ ¼ uHh. The temperatures corre-
sponding to the other curves become increasingly smaller,
according to the expression (88).
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both α and b positive. By doing this, and by using the
general procedure to obtain the LDOS discussed earlier
(see [28] for details), the result one obtains is

ρðBÞboundaryðE; u; rÞ

¼ 2

π

1

ðℏvFÞ2
r2

l2
e−2u=r

jEj
b2 − 1

cos

�
~b

E
ℏvFαðu; rÞ

�
; ð93Þ

where ~b ¼ arcoshb. The behavior of the boundary term is
as expected,

ρðBÞboundary → 0 for b → þ∞ and ρðBÞboundary → �∞

for b → 1: ð94Þ

Indeed, the first limit describes the case of infinite distance,
in units of α−1, between the point u where one measures
and the value of u where the surface ends, which is a
measurement taken near the Hilbert horizon, R ¼ r, and the
thin end of the surface ending at R ¼ l. The second limit
refers to a measurement taken on/near the boundary itself.
There our approximations for the boundary do not hold
fully; nonetheless we can trust that the boundary there will,
of course, dominate. Let us stress again that the boundary
term (93) takes into account the fact that the infinities here
are only approximated. This has two meanings. First, even
in the ideal case of a Beltrami that ends at R ¼ l (and
supposing that our QFT approximations work till there),

the range of u is not really infinite. Second, the real
graphene surface will end before that ideal value of R
anyway. What is important, though, is to see how strong are
the nonthermal corrections over the thermal spectrum. To
see it, let us write the total LDOS for a graphene membrane
shaped as a Beltrami pseudosphere that, in our model,
then reads

ρðBÞðE; u; rÞ ¼ 4

πðℏvFÞ2
r2

l2
e−2u=r

�
E

exp ½ð2πEÞ=ðℏvFαðu; rÞÞ� − 1
þ 1

2

jEj
b2 − 1

cos

�
~bE

ℏvFαðu; rÞ
��

: ð95Þ

In Fig. 9 we plot ρðBÞ vs E, for different values of b, for
a fixed value of u ¼ 0.9r lnð0.9r=lÞ, and for the same
fixed radius of curvature of Fig. 8. For values of b close
to 1, the boundary term dominates, and the thermal
nature is gone. The negative values of ρðBÞðEÞ, in those
cases, need not be taken too seriously, as our approx-
imations do not allow us to trust the formula in all details
too near the extremal values of b ¼ 1. What is important
here is that, for relatively small values of b, the thermal
character is practically untouched. Indeed, compare the
plot for b ¼ 10 in Fig. 9 (in red) with the thermal plot
for the corresponding value of u in Fig. 8 (in red
there, too).
To have a flavor of what these values correspond to in

practice, let us indicate with ū the point of measurement,
and let be ū≡ fuHh, with f < 1. Then, one defines ub as
the value of u such that the Rindler distance d [see (60)] of
the boundary from the horizon is b times the Rindler
distance d from the horizon of ū. With these,
ub ¼ −r ln ½lr ðbððl=rÞf−1 − 1Þ þ 1Þ�, which for f ¼ 0.9
and r ¼ 10 μm, as in Fig. 9 gives for b ¼ 10 a

ub ≃ 81 μm. This means that of the whole surface, whose
u length, r lnðr=lÞ, is about 115 μm, only about 30% is
necessary. This is a small portion of the Beltrami surface;
nonetheless, the spectrum is very well approximated by a
thermal spectrum. The closer to the horizon we measure,
the less surface is necessary, and the more reliable are our
approximations. For instance, when f ¼ 0.99, for b ¼ 10,
even just 4% of the surface is enough. On the other hand,
when f ¼ 0.1, to reach b ¼ 10 we need to continue the
surface beyond u ¼ 0, corresponding to R ¼ l, because ub
becomes negative. This indicates that our formula works
well for measurements taken near the horizon and that
thermal effects should be easy to obtain there.
As a side note, let us add that, in the formula (95), we

emphasized the role of α ¼ ðl=r2Þ expðu=rÞ, which, boun-
dary effects permitting, is related to the temperature, as in
(88), but we could have, as well, focused on entirely
geometrical quantities. In this latter case we would have
noticed that the constant vF always appears next to a factor
expðu=rÞ; hence we have an effective Fermi velocity that is
space dependent

FIG. 9 (color online). Plots of the total LDOS against E, within
the range of validity of our model, jEj < Er ∼ 6.3 μeV. The
curves are for the indicated three values of b, for a fixed value of
u ¼ 0.9r lnð0.9r=lÞ, and for the same fixed radius of curvature of
Fig. 8 r ¼ 10 μm. We also plot the flat LDOS. The plot for b ¼
10 here (in red) should be compared with the thermal plot for the
corresponding value of u in Fig. 8 (in red there, too).

