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We study the 2þ 1 dimensional Abelian Higgs model defined on a spatial torus at critical self-coupling.
We propose a method to compute the quantum contribution to the mass of the Abrikosov-Nielsen-Olesen
vortex and to multivortex energies. The one-loop quantum correction to multivortex energies is computed
analytically at the critical value of the torus area (Bradlow limit). For other values of the area one can set up
an expansion around this critical area (Bradlow parameter expansion). The method is explained and the
next-to-leading term explicitly evaluated. To this order, the resulting energies depend on the torus periods,
but not on the vortex positions.
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I. INTRODUCTION

Abrikosov-Nielsen-Olesen (ANO) vortices are stringlike
objects which appear as classical solutions in spontane-
ously broken Abelian gauge theories. They are important
structures occurring in ordinary superconductors [1] and
corresponding solutions of the relativistic Abelian Higgs
model [2]. Their stability has a topological origin and this
has triggered many theoretical and mathematical works
[3–5]. It is simpler to view these vortices as solutions in
2þ 1 dimensions. The total magnetic flux through space
is quantized and can be referred to as vortex number.
The dimensionality of the space of solutions is twice the
vortex number and can be interpreted as given by the two-
dimensional positions of a set of minimum-flux vortices.
A particularly attractive situation occurs at a critical value
of the Higgs self-coupling, at which the gauge and Higgs
field masses coincide. The minimum energy equations
reduce then to the first order Bogomol’nyi equations [6].
At the classical level the vortex mass is given simply by
the minimum energy of the system with one unit of flux.
It turns out that the minimum energy grows linearly with
the vortex number. This can be described by saying that
the interaction energy of vortices vanishes irrespective of
their relative positions. This is quite remarkable given the
nonlinear character of the field equations.
Although, many properties of the vortex solutions are

known exactly, there is no analytic expression for these
solutions. The single vortex case is easy to describe
numerically since the solutions are rotational invariant
[7]. Thus, it can be expressed in terms of functions of a

single variable (the distance to its center). Much more
difficult is to obtain multivortex solutions numerically with
a priori given vortex centers [8,9]. In a previous paper [10]
one of the present authors and Alberto Ramos derived a
method to obtain analytic control of the solutions. This
follows by considering the Abelian Higgs model on a
2-torus and expanding around a particular value of the area,
for which the solution is known analytically. Considering
enough terms in the expansion one can obtain good
approximations to the solution for large torus sizes and
even extrapolate to infinite size, where the solution tends to
that of the plane. What is more interesting is that the
expansion can be developed for multivortex solutions as
well, and for any location of the vortex centers. Having
analytic control allows many possible applications involv-
ing vortices. One such case is to study vortex scattering,
within the geodesic approximation [11], which was done in
Ref. [12]. This leads to computations which, even for the
plane, are at least as precise as those obtained by other
numerical techniques.
In this paper we exemplify this idea even further by

studying quantum corrections to vortex masses and inter-
action energies. Given the extension of the present work
we will just explain the methodology and compute the
leading and next-to-leading terms in the expansion (known
as Bradlow parameter expansion). This fails too short for a
reasonable extrapolation to vortices on the plane. Extension
to higher orders can be done along the same guidelines,
with a straightforward but technically demanding effort.
The quantum energies of topological objects to one-loop

order receive two types of contributions. First, one has the
Casimir energies, which follow by computing the differ-
ence of ground state energies between the topological
nontrivial and trivial sector. This subtraction should get
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rid of the most ultraviolet divergent contributions, since
topology is a global constraint. In addition, there are
corrections to the classical energy due to the renormaliza-
tion of the Lagrangian parameters. Both contributions are
of order ℏ.
Although the final result should be finite, at intermediate

steps one will be manipulating divergent quantities. In this
work, we have made use of the zeta-function regularization
technique. This method is commonly used in the literature
of quantum corrections to topological defects [13–18]. In
particular, it is interesting to mention the study of super-
symmetric vortices in Refs. [14] and [19]. The situation
here is much better than for ANO vortices because of the
analytical control on the solutions (as for Bogomol'nyi-
Prasad-Sommerfield monopoles [20]), but also because
supersymmetry ensures cancellation of the contributions
of the bosons and fermions to the vacuum energy.
Nevertheless, one still has to deal with the contributions
coming from finite renormalization.
For the purely bosonic case, the calculation of the

quantum mass of self-dual vortices on the plane was
addressed in Refs. [15–17], using a mixture of numerical
and analytical techniques. The problem becomes easier to
handle for circular invariant multivortices, including the
single vortex case. Nevertheless, the situation for spatially
separated vortices is important, as it answers the question of
whether quantum effects produce an attraction or repulsion,
absent at the classical level. From that respect our meth-
odology is much more powerful, since one can fix the
positions of the multiple vortices in any way and the
analytical techniques apply equally well for all situations.
For the rest of this section,wewill describe the layoutof this

paper. In Sec. II we particularize the Abelian Higgs model to
the case of a spatial 2-torus with arbitrary constant metric
tensor andanyvalue of thevortexnumberq. Themetric canbe
parametrized in terms of the total area of the torus A and a
complex parameter τ with positive imaginary part. We
perform several manipulations to simplify the study of the
classical and quantum system. In particular, we recall that
when the area attains a critical valueAc the classical solutions
become extremely simple. Furthermore, one can obtain
analytical control on the classical solutions in an expansion
on the parameter ϵ ¼ 1 −Ac=A. This is essentially the
Bradlow parameter expansion proposed in Refs. [10,12].
Our presentation here is slightly different, and in our opinion
more elegant, than the one used in those papers.
For the study of the quantum system we use quantization

in the A0 ¼ 0 gauge. This is the simplest and most
appropriate for computing energies. In this gauge the
physical Hilbert space is restricted to states that satisfy
the Gauss constraint. Equivalently, physical states are those
which are gauge invariant under the remaining time-
independent gauge transformations. Gauge invariance
implies that, when studying the spectrum of the quadratic
fluctuations in the potential, gauge degrees of freedom are

zero modes. Thus, they have a vanishing contribution to
the ground state quantum energy. Thus, in computing the
vacuum energy in a given topology, it is not necessary to fix
the spatial gauge and no ghosts have to be added.
The previous comments become clear in the derivation of

the quantum energies for critical area, performed in Sec. III.
The calculation is fairly simple, but we take advantage to
present certain technical aspects necessary for the calcu-
lation at any order. In particular, the ideas explained earlier
about the separation of gauge and nongauge degrees of
freedom are easily checked. Finally, the Casimir energy
calculation employing the zeta-function regularization
shows the cancellation of the leading singularity, as
expected. Indeed, this turns out to be the only singularity
in the analytical continuation of the energies.
In the following section we explain the way in which the

previous result can be extended to other values of the area
using the Bradlow parameter expansion. As an example we
perform all the steps to produce the next-to-leading order
correction to the masses. Part of the result depends on the
calculation of the spectrum of the quantum fluctuation
operator, which uses standard perturbative methods of
quantum mechanics. The calculation of the eigenvalues
itself is presented in Appendix A. These results are then
used in combination with the zeta-function technique to
produce the Casimir energies to this order.
The contribution of the quantum correction induced by

the renormalization of the parameters is performed in
Appendix B. The results depend on the renormalization
prescription. A prescription is adopted in which the
renormalization of the parameters is based on the behavior
of the theory in the trivial topological sector and for large
areas. This makes sense, since typically one should not
change the bare Lagrangian of the model when changing
the area, the flat metric or the vortex number. Thus, we set
up a renormalization prescription within our A0 ¼ 0 con-
text based on the behavior of the effective potential under
space-time independent background fields. With the
renormalization of parameters done in this way, we
compute the counterterm contribution to the quantum
energy which depends on the area and on the number of
vortices, but not on the location of these vortices or the
metric shape parameter τ. With this result, all dependence
of the quantum energies on these parameters should come
from the Casimir energies themselves. This dependence is
finite and emerges from our calculation. This and other
aspects are analyzed in the concluding Sec. V.

II. THE ABELIAN HIGGS MODEL ON THE TORUS

In this section we will present the basic details of
the model that we are studying, and derive some of the
formulas to be used later. We are considering the Abelian
Higgs model living on a two-dimensional spatial torus with
nonvanishing flux. The Lagrangian density of the model is
given by
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L ¼ −
1

4
FμνFμν þ 1

2
ðDμϕÞ�ðDμϕÞ − e2λ

8
ðjϕj2 − v2Þ2

ð1Þ

where ϕðxÞ is a complex scalar field, henceforth referred
as Higgs field, and AμðxÞ is the electromagnetic vector
potential. In our notation the covariant derivative is given
by Dμ ¼ ∂μ − ieAμðxÞ.
Usually the model is considered in flat Minkowski space,

but it is easily generalizable to compact spatial manifolds
[21]. Here we will specialize to a two dimensional torus
with flat metric. The torus is characterized by the two
periods, given by two linearly independent vectors. It is
possible to perform a linear change of coordinates and map
the torus to a unit square with opposite sides identified. The
points can then be parametrized by two real coordinates
0 ≤ xi < 1. With this transformation the spatial Euclidean
metric tensor is mapped onto a constant metric tensor gij. In
these coordinates the area of the torus is A ¼ detðgÞ≡ jgj.
As we will see, the properties of the model become simple
at a particular value of this area. One can study other values
of the area by a systematic expansion method introduced in
Refs. [10,12], and referred as Bradlow parameter expan-
sion. In the aforementioned references the expansion was
carried to sufficiently high order so as to provide a good
description of multivortex classical solutions on an infinite
plane. Having analytical control enables many other
possible calculations. Here we will show how the formal-
ism allows us also to compute quantum corrections to the
masses analytically. Our presentation differs slightly from
the one used in Ref. [10]. The main difference is precisely
the use of the square coordinates xi. The Bradlow param-
eter expansion can then be viewed as an expansion around a
particular value gð0Þ of the constant Riemannian metric.
This provides a more elegant formulation of the expansion.
Now let us introduce one complex vector wi such

that

ðwiÞ�wj ¼ gij þ iϵijI ð2Þ

where we use the standard notation such that gij are the
components of the inverse of g. The wi vector is defined
up to an overall phase. However, one can fix this freedom
by imposing ℑðw2Þ ¼ 0, ℜðw2Þ > 0 (the symbols ℑ and
ℜ stand for the imaginary and real parts of a complex
number). With this choice one easily finds that I ¼ � 1ffiffiffiffi

jgj
p

where jgj is the determinant of the metric tensor. The
optimal choice of sign is connected with the sign of
the flux of the magnetic field through the torus. From
now on, without loss of generality, we will take this flux to
be positive and correspondingly I ¼ 1ffiffiffiffi

jgj
p .

