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We study a model for a nonsingular cosmic bounce in N ¼ 1 supergravity, based on supergravity
versions of the ghost condensate and cubic Galileon scalar field theories. The bounce is preceded by an
ekpyrotic contracting phase, which prevents the growth of anisotropies in the approach to the bounce and
allows for the generation of scale-invariant density perturbations that carry over into the expanding phase of
the Universe. We present the conditions required for the bounce to be free of ghost excitations, as well as
the tunings that are necessary in order for the model to be in agreement with cosmological observations. All
of these conditions can be met. Our model thus provides a proof-of-principle that nonsingular bounces are
viable in supergravity, despite the fact that during the bounce the null energy condition is violated.
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I. INTRODUCTION

A fundamental question of modern cosmology is
whether our currently expanding universe had a beginning,
presumably in the form of an initial classically singular
event (perhaps with space and time emerging from a
more abstract and fundamental description), or whether
the expanding phase was preceded by a phase of contrac-
tion (perhaps with phases of expansion and contraction
alternating to yield a cyclic cosmology). In the present
paper, we wish to study the latter possibility. More
specifically, we are interested in models where the reversal
from contraction to expansion occurs in an entirely non-
singular manner already at the classical level, with the scale
factor of the Universe smoothly reaching a minimum value
well above the Planck length before starting to grow again.
It is well known that, in a flat Friedmann-Lemaître-

Robertson-Walker (FLRW) universe, the requirement that
the Hubble rate H increase requires the matter constituents
of the Universe to violate the null energy condition; i.e. the
sum of energy density ρ and pressure p must become
negative in order for a bounce to occur (general discussion
of bounces are provided in e.g. [1,2]). In recent years,
effective scalar field theories have been constructed which
have the remarkable property that they allow for violations
of the null energy condition without however causing any
obvious pathologies: these are the ghost condensate [3] and
Galileon [4–6] models.1 However, what has remained
largely unclear is whether such models also make sense
from a more fundamental perspective. For instance, it
remains unclear whether these models can be derived from

string theory [10–13]. In the present paper, we wish to take
a step in this direction, by studying models of a nonsingular
bounce in N ¼ 1 supergravity. Since supergravity theories
enjoy remarkable stability properties, and since they arise
as low-energy approximations to string theory, it is cer-
tainly of interest to analyze whether these theories allow
for nonsingular bounces. As we will show, one can indeed
embed models of nonsingular bounces in supergravity,
although a number of fine-tunings are required in order to
render the models free of ghosts and observationally viable.
In our bounce model, we include a description of an

ekpyrotic phase in supergravity. This is a crucial element
in making the model viable. The reason for this is the
following. When all matter components have an equation
of state which is such that the pressure is smaller than the
energy density, p < ρ, then anisotropies get amplified in a
contracting universe with the result that the Universe
undergoes BKL oscillations and collapses in a chaotic
big crunch [14]. In this case, a cosmic bounce cannot occur,
as the curvatures build up to such an extent that gravita-
tional collapse is unavoidable. However, in the presence of
ekpyrotic matter, which is characterized by an ultrastiff
equation of state p > ρ, anisotropies are suppressed and
it becomes meaningful to consider a transition to a non-
singular bounce phase [15–17] (see [18] for a recent
nonperturbative numerical study of these issues). Thus,
if one wants to avoid having to assume highly special initial
conditions for the contracting phase of the Universe, an
ekpyrotic phase is required, irrespective of whether the
cosmological perturbations are also generated via ekpy-
rosis. For this reason, we believe that it is crucial to
combine the description of a nonsingular bounce with an
ekpyrotic phase.
Our paper is structured as follows: we will start by

presenting our model without supersymmetry in Sec. II.
There, we also include the results of a numerical computation
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infinite numbers of derivatives (see e.g. [7–9]).
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in order to show a representative solution explicitly. We then
extend the model to supergravity in Sec. III, dealing with the
bounce and ekpyrotic phases in turn. The perturbations and
associated stability properties of the model are analyzed
in Sec. IV. We present our conclusions in Sec. V. The
component expansion of the full supergravity Lagrangian is
presented separately in an Appendix. We note that this also
constitutes the first construction of a Galileon Lagrangian in
(old-minimal) supergravity.

II. THE COSMOLOGICAL MODEL

We will start by describing our model in a nonsuper-
symmetric framework first, before discussing its embed-
ding in supergravity. The model we consider is based on the
bounce model developed by Cai et al. [19] and consists of a
scalar field ϕ with noncanonical kinetic terms and a
potential VðϕÞ. In natural units (8πG ¼ M−2

Pl ¼ 1), the
Lagrangian is given by

L ¼ ffiffiffiffiffiffi
−g

p �
−
R
2
þ PðX;ϕÞ þ gðϕÞX□ϕ

�
; ð2:1Þ

where R is the Ricci scalar and

PðX;ϕÞ ¼ kðϕÞX þ τðϕÞX2 − VðϕÞ ð2:2Þ

with X ≡ − 1
2
ð∂ϕÞ2. The explicit forms of the functions

k; τ; g; V are specified below. The term proportional to gðϕÞ
is the first nontrivial Galileon Lagrangian. We will take the
background to be a flat FLRW universe, with metric

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj: ð2:3Þ

The energy density and pressure are then given by

ρ ¼ 1

2
kðϕÞ _ϕ2 þ 3

4
τðϕÞ _ϕ4 − 3gðϕÞH _ϕ3

þ 1

2
_gðϕÞ _ϕ3 þ VðϕÞ; ð2:4Þ

p ¼ 1

2
kðϕÞ _ϕ2 þ 1

4
τðϕÞ _ϕ4 þ gðϕÞ _ϕ2ϕ̈þ 1

2
_gðϕÞ _ϕ3 − VðϕÞ;

ð2:5Þ

where we have restricted to time dependence only. The
Einstein equations reduce to the Friedmann equations

3H2 ¼ ρ; ð2:6Þ

_H ¼ −
1

2
ðρþ pÞ; ð2:7Þ

and the scalar equation of motion is given by

0¼P;ϕ−P;Xðϕ̈þ3H _ϕÞ−P;XXϕ̈ _ϕ2−P;Xϕ
_ϕ2

þgðϕÞð6ϕ̈ _ϕHþ9H2 _ϕ2þ3 _H _ϕ2Þ−2g;ϕ _ϕ
2ϕ̈−

1

2
g;ϕϕ _ϕ

4:

ð2:8Þ

The idea of our model is as follows: at large positive
values of ϕ, the Universe starts to undergo an ekpyrotic
contraction phase, with approximate potential VðϕÞ≈
−V0e−cϕ, with c >

ffiffiffi
6

p
so that the equation of state of

the scalar field is w ¼ p=ρ > 1. During this phase, the
kinetic term is approximately canonical and the Universe
contracts slowly while anisotropies are suppressed. Around
ϕ ¼ ϕek-end, the potential bottoms out and rises back up to
zero. At that time, the Universe goes over into a kinetic
phase, i.e. a phase where the energy density is dominated
by the kinetic energy of the scalar field and the potential
becomes irrelevant. Subsequently, the ordinary kinetic term
switches sign while the higher-derivative terms propor-
tional to X2 and X□ϕ are switched on simultaneously.
Both the effective ghost condensate (L ∼ −X þ X2) and the
Galileon term contribute to a brief violation of the
null energy condition (NEC), such that the Universe can
undergo a bounce at small values of ϕ. After the bounce,
the Universe goes over into a standard expanding phase,
while the kinetic term becomes canonical once more. We
are assuming that reheating takes place around the time of
the bounce, and that this causes the Universe to become
filled with radiation. The ordinary hot big bang cosmo-
logical model follows.
Let us now be a little more specific. We are choosing the

kinetic function kðϕÞ to be equal to unity everywhere
except near ϕ ¼ 0, where it smoothly switches sign and
where the bounce occurs. We use the specific form (chosen
to allow for a simple supersymmetric extension later on),

kðϕÞ ¼ 1 −
2

ð1þ 2κϕ2Þ2 ð2:9Þ

(see Fig. 1 for an illustration). Here κ denotes a parameter
that controls the width in field space over which the kinetic
term switches sign. The function τðϕÞ controls the strength
of a term that is the square of the ordinary kinetic term, and
gðϕÞ determines the strength of the Galileon term. We are
choosing both such that they interpolate between 0 and the
constants t̄; ḡ while the ordinary kinetic term switches sign,

τðϕÞ ¼ τ̄

ð1þ 2κϕ2Þ2 ; gðϕÞ ¼ ḡ
ð1þ 2κϕ2Þ2 ð2:10Þ

(also see Fig. 1). It is crucial that these functions are already
nonzero when kðϕÞ passes through zero, otherwise a
singularity would develop at this point. (Note that, when
kðϕÞ reaches zero, the higher-derivative term τð∂ϕÞ4 can
act like an ordinary kinetic term ∼− τ _ϕ2ð∂ϕÞ2 because the
background is nontrivial, _ϕ ≠ 0.) In the model presented in
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[19], the higher-derivative terms were always “on,” i.e. the
choice τðϕÞ ¼ τ̄; gðϕÞ ¼ ḡ was made. This is however not
necessary in order to achieve a bounce. In fact, the higher-
derivative terms play a completely negligible role during
the ekpyrotic phase, but would significantly complicate the
supersymmetry analysis during that phase. Hence, we are
only turning them on during the bounce phase. We should
emphasize that the specific functions written out above are
chosen for convenience only—there is considerable free-
dom in these choices, and, in particular, the functional
forms of k; τ; g need not be related to each other in a simple
manner like they are in our example.
At large values of ϕ, we are choosing an ekpyrotic

potential,

VðϕÞ ¼ −V0vðϕÞe−cðϕÞϕ; ð2:11Þ

where vðϕÞ is a function chosen such that the potential
turns off for ϕ < ϕek-end. One can take, for example, vðϕÞ ¼
1
2
½1þ tanhðλðϕ − ϕek-endÞÞ� for some positive constant λ