ALFREDO IORIO AND GAETANO LAMBIASE PHYSICAL REVIEW D 90, 025006 (2014)

025006-22



vFðuÞ≡ vFeu=r with u ∈ ½0; r lnðr=lÞ�; ð96Þ

in agreement with what was announced in Sec. 2 (see
footnote 4) and with the literature [37]. Of course, the
effects of the lattice, like anisotropy, vijF (see [47]), do not
appear here, due to our focusing on the very large wave-
lengths/very small energies. Nonetheless, we do not know
how seriously we can take (96) as, for the values of r in
which we are interested, vFðuÞ soon becomes greater than
the speed of light.

B. The Hawking effect for a generic surface
of constant negative K

Can we have a Hawking effect also on a generic surface
Σ of constant negative K, besides the Beltrami? And, can
the results of the previous section be used? The answers
are, in general, affirmative: If on Σ the conditions for an
event horizon are realized, then a Hawking effect, of the
kind described at the beginning of this section, takes place
and manifests itself, e.g., through a LDOS whose structure
is the same as the LDOS (95) of the Beltrami surface. In
practice, though, it might be quite complicated to have
control of the procedure, especially of the all important
occurrence of the event horizon.
Let us now show why this is so, what the issues are, as

well as a possible strategy to see whether the effect is there.
The line element of the spacetime is (32)

ds2 ¼ r2

~y2

�
~y2

r2
dt2 − d~y2 − d~x2

�
;

where the abstract Lobachevsky coordinates need be
specified for Σ: ~xΣðuΣ; vΣÞ and ~yΣðuΣ; vΣÞ, including the
ranges of uΣ and vΣ. Now, as recalled earlier (see Sec. 4.2
and [13]) any Σ is locally reducible to one of the three
pseudospheres; i.e., its line element can be reduced to the
line element of one of the three pseudospheres. In this paper
we have shown that, in the limit for c → 0, the three
pseudospheres all become the Beltrami18 (see Sec. 4.2)
with some global differences that can become important for
the existence of a well defined Hilbert horizon on Σ. At any
rate, locally, by considering Beltrami in the c → 0 limit, we
are dealing also with Σ in the same limit. Indeed, after the
reduction of the line element of Σ, c is in dl2ΣðcÞ too; hence
we can obtain the shape of Σ in that limit by knowing how
the ranges of uΣðcÞ and vΣðcÞ are affected.

When, on Σ, a Hilbert horizon is well defined
by the coordinates ðuHh

Σ ; vHh
Σ Þ and when, for c → 0,

~yΣðuHh
Σ ; vHh

Σ Þ ≃ 0 (see discussion in Sec. 5), it is within
physically reasonable approximations, then the event hori-
zon is present on Σ, and it coincides, within the same
approximations, with its Hilbert horizon uEhΣ ≃ uHh

Σ and
vEhΣ ≃ vHh

Σ . What we cannot know a priori is whether
indeed there is a good Hilbert horizon on Σ. The embedding
in R3 that gives Σ can be so intricate that the Hilbert
horizon might be a meaningless concept there, even though
it might be mapped onto meaningful ones, R ¼ r, or
R ¼ r cosϑ, or R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
, and then, eventually, to

the R ¼ r of Beltrami.
Summarizing, if we know that a Hilbert horizon exists on

Σ, and we know the mapping from Σ to “its pseudosphere”

uΣðup; vpÞ and uΣðup; vpÞ; ð97Þ

where p stands for any one of the three pseudospheres, we
know how c enters the line element and the ranges of uΣ
and vΣ, so that we can perform the limit c → 0 and we shall
know the resulting shape of Σ and the location of its Hilbert
horizon, which will coincide with an event horizon.
Furthermore, in that limit, the pseudosphere of reference
has become the Beltrami; hence the formula (95) can be
used