The Higgs field is to be seen as a section of a U(1)
associated bundle on the torus. The electromagnetic field is
a connection on this bundle. As customarily done in the

physics literature, we will work with a trivialization of the
bundle. The Higgs field ϕðxÞ can then be seen as an
ordinary complex function of the coordinates satisfying
peculiar boundary conditions:

ϕðxþ eðiÞÞ ¼ eiϑiðxÞϕðxÞ ð3Þ

where eðiÞ stands for the unit vector in the ith direction.
The topology of the bundle is encoded in the transition
functions eiϑiðxÞ.
Now we construct the complex operator D as follows

D ¼ w1D1 þ w2D2 ð4Þ
where wi are the components of the complex vector
introduced before. Let us compute

D†D ¼ −ðwiÞ�wjDiDj

¼ −gijDiDj − ϵijFij
e

2
ffiffiffiffiffijgjp

¼ −DiDi −
eBffiffiffiffiffijgjp ð5Þ

where the magnetic field is Fij ¼ ϵijB. Similarly we
arrive at

½D;D†� ¼ 2eBffiffiffiffiffijgjp ð6Þ

One can use the previous definitions and results to
reexpress the potential energy of the model with this
metric. It is given by

Y
i

�Z
1

0

dxi
�� ffiffiffiffiffijgjp

2
jDϕj2 þ eB

2
jϕj2 þ 1

2
ffiffiffiffiffijgjp B2

þ
ffiffiffiffiffijgjp

e2λ
8

ðv2 − jϕj2Þ2
�
: ð7Þ

The integrand can be rewritten as

ffiffiffiffiffijgjp
2

jDϕj2 þ 1

2
ffiffiffiffiffijgjp

�
Bþ e

ffiffiffiffiffijgjp
2

ðjϕj2 − v2Þ
�2

þ eBv2

2
þ

ffiffiffiffiffijgjp
e2ðλ − 1Þ
8

ðv2 − jϕj2Þ2: ð8Þ

The integral of the third term is proportional to the flux of
the magnetic field through the torus. The boundary con-
ditions impose that this flux is quantized e

R
B ¼ 2πq,

where q is an integer called first Chern number of the
bundle (vortex number in the physics literature). Its value is
determined by the choice of the transition functions eiϑiðxÞ.
Making use of a parity transformation we can always bring
the flux and q to take positive values. A look at the
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remaining terms of Eq. (8) shows that, at the critical value
λ ¼ 1, the potential energy attains its minimum for fields
satisfying the Bogomol’nyi equations:

Dϕ ¼ 0 ð9Þ

B ¼ e
ffiffiffiffiffijgjp
2

ðv2 − jϕj2Þ: ð10Þ

From now on we will restrict ourselves to this critical case.
One way to encode the flux condition is to write

B ¼ 2πq
e þ δB, where the integral of δB over space van-

ishes. We will parametrize the metric as gij ¼ κgð0Þij and fix

the normalization of the reference metric gð0Þ to satisfyffiffiffiffiffiffiffiffiffiffi
jgð0Þj

q
¼ 4πq

v2e2 ≡Ac. Notice that the complex vector wi
0

associated to gð0Þ is related to the previous one by
wi ¼ 1ffiffi

κ
p wi

0. In a similar fashion we can use the new vector

wi
0 to define Dð0Þ, connected to the previous one by

D ¼ 1ffiffi
κ

p Dð0Þ. The advantage of our construction is that

of keeping the dependence on the conformal factor κ
explicit. With these new definitions the potential energy
(at the critical coupling λ ¼ 1) takes the form:

πqv2 þ
Y
i

�Z
1

0

dxi
��

2πq
e2v2

jDð0Þϕj2

þ v2e2

8πqκ

�
δBþ 2πqð1 − κÞ

e
þ 2πqκ

v2e
jϕj2

�
2
�

ð11Þ

The choice of scale of the reference metric gð0Þ is such that,
for κ ¼ 1, this potential energy takes its minimal value
(equal to πqv2) for δB ¼ ϕ ¼ 0. In other words, for the
critical area (A ¼ Ac ¼ 4πq

v2e2) the solution of the
Bogomol’nyi equations is very simple: vanishing Higgs
field and constant magnetic field.
We continue to fix our field redefinitions by rewriting the

vector potential as

Ai ¼ Að0Þ
i þ δAi ð12Þ

where Að0Þ
i is a specific vector potential leading to a

constant magnetic field 2πq
e . Rather than working with

δAiðxÞ directly, we will be working with the complex
field δAðxÞ≡ w1

0δA1ðxÞ þ w2
0δA2ðxÞ and its complex con-

jugate δA�ðxÞ. With this choice, the complex covariant
derivative Dð0Þ can be written as

Dð0Þ ¼ wi
0ð∂i − ieAð0Þ

i − ieδAiÞ≡ ~D − ieδA ð13Þ

where the operator ~D satisfies

½ ~D; ~D†� ¼ e2v2 ð14Þ

which is, up to a scale, the commutation relation of creation
and annihilation operators. Finally, one can express δB in
terms of δA as

δB ¼ −
4πq
v2e2

ℑð ~∂δA�Þ ð15Þ

with ~∂ ¼ w1
0∂1 þ w2

0∂2.
Before reexpressing the potential energy in terms of the

two complex fields δAðxÞ and ϕ, let us write down the
kinetic term of the Hamiltonian. In the A0 ¼ 0 gauge we
have:

Y
i

�Z
1

0

dxi
�

2πq
e2v2

½κj _ϕj2 þ jδ _Aj2�: ð16Þ

It is convenient to eliminate the explicit dependence on the
initial metric by rescaling the fields in an obvious way:

ϕ →
ϕ

jgj1=4 ð17Þ

δA →
δA

jgð0Þj1=4 : ð18Þ

The kinetic term then takes the canonical form

Y
i

�Z
1

0

dxi
�
1

2
½j _ϕj2 þ jδ _Aj2�: ð19Þ

To simplify notation we have preserved the symbols ϕðxÞ
and δA in referring to the rescaled fields.
The final expression of the potential energy after our

field redefinitions and massaging is

πqv2 þ
Y
i

�Z
1

0

dxi
�

1

2κ

�
jDð0Þϕj2 þ

�
−ℑð ~∂δA�Þ

− v
ffiffiffiffiffiffi
πq

p ðκ − 1Þ þ ve2

4
ffiffiffiffiffiffi
πq

p jϕj2
�

2
�

ð20Þ

with Dð0Þ ¼ ~D − i e2v
2
ffiffiffiffi
πq

p δA. It is interesting to spend a few

lines in explaining the dimensionality and dependencies of
the previous expression. Obviously v2 has dimensions of
energy and provides its natural unit. Neither q, κ or the
coordinates xi have dimensions. By our choice of coor-
dinates, the dimensions of length square are transferred to

the metric tensor. Hence, both ~D and ~∂ have dimensions of
inverse length, whose natural unit is ev. Thus, the fluc-
tuation operator and its eigenvalues will be measured in
e2v2 units. This implies that the quantum contribution to
the energies will become proportional to ev. This can be
easily understood if we realize that evℏc has dimensions of
energy. From now on, however, we will continue to work in
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natural units ℏ ¼ c ¼ 1. Finally, the rescaled background
fields ϕ and δA will appear naturally proportional to 1=e.
For later purposes it is convenient to write down an

explicit parametrization of the critical area metric:

gð0Þ ¼ AcḡðτÞ ð21Þ

where Ac ¼ 4πq
v2e2 is the critical area and ḡðτÞ is a con-

formally equivalent metric of unit determinant. The metric
ḡðτÞ is dimensionless and can be parametrized in terms of
a complex number τ as follows:

ḡðτÞ ¼ 1

ℑðτÞ
�

1 ℜðτÞ
ℜðτÞ jτj2

�
: ð22Þ

The two periods that define the torus can be changed into an
equivalent set (generating the same lattice) by a change of
coordinates belonging to SLð2;ZÞ. This generates a class
of equivalent metric tensors ḡ, which amount to trans-
forming τ by an element of the modular group. Our results
are then expected to be modular invariant. We recall that the
modular group is generated by two transformations
T∶ τ ⟶ τ þ 1 and S∶ τ ⟶ −1=τ. This allows us to
restrict τ to a fundamental domain, which can be chosen
to be given by jτj ≥ 1 and jℜðτÞj ≤ 1

2
.

Having presented the model and the basic fields, we will
now briefly describe how the vortex masses and energies
are defined up to one loop order. In each topological sector
(characterized by a value of q), we compute the minimum
energy of the system. This has a classical contribution
corresponding to the potential energy of the minimum
energy solutions. In our case, the latter are the solutions of
the Bogomol’nyi equations, and the corresponding energy
is πqv2. In addition, the ground-state energy receives
quantum corrections. At one-loop this correction follows
by expanding the Hamiltonian around classical solutions,
and keeping only quadratic terms in the fluctuations. The
quadratic form is given in terms of an operator V̂, whose
diagonalization defines the normal modes. Quantizing the
system, we get a system of decoupled harmonic oscillators
whose gap energies are given by the square root of the
eigenvalues of the aforementioned operator. The ground-
state energy is the corresponding for the system of
oscillators, namely one half of the sum of the energies
for each oscillator. As is well known, this sum is divergent
and some regularization method is needed to handle the
result.
The vortex Casimir mass EC is defined as the difference

of minimum energies (classical + quantum) between the
q ¼ 1 and q ¼ 0 sectors, for the same metric. Multivortex
Casimir energies are equally defined by subtracting the
energy of the zero-flux sector from that with q > 1. A priori
this can depend not only on the metric parameter τ but also
on the location of the vortices. However, it is expected that
the leading ultraviolet divergence is independent of these

positions and on the value of q. Hence, the subtraction of
the regularized quantities might be convergent, or at least
less divergent than the individual vacuum energies. This
methodology is the standard one in computing finite
Casimir energies.
To compute the vortex mass one must add an extra

contribution, which is also of order ℏ. This comes from
quantum corrections to the classical energies, which are
due to the renormalization of the Lagrangian parameters.
We will refer to this extra contribution as counterterm
mass ER.
The difficulty in carrying out the procedure described

above to compute the vortex mass and multivortex energies
is that, in general, the solutions of the Bogomol’nyi
equations are not known in closed analytic form. This
forces the program to be performed numerically, as
explained in the Introduction. On the contrary, our method
allows an analytic treatment based on expanding the result
around particular values of the metric associated to a critical
value for the area of the torus. For that value, as mentioned
earlier, the solutions of the Bogomol’nyi equations are
known and very simple, allowing the whole program to be
carried over to completion using analytical techniques. This
will be done in the next section. For other values of the area
of the torus, one can set up an expansion around the critical
metric and compute all the terms in the expansion in a
systematic way. The method is explained in Sec. IV, and the
leading order correction evaluated explicitly as an example.

III. VORTEX MASS FOR THE CRITICAL
AREA CASE

To exemplify the whole procedure, let us consider here
the case of critical area κ ¼ 1. As mentioned previously, the
classical solution for q ≠ 0 in this case is extremely simple:
ϕ ¼ δA ¼ 0. Thus, the quadratic piece in the expansion of
the potential is given by

Y
i

�Z
1

0

dxi

�
1

2
½j ~Dϕj2 þ ðℑð ~∂δA�ÞÞ2�; ð23Þ

where ℑ stands for imaginary part. In the sector of
Higgs fluctuations, the operator to diagonalize is ~D† ~D.
Comparison with the creation-annihilation operator algebra
shows that the eigenvalues of this operator are given by
e2v2n for all non-negative integers n. In the gauge potential
sector the operator to diagonalize is just obtainable in terms
of ~∂, which can be diagonalized with plane waves eipixi . The
eigenvalues are given by jwi

0pij2 ¼ ‖~p‖20 ¼ ðgð0ÞÞijpipj.
Our previous discussion has been extremely naive.