(also see Fig. 2). Here cðϕÞ is a slowly varying function of
ϕ, with cðϕÞ > ffiffiffi

6
p

over a significant field range. Then the
background solution is given by the ekpyrotic scaling
solution,

aðtÞ ∝ ð−tþ t�Þ2=c2

ϕðtÞ ¼ −
2

c
ln

�
−
�
c2V0

c2 − 6

�
1=2

ðt − t�Þ
�
; ð2:12Þ

for some constant t� which would correspond to the time of
the big crunch if the ekpyrotic phase were to continue until
that time. Note that in the solution above time runs from
large negative values of t towards smaller negative values.
During the ekpyrotic phase, the equation of state of the
scalar field is given by

w ¼ p
ρ
¼

_ϕ2 − 2V
_ϕ2 þ 2V

≈
cðϕÞ2
3

− 1 > 1; ð2:13Þ

which implies that the ekpyrotic scalar field energy density
(which grows as a−3−3w) grows faster than any other
component of the total energy density, in particular faster
than the growth of the energy stored in the homogeneous
curvature (∝ a−2) and anisotropic curvature (∝ a−6). In this
way, the Universe becomes flat and smooth, and the
approximation of a flat FLRW background is justified.
At ϕ ¼ ϕek-end ¼ ϕðtek-endÞ, the potential bottoms out

and comes back up to zero again. From then on, the
potential becomes irrelevant and the ekpyrotic phase goes
over into a kinetic phase described by the approximate
solution

aðtÞ ∝ ð−tþ t0Þ1=3; ϕðtÞ − ϕ0 ¼ −
ffiffiffi
2

3

r
lnð−tþ t0Þ;

ð2:14Þ
where t0;ϕ0 are constants, with t0 representing the time of
the would-be big crunch if the higher-derivative terms were
absent, while ϕ0 ¼ ϕek-end þ

ffiffiffiffiffiffiffiffi
2=3

p
lnðt0 − tek-endÞ is deter-

mined by matching onto the ekpyrotic solution above.
During the kinetic phase, the equation of state is given by
w ¼ 1, so that anisotropies remain small while the homo-
geneous curvature is further suppressed.
As the scalar is nearing ϕ ¼ 0, its kinetic term starts

switching sign while the higher-derivative terms become
important. The Einstein equations imply that _H ¼
− 1

2
ðρþ pÞ, i.e. that the Hubble rate can only increase if

the sum of energy density and pressure is negative. This is
the same condition as that for a violation of the NEC. Only
when this sum is negative can the Universe revert from
contraction to expansion in a nonsingular way. Thus a
necessary condition for a bounce to occur is that we must
have

k

t t, g g

15 10 5 0 5 10 15
1.0

0.5
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0.5

1.0

FIG. 1 (color online). The solid curve shows kðϕÞ while the
dashed curve shows the normalized functions τðϕÞ=τ̄; gðϕÞ=ḡ, all
with κ ¼ 1=4.
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FIG. 2 (color online). The ekpyrotic potential. The ekpyrotic
phase starts at large positive ϕ, with the field rolling down the
potential towards smaller values of the field. Around ϕek-end ≈ 15
the potential starts to come back up to zero, and is irrelevant from
then on. The bounce occurs at small values, ϕ ≈ 0.
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ρþ p ¼ kðϕÞ _ϕ2 þ τðϕÞ _ϕ4 þ gðϕÞ _ϕ2ϕ̈ − 3gðϕÞH _ϕ3

þ _gðϕÞ _ϕ3 < 0 ð2:15Þ

over a sufficiently long time span. In the present paper,
we are pricipally interested in the case where the ghost
condensate terms dominate over the Galileon, i.e. we
consider the case τðϕÞ ≫ gðϕÞ. Then, at the moment where
kðϕÞ reaches −1, the condition for NEC violation translates
into

_ϕ2 <
1

τ̄
for NEC violation at bounce: ð2:16Þ

But this condition needs to be satisfied in any case,
since 1=τ̄ represents the cut-off of the ghost condensate
theory—if _ϕ2 were larger than 1=τ̄ the X2 term would be
larger than the X term and we would lose control over our
effective theory. Assuming a short kinetic phase, the field
velocity at the onset of the bounce phase is essentially
determined by the velocity at the end of the ekpyrotic
phase, _ϕ2

ek-end ≈ 2jVek-endj. In turn this implies that the depth
of the ekpyrotic potential must also be below the cut-off
scale of the ghost condensate for our model to be viable.
Thus we must satisfy the hierarchy,

jVek-endj <
1

τ̄
< M4

Pl; ð2:17Þ

where MPl denotes the Planck mass.
Figures 3, 4, 5, and 6 present an explicit numerical

example of the bounce phase. The numerical evaluation is
started after the ekpyrotic phase has come to an end, i.e. at

the time when the kinetic phase is underway and about to
go over into the bounce phase. As the figures show, a
smooth bounce is obtained during the time period that the
NEC is violated. Furthermore, we note that during the time
that the NEC is violated, the scalar field evolves almost
exactly linearly with time–this is a characteristic feature of
ghost condensation.
As one can see in Fig. 6, the scalar field reaches its

largest velocities during the bounce period, and so it is
during this period that we must verify that our effective
field theory treatment is consistently applicable. Crucially,
the cut-off scale of the ghost condensate (set to 1 in the
numerics) is not surpassed by _ϕ, and thus the X2 term is
everywhere subdominant to the X term. This is, in fact, due
to the presence of the Galileon term and motivates its
inclusion in our model. If the Galileon were absent, then at
the moment of the bounce the X2 term would become just
as large as the X term, and thus we would come to doubt the
validity of our effective field theory precisely at the
most crucial moment. Since the Galileon also contributes
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FIG. 3 (color online). The scale factor around the time of the
bounce. Our numerical evaluation starts at ϕ0 ¼ 10 with
_ϕ0 ¼ −10−5, a0 ¼ 1 and H0 is determined by the Friedmann
equation. We are using the parameters κ ¼ 1=4; t̄ ¼ 1; ḡ ¼
1=100. The figure shows a zoom-in on the most interesting time
period, namely that of the bounce. One can clearly see that the
bounce is smooth. The next three figures plot the evolution of
various quantities during that same time period.
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FIG. 4 (color online). The evolution of the scalar field ϕ during
the bounce phase.
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FIG. 5 (color online). The sum of energy density and pressure
during the bounce phase. When this quantity goes negative, the
null energy condition is violated—this is a necessary condition
for a nonsingular bounce in a flat FLRW universe.
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to violating the NEC, in its presence the X2 term need not
become as large. In our numerical example we have chosen
the coefficient of the Galileon term to be small, ḡ ¼ τ̄=100.
However, the strength of the Galileon term could easily be
increased, and this would only reinforce the present argu-
ments. The upper limit on ḡ is determined by two factors:
first, the energy scale 1=ḡ4=3 should not lie below the ghost
condensate scale 1=τ̄. And secondly, one must ensure
that the scalar field derivatives remain below the regime
of validity of the Galileon term itself, i.e. we need
j _ϕj < 1=ḡ2=3; jϕ̈j < 1=ḡ. As the plot of ϕ̈ shows, in our
example the second time derivative of ϕ is smaller than the
first derivative, and thus the Galileon term is consistently
small throughout. This fact also implies that it is consistent
to neglect possible additional higher-order terms (assuming
they do not have unnaturally large coefficients), as they
would include further factors of the field with various
numbers of derivatives, with all of these factors being
small. Thus, we conclude that our analysis is trustworthy.