ρðΣÞðE; uΣ; vΣÞ ≃ ρðBÞðE; uBðuΣ; vΣÞÞ; ð98Þ

where uBðuΣ; vΣÞ is obtained by inverting (97), after the
limit c → 0 has been performed. But there is a crucial
warning for the correct use of formula (98): The formula is
valid only locally. That is why we use “≃.” Because of the
local nature of the geometric reduction of Σ to the pseudo-
sphere, the mapping (97) might be multivalued (hence not a
true map). That means that, if we insist in using the formula
for a closed path on Σ, the formula might give different
values for the same point at each full turn, an instance that
has no physical meaning. Hence, in general, we can only
use (98) in a small neighbor for the given point of
measurement ðuΣ; vΣÞ. Recall that we have encountered
already problems of multivaluedness (see Sec. 4.2), due to
the choice of coordinates we have constrained ourselves to
use. That problem, and this too, in principle might be
solved by a clever choice of new coordinates [see, e.g., (39)
and (40)], but then one needs to explain the physics of their
realization in the laboratory.
Another issue with the use of (98) is more practical.

Because of the nature of the mapping, it might happen that
measuring at a given point, ðu1Σ; v1ΣÞ, one sees thermal
effects, while measuring at a close point, ðu2Σ; v2ΣÞ, the
thermal effects are gone. Indeed, close points on Σ might
correspond to far points on Beltrami, and hence the effects
of the boundary term might unexpectedly play the role of
masking the Hawking effect that is, in fact, present.

18Notice that, since we are always referring to the Beltrami
spacetime, the type of horizon we are considering is of the
Rindler type. One might as well use, say, the elliptic pseudo-
sphere as a reference; hence the horizon would be of the
cosmological kind. Although interesting, this case is less appeal-
ing for our purposes as the spacetimes would be Weyl related to
nonflat spacetimes, de Sitter; hence the formula (95) would not be
of direct use.
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VIII. CONCLUSIONS

We have put on the table the fundamental issues arising
when realizing with curved graphene a QFT in curved
spacetime, have found solutions to some of these issues,
have pointed to the open problems, and have consequently
produced predictions of measurable Hawking-Unruh
effects. The whole construction is behind the formula
(95) for the LDOS that is valid for a (truncated, hence
realistic) Beltrami pseudosphere. Of course, a real graphene
system may be subject to the effect of the substrate, or of
surface polaritons and plasmons, that may affect the signal
for this Hawking-Unruh effect. Part of these unwanted
effects can be removed either by using inert substrates or by
performing idealized computer simulations where the
wanted shape is realized.
The use of Weyl symmetry, of Lobchevsky geometry, of

known correspondences of the differential geometry of
surfaces, and of our own results makes us then conclude
that the Beltrami case contains crucial information on the
general case. Hence, although the matter is only sketched
here, we can indicate a prediction for the general case,
which is the expression (98) for the LDOS.
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APPENDIX A: THE COSMOLOGICAL-LIKE
HORIZON OF BELTRAMI SPACETIME
FROM THE ELLIPTIC PSEUDOSPHERE

(DE SITTER) SPACETIME

In this Appendix and in the next one, we should evoke
two spacetimes, de Sitter, which is important for cosmol-
ogy, and BTZ, which is a black-hole spacetime, respec-
tively. Our main scope is to illustrate how the same Hilbert
horizon of the Beltrami spacetime, besides being Weyl
related to the Rindler-like event horizon, is also Weyl
related to the event horizon of those two spacetimes. Thus,
although we shall establish links between important physi-
cal quantities on both sides (the de Sitter/BTZ side and the

graphene side), we shall present here only a kinematical
starting point for a much deserved study that probes full
power into those analogies.
De Sitter (dS) spacetime, in ð2þ 1Þ dimensions, can be

described by the following line element:

ds2dS3 ¼ ð1 −R2=r2Þdt2 − ð1 −R2=r2Þ−1dR2 −R2dv2;

ðA1Þ
where t and v are the time and angular variables, respec-
tively, andR is the radial coordinate. The positive quantity
r is related to the cosmological constant through
Λ ¼ 1=r2 > 0; hence, through the relation Ricci ¼ 6Λ,
valid in ð2þ 1Þ dimensions, the Ricci scalar curvature is
þ6=r2. Clearly, this spacetime has an event horizon at
REh ¼ r. After the discovery of the positive (but tiny) value
of the cosmological constant, this spacetime became of
great importance for nowadays cosmology. Its horizon is
often referred to as “cosmological horizon,” i.e., the
horizon that limits what we can observe of the expanding
universe, due to the finiteness of the speed of light (see,
e.g., [55]). We shall not probe into this here.
On the other hand, anti–de Sitter (AdS) spacetime,

in ð2þ 1Þ dimensions, can be described by substituting
r → ir in (A1)

ds2AdS3 ¼ ð1þR2=r2Þdt2 − ð1þR2=r2Þ−1dR2 −R2dv2;