We have skipped several relevant technicalities: boundary
conditions, zero modes and gauge invariance. In the
following subsections we will consider them in turn. In
so doing we will develop the necessary machinery to deal
with the computation at any value of κ.
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A. Basis of field space

The question of boundary conditions is very relevant.
The fields and their fluctuations satisfy homogeneous
boundary conditions. For the Higgs field ϕðxÞ, they are
given in Eq. (3). The space of fields satisfying these
boundary conditions defines a pre-Hilbert space Hq. We
can follow a standard quantum mechanical formulation to
study this space and the operators acting on it. This
formalism was developed extensively in the appendix of
Ref. [10], and here we will only review the necessary
results. The reader is addressed to that reference for a
detailed description.
One of the main results is that the spaceHq decomposes

naturally into q orthogonal subspaces:

Hq ¼ ⊕q−1
s¼0Hq;s ð24Þ

The decomposition is associated to a symmetry group.
This group is a discrete subgroup of the translation group
(combined with gauge transformations). The operators ~D†

and ~D act on each of these subspaces without changing the
value of s. As mentioned previously, these operators satisfy
the same algebra as creation-annihilation operators up to a
multiplicative factor. Hence, we can introduce a basis of
Hq;s using eigenstates of the number operator ~D† ~D=ðe2v2Þ.
Incidentally, this basis is the same one that diagonalizes
the fluctuation Lagrangian for the critical area Eq. (23). The
spectrum is given by e2v2n, for any non-negative integer n.
Thus, the result is the one anticipated previously, but now
we know that each eigenvalue is q-fold degenerate,
corresponding to the different values of s.
In what follows, we will not need the explicit form of the

basis states Ψn;sðxÞ, which satisfy the standard orthogon-
ality conditions

Y
i

�Z
1

0

dxi
�
Ψ�

n;sðxÞΨn0;s0 ðxÞ ¼ δn;n0δs;s0 : ð25Þ

Furthermore, the action of the operator ~D on these states
can be read out trivially from the harmonic oscillator
formulas

~DΨn;sðxÞ ¼ ev
ffiffiffi
n

p
Ψn−1;sðxÞ ð26Þ

~D†Ψn;sðxÞ ¼ ev
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Ψnþ1;sðxÞ ð27Þ

where n ∈ Zþ∪f0g and s ¼ 0;…; q − 1.
Now we proceed to study the space of δA fields. From

the previous considerations one concludes that they are
periodic on the two-torus with period 1. To diagonalize the
fluctuation Hamiltonian at critical area, one can indeed
choose a basis of plane waves ei~p ~x. However, the boundary
conditions impose that the momentum is given by
~p ¼ 2π~k, where ~k is a vector of integers. Plugging this

plane-wave state into the fluctuation formula Eq. (23)

we see that the corresponding eigenvalue is 4π2‖~k‖20,
where ‖~k‖0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð0Þijkikj

q
as expected.

Thus, collecting the two results, we can write down the
formula for the quantum contribution to the ground-state
energy in the q ≠ 0 sector at critical area:

qev
X∞
n¼0

ffiffiffi
n

p þπ
X∞

k1¼−∞

X∞
k2¼−∞

‖~k‖0: ð28Þ

In getting to this formula we simply added one half of the
square root of the previously found eigenvalues of the
fluctuation operator. There are some subtleties, though,
concerning the degeneracy of each eigenvalue. The eigen-
vectors have to be taken to define a real vector space. Thus,
the q-fold degeneracy of the Higgs fluctuation potential
turns into a 2q-fold degeneracy for this vector space over
the real numbers. For the gauge field part, each plane wave
contributes a single eigenvalue as we will explain below.

B. Zero modes and gauge invariance

Zero modes are eigenstates of eigenvalue zero of the
fluctuation operator. Although they do not contribute to the
quantum mass, it is interesting to take a look at them to
understand their origin. By looking at Eq. (28) one sees,
first of all, that there are 2q zero modes associated to n ¼ 0.
In addition, there is another zero mode corresponding to
constant vector potentials (~k ¼ 0). These zero modes reflect
the dimensionality of the moduli space of classical sol-
utions, which is 2q (see the analysis later on).
In addition, there are an infinite number of zero modes

associated to gauge invariance. At this level, this shows up
in the fact that the potential depends on ℑð ~∂δA�Þ. Half of
the degrees of freedom drop out when taking the imaginary
part. To separate gauge-dependent and gauge-invariant
degrees of freedom it is necessary to modify the Fourier
decomposition as follows:

δAðxÞ ¼
X∞

k1¼−∞

X∞
k2¼−∞

ei2π~k ~xþiαð~kÞĜð~kÞ ð29Þ

where αð~kÞ is defined by the expression

wi
0ki ¼ eiαð~kÞ‖~k‖0: ð30Þ

Now let us write Ĝð~kÞ ¼ Ĝ1ð~kÞ þ iĜ2ð~kÞ where Ĝið~kÞ ¼
Ĝ�

i ð−~kÞ. If we now substitute in the expression for

ℑð ~∂δA�Þ, one sees that only Ĝ1ð~kÞ appears in the result.
Thus, the gauge degrees of freedom are associated to

Ĝ2ð~kÞ. This can also be seen by Fourier analyzing a pure
gauge term AiðxÞ ¼ ∂iφðxÞ, and noticing that it has only

Ĝ2ð~kÞ coefficients.
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Special treatment is required for the ~k ¼ 0 modes of
the vector potential which, as commented earlier, also give
rise to zero modes. Strictly speaking, these two are gauge-
invariant modes. On the other hand, one of the n ¼ 0
modes of the Higgs field is actually a gauge mode
associated to global gauge transformations ϕ ⟶ eiαϕ.
Thus, altogether we got 2qþ 1 gauge invariant zero modes.
This does not match with the 2q parameters of the moduli.
As we will see later, it turns out that one of the zero modes
is only accidentally so for critical area. The reader is
addressed to Ref. [10] for a more detailed explanation of
the topology and dimensionality of the moduli space
(See also Ref. [22]).

C. Subtraction of the q ¼ 0 energy

The calculation for vanishing flux is quite different. We
show here the result for an arbitrary value of the metric g.
The minimum energy solution is given by a constant Higgs
field ϕðxÞ ¼ v and a vanishing vector potential AiðxÞ ¼ 0,
up to gauge transformations. The quadratic fluctuation
terms around this vacuum are well known, being a simple
example of the Higgs mechanism. In addition to gauge
modes, the degrees of freedom correspond to 3 real massive
fields. One is the real Higgs field and the other two are the
components of the massive vector potential. At the critical
value of the self-coupling (λ ¼ 1), the mass of the photon
and of the Higgs field are both equal to ev. Hence, the
vacuum energy becomes

3

2

X∞
k1¼−∞

X∞
k2¼−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2‖~k‖2 þ e2v2

q
: ð31Þ

Notice that the formula is valid for every value of the
constant metric gij. The dependence appears through
‖~k‖2 ¼ gijkikj.
As mentioned previously, the vortex Casimir energy EC

is obtained by subtracting the q ¼ 0 vacuum energy from
the q ¼ 1 one. For larger values of the flux (q > 1) the
same procedure leads to the multivortex energy. Notice,
however, that the same metric has to be used for the
subtracted piece. Since the critical value of the area depends
on q, so will be the case for the vacuum energy subtraction.
In what follows we will try to work as much as possible
keeping the flux q arbitrary, and write down the final
formulas to make this dependence explicit.
In order to perform a subtraction of two divergent

quantities we need to handle them by some regularization
procedure. Here we will use the method of analytical
continuation, also known as zeta-function technique. Let
us explain the method in a generic way before applying it to
our situation.
Let λi denote the eigenvalues of the fluctuation operator

V̂ in increasing order. The quantum contribution to the
ground-state energy at one loop is given by

EQ ¼ ev
2

X∞
i¼1

ffiffiffiffi
λi

p
ð32Þ

with 0 < λi ≤ λj for i < j. We have factored out from V̂
the quantity ev having dimensions of mass and providing,
as explained earlier, the natural unit for quantum energies.
The quantities λi are hence dimensionless.
Although, the previous expression for EQ is divergent,

we can define a function of the complex variable s by

EQðsÞ≡ ev
2

X∞
i¼1

ðλiÞ12−s ð33Þ

which will be convergent for ℜðsÞ > s0 > 0. To make the
expression well defined for s > 1=2 one must, in addition,
exclude zero modes from the sum. Formally, the quantum
energy is the analytical continuation of this function to
s ¼ 0. Obviously, the divergence of the initial one-loop
energy reflects itself in the appearance of singularities as
we move from the region of analyticity to the point s ¼ 0.
It could happen, however, that if we subtract two divergent
expressions, the corresponding s-dependent functions are
such that the divergences cancel each other, and one gets a
smooth continuation. This necessarily happens whenever
the initial expression is finite. As we will see later, this is
indeed the case for our vortex energies.
A good way to evaluate EQðsÞ is to rewrite it as

EQðsÞ ¼
ev

2Γðs − 1=2Þ
Z

∞

0

dxxs−3=2
X
i

e−xλi

¼ ev
2Γðs − 1=2Þ

Z
∞

0

dxxs−3=2 Trðe−xV̂Þ ð34Þ

where the operator e−xV̂ is called the heat-kernel of the
operator V̂. For x > 0 its trace is well defined. The
divergence at s ¼ 0 appears because the trace does not
vanish strongly enough as x ⟶ 0 to make the integration
convergent at the lower limit.
Let us apply these relations to the case of the multivortex

energy at critical metric (or area). The one-loop quantum
energy at non-trivial topology EQðsÞ is given by Eq. (28).
It is the sum of two terms. The analytical continuation of
the first one, coming from the Higgs field fluctuations,
can be easily recognized as qevζðs − 1=2Þ, where ζðxÞ is
Riemann zeta-function. This function is analytic for
ℜðsÞ > 3=2, is well defined at s ¼ 0, and has a simple
pole with unit residue at s ¼ 3=2. The second term, coming
from the vector potential, can be defined using the
corresponding heat kernel, whose trace is

F ðx=qÞ ¼
X∞

k1¼−∞

X∞
k2¼−∞

e−xξ ð35Þ
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where the dimensionless quantity ξ is given by

ξ≡ 4π2

e2v2
‖~k‖20 ¼

4π2

e2v2
ðgð0ÞÞijkikj ¼

π

q
ḡijðτÞkikj ð36Þ

and ḡðτÞ is the conformally equivalent metric of unit
determinant introduced earlier. Notice that the function
F ðxÞ is indeed equal to the 2-dimensional Riemann theta
function Θðz;ΩÞ, as given for example in Ref. [23], for
z ¼ 0 andΩ ¼ −ixðḡðτÞÞ−1. The properties of this function
realize the invariance under transformations of the modular
group in the complex parameter τ.
Using the definition of F ðxÞ and combining it with the

ζ-function term, we get the analytical continuation of the
one-loop quantum energy given by

Eð0Þ
Q ðsÞ ¼ evqζðs − 1=2Þ þ evqs−1=2

2Γðs − 1=2Þ
×
Z

∞

0

dxxs−3=2ðF ðxÞ − 1Þ ð37Þ

where the superscript (0) recalls that the result is valid for
the critical area case. The function is well defined for
ℜðsÞ > 3=2. The second term also develops a pole at
s ¼ 3=2. This can be deduced using the modular invariance
of the theta function, which implies that the leading
behavior of F ðxÞ for x ⟶ 0 is

F ðxÞ ¼ ðdetðΩÞÞ−1=2 þ � � � ¼ 1

x
þ � � �

where the dots represent terms with powers of the expo-
nential of −1=x. To display the singularity explicitly,
we can add and subtract a term 1

x e
−x to the integrand.

One gets

Eð0Þ
Q ðsÞ ¼ evqζðs − 1=2Þ þ evqs−1=2

2ðs − 3=2Þ þ
evqs−1=2

2Γðs − 1=2Þ

×
Z

∞

0

dxxs−3=2
�
F ðxÞ − 1 −

e−x

x

�
ð38Þ

where the integral is well defined for ℜðsÞ > − 1
2
.