III. EXTENSION TO SUPERGRAVITY

Now we would like to extend the model that we have
just presented to minimal N ¼ 1 supergravity. By this, we
mean that we would like to obtain a supergravitational
action which, when all the extra fields required by super-
symmetry are set to zero, reduces to the action (2.1) above.
Our construction is based on the results of [20], where
we developed the formalism required for coupling chiral
superfields with higher-derivative kinetic terms to four-
dimensional N ¼ 1 supergravity.2 In [32] we applied the

formalism to a pure ghost condensate model—many results
from that work will be incorporated below. Since we are
interested in cosmological applications, we will neglect
fermionic component fields throughout.
The action is formulated in curved superspace, and we

are using the conventions of Wess and Bagger [33]. In the
following, we only provide a brief review of the con-
struction of supergravity theories (for a thorough discussion
see [33]). A chiral superfield Φ is characterized by the
expansion

Φ ¼ Aþ ΘαΘαF; ð3:1Þ

where A;F are two complex scalar fields, with F typically
playing the role of an auxiliary field with nonpropagating
degrees of freedom. The Θ coordinates are Grassmann-
valued and carry local Lorentz indices (α denotes the index of
a two-component Weyl spinor)—they extend ordinary space-
time to curved superspace. Supersymmetric Lagrangians can
be constructed from the chiral integrals

Z
d2ΘðD̄2 − 8RÞLþ H:c:; ð3:2Þ

where L is a scalar, Hermitian function. The chiral projector
in curved superspace is D̄2 − 8R, where D̄ _α is a spinorial
component of the curved superspace covariant derivative
DA ¼ fDa;Dα; D̄ _αg. The curvature superfield R admits the
component expansion

R ¼ −
1

6
M

þ Θ2

�
1

12
R −

1

9
MM� −

1

18
bmbm þ 1

6
ieamDmba

�
;

ð3:3Þ

where R is the Ricci scalar. The complex scalar M and the
real vector bm are the auxiliary fields of supergravity. We
will also employ the chiral density E with expansion

2E ¼ eð1 − Θ2M�Þ; ð3:4Þ

where e is the determinant of the vierbein. One can relate the
tangent space Lorentz indices A ¼ fa; α; _αg to the space-
time indices M ¼ fm; μ; _μg via the supervielbein EM

A and
its inverse, with Em

a ¼ ema being the ordinary vierbein.
Our construction is built on the superspace Lagrangian

L ¼
Z

d2Θ2E
�
WðΦÞ − 1

8
ðD̄2 − 8RÞð−3e−KðΦ;Φ†Þ=3

þDβΦDβΦD̄_βΦ
†D̄_βΦ†T þDβΦDβΦD̄_βD̄

_βΦ†GÞ
�

þ H:c: ð3:5Þ

t

t
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FIG. 6 (color online). The evolution of _ϕ (solid curve) and ϕ̈
(dashed curve) during the bounce. In our example, the actual
value of the terms involving ϕ̈ are very small, since they are
multiplied by an additional factor of ḡ ¼ 1=100. Since the figure
demonstrates that the hierarchy jϕ̈j ≲ j _ϕj < 1 is satisfied through-
out, we can see that our effective field theory treatment is fully
justified, as explained in the main text.

2Also see [21], where similar results were obtained. Closely
related works include [22–29]. For an application to DBI
inflation, see [30]. A review is given in [31].
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We will explain the meaning of the functionsW;K; T;G in
turn. WðΦÞ is the superpotential, and consists of a hol-
omorphic function of Φ. The Kähler potentialKðΦ;Φ†Þ is a
Hermitian function which determines the two-derivative
kinetic term for the lowest component A of Φ. In the
absence of higher-derivative terms,W andK also determine
the potential of the theory. Here, we have two additional
terms: the first is proportional to the tensor superfield
TðΦ;Φ†;DmΦ;DnΦ†;…Þ, which is an arbitrary function of
the chiral and antichiral superfields and their covariant
derivatives, with all indices contracted. The tensor nature of
this superfield refers to its transformation properties under
field redefinitions, and need not concern us here (see [20],
where this term was first introduced, and where it is
described in great detail). This term is crucial for obtaining
a supergravity extension of the ghost condensate [32], and
moreover plays a crucial role in obtaining a model that is
devoid of perturbative ghost instabilities, as we will see.
The final term in the Lagrangian is required in order to
obtain a supergravity extension of the Galileon term, and
contains an arbitrary function GðΦ;Φ†Þ of the chiral and
antichiral superfields. The embedding of the Galileon
Lagrangian into supergravity is new to the literature.
The full component expansion of the above action is

lengthy—we are presenting it in detail in the Appendix.
However, our construction is designed specifically such
that it simplifies considerably in the two regimes of interest,
namely in the ekpyrotic phase where the higher-derivative
terms are unimportant but where the potential plays a
crucial role, and in the bounce phase where the potential is
unimportant but the higher-derivative terms essential. We
will discuss these two regimes separately, starting with the
bounce phase.

A. The bounce

During the bounce phase, the superpotential is effec-
tively zero, W ≈ 0, and as shown in the Appendix the
Lagrangian then reduces to the component form

1

e
Lbounce¼−

1

2
R−K;AA� ð∂A ·∂A�Þþ8ð∂AÞ2ð∂A�Þ2ðT þT �Þ

þ8ð∂AÞ2□A�Gþ8ð∂A�Þ2□AG�

þ16

3
ð∂AÞ2ð∂A�Þ2ðK;A�GþK;AG�þ4ðA;mG

−A�;mG�ÞðA;mG−A�;mG�ÞÞ; ð3:6Þ

after elimination of all auxiliary fields. Here, as described
in the Appendix, the notation T ;G refers to the lowest
components of the Weyl-rescaled superfields T;G.
Assuming now that T ¼ T � and G ¼ G�, and writing out
the complex scalar A in terms of two real scalars ϕ; ξ as

A ¼ 1ffiffiffi
2

p ðϕþ iξÞ; ð3:7Þ

the Lagrangian becomes

1

e
Lbounce ¼ −

1

2
R −

1

2
K;AA� ½ð∂ϕÞ2 þ ð∂ξÞ2�

þ ½ð∂ϕÞ4 þ ð∂ξÞ4 − 2ð∂ϕÞ2ð∂ξÞ2 þ ð∂ϕ · ∂ξÞ2�
�
�
T þ 4

3
GðK;A þ K;A� Þ − 32

3
G2ð∂ξÞ2

�

þ 4
ffiffiffi
2

p
G½ð∂ϕÞ2□ϕ − ð∂ξÞ2□ϕþ 2∂ϕ · ∂ξ□ξ�:

ð3:8Þ

Comparing to the Lagrangian (2.1), we can see that we
should make the identifications

K;AA� ¼ kðϕÞ; ð3:9Þ

T ðϕ; ξ; ∂ϕ; ∂ξ;…Þ ¼ 1

16
τðϕÞ; ð3:10Þ

Gðϕ; ξÞ ¼ −
1

8
ffiffiffi
2

p gðϕÞ: ð3:11Þ

Note that we have not included the term proportional to
GðK;A þ K;A� Þ in equation (3.10) above. We easily could
have done so, but it turns out that this term is negligibly small
in the cases of interest to us, and therefore we are adopting a
simpler definition of T here. The above identifications can
be realized by adopting the superfield definitions

K ¼ −
1

2
ðΦ − Φ†Þ2 − 1

κ
ðΦþ Φ†Þ arctan½κðΦþ Φ†Þ�;

ð3:12Þ

T ¼ τ̄

16

1

ð1þ κðΦþ Φ†Þ2Þ ; ð3:13Þ

G ¼ −
ḡ

8
ffiffiffi
2

p 1

ð1þ κðΦþ Φ†Þ2Þ : ð3:14Þ

As we will see in Sec. IV, further terms must be added to
K and T in order for the scalar field ξ to give rise to
perturbations with a nearly scale-invariant spectrum and for
it not to develop ghost and gradient instabilities during the
bounce phase. These terms however only affect the pertur-
bations of the ξ field and are therefore irrelevant to the
background dynamics. For completeness, we will write out
the final form of the component Lagrangian during the
bounce phase in terms of the two real scalars ϕ; ξ:
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1

e
Lbounce ¼ −

1

2
R −

1

2
kðϕÞ½ð∂ϕÞ2 þ ð∂ξÞ2� þ ½ð∂ϕÞ4 þ ð∂ξÞ4 − 2ð∂ϕÞ2ð∂ξÞ2 þ ð∂ϕ · ∂ξÞ2�

×

�
1

4
τðϕÞ þ 1

3
gðϕÞ

�
arctanð ffiffiffi

2
p

κϕÞffiffiffi
2

p
κ

þ ϕ

1þ 2κ2ϕ2

�
−

1

12
gðϕÞ2ð∂ξÞ2

�

−
1

2
gðϕÞ½ð∂ϕÞ2□ϕ − ð∂ξÞ2□ϕþ 2∂ϕ · ∂ξ□ξ�; ð3:15Þ

with the functions

kðϕÞ ¼ 1 −
2

ð1þ 2κϕ2Þ2 ; ð3:16Þ

τðϕÞ ¼ τ̄

ð1þ 2κϕ2Þ2 ; ð3:17Þ

gðϕÞ ¼ ḡ
ð1þ 2κϕ2Þ2 : ð3:18Þ

Regarding the terms in the third line of Eq. (3.15), we note
that the second term (proportional to gðϕÞ) is everywhere at
most a few percent of the magnitude of the first term
(proportional to τðϕÞ) since we are assuming ḡ ≪ τ̄, while
the last term (proportional to gðϕÞ2) is irrelevant to the
background dynamics. This supergravitational extension of
(2.1) then reproduces the cosmic bounce described in
Sec. II above.