ðA2Þ
so that it has negative cosmological constant Λ ¼
−1=r2 < 0, and Ricci scalar curvature −6=r2 < 0. As is
evident, this spacetime does not have an intrinsic horizon.
We shall now show that our spacetimes of constant negative
curvature are related to the dS rather than the AdS
spacetime.19

A standard way to introduce both spacetimes is through
the embedding into higher [ð3þ 1Þ in this case] dimen-
sional flat spacetimes. The two spacetimes are the solutions
to these equations

ηABxAxB ¼ þr2 and ~ηABxAxB ¼ −r2; ðA3Þ
the first for dS, and the second for AdS. Here
A;B ¼ 0; 1; 2; 3, ηAB ¼ diagðþ1;−1;−1;−1Þ, and ~ηAB ¼
diagðþ1;−1;−1;þ1Þ, so that dS ↔ AdS when r ↔ ir and
z ↔ iz, where x3 ≡ z. Usually, no physical meaning is
ascribed to the higher dimensional embedding manifold but

19This result only apparently seems to contradict the discus-
sion in [56], in relation to the possibility to have a Hawking
phenomenon through an embedding procedure into flat higher
dimensional spacetimes. There it is shown that the spacetimes of
constant negative curvature, AdS, cannot have an intrinsic
Hawking phenomenon. It is necessary to include an acceleration,
a > 1=r, in the higher dimensional Rindler spacetime. Here,
instead, the spacetimes of negative curvature are related to dS.
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only to the resultant spacetime; see, e.g., [56]. Thus, a
signature like that of ~ηAB is not a problem. For us this
cannot be the case, as we do give physical meaning to the
embedding spacetime; hence we cannot have the former
signature, but only the one of ηAB. With this in mind, what
we shall now do is to consider the well-known Weyl
equivalence of an AdS spacetime to an Einstein static
universe spacetime.
By defining

1

R2
≡ 1

R2
−

1

r2
¼ 1

r2 cos2ðu=rÞ −
1

r2
; ðA4Þ

and shifting the u variable, u → uþ rπ=2, the line element
in (A2) can be written as

ds2AdS3 ¼
1

cos2ðu=rÞ ½dt
2 − du2 − r2 sin2ðu=rÞdv2�; ðA5Þ

where the line element in square brackets is what we have
found for the spherically shaped graphene membrane, with

RðuÞ ¼ r sinðu=rÞ. The first consideration here is that, as
announced earlier, when graphene is shaped in a spherical
fashion, since its line element is related to the AdS
spacetime, we do not expect any horizon. The second
consideration is more important and is what we are looking
for here.
Consider the line element obtained by substituting

r → ir in (A5) and including the factor sin ϑ to take into
account the geometry of the pseudosphere

ds2 ¼ 1

cosh2ðu=rÞ ½dt
2 − du2 − ðr2 sin2 ϑÞ sinh2ðu=rÞdv2�:

ðA6Þ

This is Weyl related, through the time-independent con-
formal factor 1= cosh2ðu=rÞ, to the graphene spacetime for
the elliptic pseudosphere, in square brackets, which we
have already encountered. The radius is RðuÞ¼csinhðu=rÞ,
with the parametrization c ¼ r sinϑ ≤ r. Substituting RðuÞ
for u in (A6), the line element becomes

ds2 ¼
�
1þ R2

r2sin2ϑ

�−1�
dt2 −

1

sin2ϑ

�
1þ R2

r2sin2ϑ

�−1
dR2 − R2d2v

�
ðA7Þ

≡
�
1 −

R2

r2sin2ϑ

�
dt2 −

1

sin2ϑ

�
1 −

R2

r2sin2ϑ

�−1
dR2 −R2dv2 ¼ ds2dS3 ; ðA8Þ

where

1

R2
≡ 1

R2
þ 1

r2
¼ 1

ðr sinϑÞ2 sinh2ðu=rÞ þ
1

ðr sin ϑÞ2 : ðA9Þ

That means that the graphene spacetime for an elliptic
pseudosphere is Weyl related to a dS3 spacetime

ds2Ell ¼
�
1þ R2

r2sin2ϑ

�
ds2dS3 ¼

�
1 −

R2

r2sin2ϑ

�−1
ds2dS3 ;

ðA10Þ

and an event horizon appears at

REh ¼ r sinϑ: ðA11Þ

Let us clarify here that this dS spacetime is not the one
produced by shaping a graphene membrane as an elliptic
pseudosphere. It is only Weyl related to it through (A10).
Hence, the fact that, e.g., the Ricci scalar curvature of this
dS spacetime is þ6=r2 should not create confusion. The
latter is the Ricci curvature of the Weyl-related dS space-
time, while −2=r2 is the Ricci curvature of the elliptic
pseudosphere spacetime, as it must be.