A similar treatment can be done for the one-loop vacuum
energy in the trivial topology sector. This time, however,
we will do the calculation for an arbitrary value of the
metric g ¼ κgð0Þ. Using Eq. (31) and the previous defi-
nitions we get

E∅ðsÞ ¼
3ev
2

X
~k

�
ξ

κ
þ 1

�
1=2−s

¼ 3evðκqÞs−1=2
2Γðs − 1=2Þ

Z
∞

0

dxxs−3=2e−κqxF ðxÞ: ð39Þ

To explicitly display the singularity of the integral we might
add and subtract 1=x from F ðxÞ to get to

E∅ðsÞ ¼
3evκq

2ðs − 3=2Þ þ
3evðκqÞs−1=2
2Γðs − 1=2Þ

×
Z

∞

0

dxxs−3=2e−κqx
�
F ðxÞ − 1

x

�
: ð40Þ

The integral part is now an entire function and the only
singularity resides in the single pole at s ¼ 3=2. The fact
that the residue is proportional to κ shows that there is a
divergent contribution to the energy which is extensive
and, hence, proportional to the area. We expect a similar
behavior for the most divergent contribution to the energy
for nontrivial topology.
Coming back to the critical area case, we can set κ ¼ 1

in the previous formula to get Eð0Þ
∅ ðsÞ, which should be

subtracted from Eð0Þ
Q ðsÞ. One sees that the pole at s ¼ 3=2

cancels out in the difference, and the whole expression
becomes regular down to ℜðsÞ ¼ −1=2. According to our
previous considerations, we interpret this as evidence that
the vortex and multivortex Casimir energies are indeed
finite quantities, and their value can be obtained by setting
s ¼ 0 in the difference. The result is given by

Eð0Þ
C ¼ ev

�
qζð−1=2Þ þ q −

1

3
ffiffiffi
q

p
�
þ ev
2

ffiffiffi
q

p Γð−1=2Þ

×
Z

∞

0

dxx−3=2
�
F ðxÞð1 − 3e−qxÞ

− 1þ 1

x
ð3e−qx − e−xÞ

�
: ð41Þ

As commented in the Introduction, the quantum vortex
energy results from adding to this result the ℏ contribution

to the classical energy Eð0Þ
R . This follows from the renorm-

alization of the parameters in the Lagrangian. This extra
term, however, depends on the renormalization prescription
that is adopted. In Appendix B we set up a prescription that
comes out quite natural within our formulation. Combining
Eq. (41) with this result [Eq. (B15)] we get

Eð0Þ ¼ Eð0Þ
C −

39

32
qev: ð42Þ

The new term changes the numerical value but has no
influence on the dependence of our result on q and τ that we
will now analyze.
The quantum contribution to the vortex mass can be

obtained by setting q ¼ 1 in Eq. (42). The terms which do
not involve an integral add up to −0.75997. On the other
hand, the integral concentrates all the dependence on the
metric parameter τ. It attains its minimum value 0.169259
for τ ¼ eiπ=3, which adds up to a quantum vortex mass of
−0.590711 in ev units. Going back to the Euclidean metric
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coordinates, we can see that this value of τ corresponds to
the periods characteristic of a triangular lattice of vortices.
The value of the energy corresponding to a square lattice
(τ ¼ i) is −0.589877, which gives a very small difference.
It is remarkable that the quantum correction gives rise to a
minimum energy configuration which coincides to the
vortex lattice obtained in type II superconductors.
The situation changes considerably for other values of q.

At large values, the dominant contribution comes from
the first two terms in Eq. (41). This produces a linear
dependence with q and slope −0.426636ev. Adding up
the classical energy, which is also linear in q, we get
M ¼ πv2 − 0.426636ev. The latter value is, henceforth,
the energy per vortex on a large vortex situation, and can be
interpreted as an alternative estimate of the vortex mass.
Clearly the quantum contribution becomes sizable when
e=v is large enough.
Corrections to the linear behavior are proportional to

1=
ffiffiffi
q

p
, up to exponentially suppressed terms. The coef-

ficient of the 1=
ffiffiffi
q

p
term is dominated by the photon energy

contribution and depends on the metric parameter τ. This
time, however, it is maximal at τ ¼ eiπ=3 and minimal along
the line τ ¼ ir, becoming negative divergent at infinite r.
Using properties of integrals of the Jacobi theta function
one can calculate the coefficient of the 1=

ffiffiffi
q

p
term, up to

terms exponentially suppressed in r to be

−
r3=2ffiffiffi
q

p ζð3Þ
4π3=2

−
r−1=2ffiffiffi

q
p

ffiffiffi
π

p
12

ð43Þ

For r ∼ 6q this term becomes comparable with the linear
term in q.

IV. BRADLOW PARAMETER EXPANSION
OF QUANTUM ENERGIES

In the previous section we evaluated the quantum
correction to the vortex mass on a spatial torus of critical
area. In this section we will show how it is possible to
extend this result to other values of the area. This is done by
setting up a power expansion in the conformal factor
ðκ − 1Þ. The methodology has been used previously in
Ref. [10] to obtain an analytic expression for the multi-
vortex field configurations at critical coupling: solutions of
the Bogomol’nyi equations. With sufficiently high order
calculations, one obtains a competitive description of the
solutions on the plane. An advantage of these analytic
expressions is that they facilitate other calculations involv-
ing vortices, such as their scattering behavior [12]. Here we
will explain how one can set up a similar expansion for the
quantum corrections to the vortex masses. The leading term
is given by the result of the previous section and the next to
leading term will be computed in the present one.
Before going into details, let us enumerate briefly the

different steps involved in the procedure. As explained
previously, the one-loop quantum contribution follows by

calculating the spectrum of the operator V̂ determining the
quadratic fluctuations around classical solutions of the
equations of motion. In our case, these are just the solutions
of the Bogomol’nyi equations. It is precisely in this step
where one makes use of the results of Ref. [10], by obtaining
a series expansion of these solutions in powers of the square
root of ϵ ¼ ðκ − 1Þ=κ. Substituting these background fields
onto the expression of the fluctuation operator, one arrives to
an equivalent expansion for this operator

V̂ ¼
X∞
n¼0

ϵn=2V̂ðnÞ: ð44Þ

Its eigenvalues also admit an expansion

λi ¼ λð0Þi þ
X∞
p¼1

ϵpλðpÞi ð45Þ

involving only integer powers of ϵ. The coefficients λðpÞi can
be obtained by applying the standard technique, analogous
to that employed in quantum mechanics when using
perturbation theory.
The final step is to plug this result into the analytically

continued formulas for the ground-state quantum energy
EQðsÞ and expand the result in powers of ϵ to give

EQðsÞ ¼
ev

2Γðs − 1=2Þ
Z

∞

0

dxxs−3=2

×
X0

i

e−xλ
ð0Þ
i

�
1þ

X∞
p¼1

ϵp
Xp

l¼1

ð−xÞl
l!

ciðp; lÞ
�

ð46Þ

where

ciðp; lÞ ¼
X∞

k1;k2;…;kl¼1

δ

�X
ka ¼ p

�Yl
a¼1

λðkaÞi : ð47Þ

Finally, as done before, the total quantum energy is obtained
by subtracting the contribution of trivial topology, extrapo-
lating to s ¼ 0 and adding the counterterm contribution.
In the following subsections we will apply the above

procedure to the calculation of the quantum vortex energies
to order ϵ. In that case p ¼ l ¼ 1 and the coefficient
cið1; 1Þ ¼ λð1Þi . This allows us to circumvent an important
complication arising when there are degenerate levels at
lowest order. If degeneracy is accidental it is broken by
higher order corrections. This implies a diagonalization
procedure within the subspace associated to the same
lowest order eigenvalue λð0Þi . However, for the calculation
of the mass to order ϵ, all we need is the sum of the λð1Þi
within that space, i.e. the trace of the operator in the
degenerate space. This avoids the much more involved
problem of computing the splittings and eigenstates.

QUANTUM CORRECTIONS TO VORTEX MASSES AND ENERGIES PHYSICAL REVIEW D 90, 025004 (2014)

025004-9



A. Solutions of the Bogomol’nyi equations

In terms of our main complex fields ϕ and δA, the
Bogomol’nyi equations can be read off from the form of
the potential Eq. (20):

~Dϕ ¼ i
e2v
2

ffiffiffiffiffiffi
πq

p δAϕ ð48Þ

ℑð ~∂δA�Þ ¼ −v
ffiffiffiffiffiffi
πq

p ðκ − 1Þ þ ve2

4
ffiffiffiffiffiffi
πq

p jϕj2: ð49Þ

For κ ¼ 1 the solution is given by ϕ ¼ δA ¼ 0. Hence,
the idea is simple: express the solution as a power series
in

ffiffiffiffiffiffiffiffiffiffiffi
κ − 1

p
or

ffiffiffi
ϵ

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
κ − 1

p
=

ffiffiffi
κ

p
. The coefficients of

this expansion can be obtained iteratively. The occurrence
of the square root of κ − 1 can be understood if we integrate
over space the second Bogomol’nyi equation. One gets

Z
d2xjϕj2 ¼ v20ðκ − 1Þ ð50Þ

where v0 ¼
ffiffiffiffiffiffi
4πq

p
e . From this equation one concludes that

the Higgs field ϕ is proportional to v0
ffiffiffiffiffiffiffiffiffiffiffi
κ − 1

p
. Apart from

this normalization factor, all the remaining corrections
involve integer powers of ϵ. For example, notice that the
left-hand side of Eq. (49) is of order ϵ. Hence, δA starts at
order ϵ. Plugging this in Eq. (48) one gets a correction of
order ϵ3=2 to ϕ, and so on and so forth. In summary, δA can
be expanded in integer powers of ϵ and ϕ in half-integer
powers.

Obviously, in finding the solutions one must take proper
care of the boundary conditions. The appropriate boundary
conditions are valid for the solutions as well as for the
fluctuations, and were explained in the previous section.
The ϕ field belongs to the space Hq, and hence can be
expanded in the basis Ψn;s. On the other hand, δA is
periodic on the torus and can be expanded in our modified
Fourier expansion [Eq. (29)] in terms of coefficients Ĝ1ð~kÞ
and Ĝ2ð~kÞ.
One might wonder about how does the multiplicity of

the Bogomol’nyi solutions arises. First of all, one can fix
the gauge by requiring that the coefficients Ĝ2ð~kÞ vanish.
Another freedom is associated with translation invariance
and this can be fixed by setting Ĝ1ð~k ¼ 0Þ ¼ 0. The
remaining multiplicity is fixed, as we will see, by fixing
the lowest order terms in the expansion. This is one of
powers of this method, which allows obtaining multivortex
solutions with arbitrary centers.
In any case, it is not our purpose to describe in detail the

methodology to get results to higher order in ϵ, since that
was the subject of Ref. [10]. In that reference we gave
two procedures to compute the corrections. One method,
described in the appendix of that paper, uses the terminol-
ogy of a quantum mechanical description, despite the fact
that the problem is indeed classical. The pre-Hilbert space
is given by the space of Higgs fieldsHq, a basis of which is
provided by the functionsΨn;sðxÞ. One can define operators
Ûð~kÞ acting on Hq, and amounting to multiplication by

e2πi~k ~x. The matrix elements of these operators on the basis
states will be the main formula needed to perform all the
calculations. The result, which we reproduce here, is

Xs0s
mnð~kÞ≡ hm; s0jÛð~kÞjn; si

¼
Z

d2xΨ�
m;s0 ðxÞe2πi~k ~xΨn;sðxÞ

¼ Us0sð~kÞeiðm−nÞβð−1ÞðMþnÞe−
ξ
2ξ

jm−nj
2 ×

XM
j¼0

ð−1Þj
ffiffiffiffiffiffiffiffiffiffi
n!m!

p
ξj

j!ðM − jÞ!ðjþ jm − njÞ!

¼ Us0sð~kÞeiðm−nÞβð−1ÞðMþnÞe−
ξ
2ξ

jm−nj
2 ×

ffiffiffiffiffiffi
M!