B. The ekpyrotic phase

In our model the bounce is preceded by an ekpyrotic
contracting phase. During the ekpyrotic phase, the higher-
derivative terms are effectively zero, T ;G ≈ 0, and, as
shown in the Appendix, the Lagrangian then reduces to

1

e
Lekpyrotic ¼ −

1

2
R − K;AA�ð∂A · ∂A�Þ

− eKðK;AA� jDAWj2 − 3jWj2Þ; ð3:19Þ
where DAW ¼ W;A þ K;AW stands for the Kähler deriva-
tive of the superpotential. For an ekpyrotic phase, we need a
potential V that is steep enough and negative over a certain
range of ϕ. If the scalar potential is of the form

VðϕÞ ¼ −V0e−cϕ ð3:20Þ
then we need to have c >

ffiffiffi
6

p
as in this case the equation of

state w ¼ p=ρ > 1, which is the condition that is required
for anisotropic stresses to be suppressed. To this end, we are
considering a superpotential of the form

W ¼
ffiffiffiffiffiffi
V0

p
wðAÞe−bA− dA

A2þ1; b; d ∈ R; b; d > 0;

ð3:21Þ
where the factor wðAÞ has the property of being approx-
imately equal to 1 for ϕ > ϕek-end while rapidly approaching

zero for ϕ < ϕek-end.
3 Thus wðAÞ ensures that the ekpyrotic

phase comes to an end around ϕek-end. As an example, we
will take

wðAÞ ¼ 1

2
½1þ tanhðλð

ffiffiffi
2

p
A − ϕek-endÞÞ� ð3:22Þ

with λ being a positive real constant. For ϕ > ϕek-end we can
simply approximate wðAÞ ≈ 1, and we will do so now in
order to analyse the properties of the potential during the
ekpyrotic phase. We have written the second term in the
exponent in (3.21) as dA

A2þ1
rather than the simpler choice d

A in
order to avoid a blow-up at A ¼ 0. (Our superpotential thus
has a pole at each of A ¼ �i. These are harmless since they
have positive, and hence repulsive, potential energy and are
located far from the vacuum region. If one prefers to avoid
them, one can expand the factor dA

A2þ1
as a series and truncate

it at the desired order, since we only require this approximate
form over a certain field range.) For d ¼ 0, the super-
potential above would yield a potential

Vjd¼0 ¼ V0eξ
2−

ffiffi
2

p
bϕð2ξ2 þ b2 − 3Þ; ð3:23Þ

or, in the region of interest (ξ ¼ 0),

Vjξ¼0;d¼0 ¼ V0e−
ffiffi
2

p
bϕðb2 − 3Þ: ð3:24Þ

For this potential we have jV;ϕ=Vj ¼
ffiffiffi
2

p
b and V < 0 for

b2 < 3. Thus, one can easily see that this simple form for
the superpotential allows either steep positive potentials, or
shallow negative ones, exactly the opposite of what one is
typically interested in early universe cosmology. Indeed, an
ekpyrotic phase requires jV;ϕ=Vj >

ffiffiffi
6

p
and thus b2 > 3,

which is in direct conflict with the requirement for negativity
of the potential. It is here that the additional term propor-
tional to d is crucial. In fact, we will make the choice
b ¼ ffiffiffi

3
p

, which in the absence of d would yield a vanishing
potential. But when d > 0 is turned on the potential becomes
negative and sufficiently steep over a large (semi-infinite)
field range, as can be seen from an explicit calculation of the
potential:

3An alternative choice for the superpotential, with very similar
properties, is WðAÞ ¼ ffiffiffiffiffiffi

V0

p
wðAÞAfe−bA with 0 < f < 1

2
.
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Vjξ¼0 ¼
4dV0ðϕ2 − 2Þ
ðϕ2 þ 2Þ4 ðdðϕ2 − 2Þ

−
ffiffiffi
3

p
ðϕ2 þ 2Þ2Þe−

ffiffi
2

p ð ffiffi
3

p þ 2d
2þϕ2

Þϕ
: ð3:25Þ

A straightforward calculation shows that the potential is
negative for ϕ >

ffiffiffi
2

p
when d < 16

ffiffiffi
3

p
, while for large d it

is negative when ϕ≳ ffiffiffi
d

p
=31=4. Moreover, the potential is

sufficiently steep, i.e. jV;ϕ=Vj >
ffiffiffi
6

p
for ϕ >

ffiffiffi
2

p
d when

d≳ 2, while for small d the potential is sufficiently steep for
ϕ≳ 2.5. Thus, for all d > 0 this potential is suitable for an
ekpyrotic phase of arbitrarily long duration, as long as
ϕ≳ f2.5; ffiffiffi

2
p

dg, whichever happens to be the stronger
condition. Since we are mostly interested in the field range
where ϕ is large, ϕ≳ 10, and ξ near zero, the potential can
be well approximated by

Vjϕ≫1;ξ¼0 ¼ −
4

ffiffiffi
3

p
dV0

ϕ2
e−

ffiffi
6

p
ϕ−2

ffiffi
2

p
d
ϕ: ð3:26Þ

Reinstating the factor wðAÞ, we can now plot the full
potential (see Fig. 7 for an example with d ¼ 1). In the
figure, the ekpyrotic phase comes to an end near ϕek-end ∼ 15.
The potential then comes back up to zero and the kinetic/
bounce phase follows. We should note that for certain larger
values of d the potential slightly overshoots as it comes back
up to zero for ϕ≲ ϕek-end, leading to a small positive bump.
This is caused by the derivatives in the formula for the
potential (3.19) acting on the wðAÞ factor in the super-
potential (also see the discussion in [34]). However, such a
small bump has no noticeable effect on the dynamics, as the
evolution is completely dominated by the kinetic energy of ϕ
at that stage and so the field simply flies over the bump.4

Thus, we have now demonstrated that an ekpyrotic phase
can be embedded into our N ¼ 1 supergravity model, and,

moreover, that the ekpyrotic phase turns off smoothly in
preparation for the bounce phase.

IV. PERTURBATIONS AND STABILITY

In order to verify the trustworthiness of the background
ekpyrotic plus bounce evolution that we have described up
to now, we must check that our model does not contain
dangerous instabilities. The most important such criterion
is the absence of perturbative ghost instabilities–that is, we
must ensure that quadratic perturbations of the kinetic
terms around our background solution contain correct-
sign time-derivative terms (implying that time-dependent
perturbations cost kinetic energy as opposed to releasing
kinetic energy). Otherwise, our background solution would
be catastrophically unstable. This is easily achieved in our
theory. A second criterion is that spatial gradient perturba-
tions should also have the correct sign in order to avoid
gradient instabilities, at least over most of the evolution.
Gradient instabilities result in the growth of perturbations,
and if they go unchecked they signal the breakdown of our
description. As we will see, during the bounce phase
there is a brief period over which gradient instabilities of
the ϕ field are present, as was already described in [19].
However, because this period is very brief, it simply results
in a small growth of the perturbations, and is not dangerous
as such.
What is really new to our analysis here is that we must

also ensure the stability of the second scalar field ξ that is
required by supersymmetry. It turns out that the stability of
ξ is nontrivial, in the sense that it requires us to include an
additional stabilizing term to the original action. We present
a simple example of a stabilizing term, which ensures the
stability of ξ throughout the bounce phase.
Finally, one may wonder if the model we are presenting

can also generate primordial density perturbations in agree-
ment with observations of the cosmic background radiation.
This can indeed occur via the so-called entropic mechanism,
where nearly scale-invariant entropy perturbations (which

FIG. 7 (color online). The ekpyrotic potential corresponding to the superpotential (3.21) in the vicinity of the ξ ¼ 0 line, for b ¼ ffiffiffi
3

p
and d ¼ 1. The ekpyrotic phase occurs at large, decreasing, ϕ and comes to an end near ϕek-end ∼ 15. Then the potential turns off and the
kinetic or bounce phase ensues. In the transverse ξ direction, the potential is essentially flat (closer inspection would reveal a small
positive curvature).

4It is useful to bear in mind that the Universe is contracting
during this phase, so that kinetic energies get significantly blue-
shifted. Falling down the ekpyrotic potential and climbing out of
it again are two highly asymmetric evolutions.
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here correspond to perturbations in the second scalar ξ) are
generated during the ekpyrotic phase, and get converted into
curvature perturbations during the short kinetic phase
preceding the bounce. We will present the detailed con-
ditions for this to happen below.

A. Absence of ghosts

1. Stability of ϕ

Perturbations in the scalar field ϕ are not gauge-invariant
and hence, in order to discuss the stability of the scalar field
driving both the ekpyrotic and the bounce phases, we must
look at the stability of the curvature perturbation ζ (which
corresponds to a local gauge-invariant spacetime-dependent
perturbation of the scale factor). As derived in [35,36], the
quadratic action for ζ is given by

Sð2Þ ⊃
Z

dtd3xaz2
�
_ζ2 −

c2s
a2

ð∂iζÞ2
�

ð4:1Þ

with

z2 ¼ a2 _ϕ2

ðH þ 1
2
g _ϕ3Þ2

�
1

2
kþ 3

2
τ _ϕ2 − 3gH _ϕþ _g _ϕþ 3

4
g2 _ϕ4

�
;

ð4:2Þ

c2s ¼
kþ τ _ϕ2 − 4gH _ϕ − 2gϕ̈ − 1

2
g2 _ϕ4

kþ 3τ _ϕ2 − 6gH _ϕþ 2_g _ϕþ 3
2
g2 _ϕ4

; ð4:3Þ

where c2s has the physical interpretation of being the square
of the speed of propagation of the fluctuations. The absence
of ghosts corresponds to the requirement that z2 be positive
throughout. The fraction in the definition of z2 above is
evidently positive, and so the crucial requirement is that the
expression in the large parentheses be positive. As shown in
Fig. 9, our example easily satisfies this criterion (we are only
plotting the period of the bounce, which is the only timewhen
the question of stability is nontrivial), and thus the curvature
perturbations remain ghost-free throughout.
Likewise, positivity of the square of the speed of sound

c2s is associated with the stability of gradient perturbations.
A plot of c2s is shown in Fig. 10. As can be seen, during the
bounce phase, there is a brief period during which c2s
becomes negative, signalling a brief instability. Comparing
with Fig. 5, we can see that the instability is coincident with
the period of NEC violation. From (4.3), we can further-
more see that away from the bounce the speed of sound
tends to unity from below, such that superluminality as an
obstruction to UV completion can be excluded (cf. [37]).
The numerical solution of the equation of motion