What we need to do is to compare this horizon with the
Hilbert horizon and to use our Ansatz c ¼ l, which gives

ϑ ¼ arcsinðl=rÞ: ðA12Þ

The Hilbert horizon, in terms of the measurable radial
variable R is at RHh ¼ r cosϑ; see previous discussions and
Fig. 5 So that, from (A9), we see that in terms of the radial
dS3 coordinate, is

RHh ¼
1

2
r sinð2ϑÞ: ðA13Þ

Clearly, for small ϑ, that means small l=r [see (A12)], the
two horizons coincide, and they have the value

REh ≃ RHh ≃ r
l
r
¼ l: ðA14Þ

This holds for any value of r, provided this is a big enough
r > l. In the same limit, the elliptic spacetime tends to the
Beltrami spacetime, and, in terms of the measurable radial
coordinate R, the Hilbert horizon of the former, tends to the
Hilbert horizon of the latter,
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RElliptic
Hh ¼ r cos ϑ → r ¼ RBeltrami

Hh : ðA15Þ

In other words, the very same Hilbert horizon we have seen
earlier to be related to the Rindler event horizon is also
related to a cosmological dS event horizon. In Table II we
show how good these approximations are for a graphene
membrane.

APPENDIX B: THE BLACK HOLE-LIKE
HORIZON OF BELTRAMI SPACETIME

FROM THE HYPERBOLIC PSEUDOSPHERE
(BTZ) SPACETIME

It was shown in [29] that the line element of the
nonrotating BTZ black hole is Weyl related to the line
element of the hyperbolic pseudosphere spacetime. There it
was concluded that the Hilbert horizon and the event
horizon could not match. For a nonextremal hyperbolic
pseudosphere, strictly speaking, this is true. Nonetheless,
when the geometrical/phyiscal role of the c parameter is
duly taken into account (the Ansatz c ¼ l), the two
horizons coincide, in the l=r → 0 limit, although the mass
of the hole goes to zero even faster. In that limit the
hyperbolic pseudosphere tends to two Beltrami pseudo-
spheres “glued” at the tails (see previous discussion and
Fig. 10). Thus the correct statement here is that the Hilbert
horizon of the Beltrami spacetime (that, in terms of the
measurable radial coordinate, is always given by R ¼ r) is
also a limiting case of zero mass of a BTZ event horizon
(i.e., R ∼ 0, in terms of the BTZ radial coordinate). Let us
show this here.
The line element of the BTZ black hole, with zero

angular momentum is [16]

ds2BTZ ¼
�
R2

c2
−M

�
dt2 −

dR2

R2

c2 −M
−R2dχ2

≡
�
R2

c2
−M

�
ds2; ðB1Þ

where c and M are two non-negative real constants, the
cosmological constant is negative, Λ ¼ −1=c2 < 0, and

ds2 ≡ dt2 − c4
dR2

ðR2 −R2
EhÞ2

− c2
R2

ðR2 −R2
EhÞ

dχ2: ðB2Þ

Here

REh ≡ c
ffiffiffiffiffi
M

p
ðB3Þ

is the event horizon of the black hole.
Let us define χ ≡ v as the angular variable,20 and

du≡ −
c2

R2 −R2
Eh

dR; RðRÞ≡ cR
R2 −R2

Eh

; ðB4Þ

from which one easily obtains

RðuÞ ¼ REh cothðREhu=c2Þ ðB5Þ

that gives

RðRðuÞÞ≡ RðuÞ ¼ c coshðREhu=c2Þ; ðB6Þ

i.e., the line element in (B2) is that of the hyperbolic
pseudosphere spacetime

FIG. 10 (color online). The hyperbolic pseudosphere for a
small value of c=r that clearly shows how the surface, for
c=r → 0, tends to two Beltrami pseudospheres joined at the
minimum value of R. In the plot, r ¼ 1, c ¼ 1=100; hence, u ∈
½−arccoshð ffiffiffiffiffiffiffiffiffiffiffiffi

10001
p Þ;þarccoshð ffiffiffiffiffiffiffiffiffiffiffiffi

10001
p Þ� and v ∈ ½0; 2π�. The

Hilbert horizons are two and are located at the two maximal
circles Rmax ≃ 1.00005.