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM þ jm − njÞ!p Lðjm−njÞ

M ðξÞ ð51Þ

where M ¼ minðm; nÞ, β ¼ αð~kÞ þ π=2 and ξ ∝ ‖~k‖20 is
the quantity introduced in the previous section. The

function Lðjm−njÞ
M ðxÞ denotes a generalized Laguerre poly-

nomial. All the s; s0 dependence sits in the unitary q × q

matrix Uð~kÞ, given by

Us0sð~kÞ ¼ δs0sþk1e
−iπk1k2=qe−2πisk2=q ð52Þ

where the δ is to be taken modulo q. For the single vortex
case (q=1) this is just e−iπk1k2 . The symbols Xs0s

mn can be

regarded as the components of a matrix X which satisfies

Xð−~kÞ ¼ X†ð~kÞ.
Let us conclude this subsection by performing the

program up to leading order in ϵ. The solution for ϕðxÞ
to lowest order is given by the solution of Eq. (48) with
vanishing right-hand side. This is proportional to the
ground state of the corresponding harmonic oscillator:

ϕ̄ðxÞ ¼ ffiffiffi
ϵ

p
v0

Xq

s¼1

csΨ0;sðxÞ ð53Þ
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where the constants cs are the components of a
q-dimensional complex vector of unit norm. These con-
stants encode the multiplicity of the solutions and are
related to the position of the vortices (see Ref. [10]). For the
single vortex case (q ¼ 1) c1 is just a phase.
To solve for δA to this order, we simply have to substitute

the previous expression in the right-hand side of Eq. (49)
and use Eq. (29) and Eq. (51) to obtain

Ḡ1ð~kÞ ¼ −
ϵv0
2

ffiffiffi
ξ

p e−
ξ
2uð~kÞ ð54Þ

where uð~kÞ ¼ c�t Utsð−~kÞcs carries the dependence on the
multivortex moduli parameters. Notice that the equation
only constrains Ḡ1. Taking Ḡ2 to zero amounts to a choice
of gauge for the background field solution, which we will
adopt. In addition, for simplicity we also fix to zero the
component associated to ~k ¼ 0. Results do not depend on
these choices.

B. Spectrum of quantum fluctuations

Having found the minima of the potential in the last
subsection, we now expand the fields around these sol-
utions as follows

ϕ ⟶ ϕ̄þ φ ð55Þ

δA ⟶ δ̄Aþ δa ð56Þ

and plug these into the expression of the Lagrangian
keeping only terms quadratic in the quantum fluctuation
fields φ and δa. In our case the result is

δV ¼
Y
i

�Z
1

0

dxi
�

1

2κ

�
jð ~D − iCδ̄AÞφ − iCϕ̄δaj2

þ ð−ℑð ~∂δa�Þ þ C
2
ðϕ̄φ� þ ϕ̄�φÞÞ2

�
ð57Þ

where we introduced the constant C ¼ ev=v0. Indeed, the
whole potential is proportional to e2v2

κ so we can write (in a
rather symbolic notation)

δV ¼ e2v2

2κ
ðhφj; hδajÞV̂

� jφi
jδai

�
ð58Þ

in terms of a Hermitian operator V̂, acting on the space of
fluctuation fields φ and δa, associated respectively to the
Higgs field and the vector potential. Our goal is to obtain
the eigenvalues λi of this operator. To do so, we substitute
the background fields [ϕ̄ðxÞ and δ̄AðxÞ] by their expansion
in powers of

ffiffiffi
ϵ

p
derived in the previous section. We then

obtain

V̂ ¼ V̂ð0Þ þ ϵ1=2V̂ð1=2Þ þ ϵV̂ð1Þ þOðϵ3=2Þ: ð59Þ

We might use indices to specify on which of the fluctuation
fields is the operator acting:

V̂ ¼
�
V̂11 V̂12

V̂21 V̂22

�
: ð60Þ

Since ϕ̄ and δ̄A are expandable in odd and even powers offfiffiffi
ϵ

p
, respectively, one concludes that the off-diagonal terms

(V̂12 ¼ V̂21) and the diagonal ones (V̂ii) have the same
property, respectively. From this, one easily concludes that
the eigenvalues are expandable in integer powers of ϵ:

λ ¼
X∞
m¼0

ϵmλðmÞ: ð61Þ

The coefficients λðmÞ can be determined by standard
quantum mechanical techniques to be described below.
The first step is to diagonalize V̂ð0Þ, the operator

corresponding to critical area. This was done in the
previous section. The eigenstates of V̂ð0Þ

11 will be labeled
jn; s; σi and correspond to the functions Ψn;sðxÞ for σ ¼ þ
and iΨn;sðxÞ for σ ¼ −. As mentioned earlier, we have to
consider two states (σ ¼ �1) because we want to work with
real vector spaces. The corresponding eigenvalue is n, and
does not depend on s or σ. Thus, to lowest order its
degeneracy is 2q, but this might be broken by higher order
corrections. Nevertheless, for the purpose of computing the
next correction all we need is the trace of V̂ in the space
characterized by eigenvalue n: δλn. Applying standard
perturbative techniques the linear correction in ϵ is given by

δλn ¼ ϵ
Xq−1

s¼0

X
σ¼�1

hn; s; σjðV̂ð1Þ
11

þ V̂ð1=2Þ
12 ðn − V̂ð0Þ

22 Þ−1V̂ð1=2Þ
21 Þjn; s; σi: ð62Þ

To facilitate the reading of the paper we will collect the
calculation in Appendix A, and give here only the final
result:

δλn≠0 ¼ ϵ

�
2qn −

Xn−2
j¼0

ρðjÞ
�

ð63Þ

where

ρðnÞ ¼
X
~k

e−ξ
ξn

n!
: ð64Þ

It is easy to see that ρðjÞ oscillates around a constant value
of q, with oscillations that are damped with increasing q.
Hence, δλn should oscillate around 2q. For q ¼ 1 the first
few values are displayed in Fig. 1, showing the oscillatory
pattern.
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A similar procedure applies for the eigenvalues associ-

ated to the vector potential. The eigenfunctions of V̂ð0Þ
22

will be labeled j~k; L; σi and j~k; T; σi, for positive ~k. The

label ~k corresponds to the modified Fourier modes Eq. (29),
with T and L referring to the gauge invariant and gauge

dependent parts, associated to the coefficients G1ð~kÞ and

G2ð~kÞ, respectively. To work with real coefficients we take
only half of the Fourier modes and split the coefficients

Gið~kÞ into its real and imaginary parts labeled by the

symbols σ ¼ �1, respectively. Thus, the vectors ~k
are restricted to positive values, meaning k1 > 0 or
fk1 ¼ 0 and k2 > 0g. Summing up, the corresponding
eigenfunctions are given by

χη~k;σ
ðxÞ≡ Pη

1ffiffiffi
2

p eiπð1−σÞ=4ðei2π~k ~xþiαð~kÞ þ σe−i2π~k ~xþiαð−~kÞÞ

ð65Þ

where η ¼ T; L for transverse or longitudinal photons,
respectively, while PT ¼ 1 and PL ¼ i. To lowest order, the

transverse photons j~k; T; σi have eigenvalue ξ, while the
longitudinal photons have eigenvalue 0.
Calculating the correction to order ϵ follows the same

steps as for the Higgs. Once more we benefit from having to
compute only the trace within each degenerate sector. Thus
the goal is

δλ~k ¼ ϵ
X
σ¼�1

h~k; T; σjðV̂ð1Þ
22

þ V̂ð1=2Þ
21 ðξ − V̂ð0Þ

11 Þ−1V̂ð1=2Þ
12 Þj~k; T; σi: ð66Þ

The details of the calculation are collected in Appendix A.
The result is very simple

δλ~k≠0 ¼ 2ϵ: ð67Þ

One can also compute the correction to the zero
eigenvalue. Not surprisingly the correction vanishes, since
it is associated to a gauge symmetry which is valid at
all orders in ϵ. Anyhow, it serves as a check of our
manipulations.
We have left out from the previous spectrum corrections

to the values at n ¼ 0 and ~k ¼ 0. Together with the gauge
modes of the longitudinal photons [G2ð~kÞ], these were zero
modes at leading order. We emphasized then that 2q of
these zero modes are associated to the moduli of solutions
of the Bogomol’nyi equation. Since this holds for any value
of the area, they should remain zero modes at any order in
our ϵ expansion. Thus, as mentioned earlier, 2 of the 2qþ 2
zero modes cannot be gauge-invariant zero modes. Indeed,
we already mentioned that one of them is associated with
global gauge transformations. The remaining zero mode
was just accidentally so at critical area and is broken at
order ϵ. Indeed, in the Appendix we found δλn¼0 ¼ 1 and
we explained that it is associated to a multiplicative
rescaling of the solution, cs ⟶ tcs with t real. Since this
is a single state, we will leave it out from the analytical
continuation and add its contribution to the final result.

C. Vortex energies to order ϵ

In this subsection we will use the results of the previous
subsection to compute the quantum correction to the
masses up to order ϵ. The methodology was explained
before. The mass receives contributions from quantum
fluctuations of the Higgs field and of the photon. The
contribution for trivial topology has to be subtracted out
from the previous sum and added to the counterterm
contribution to the energy. In order to manipulate these
individually divergent quantities we make use of the zeta-
function regularization method. Leaving out, for the time
being, the contribution of δλn¼0, the procedure can be
summarized by the formula:

EC ¼ lim
s⟶0

½Eð0Þ
ϕ ðsÞ þ Eð0Þ

A ðsÞ − Eð0Þ
∅ ðsÞ þ ϵðEð1Þ

ϕ ðsÞ

þ Eð1Þ
A ðsÞ − Eð1Þ

∅ ÞðsÞ� þOðϵ2Þ: ð68Þ

If the right-hand side is analytic for ℜðsÞ ≥ 0, then we can
say that the procedure is unambiguous and the quantum
mass finite. This indeed turned out to be the case for the
critical value of the area (ϵ ¼ 0) as found in Sec. III. The
corresponding limit is EC

ð0Þ given in Eq. (41). Our goal now
is to see if this continues to be the case up to order ϵ.
The main formulas for obtaining the expansion of the

analytically continued energies EQðsÞ were explained ear-
lier. In particular, given the expansion of the eigenvalues of
the fluctuation operator λi ¼ λð0Þi þ ϵλð1Þi þ � � � one obtains
the order epsilon correction to EQðsÞ as follows:

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  10  20  30  40  50  60
n

FIG. 1. We display ðδλn − 2Þ=ð2 ffiffiffi
n

p Þ as a function of n for
q ¼ 1.
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Eð1Þ
Q ðsÞ ¼ −

1

2Γðs − 1=2Þ
Z

∞

0

dxxs−1=2
X
i

e−xλ
ð0Þ
i λð1Þi :

ð69Þ

However, in calculating the eigenvalues in Appendix Awe
factored out from the operator a coefficient evκ . As explained
earlier, ev are just the natural units of quantum energies,
and it seems more reasonable to analytically continue a
dimensionless expression and put the units back at the end.
Eliminating the factor 1=κ was dictated only by simplicity,
since it is trivial to correct for it in the final result:

EQðsÞ ⟶ κs−1=2EQðsÞ ¼ ð1þ ðs − 1=2Þϵþ � � �ÞEQðsÞ:
ð70Þ

The modification does not alter the cancellations between
different terms, but induces an order ϵ correction propor-
tional to the leading order result:

EC ¼
�
1 −

ϵ

2

�
Eð0Þ
C þ ϵĒð1Þ þ � � � : ð71Þ

The new term Ēð1Þ=ðevÞ can be constructed using Eq. (69)
and the eigenvalues computed in Appendix A and given
earlier in this section. Its evaluation is the goal of the rest of
this section.
Let us start by computing the contribution of photon

fluctuations Ēð1Þ
A ðsÞ. Plugging the correction to the

eigenvalues in the general formula one gets:

Ēð1Þ
A ðsÞ=ðevÞ ¼ −

1

2Γðs − 1=2Þ
Z

∞

0

dxxs−1=2ðF ðx=qÞ − 1Þ

¼ −
qsþ1=2

2Γðs − 1=2Þ
Z

∞

0

dxxs−1=2ðF ðxÞ − 1Þ:

ð72Þ

The integral is divergent at s ≤ 1=2. As done before, we
may regulate it by adding and subtracting e−x=x to F . With
this subtraction the integral converges down to s ¼ 0.
Curiously the singularity at s ¼ 1=2 of the subtracted term
is canceled by the pole in the Gamma function, so that the
whole expression is finite down to s ¼ 0:

Ēð1Þ
A ðsÞ=ðevÞ ¼ −

qsþ1=2

2
−

qsþ1=2

2Γðs − 1=2Þ

×
Z

∞

0

dxxs−1=2
�
F ðxÞ − 1 −

e−x

x

�
: ð73Þ

Now let us compute the contribution from the Higgs

sector Ēð1Þ
ϕ :

Ēð1Þ
ϕ ðsÞ=ðevÞ ¼ −

1

Γðs − 1=2Þ

×
Z

∞

0

dxxs−1=2
X∞
n¼1

e−xn
�
qn −

Xn−2
j¼0

ρðjÞ
�
:

ð74Þ
We can treat the first term in the integral using:

X∞
n¼1

ne−xn ¼ −
d
dx

X∞
n¼1

e−xn ¼ −
d
dx

1

1 − e−x
¼ e−x

ð1 − e−xÞ2 :

ð75Þ
For the second term we use the explicit expression for ρðjÞ
and exchange the sums in j and n as follows

e−ξ
X∞
j¼0

X∞
n¼jþ2

ξj

j!
e−xn ¼ e−ξ

X∞
j¼0

ξj

j!
e−xðjþ2Þ

1 − e−x

¼ e−2x

1 − e−x
e−ξð1−e−xÞ: ð76Þ

Resumming over ~k we get:

Ēð1Þ
ϕ ðsÞ=ðevÞ ¼ 1

Γðs − 1=2Þ
Z

∞

0

dxxs−1=2
e−x

1 − e−x

×

�
e−xF ðð1 − e−xÞ=qÞ − q

1 − e−x

�
: ð77Þ

Again the integral diverges. It is convenient as usual to
rearrange the integrand subtracting the leading behavior of
F for small values of its argument. The remaining piece
contains the divergent integral and takes the form:

−
q

Γðs − 1=2Þ
Z

∞

0

dxxs−1=2
e−x

1 − e−x

¼ −q
Γðsþ 1=2Þζðsþ 1=2Þ

Γðs − 1=2Þ
¼ −qðs − 1=2Þζðsþ 1=2Þ: ð78Þ

Notice that, as before, this term is regular since the factor
ðs − 1=2Þ cancels the pole of the Zeta function. We finally
arrive to:

Ēð1Þ
ϕ ðsÞ=ðevÞ ¼ −qðs − 1=2Þζðsþ 1=2Þ

þ 1

Γðs − 1=2Þ
Z

∞

0

dxxs−1=2
e−2x

1 − e−x

×

�
F ðð1 − e−xÞ=qÞ − q

1 − e−x

�
ð79Þ

which is regular at all values of s.
The next step is to subtract from the previous terms the

order ϵ contribution to the vacuum energy for trivial
topology. This is a simple matter since in Sec. III we
computed this energy for arbitrary values of the area.
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From it, we can separate out the part which is proportional
to the critical area result and we are left with:

Ēð1Þ
∅ ðsÞ=ðevÞ ¼ −

3q
2
−

3qsþ1=2

2Γðs − 1=2Þ

×
Z

dxxs−1=2e−xq
�
F ðxÞ − 1

x

�
: ð80Þ

Once more the result is analytic for all values of s (we recall
that Euler gamma function has no zeroes).
In summary, we have verified that the total contribution

can be analytically continued to the physical point s ¼ 0.
Contrary to the leading order case, each term is analytic by
itself. We expect this to happen at higher orders as well.
Combining all factors, we arrive at

Ēð1Þ=ðevÞ ¼
�
3

2
þ ζð1=2Þ

2

�
q −

ffiffiffi
q

p
2

þ
ffiffiffi
q

p
4

ffiffiffi
π

p
Z

∞

0

dx
1ffiffiffi
x

p
�
ð1 − 3e−xqÞF ðxÞ − 1 −

ðe−x − 3e−xqÞ
x

�

−
1

2
ffiffiffi
π

p
Z

∞

0

dx
e−2xffiffiffi

x
p ð1 − e−xÞ

�
F ðð1 − e−xÞ=qÞ − q

1 − e−x

�
: ð81Þ

This quantity has a dependence on q, which is explicitly
displayed, and a dependence on the metric (or the torus
periods) hidden in the function F .
Now we are ready to present the final result up to order

ϵ given by

E ¼ Eð0Þ þ
ffiffiffi
ϵ

p
2

þ ϵ

�
Ēð1Þ −

1

2
Eð0Þ
C þ Eð1Þ

R

�
: ð82Þ

The second term comes from the correction to the n ¼ 0
eigenvalue, which was linear in ϵ. Its contribution to the
mass is finite, and can be added to the final result without
any analytical continuation. The contribution Eð1Þ

R depends
on the scheme. In our scheme, presented in Appendix B,
the result is − 13

32
q.

We may numerically evaluate the result to explore its
dependence on q and τ. For q ¼ 1 and τ ¼ eiπ=3 (triangular
lattice), at which the quantum energy had its minimum at
critical area, we get

E=ðevÞ ¼ 0.628039 −
39

32
þ 0.5

ffiffiffi
ϵ

p
− ϵ

�
0.1542505þ 13

32

�

ð83Þ

where we have separated out the contributions of the
Casimir energy and the renormalization counterterm.
On the other hand, for τ ¼ i (square lattice) one gets

E=ðevÞ ¼ 0.628873 −
39

32
þ 0.5

ffiffiffi
ϵ

p
− ϵ

�
0.155933þ 13

32

�
:

ð84Þ

It is interesting to notice that the epsilon term goes in the
direction of compensating the angle dependence. This is
what is expected, since for large areas (ϵ ⟶ 1) the
dependence on the metric parameter τ should disappear.
With our numbers we see that for ϵ ∼ 1=2we get a common
value of the mass of −0.5174. We can take this number as a

crude estimate of the vortex mass on the plane.
Alternatively, we might take the value obtained at ϵ ¼ 1
which is −0.652.
One can also explore the behavior for large q. The

leading dependence goes linearly with q, as for the critical
area result. Dividing out the linear term by q, we get an
energy per vortex equal to

E=ðevÞ ¼
�
−

7

32
þ ζð−1=2Þ

�

þ ϵ

�
19

32
þ −ζð−1=2Þ þ ζð1=2Þ

2

�

¼ −0.42663 − ϵ0.03249: ð85Þ

Although, it is not possible to draw any rigorous conclusion
from our 2 terms of the expansion, we see that all estimates
give a value close to −0.5ev for the quantum mass of the
vortex on the plane. For comparison with other numerical
estimates, one should guarantee that the same renormali-
zation prescription is adopted.

V. CONCLUSIONS AND OUTLOOK

In this paper we have studied the one-loop quantum
correction to the masses and energies of vortices in the
2þ 1 dimensional Abelian Higgs model formulated on the
torus. For a critical value of the area Ac the result can be
computed analytically. Away from this value an expansion
in powers of ϵ ¼ ðA −AcÞ=A can be set up, of which we
have computed the linear correction. In our formulation, the
theory is defined on a unit square torus with constant metric
tensor. A general metric of this type depends on a
conformal factor and a complex number τ. The conformal
factor is directly proportional to the area, and measures the
departure from the critical area case. On the other hand the
modular parameter τ can be mapped, after a change of
variables to a Euclidean metric, onto the periods of the
torus, i.e. their aspect ratio and relative angle. Hence, our
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quantum masses are indeed functions of the complex
parameter τ and, as expected, are invariant under trans-
formations of the modular group. Indeed, our analytic
results are expressed in terms of integrals of the two-
dimensional Riemann theta function having this property.
For the critical area case we showed that the minimal
energy is achieved for a torus which matches with a
triangular lattice of vortices. It is remarkable that the
quantum corrections induce a breaking of the classical
degeneracy toward a configuration consistent with the stan-
dard vortex lattice in type II superconductors. However, this
might be a simple coincidencewith noparticular significance.
Our methodology allows us also to study quantum

energies for multivortex configurations. One of the advan-
tages, compared to other numerical methods, is that we can
fix from the start the position of the individual vortices,
given by the zeroes of the Higgs field. At the classical level,
the energy depends only on the number of vortices q and
not on their positions. There is no known reason why this
independence should be preserved at the quantum level.
Thus, there could be attraction or repulsion of vortices
induced by quantum corrections. Our result, however,
shows that the degeneracy is preserved up to first order
in ϵ. There is no apparent symmetry underlying this
degeneracy, so that it could still be broken at higher orders
in ϵ. This is an important conceptual issue which could be
hard to settle in a purely numerical fashion. Our result here
is analytic but only valid for the first two terms in the
expansion. We hope this point could encourage other
authors to extend our result to higher orders.
Another interesting piece of information is the depend-

ence of the quantum energy on the number of vortices q.
Notice, however, that the critical area scales with the
number of vortices. Hence, one should actually talk about
a critical value of the vortex density. If we scale the area and
the relative distances among vortices at the same rate, one
should expect that for large areas the quantum energy scales
linearly with q. Dividing the multivortex energies by the
number of vortices one gets another estimate of the vortex
mass. For small values of the area, this linear dependence
is modulated by corrections of order

ffiffiffi
q

p
, 1=

ffiffiffi
q

p
and

subleading.
Since vortices are exponentially localized objects it is

quite plausible that the expansion can be extrapolated to
infinite area, obtaining the one-loop quantum energies for
vortices on the plane. Indeed, once the area is a few times
larger than the vortex size the effect of the periodic
boundary conditions should be exponentially suppressed,
which would suggest a fast approach. In Ref. [10] we
investigated the shape of the Bogomol’nyi solutions them-
selves using a Bradlow parameter expansion up to order
ϵ51. The result could be numerically extrapolated to infinite
area (vortices on the plane) and compared successfully with
other approaches. The expansion of the solution is only part
of the program in computing quantum energies, and getting

to high orders in all the steps certainly demands more
efficient and powerful automatization techniques. From our
two terms in the expansion, we have played the game of
extrapolating to infinite volume. The results are certainly
not crazy but, due to the limited information involved, a
serious comparison with other results lacks any rigour. A
more interesting comparison could be to use the method-
ology of Ref. [15] for vortices on the torus, and compare the
results with our exact results. These might give a new
measure of the numerical errors involved in that method.
Finally, we should comment that the idea of a Bradlow

parameter expansion is quite general and extends to other
types of vortices, Abelian and non-Abelian [24] and in
noncommutative space [25,26]. Indeed, the idea itself
emerged from a related type of expansion that occurs for
four-dimensional Yang-Mills theories [27]. It is also appli-
cable in principle to nonself-dual vortices and to vortices in
3þ 1 dimension, for which the mass turns into the string
tension [18], and to vortices coupled to fermions [28]. It is
quite plausible that our technique can be extended to the
computation of quantum corrections in all those cases.
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APPENDIX A: CORRECTIONS TO THE
EIGENVALUES OF THE FLUCTUATION

OPERATOR

In this appendix we will collect the details of the
calculation of the eigenvalues of the quadratic quantum
fluctuation operator V̂ to order ϵ. The methodology is
explained in Sec. IV. The potential energy of fluctuations
has two terms. The first term is given by

1

2κ

Z
dxj ~Dφ − iCδ̄Aφ − iCϕ̄δaj2: ðA1Þ

The second term is

1

2κ

Z
dx

�
ℑð ~∂�δaÞ þ C

2
ðϕ̄�φþ ϕ̄φ�Þ

�
2

ðA2Þ

where C ¼ ev=v0. The operator for fluctuations V̂, whose
eigenvalues we have to calculate, can be read from the
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potential divided by ev=ð2κÞ. Leaving the factor 1=κ out is
dictated by simplicity, since it is trivial to correct for it in
the final result. We can see in the previous expressions,
that the background fields δ̄A and ϕ̄ appear divided by v0,
canceling out the multiplicative v0 appearing in their
expression. Thus, since the dependence on all the constants
is obvious, we can simplify the calculation of the spectrum
by choosing units ev ¼ v0 ¼ 1 (implying C ¼ 1).
Furthermore, as explained in Sec. IV, we will benefit

from the fact that we do not need to get involved into
technicalities associated with degenerate perturbation
theory, since all we need is to sum of the eigenvalues
within each sector which is degenerate at leading order.