ζ̈ þ
�
H þ 2

_z
z

�
_ζ þ c2sk2

a2
ζ ¼ 0; ð4:4Þ

for the curvature perturbations ζ is however problematic in
this gauge because the denominator ðH þ 1

2
g _ϕ3Þ2 appear-

ing in (4.2) will necessarily become zero in the vicinity of
the bounce (cf. Fig. 8), and thus (4.4) momentarily becomes
singular as H þ 1

2
g _ϕ3 passes through zero. This singularity

shows that the gauge used here (namely constant scalar
field gauge [36]) is not the appropriate choice in the vicinity
of the bounce. This is despite the fact that _ϕ ≠ 0 for the
whole evolution, cf. Figs. 4 and 6. While it is important to
make sure that perturbations of small wavelengths do not
destroy the homogeneous background evolution during the
bounce phase, the observed singularity in (4.4) is not in
itself problematical–such difficulties generically arise when
perturbing about a solution where a background quantity
goes through an extremum. It merely shows that one should
work in a gauge where the perturbation equations remain
well defined throughout. An example for such a suitable
gauge choice would be the harmonic gauge. By use of the
harmonic gauge, the authors of [18] recently carried out a
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g 3

2
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FIG. 8 (color online). This plot shows the evolution of the
quantity H þ 1

2
g _ϕ3 over the time of the bounce.
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t

0.1
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0.5

0.6

0.7
z2 H g 3 2 2 a2 2

FIG. 9 (color online). This plot shows the evolution of the
quantity z2ðH þ 1

2
g _ϕ3Þ2=ða2 _ϕ2Þ over the time of the bounce.

The positivity of this quantity ensures the absence of ghost
instabilities of scalar curvature perturbations.

COSMOLOGICAL SUPER-BOUNCE PHYSICAL REVIEW D 90, 025005 (2014)

025005-9



full numerical study in a simpler (and nonsupersymmetric)
bounce model, and they found that the curvature perturba-
tion indeed grows by a small amount across the bounce
phase.5 We expect similar results to hold in our case and
plan on presenting an analogous analysis adapted to our
model in forthcoming work.

2. Stability of ξ

Supersymmetry requires the presence of a second real
scalar field ξ. Although this field does not contribute to
the background dynamics in our model, its fluctuations are
nevertheless of crucial importance. Indeed, we must verify
under what conditions this second scalar can destabilize the
model that we have presented so far. In order to do so, we
must calculate the action for ξ up to quadratic order in
fluctuations. In the present section, we will discuss the
associated kinetic and gradient terms, while in the next
section we will discuss the stability properties of the scalar
potential in the ξ direction. Since ξ is a scalar field pointing
transverse to the background trajectory in scalar field space,
its fluctuations are automatically gauge-invariant and they
correspond to entropy and isocurvature perturbations [38].
We find that the quadratic action for the time- and space-
derivatives of these fluctuations (i.e. ignoring for now the
perturbations in the mass of the fluctuations) is given by

Sð2Þ⊃
Z

dtd3x

�
a3ð _δξÞ2

�
1

2
kþ1

2
τ _ϕ2þgϕ̈þ1

2
_g _ϕþ 1

12
g2 _ϕ4

�

−að∂iδξÞ2
�
1

2
k−

1

2
τ _ϕ2þgH _ϕ−

1

2
_g _ϕþ 1

12
g2 _ϕ4

��
:

ð4:5Þ

Stability is synonymous with the terms in parentheses
being positive. As things stand, this requirement is not
satisfied—see the solid curves in Figs. 11 and 12. However,
we can easily extend our model to include a suitable
stabilizing term, without affecting the background dynam-
ics. For instance, consider adding the following term to the
higher-derivative coefficient function T,

ΔT ¼ 1

32
cξτðA; A�Þ∂mðA − A�Þ∂mðA� − AÞ; ð4:6Þ

where cξ is a real and positive constant. This adds a
contribution
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FIG. 10 (color online). This plot shows the evolution of the
square of the speed of sound c2s during the bounce phase. A brief
period of instability arises when c2s becomes negative—this will
presumably cause an extra growth of the curvature perturbation
ζ—see however the discussion in the main text concerning the
validity of the gauge choice here.
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FIG. 11 (color online). A plot of the coefficient of time-
dependent fluctuations ð _δξÞ2 in the perturbed Lagrangian.
Positivity ensures the absence of ghost instabilities. The solid
curve indicates that our original Lagrangian contains ghost
instabilities, but with the inclusion of a stabilizing term (4.7)
these ghosts are avoided (dashed curve, a zoom-in would confirm
strict positivity throughout).
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FIG. 12 (color online). A plot of the coefficient of space-
dependent fluctuations ðδξ;iÞ2 in the perturbed Lagrangian.
Positivity ensures the absence of gradient instabilities. The solid
curve indicates that our original Lagrangian contains gradient
instabilities, but with the inclusion of a stabilizing term (4.7)
these instabilities are avoided (dashed curve, a zoom-in would
confirm strict positivity throughout).

5Note that _ϕ goes through zero momentarily in the model of
[18], as opposed to our case.
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1

e
ΔL ¼ −cξτðϕÞ _ϕ4ð∂ξÞ2 ð4:7Þ

to the full component Lagrangian. During the ekpyrotic
phase, this term is negligibly small, both because tðϕÞ ≈ 0
at that stage and due to the smallness of _ϕ4. However,
during the bounce phase we obtain significant additional
contributions to the time and space derivative fluctuation
terms. In our explicit example, we have found that a value
cξ ¼ 1 is sufficient to ensure the absence of ghost insta-
bilities during the bounce phase, which is a sufficient
criterion for stability if one is prepared to tolerate a brief
growth of the ξ perturbations due to gradient instabilities.
Otherwise, a larger value of cξ ≈ 10 eliminates both ghost
and gradient instabilities (see the dashed curves in Figs. 11
and 12). We note that we have provided merely one
example of such a stabilizing term—many other terms
would achieve the same effect. For completeness, we also
plot the square of the sound speed of the ξ fluctuations
(given as usual by the ratio of the space to the time derivative
fluctuation coefficients in the perturbed Lagrangian), when
the stabilising term is included (see Fig. 13). As is evident
from the figure, our background does not lead to super-
luminal propagation of fluctuations. However, we note that
the question of superluminal fluctuations around other
backgrounds in Galileon theories is nontrivial and remains
to be resolved in general (see for instance [13,39]).
We should add a comment about the stability properties

of the Galileon term proportional to gðϕÞ. As demonstrated
in our earlier paper [40], in global supersymmetry this term
leads to ghost instabilities around nontrivial ξ backgrounds
and/or backgrounds with large ϕ̈ contributions, and the best
one can achieve is to have a perturbatively stable back-
ground in an effective field theory context. What we
are showing here is that when coupled to supergravity,
one can indeed ensure the absence of perturbative ghost

instabilities. More specifically, with the inclusion of a
stabilizing term such as the one presented in (4.7), ghost
perturbations are entirely avoided in our model.

B. Entropy perturbations

Up to now, we have described a model that allows for the
Universe to bounce in a nonsingular and controlled manner,
without catastrophic instabilities, and with a prior ekpyrotic
phase ensuring that the Universe enters the bounce phase
with near-perfect spatial homogeneity and isotropy. Thus,
we have provided a viable model for a bounce in super-
gravity, irrespective of the question of the origin of the
primordial density and temperature fluctuations seen in the
cosmic background radiation. These could for example
arise during an inflationary period after the bounce (in
which case we have provided a possible prehistory to
inflation, which might be able to explain some of the large-
scale anomalies seen in the CMB [41–43]) or during a
matter contraction phase before the ekpyrotic phase as
envisaged in [44]. Here, we are interested in the question
whether we can augment our model so as to allow for the
generation of nearly scale-invariant density perturbations
directly during the ekpyrotic phase. (Note that the present
section is independent of the rest of the paper.)
Currently, the best-known way in which this can be

achieved is via the entropic mechanism [45–49], where
scale-invariant entropy perturbations are amplified first,
and are subsequently converted into curvature perturbations
during the kinetic phase preceding the bounce [50].
A conversion can be achieved if the trajectory in scalar
field space bends. Such a bend could easily be incorporated
into our model by adding an effective potential during the
kinetic phase–see [51,52] for a derivation of such a potential.
Alternatively, conversion can occur during reheating at the
bounce [53]. What is really crucial for the model to work is
that the entropy perturbations have to acquire the correct
spectrum. The spectrum is related to the transverse curvature
of the potential, as we will now review. During the ekpyrotic
phase, the equation of motion for the entropy perturbations is
given at linear order (and in Fourier space) by

δ̈ξþ 3H _δξþ
�
k2

a2
þ V;ξξ

�
δξ ¼ 0: ð4:8Þ

In terms of the rescaled variable δΞ ¼ aδξ and in terms of
conformal time dτ ¼ dt=a, this becomes

δΞ00 þ
�
k2 −

a00

a
þ a2V;ξξ

�
δΞ ¼ 0: ð4:9Þ

Defining V ≡ VðϕÞð1 −m2
ξξ

2 þ � � �Þ, and using the ekpyr-
otic background solution (2.12) we obtain

a00

a
− a2V;ξξ ¼ τ2

�
−

ϵ − 2

ðϵ − 1Þ2 −m2
ξ

ϵ − 3

ϵ2

�
; ð4:10Þ
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FIG. 13 (color online). This plot shows the evolution of the
square of the speed of sound c2ξ of the second scalar ξ after
inclusion of the stabilizing term (4.7).
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where ϵ is related to the equation of state w, which was
defined in (2.13), via the usual relation ϵ ¼ 3

2
ð1þ wÞ.