TABLE II. Quantification of how good it is to approximate the
Hilbert horizon of the elliptic pseudosphere spacetime with a
cosmological event horizon. The closer ζEll ≡ ðREh −RHhÞ=r is
to zero, the better is the approximation. We indicate three values
of l=r comparable to those used in Table I, the corresponding
values of ζEll, and how close the Hilbert horizon of this spacetime
(R ¼ r cos ϑ) is to the Hilbert horizon of the Beltrami spacetime
(R ¼ r). The latter column, then, is also a measure of how well
the elliptic pseudosphere spacetime can be identified with the
Beltrami spacetime. The values are all approximate.

ϑ ∼ l=r ζEll ðRHh − rÞ=r
0.1 5 × 10−4 5 × 10−3

10−4 5 × 10−13 5 × 10−9

10−7 5 × 10−22 5 × 10−15

20This identification is particularly important to turn a standard
AdS3 spacetime into the BTZ black hole; see [16], [17], [18].
Here we do not touch upon this and other important issues.
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ds2BTZ ¼
�
R2

c2
−M

�
ds2Hyp; ðB7Þ

with r≡ c2=REh ¼ c=
ffiffiffiffiffi
M

p
[see (B3)] or M ¼ c2=r2. We

now use our Ansatz for graphene, c ¼ l, and write the
relevant BTZ quantities after this identification

Λ≡ −
1

l2
; M ≡ l2

r2
; REh ≡ l2

r
: ðB8Þ

We now need to compare this event horizon to the
Hilbert horizon of the hyperbolic pseudosphere spacetime
that, in terms of the radial coordinate of the pseudosphere,
is at

RHh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2=r2

q
; ðB9Þ

or, in terms of the meridian coordinate, uHh ¼
rarccoshð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=l2

p
Þ. Substituting this value into (B5)

and using (B8),

RHh ≡RðuHhÞ ¼ REh coth
�
arccosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=l2

q ��
:

ðB10Þ

For r ¼ 10nl this formula approximates to

RHh ¼ REh ×
10n

ð102n − 1Þ1=2
≃ REh × ð1þ 5 × 10−ð2nþ1ÞÞ: ðB11Þ

From Table III, it is clear that, again, in the small l=r limit
these two horizons coincide, but that is also the limit where
M → 0, and accordingly REh → 0; i.e., the black-hole has
disappeared, and we are left with what in [16] is called “the
vacuum state.” This means that, in order to have a proper
BTZ black hole, something different needs to be done, but
we shall not probe into that here, as our scope is to
illustrate, yet from another perspective, that the Beltrami
Hilbert horizon, R ¼ r, is an event horizon, although, in
this case, of a very limited nature. Indeed this happens.
First, the spacetime here, in the limit, becomes two copies

of the Beltrami spacetimes (see previous discussion, and
Fig. 10). Second, although REh → RHh → 0, this corre-
sponds to a nonzero Hilbert horizon for the hyperbolic
pseudosphere spacetime, RHh → r, that in turn coincides
with the Hilbert horizon of the Beltrami spacetime. Here we
have two such horizons (see Fig. 10), a situation that evokes
a wormhole.
Some last comments are in order. The definition (B8)

of the cosmological constant gives a very large negative
value, Λ ¼ −1=l2 ≃ −2.5 × 1019 m−2. This makes it less
appealing for cosmological considerations than the
definition Λ ¼ þ1=r2, used in the de Sitter/elliptic
pseudosphere case. On the other hand, that definition
makes justice of our Ansatz that relates c to what sets
the length scale of the given spacetime, especially in
this case where the mass is a dimensionless parameter. It
must be clear, though, that the BTZ spacetime we have
briefly evoked here is not what we have when we shape
graphene as a hyperbolic pseudosphere, but it is only
related to it through (B7). Hence, the identification
Λ ¼ −1=l2, which points to a Ricci scalar curvature of
−6=l2, should not create confusion. The latter is the
Ricci curvature of the Weyl-related BTZ spacetime,
while the Ricci curvature of the hyperbolic pseudo-
sphere spacetime is −2=r2.
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