1. Calculation of δλn
In this subsection we will explain the calculation of δλn

according to the formula Eq. (62). There are two terms: one

coming from the diagonal Higgs-Higgs part V̂ð1Þ
11 , and the

second coming from the mixed terms V̂ð1=2Þ
12 ¼ V̂ð1=2Þ

21 .
Let us start with the contribution of the diagonal part.

This comes from two terms in the fluctuation potential:

Z
dx½ðℜðϕ̄�φÞÞ2 þ 2ℑðð ~DφÞ�δ̄AφÞ�: ðA3Þ

To calculate the correction to the leading order eigenvalue
n, we have to replace φ ¼ ðans þ ibnsÞΨn;s for n and s
fixed. Since we are interested in the trace we only need to
the coefficients that multiply a2ns and b2ns, and we can drop
all mixed terms. After a simple calculation we arrive at

X
s

Z
dx½jϕ̄j2jΨn;sj2 þ 4ℑðð ~DΨn;sÞ�δ̄AΨn;sÞ�

≡ ϵð ~Kn þ KnÞ: ðA4Þ

In order to perform the integral of the first term we make
use of the Fourier expansion of the product Ψ�

n;sϕ̄:

Vn;s ≡Ψ�
n;sðxÞϕ̄ðxÞ ¼

ffiffiffi
ϵ

p X
~k

X
s0

cs0X
s;s0
n;0ð~kÞe−2πi~k ~x:

ðA5Þ

Now we can plug the Fourier expansion of Vn;s and that of
its complex conjugate and perform the integration over x.
Hence, we get

~Kn ¼
X
~k

X
s

���
X
s0
cs0X

s;s0
n;0ð~kÞ

���2 ¼
X
~k

ξn

n!
e−ξ ≡ ρðnÞ: ðA6Þ

Notice that due to the unitarity of Uð~kÞ the dependence on
the moduli parameters cs has dropped completely. All that
was left was the norm of cs which is fixed by the
Bogomol’nyi equation to be equal to 1.

Now we proceed to calculate the integral of the second
term, by applying the ~D operator and substituting the
Fourier expansion of δ̄A:

ϵKn ¼ 4
ffiffiffi
n

p X
s

Z
dxℑðδ̄AΨ�

n−1;sΨn;sÞ

¼ 4
ffiffiffi
n

p X
s

X
~k

ℑðeiαð~kÞXss
n−1nð~kÞG1ð~kÞÞ

¼ −2ϵ
X0

~k

e−ξLð1Þ
n−1ðξÞuð~kÞTrðUð~kÞÞ ðA7Þ

where we recall that Lð1Þ
n−1 is a generalized Laguerre

polynomial and uð~kÞ ¼ c�t Utsð−~kÞcs. The trace of the

unitary matrix Uð~kÞ imposes that the Fourier component
ki should be a multiple of q. This restriction eliminates the

dependence on the moduli parameters contained in uð~kÞ.
Altogether, the result becomes

Kn ¼ −2q
X0

~k

e−q
2ξLð1Þ

n−1ðq2ξÞ ðA8Þ

where the primed sum runs over over all integer vectors

excluding ~k ¼ 0.
There is an alternative evaluation of Kn which turns out

to be more useful. This follows by going back to the
definition of Kn as an integral involving the operator ~D and
integrating by parts, passing the operator ~D† to act on the
other factors. We leave the details to the reader and give
here the relation that one gets:

Kn ¼ Knþ1 −
4

ϵ

X
s

Z
dxℑð ~∂�δ̄AÞjΨn;sðxÞj2: ðA9Þ

The last term can be evaluated by using the second
Bogomol’nyi equation. The final relation is then

Kn ¼ Knþ1 þ 2ð ~Kn − qÞ: ðA10Þ

Using our previous result, we conclude

Kn ¼ −2
Xn−1
m¼0

ðρðmÞ − qÞ ðA11Þ

valid for n ≥ 1. The two expressions of Kn look very
different but they can be verified to give the same numerical
values. By the definition it is clear that Kn¼0 ¼ 0.
Now we need to compute the contributions to λn coming

from the mixed terms V̂12 ¼ V̂21. Our first step is then
precisely to give the matrix elements of this operator in the
basis of eigenstates of the lowest order potential. This can
be read out from the corresponding terms in the potential

YAGO FERREIRÓS AND ANTONIO GONZÁLEZ-ARROYO PHYSICAL REVIEW D 90, 025004 (2014)

025004-16



ℑ

�Z
dxð ~DφÞ�ϕ̄δa

�
þ
Z

dxℜðφ�ϕ̄Þℑð ~∂�δaÞ ðA12Þ

where φ has to be treated as before. On the other hand the
fluctuation of the photon field δa has two components,
labeled δaT and δaL, corresponding to the gauge indepen-
dent and gauge dependent part. Operationally the separa-
tion follows by computing ð ~∂�δaÞ. For the transverse part it
is purely imaginary, while for the longitudinal one it is real.
Obviously, the second term in Eq. (A12) involves only the
transverse fluctuations, while the first term involves both
types. For the transverse modes it is convenient to perform
an integration by parts similar to that done before for the
diagonal term. After combining it with the second term we
arrive at

ℑ

�Z
dxð ~DφÞ�ϕ̄δaL

�
þ ℑ

�Z
dxφ�ð ~D†ϕ̄ÞδaT

�
ðA13Þ

which separates neatly the longitudinal and transverse
contributions.
Now we are ready to obtain the matrix elements of the

mixed terms. We replace φ ¼ ðan;s þ ibn;sÞΨn;sðxÞ and
δaη ¼ rη~k;σ0χ

η
~k;σ0

ðxÞ, where η ¼ L; T and the basis vectors

χη~k;σ0
ðxÞ are given in Eq. (65). We recall that ~k is restricted to

positive values. Later on we will consider the contribution

of ~k ¼ 0. We will use the index σ ¼ þ for the terms
proportional to an;s and σ ¼ − for the terms proportional to
bn;s. With this notation we will write

hn; s; σjVð1=2Þ
12 j~k; η; σ0i≡ Aηðn; s; σ; ~k; σ0Þ ðA14Þ

where η should be replaced by T and L for the longitudinal
and transverse modes respectively.
For the calculation of the transverse modes we will also

need Xn1 given by Eq. (51), which evaluates explicitly to

Xss0
n1ð~kÞ ¼ Uss0 ð~kÞiðn−1Þeiðn−1Þαð~kÞYn1ðξÞ

¼ Uss0 ð~kÞiðn−1Þeiðn−1Þαð~kÞ
ξðn−1Þ=2ffiffiffiffiffi

n!
p e−ξ=2ðn − ξÞ

ðA15Þ

valid for any n, and which defines the real quantity Yn1ðξÞ.
With the previous definitions and substitution into the
second term of Eq. (A13) we get:

ATðn; s; σ; ~k; σ0Þ ¼
ffiffiffi
ϵ

p
Yn1ðξÞffiffiffi
2

p ℑ½in−1e−iπð1−σÞ=4eiπð1−σ0Þ=4ðeinαð~kÞUss0 ð~kÞ þ σ0einαð−~kÞUss0 ð−~kÞÞcs0 �: ðA16Þ

A similar calculation can be done for the longitudinal terms, given by the first term of Eq. (A13). The result is

ALðn; s; σ; ~k; σ0Þ ¼
ffiffiffiffiffi
nϵ

p
Yn−10ðξÞffiffiffi
2

p ℜ½in−1e−iπð1−σÞ=4eiπð1−σ0Þ=4ðeinαð~kÞUss0 ð~kÞ þ σ0einαð−~kÞUss0 ð−~kÞÞcs0 � ðA17Þ

where Yn0ðξÞ ¼ ξn=2e−ξ=2=
ffiffiffiffiffi
n!

p
. The previous results are

complicated and depend on the moduli parameters cs,
related to the location of the vortices (zeroes of the
background Higgs field). As we will see in a minute this
dependence drops when computing the contributions to the
vortex mass.
With the mixed matrix elements given before it is

relatively straightforward to compute the contribution

to the Higgs field eigenvalue of the form V̂ð1=2Þ
12

ðn − V̂ð0Þ
22 Þ−1V̂ð1=2Þ

21 . The contribution coming from trans-
verse photons becomes

X
~k>0

X
sσσ0

ðATðn; s; σ; ~k; σ0ÞÞ2
ðn − ξÞ ¼ ϵ

X
~k>0

2Y2
n1ðξÞ

n − ξ

¼ ϵðρ0ðn − 1Þ − ρ0ðnÞÞ
ðA18Þ

where ρ0ðnÞ is the same value as ρðnÞ excluding the ~k ¼ 0
contribution:

ρ0ðnÞ ¼ ρðnÞ − δn0: ðA19Þ

The formula (A18) is valid for n ¼ 0 if we take ρ0ð−1Þ ¼ 0.
As mentioned previously, the computation simplifies
considerably due to summation over s and σ, which is
all we need for the vortex mass calculation. In particular, σ
appears as a factor e−iπð1−σÞ=4 multiplying the remaining
argument of the imaginary part (which we call W for
simplicity). The sum then operates in Eq. (A18) as
follows:

ðℑðWÞÞ2 þ ðℑðiWÞÞ2 ¼ jWj2: ðA20Þ

Hence, all phases drop from W. The sum over σ0 then
simplifies as follows

X
σ0
jWð~kÞ þ σ0Wð−~kÞj2 ¼ 2ðjWð~kÞj2 þ jWð−~kÞj2Þ

ðA21Þ
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canceling the phase proportional to αð~kÞ. Finally, the sum

over s, the unitarity of Uss0 ð~kÞ and the normalization of cs
removes all dependence on the vortex locations and
produces a fairly simple result.
Repeating the same steps we can obtain the contribution

of the longitudinal modes, given by

X
~k>0

X
sσσ0

ðALðn; s; σ; ~k; σ0ÞÞ2
n

¼ ϵ
X
~k>0

2nY2
n−10ðξÞ
n

¼ ϵρ0ðn − 1Þ ðA22Þ

valid for all values of n with the prescription ρ0ð−1Þ ¼ 0
adopted earlier.
To complete the calculation of the mixed terms we need

to consider the contribution of the ~k ¼ 0 states. It comes
from an expression similar to that involving longitudinal
photons and is proportional to Xn−10ð~k ¼ 0Þ, which van-
ishes for all values except n ¼ 1. After a little bit of algebra
one obtains that the contribution is 2ϵδn1.
Combining everything together we get the final result for

the Higgs correction

δλn ¼ ϵ

�
2qn − 2

Xn−2
j¼0

ρðjÞ þ δn0

�
: ðA23Þ

The second term vanishes for n < 2. Notice that the q
dependence is explicit in the first term, but is also present in
the second term through the metric. Finally, we stress that
there is, indeed, a correction to the eigenvalues at n ¼ 0.
One can look into the details of the calculation to see that
there is only one of the 2q eigenvalues, which acquires a
correction. The remaining zero modes can be obtained by
differentiating the Bogomol’nyi solution with respect to cs.
All variations orthogonal to cs should correspond to a zero
mode since the energy does not depend on cs. Variations of
the type φ ¼ iϕ̄ decouple entirely from the potential. This
is so because they correspond to global gauge transforma-
tions ϕ ⟶ eiθϕ ¼ ϕþ iθϕþ � � �. We are only left with
variations of the type ϕ ¼ a0ϕ̄with a0 real. Since the vector
cs is normalized to 1, a rescaling does not correspond to a
new solution. Hence, we do not have an associated zero
mode, and its contribution is captured by the trace and is
equal to ϵ at this order.