A standard calculation then shows that the solutions (given
in terms of Hankel functions) to this equation are fluctuation
modes with a spectral index

ns ¼ 4 − 2ν; ð4:11Þ

where ν is given by (ν is the index of the Hankel function in
question)

ν2 ¼ 1

4
−

ϵ − 2

ðϵ − 1Þ2 −m2
ξ

ϵ − 3

ϵ2
: ð4:12Þ

Thus, if we want to obtain a nearly scale-invariant spectrum,
ns ≈ 1, we must have ν2 ≈ 9=4 and this in turn requires
(assuming ϵ to be very close to, but a little bigger than, 3)

m2
ξ ≈ −

81

4ðϵ − 3Þ : ð4:13Þ

This shows that the potential must be negatively curved in
the transverse direction. That is, over the field range where
the modes of observational interest are generated, the
potential must be tachyonic. The possible implications of
this fact have been discussed in detail in [54,55].
We now have to compare this requirement with the

transverse curvature of the potential that we have been
using up to now. Starting from (3.21), a straightforward
calculation shows that at large ϕ and up to quadratic order
in ξ the potential is given by

Vjϕ≫1;Oðξ2Þ ≈ V0e
−

ffiffi
6

p
ϕ−2

ffiffi
2

p
d
ϕ

�
−
4

ffiffiffi
3

p
d

ϕ2
þ 4d2

ϕ4

þ ξ2
�
2 −

2
ffiffiffi
3

p
d

ϕ2

��
; ð4:14Þ

where we have written out only the leading terms. This
implies an effective mass for ξ given by

m2
ξ ¼ −

V;ξξ

V

����
ϕ≫1;ξ¼0

≈
ϕ2ffiffiffi
3

p
d

�
1 −

2dffiffiffi
3

p
ϕ2

�
; ð4:15Þ

which in fact corresponds to a stable mass term. Thus, as it
stands, our potential leads to a stable ekpyrotic phase but
not to the generation of a scale-invariant spectrum of
entropy perturbations. However, we can consider adding
an additional term to the Kähler potential, of the form

ΔK ¼ 1

4
ðA − A�Þ4p

�
1ffiffiffi
2

p ðAþ A�Þ
�

¼ ξ4pðϕÞ ð4:16Þ

so that K;AA� is augmented by a term 6ξ2pðϕÞ. This
additional term does not affect any of our preceding
analysis, but leads to a change in the second derivative
of the potential given by

ΔV;ξξjϕ≫1;ξ¼0 ≈ eKK;AA�
ξξjDAWj2

¼ −12pðϕÞV0e
−

ffiffi
6

p
ϕ−2

ffiffi
2

p
d
ϕ

�
3 −

4
ffiffiffi
3

p
d

ϕ2

�
: ð4:17Þ

Thus the total transverse mass squared now becomes (to
leading order at large ϕ)

m2
ξ ¼

V;ξξ

V

����
ξ¼0

≈
1 − 9pðϕÞffiffiffi

3
p

d
ϕ2 ð4:18Þ

Putting all of these results together, we can see that a scale-
invariant spectrum can be obtained for

9pðϕÞ ≈ 81
ffiffiffi
3

p
d

4ϕ2ðϵ − 3Þ þ 1: ð4:19Þ

Thus, from a model-building perspective, we can design
our model such that a nearly scale-invariant spectrum of
perturbations is obtained.
We note that the relation above only needs to be satisfied

over the range of ϕ where the modes of observational
interest are being generated. Since in our model ϵ ≈ 3, we
have the relationship that a change ΔN in the number of
e-folds is related to a change of ϕ via Δϕ ≈ 1.2ΔN . Hence
the modes of observable interest (which are generated
between about 50 and 60 e-folds before the end of the
ekpyrotic phase) correspond to ϕ in the range ϕek-end þ 60
to ϕek-end þ 75. At larger ϕ, it would in fact be desirable if
pðϕÞ approached zero again, since this would make the
potential stable at the beginning of ekpyrosis.
Evidently, simply adding the required term as above is

highly tuned. What is largely responsible for the required
amount of tuning is the fact that the potential for ϕ is only
just steep enough for an ekpyrotic phase. For steeper
potentials (of the form VðϕÞ ¼ −V0e−cϕ with c≳ 10)
the simple relationship V;ϕϕ ≈ V;ξξ would guarantee a
spectral index that is close to scale-invariant, with devia-
tions from scale-invariance of order 1=c2 and thus at the
percent level [56]. Here, however, we have c2 ≈ 6, and thus
deviations from scale-invariance are typically rather large,
and substantial fine-tuning is required in order to obtain a
spectrum in agreement with observations. Thus, in the
present context, the entropic mechanism for producing
density perturbations appears rather unnatural.
An important question would therefore be to see if a

tachyonic mass of the form required here could arise in a
more natural manner, perhaps from an axion field residing
near a maximum of its potential. Another possibility is to
consider variants of the entropic mechanism for producing
density perturbations. Particularly promising is the recently
proposed model with a nonminimal coupling between the
two scalars ϕ and ξ [57,58]. In this model, no unstable
potential for ξ is required. Incorporating this model into
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supergravity, and combining it with a bounce, is currently
work in progress.

V. DISCUSSION

Obtaining a viable, stable model for a nonsingularly
bouncing universe is nontrivial since in a flat universe the
null energy condition must be violated during the bounce
phase. No type of matter is currently known which can
achieve this. However, near the big bang experimentally
validated physical theories currently break down, and we
know that new physics must come into play. In string
theory, for example, new types of matter are predicted to
play a fundamental role, including in particular negative-
tension branes [52,59–63]. These contain negative energy
density, and thus might be able to lead to effective
violations of the null energy condition from the four-
dimensional point of view. This raises the question of
whether it is conceivable that nonsingular bounces can
occur in nature.
In the present paper, we have provided an argument for

answering this question in the affirmative. We have
considered a supergravitational version of scalar field
theories with higher-derivative kinetic terms, of a form
that may arise in the dynamical description of branes
[11,12,64]. More specifically, we have made use of ghost
condensate and Galileon theories, and in this context we
have shown that it is possible to construct a stable non-
singular bounce model. This result is entirely nontrivial,
since one might have expected that the stability and rigidity
associated with supergravity theories would not have
allowed NEC-violating, yet perturbatively stable, solutions.
Given that supergravity theories are expected to be good
approximations to string theory at the energy scales that are
relevant here (i.e. energy scales a few orders of magnitude
below the full quantum gravity scale), our results provide
an indication that nonsingular bounces are indeed allowed
in string theory.
Our proof-of-principle that nonsingular bounces exist in

supergravity raises interesting issues, especially in the
context of cosmology. On the one hand, it lends further
credence to ekpyrotic or cyclic models [15,65,66] as viable
alternatives to inflationary models (with predictions in
good agreement with data, plus a number of conceptual
advantages [56]). On the other hand, the existence of
cosmic bounces dramatically changes the predictions in
a landscape context (see [67–73] for recent work in that
direction).
That said, a lot of work remains to be done. In our

bounce model, we had to use a number of specific
functions, which we allowed ourselves to choose freely.
An important question is, therefore, how robust are non-
singular bounces in a technical sense? That is, within this
class of models, what are the minimum requirements for a
bounce to occur? Can one formulate a bounce model in
supergravity in which the ordinary kinetic term does not

have to switch sign (i.e. without a ghost condensate),
perhaps based purely on Galileons [74–76]? Can one
construct models that require less tuning for producing
primordial density perturbations with the observed proper-
ties? And is it possible to find an explicit embedding of our
model in string theory? These are interesting questions that
we leave for future work.
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APPENDIX A: COMPONENT EXPANSION OF
THE SUPERSPACE LAGRANGIAN

In this section, we write out in detail the bosonic
component terms of the supergravity Lagrange function

L ¼ −
1

8

Z
d2Θ2EðD̄2 − 8RÞ½−3e−KðΦ;Φ†Þ=3

þ ðDβΦDβΦD̄_βΦ
†D̄_βΦ†TðΦ;Φ†; ∂mΦ; ∂nΦ†;…ÞÞ

þ ðDβΦDβΦD̄_βD̄
_βΦ†GðΦ;Φ†ÞÞ� þ H:c:a

þ
Z

d2Θ2EWðΦÞ þ H:c: ðA1Þ

Here Φ is a chiral superfield with components

Φj≡ A; D2Φj≡ −
1

4
F; ðA2Þ

where the bar denotes the lowest component and with
A;F being complex scalar fields. The superpotentialW is a
holomorphic function of Φ alone, while the Kähler poten-
tial K is a Hermitian function of Φ and Φ†. T is an arbitrary
function of Φ;Φ† and their spacetime derivatives, but with
all spacetime indices contracted (it transforms however as a
(2,2) tensor in the Kähler manifold in which the chiral fields
take their values (for details see [20]) and the function G
appearing in the Galileon term is taken to depend only on
Φ;Φ†). The first summand yields the supergravity version
of gravity coupled to a complex scalar field with two-
derivative kinetic term and is given, after integration by
parts and omission of surface terms, by (cf. [33])

1

e
LX ¼

1

e

Z
d2Θ2E

�
3

8
ðD̄2−8RÞe−KðΦ;Φ†Þ=3þWðΦÞ

�
þH:c:

ðA3Þ
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¼ e−K=3
�
−
1

2
R −

1

3
MM� þ 1

3
baba

�
þ 3

�∂2e−K=3

∂A∂A�

�
ð∂A · ∂A� − FF�Þ

þ ibm
�
∂mA

∂e−K=3
∂A − ∂mA� ∂e−K=3

∂A�

�
þMF

∂e−K=3
∂A þM�F� ∂e−K=3

∂A� −WM� −W�M þ ∂WF þ ∂W�F�: ðA4Þ

The supergravity extension of X2T is given by

LX2 ¼ −
1

8

Z
d2Θ2EðD̄2 − 8RÞðDβΦDβΦD̄_βΦ

†D̄_βΦ†TÞ þ H:c:

¼ 8eðð∂AÞ2ð∂A�Þ2 − 2jFj2ð∂A · ∂A�Þ þ jFj4ÞðT þ T†Þj: ðA5Þ

For the Galileon term, we use the superspace expression

1

e
L3j0f ¼ −

1

8e

Z
d2Θ2EðD̄2 − 8RÞðDβΦDβΦD̄_βD̄

_βΦ†GÞ þ H:c:

¼ 1

32
DαDαD̄ _αD̄ _αðDβΦDβΦD̄_βD̄

_βΦ†GÞj þ 1

24
MDαDαðDβΦDβΦD̄_βD̄

_βΦ†GÞj

þ 1

8
M�D̄ _αD̄ _αðDβΦDβΦD̄ _βD̄

_βΦ†GÞj þ H:c:

¼ þ8ð∂AÞ2□A�Gj þ 8ð∂A�Þ2□AG†j þ i
16

3
ð∂AÞ2bmA�

;mGj − i
16

3
ð∂A�Þ2bmA;mG†j

þ i
32

3
jFj2bmA;mGj − i

32

3
jFj2bmA�

;mG†j þ 16

3
MFð∂A · ∂A�ÞGj þ 16

3
M�F�ð∂A · ∂A�ÞG†j

−
8

3
MFjFj2Gj − 8

3
M�F�jFj2G†j þ 16F�F;mA;mGj þ 16FF�;mA�

;mG†j
− 2ð∂A�Þ2F�ðD2GÞj − 2ð∂AÞ2FðD2GÞ†j þ 2jFj2FðD̄2GÞj þ 2jFj2F�ðD̄2GÞ†j
− i4jFj2A;aσ

a
α _αðDαD̄ _αGÞj þ i4jFj2A�

;aσ
a
α _αðDαD̄ _αGÞ†j; ðA6Þ

where again we omitted all terms including fermions. As it stands, the sum of the above actions is still in Jordan
frame due to the coupling of the Ricci scalar to the scalar fields. To go to Einstein frame, we Weyl rescale

LX þ LX2 þ L3 ⟶
WEYL

LW according to

ena ⟶
WEYL

enaeK=6: ðA7Þ

Under this transformation, the spin connection transforms as

ωnml ⟶
WEYL

eK=3
�
ωnml þ

1

6
K;mgnl −

1

6
K;lgnm

�
; ðA8Þ

such that

DnA;b ⟶
WEYL

e−K=6
�
DnA;b −

1

6
K;nA;b þ

1

6
eblA;mðK;mgnl − K;lgnmÞ

�
ðA9Þ

or simply

□A⟶
WEYL

e−K=3
�
□Aþ 1

3
K;mA;m

�
: ðA10Þ

This leads to the Lagrangian (omitting again total derivatives)

MICHAEL KOEHN, JEAN-LUC LEHNERS, AND BURT A. OVRUT PHYSICAL REVIEW D 90, 025005 (2014)

025005-14



1

e
LW ¼ −

1

2
R −

1

12
K;mK;m þ 3eK=3

�∂2e−K=3

∂A∂A�

�
ð∂A · ∂A�Þ − 3e2K=3

�∂2e−K=3

∂A∂A�

�
jFj2

þ 1

3
bmbm −

i
3
bmðK;AA;m − K;A�A�

;mÞ −
1

3
eK=3MFK;A −

1

3
eK=3M�F�K;A�

−
1

3
eK=3jMj2 − e2K=3WM� − e2K=3W�M þ e2K=3W;AF þ e2K=3W�

;A�F�

þ 8ðð∂AÞ2ð∂A�Þ2 − 2eK=3jFj2ð∂A · ∂A�Þ þ e2K=3jFj4ÞðT þ T �Þ þ 8ð∂AÞ2□A�Gþ 8ð∂A�Þ2□AG�

þ 8

3
ð∂AÞ2K;mA�

;mGþ 8

3
ð∂A�Þ2K;mA;mG� þ i

16

3
ð∂AÞ2bmA�

;mG − i
16

3
ð∂A�Þ2bmA;mG�

þ i
32

3
eK=3jFj2bmA;mG − i

32

3
eK=3jFj2bmA�

;mG� þ 16

3
eK=3MFð∂A · ∂A�ÞGþ 16

3
eK=3M�F�ð∂A · ∂A�ÞG�

−
8

3
e2K=3MFjFj2G −

8

3
e2K=3M�F�jFj2G� þ 16eK=3F�F;mA;mGþ 16eK=3FF�;mA�

;mG�

− 2eK=3ð∂A�Þ2F�ðD2GÞW j − 2eK=3ð∂AÞ2FðD2GÞ†W j þ 2e2K=3jFj2FðD̄2GÞW j þ 2e2K=3jFj2F�ðD̄2GÞ†W j
− i4eK=3jFj2A;mσ

m
α _αðDαD̄ _αGÞW j þ i4eK=3jFj2A�

;mσ
m
α _αðDαD̄ _αGÞ†W j; ðA11Þ

where T ≡ TjW and G≡GjW . In order to disentangle the terms depending on the auxiliary fields M and F, we now apply
the field redefinition,

M ¼ N − K;A�F� þ 16F�ð∂A · ∂A�ÞG� − 8eK=3F�jFj2G�; ðA12Þ

and obtain

1

e
LW ¼ −

1

2
R −

1

12
K;mK;m þ 3eK=3

�∂2e−K=3

∂A∂A�

�
ð∂A · ∂A�Þ − 3e2K=3

�∂2e−K=3

∂A∂A�

�
jFj2

þ 1

3
bmbm −

i
3
bmðK;AA;m − K;A�A�

;mÞ þ
1

3
eK=3jK;AFj2 −

1

3
eK=3jNj2 − e2K=3WN� − e2K=3W�N

þ e2K=3ðDAWÞF þ e2K=3ðDAWÞ�F� þ 8ðð∂AÞ2ð∂A�Þ2 − 2eK=3jFj2ð∂A · ∂A�Þ þ e2K=3jFj4ÞðT þ T �Þ
− 16e2K=3WFð∂A · ∂A�ÞG − 16e2K=3W�F�ð∂A · ∂A�ÞG� þ 8eKWFjFj2Gþ 8eKW�F�jFj2G�

−
16

3
eK=3K;A� jFj2ð∂A · ∂A�ÞG −

16

3
eK=3K;AjFj2ð∂A · ∂A�ÞG� þ 8

3
e2K=3K;A� jFj4Gþ 8

3
e2K=3K;AjFj4G�

þ 28

3
eK=3jFj2ð∂A · ∂A�Þ2jGj2 − 28

3
e2K=3jFj4ð∂A · ∂A�ÞjGj2 þ 26

3
eKjFj6jGj2 þ 8ð∂AÞ2□A�Gþ 8ð∂A�Þ2□AG�

þ 8

3
ð∂AÞ2K;mA�

;mGþ 8

3
ð∂A�Þ2K;mA;mG� þ i

16

3
ð∂AÞ2bmA�

;mG − i
16

3
ð∂A�Þ2bmA;mG�

þ i
32

3
eK=3jFj2bmA;mG − i

32

3
eK=3jFj2bmA�

;mG� þ 16eK=3F�F;mA;mGþ 16eK=3FF�;mA�
;mG�

− 2eK=3ð∂A�Þ2F�ðD2GÞW j − 2eK=3ð∂AÞ2FðD2GÞ†W j þ 2e2K=3jFj2FðD̄2GÞW j þ 2e2K=3jFj2F�ðD̄2GÞ†W j
− i4eK=3jFj2A;mσ

m
α _αðDαD̄ _αGÞW j þ i4eK=3jFj2A�

;mσ
m
α _αðDαD̄ _αGÞ†W j: ðA13Þ

The equation of motion for the vector auxiliary field bm reads

bm ¼ i
2
ðA;mK;A − A�

;mK;A� Þ − 16ieK=3jFj2A;mGþ 16ieK=3jFj2A�
;mG� − 8ið∂AÞ2A�

;mGþ 8ið∂A�Þ2A;mG�: ðA14Þ

As this equation is algebraic, we are entitled to insert it directly into the Lagrangian, with the result
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1

e
LW ¼ −

1

2
R − K;AA� ð∂A · ∂A�Þ þ K;AA�eK=3jFj2 − 16

3
eK=3jFj2ðA;mK;A − A�;mK;A�ÞðA;mG − A�

;mG�Þ

þ 8

3
ðA;mK;A − A�;mK;A� Þðð∂A�Þ2A;mG� − ð∂AÞ2A�

;mGÞ −
1

3
eK=3jNj2 − e2K=3WN� − e2K=3W�N

þ e2K=3ðDAWÞF þ e2K=3ðDAWÞ�F� þ 8ðð∂AÞ2ð∂A�Þ2 − 2eK=3jFj2ð∂A · ∂A�Þ þ e2K=3jFj4ÞðT þ T �Þ
− 16e2K=3WFð∂A · ∂A�ÞG − 16e2K=3W�F�ð∂A · ∂A�ÞG� þ 8eKWFjFj2Gþ 8eKW�F�jFj2G�

−
16

3
eK=3K;A� jFj2ð∂A · ∂A�ÞG −

16

3
eK=3K;AjFj2ð∂A · ∂A�ÞG� þ 8

3
e2K=3K;A� jFj4Gþ 8

3
e2K=3K;AjFj4G�

þ 8ð∂AÞ2□A�Gþ 8ð∂A�Þ2□AG� þ 8

3
ð∂AÞ2K;mA�

;mGþ 8

3
ð∂A�Þ2K;mA;mG�

þ 16eK=3F�F;mA;mGþ 16eK=3FF�;mA�
;mG� − 2eK=3ð∂A�Þ2F�ðD2GÞW j − 2eK=3ð∂AÞ2FðD2GÞ†W j

þ 2e2K=3jFj2FðD̄2GÞW j þ 2e2K=3jFj2F�ðD̄2GÞ†W j − i4eK=3jFj2A;mσ
m
α _αðDαD̄ _αGÞW j

þ i4eK=3jFj2A�
;mσ

m
α _αðDαD̄ _αGÞ†W j þ 28

3
eK=3jFj2ð∂A · ∂A�Þ2jGj2 − 28

3
e2K=3jFj4ð∂A · ∂A�ÞjGj2 þ 26

3
eKjFj6jGj2

þ 64

3
ðA�;mð∂AÞ2 þ 2eK=3A;mjFj2Þ2G2 þ 64

3
ðA;mð∂A�Þ2 þ 2eK=3A�;mjFj2Þ2G�2

−
128

3
ðA�;mð∂AÞ2 þ 2eK=3A;mjFj2ÞðA;mð∂A�Þ2 þ 2eK=3A�;mjFj2ÞjGj2: ðA15Þ

The equation of motion for N is also algebraic and remarkably simple, as it is given by

N ¼ −3eK=3W; ðA16Þ

just as in ordinary two-derivative supergravity. Plugging it back into the Lagrangian, we obtain

1

e
LW ¼ −

1

2
R − K;AA� ð∂A · ∂A�Þ þ K;AA�eK=3jFj2 þ 3eKjWj2 − 16

3
eK=3jFj2ðA;mK;A − A�;mK;A� ÞðA;mG − A�

;mG�Þ

þ 8

3
ðA;mK;A − A�;mK;A� Þðð∂A�Þ2A;mG� − ð∂AÞ2A�

;mGÞ þ e2K=3ðDAWÞF þ e2K=3ðDAWÞ�F�

þ 8ðð∂AÞ2ð∂A�Þ2 − 2eK=3jFj2ð∂A · ∂A�Þ þ e2K=3jFj4ÞðT þ T �Þ − 16e2K=3WFð∂A · ∂A�ÞG

− 16e2K=3W�F�ð∂A · ∂A�ÞG� þ 8eKWFjFj2Gþ 8eKW�F�jFj2G� −
16

3
eK=3K;A� jFj2ð∂A · ∂A�ÞG

−
16

3
eK=3K;AjFj2ð∂A · ∂A�ÞG� þ 8

3
e2K=3K;A� jFj4Gþ 8

3
e2K=3K;AjFj4G� þ 8ð∂AÞ2□A�Gþ 8ð∂A�Þ2□AG�

þ 8

3
ð∂AÞ2K;mA�

;mGþ 8

3
ð∂A�Þ2K;mA;mG� þ 16eK=3F�F;mA;mGþ 16eK=3FF�;mA�

;mG�

− 2eK=3ð∂A�Þ2F�ðD2GÞW j − 2eK=3ð∂AÞ2FðD2GÞ†W j þ 2e2K=3jFj2FðD̄2GÞW j þ 2e2K=3jFj2F�ðD̄2GÞ†W j
− i4eK=3jFj2A;mσ

m
α _αðDαD̄ _αGÞW j þ i4eK=3jFj2A�

;mσ
m
α _αðDαD̄ _αGÞ†W j

þ 28

3
eK=3jFj2ð∂A · ∂A�Þ2jGj2 − 28

3
e2K=3jFj4ð∂A · ∂A�ÞjGj2 þ 26

3
eKjFj6jGj2

þ 26

3
ðA�;mð∂AÞ2 þ 2eK=3A;mjFj2Þ2G2 þ 26

3
ðA;mð∂A�Þ2 þ 2eK=3A�;mjFj2Þ2G�2

−
27

3
ðA�;mð∂AÞ2 þ 2eK=3A;mjFj2ÞðA;mð∂A�Þ2 þ 2eK=3A�;mjFj2ÞjGj2: ðA17Þ

Finally we can derive the equation of motion of the remaining auxiliary field, F, for which we obtain
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0 ¼ K;AA�F þ eK=3ðDAWÞ� þ 16FðeK=3jFj2 − ð∂A · ∂A�ÞÞðT þ T �Þþ16F;aðA;aG − A�;aG�Þ

−
16

3
FðA;mK;A − A�;mK;A� ÞðA;mG − A�

;mG�Þ − 16eK=3W�ð∂A · ∂A�ÞG�

þ 8e2K=3WF2Gþ 16e2K=3W�jFj2G� −
16

3
K;A�Fð∂A · ∂A�ÞG −

16

3
K;AFð∂A · ∂A�ÞG�

þ 32

3
eK=3K;A�FjFj2Gþ 32

3
eK=3K;AFjFj2G� −

16

3
K;mFA�

;mG� − 16F□A�G� − 16FA�
;mG�;m

− 2eK=3ð∂A�Þ2ðD2GÞW j − 2eK=3ð∂AÞ2F∂F� ðD2GÞ†W j
þ 2e2K=3F2ðD̄2GÞW j þ 2e2K=3jFj2F∂F�ðD̄2GÞW j þ 4e2K=3jFj2ðD̄2GÞ†W j
− i4eK=3FA;mσ

m
α _αðDαD̄ _αGÞW j þ i4eK=3FA�

;mσ
m
α _αðDαD̄ _αGÞ†W j

þ 28

3
eK=3Fð∂A · ∂A�Þ2jGj2 − 29

3
e2K=3FjFj2ð∂A · ∂A�ÞjGj2 þ 26eKFjFj4jGj2

þ 29

3
e2K=3FjFj2½ð∂AÞ2G2 þ ð∂A�Þ2G�2� þ 28

3
eK=3ð∂A · ∂A�ÞF½ð∂AÞ2G2 þ ð∂A�Þ2G�2�

−
210

3
e2K=3ð∂A · ∂A�ÞFjFj2jGj2 − 29

3
eK=3Fð∂AÞ2ð∂A�Þ2jGj2: ðA18Þ

Here we can see that the equation of motion for F is not algebraic as usual (and moreover it is quintic), and so it cannot be
eliminated directly in general. In our model, we have two cases of interest, and it turns out that in both these cases the
equation for F is straightforward to solve: the first is the ekpyrotic phase, where the functions T and G are zero. In that case,
the equation for F can be solved as usual, i.e.

Fekpyrotic ¼ −eK=3K;AA�ðDAWÞ�; ðA19Þ

resulting in the Lagrangian

1

e
LW
ekpyrotic ¼ −

1

2
R − K;AA� ð∂A · ∂A�Þ − eKðK;AA� jDAWj2 − 3jWj2Þ: ðA20Þ

The second case of interest is the bounce, where the superpotential W is zero. Given that G is a function of Φ;Φ† only,
without derivatives, it follows that D2Gj ∝ F, and thus every term in the equation for F contains F itself. This implies that

Fbounce ¼ 0 ðA21Þ

is a valid solution, and is in fact the same solution that would apply in the absence of higher-derivative terms whenW ¼ 0.
Thus this solution corresponds to what in [20] we termed the ordinary branch. Adopting this solution, the Lagrangian
during the bounce phase reduces to

1

e
LW
bounce ¼ −

1

2
R − K;AA� ð∂A · ∂A�Þ þ 8ð∂AÞ2ð∂A�Þ2ðT þ T �Þ

þ 8ð∂AÞ2□A�Gþ 8ð∂A�Þ2□AG�

þ 16

3
ð∂AÞ2ð∂A�Þ2ðK;A�Gþ K;AG� þ 4ðA;mG − A�;mG�ÞðA;mG − A�

;mG�ÞÞ: ðA22Þ
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