2. Calculation of δλ~k
We are now ready to calculate the corrections to the

photon eigenvalues. For transverse photons of momentum
~k, the leading order eigenvalue was ξ. We will now evaluate
the correction δλ~k. As for the Higgs field there is a
contribution coming from diagonal parts V̂ð1Þ

22 . This can
be read out from the potential of fluctuations

Z
dxjϕ̄j2jδaj2: ðA24Þ

Nowwe should replace δa ¼ χT~k;σ0
for ~k > 0. Summing over

the two values of σ0 and using the normalization of the
background field ϕ̄, the result is just equal to 2ϵ.
The off-diagonal contribution can be easily evaluated

using the matrix elements computed earlier. The result
vanishes:

X
n

X
sσσ0

ðATðn; s; σ; ~k; σ0ÞÞ2
ðξ − nÞ ¼ ϵ

X
n

2Y2
n1ðξÞ

ξ − n
¼ 0 ðA25Þ

so that the final result is

δλ~k ¼ 2ϵ: ðA26Þ

We might also investigate the correction to the eigen-
value corresponding to longitudinal photons. To leading
order the eigenvalue vanishes since the potential is gauge
invariant and the longitudinal photons are just gauge
transformations. To order ϵ the contribution coming from
the diagonal term is equal to 2ϵ, as for transverse photons.
The off-diagonal contribution can be easily evaluated,
giving

X
n

X
sσσ0

ðALðn; s; σ; ~k; σ0ÞÞ2
ð−nÞ ¼ ϵ

X
n

2nY2
n−10ðξÞ
−n

¼ −2ϵ:

ðA27Þ
Hence, the sum of both contributions vanishes as it should,
since the argument of gauge invariance is valid for all
values of ϵ.
A similar conclusion can be drawn for the corrections to

the zero momentum photon field ~k ¼ 0. If we evaluate the
correction to these zero modes, there are two contributions
which cancel each other. Again this result follows from a
symmetry that is valid for all values of ϵ: translation
invariance (which is part of the moduli of classical
solutions).

APPENDIX B: RENORMALIZATION OF THE
LAGRANGIAN PARAMETERS

In this appendix we study the renormalization of the
Lagrangian parameters and its contribution to the vortex
mass. The main point is that, in order for the physical
quantities to have finite values, we need to consider that the
parameters in the Lagrangian are not equal to the physically
defined quantities. Thus, we are led to consider the initial
Lagrangian with the constants e; v; λ replaced by their bare
values eB; vB; λB. In general, if one wants to construct
finite Green functions one also needs a multiplicative
renormalization of the fields: ϕ ⟶ ϕB ¼ Zϕϕ and
Aμ ⟶ AB

μ ¼ ZAAμ. Within a given regularization method,
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the physical observables expressed in terms of the bare
parameters seem divergent as the regularization is removed.
However, when replacing the bare parameters in terms of
the renormalized ones the divergence cancels out and one
gets a finite result. Thus, in order to implement the
procedure one needs to express the bare quantities as a
function of the renormalized ones. Typically, what one does
is to select a set of physical quantities and impose that they
take a prescribed form (usually the result of lowest order
perturbation theory) as a function of the physical param-
eters. If the number of selected quantities is equal to the
number of bare constants, one can solve for the latter in
terms of the physical (renormalized) ones and the cutoff.
These equations define the renormalization prescription or
renormalization scheme. The final expression of any
physical quantity as a function of the renormalized con-
stants is different for each prescription, but the difference
can be accounted for by regarding the numerical value of
the constants as scheme dependent. Very often the adopted
prescription is dictated by simplicity (minimal subtraction
scheme, etc.) at the expense of making the relation with
physical quantities more complex. This is the renormaliza-
tion idea in a nutshell. Now let us apply these ideas to our
particular case.
From the previous perspective, the manipulations done

in Sec. II, in which we did not take renormalization into
account, are valid by simply replacing the coupling con-
stants by their bare counterparts. There are just two places
in which we assumed particular values of the constants:

λ ¼ 1 and
ffiffiffiffiffiffiffiffiffiffi
jgð0Þj

q
¼ 4πq

e2v2. It makes no sense to replace these

identities by the corresponding ones in terms of bare
couplings. Thus, we have to maintain these relations as
valid for the renormalized constants.
The theory is superrenormalizable in 2þ 1 dimensions

so that the set of divergent diagrams is very small. Thus, it
is possible to impose simple renormalization conditions on
nondivergent quantities. In particular, it could be possible
to assume no renormalization of the fields Zϕ ¼ ZA ¼ 1.
Nevertheless, if we focus upon physical quantities as the
energies, the results are not affected by the renormalization
of the fields. Thus, we will consider here only the
renormalization of the constants of the theory: λ ¼ 1, v
and e. Hence, we should replace them by the corresponding
bare quantities in the initial Lagrangian: λB ¼ 1þ δλ, v2B ¼
v2 þ δv2 and eB ¼ eþ δe. Substituting these expressions
into the bare potential density given in Eq. (8), we recover
the original potential involving the renormalized constants,
plus a correction linear in ℏ, which is called the counterterm
potential:

−
ffiffiffiffiffi
jgj

p
δeℑðA�DϕÞ þ δe

Bjϕj2
2

− δv2
e2

ffiffiffiffiffijgjp
4

ðjϕj2 − v2Þ

þ δðλe2Þ
ffiffiffiffiffijgjp
8

ðjϕj2 − v2Þ2: ðB1Þ

The expression is valid for any value of the flux and of the
metric. Notice that we have combined the renormalization
of λ and e into the combination ðλe2Þ which appears more
natural.
Starting from this point one can repeat the procedure to

find the quantum Casimir energy of the vortices: find the
fields that minimize the classical energy and expand around
them up to quadratic fluctuations. Since the only modifi-
cation is the addition of the counterterm, which is of order
ℏ, there is no modification in the calculation of the quantum
Casimir energies. However, there is an additional contri-
bution to the energy coming from integral of the counter-
term Eq. (B1) evaluated at the classical values of the fields.
In our case, for q ¼ 0 these classical fields are B ¼ 0 and
ϕ ¼ v, so that the correction vanishes. For q ≠ 0, using the
Bogomol’nyi equations, the result is extremely simple:

δðev2Þ
2

Z
dxBþ δλ

2A

Z
dxB2: ðB2Þ

To evaluate the integrals we use our parametrization
B ¼ 2πq

e þ δB, where δB is of order ϵ and
R
dxδB ¼ 0.

The resulting counterterm contribution up to order ϵ
becomes

ER ¼ πq

�
δðev2Þ

e
þ v2δλ

2
ð1 − ϵÞ

�

¼ πq

�
δv2 þ v2δðλe2Þ

2e2
ð1 − ϵÞ þ ϵ

v2δe
e

�
ðB3Þ

valid in all schemes. Notice that we have expressed the
result in terms of the coefficients of the different terms in
the counterterm potential. The choice of these coefficients
depends on the renormalization scheme. In principle,
only δv2 gets contributions from divergent diagrams, so
one could take δe ¼ δλ ¼ 0. Furthermore, given that the
renormalization of the parameters has to do with the
ultraviolet properties of the theory, one could select a
renormalization scheme in which the coefficients are
independent of the boundary conditions (hence on q)
and of the metric tensor. With this choice, the counterterm
contribution to the mass is linear in q and independent of
the metric. In the following paragraphs we will present a
particular renormalization scheme based on the effective
potential, which employs much of the machinery used
earlier to compute the Casimir energy.
Our prescription is based on the computation of the

dependence of the energy on external background fields. If
we choose space-time independent fields, what we are
actually computing is the effective potential of the theory.
On the basis of the previous considerations we will perform
the calculation in the sector with trivial topology (q ¼ 0)
and for large values of the area. Let us begin by taking a
vanishing background vector potential and a real and
constant Higgs field ϕðxÞ ¼ χ. Although this seems to
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be gauge dependent, the final result is actually the same if
we transform the background field by an arbitrary gauge
transformation.
The effective potential, just as the energy, is the sum of

three contributions. First of all, we have the classical
potential. which for our background field becomes

Vð0ÞðχÞ ¼
e2A
8

ðχ2 − v2Þ2: ðB4Þ

The remaining two contributions start at order ℏ. One is
precisely the counterterm potential Eq. (B1) evaluated at
the background field, whose form is

δVðχÞ ¼ −δv2
e2A
4

ðχ2 − v2Þ þ δðλe2ÞA
8
ðχ2 − v2Þ2:

ðB5Þ
The final contribution is obtained by integrating out
quadratic quantum fluctuations around the background
field. No gauge fixing is performed on the fluctuation
fields, explaining why the result is gauge invariant.
Analyzing the quadratic form, one sees that the photon
acquires a mass equal to eχ, while the Higgs field gets a
mass square equal to 3e2

2
χ2 − e2

2
v2 ≡ e2v2μ2. With these

considerations it is trivial to compute the resulting quantum
potential contribution

VQðχÞ ¼
X∞

k1¼−∞

X∞
k2¼−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2‖~k‖2 þ e2χ2

q

þ 1

2

X∞
k1¼−∞

X∞
k2¼−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2‖~k‖2 þ e2v2μ2

q
: ðB6Þ

The quantity can be treated, as for the quantum energy,
by analytical continuation in the complex variable s. We
essentially repeat the steps that we employed in Eq. (39).
For example, for the Higgs field fluctuation part we get

ev
2Γðs − 1=2Þ

Z
∞

0

xs−3=2e−xμ
2

F
�

4πx
e2v2A

�
: ðB7Þ

Neglecting terms which are exponentially suppressed for
large values of the area, the result becomes

e3v3A
8π

ðμ2Þ3=2−s
s − 3=2

: ðB8Þ

Adding the contribution of the photon fluctuations obtained
along similar lines we obtain

VQðχ; sÞ ¼
e3v3A

8πðs − 3=2Þ ðμ
2Þ3=2−s þ 2

�
χ2

v2

�
3=2−s

: ðB9Þ

If we set χ ¼ v, we recover the full calculation of the
ground state quantum energy in the trivial topology sector.

On the other hand, we may set y ¼ χ2

v2 − 1 and recall that
μ2 ¼ 1þ 3y=2 to obtain a series expansion of the previous
formula in powers of y:

e3v3A
8πðs−3=2Þð3þðs−3=2Þ

�
−
7

2
yþ17

8
ðs−1=2Þy2þ�� �

�
:

ðB10Þ

Notice that all but the first term are analytic at any value of
s. We may now set s ¼ 0 and add it to the classical potential
and counterterm potential, which are both polynomials of
degree 2 in y. Our renormalization conditions amount to
imposing that the coefficients in y and y2 are given by the
naive potential. Hence, the contribution of the counterterm
must exactly cancel the effective potential coefficients.
This gives two equations which allow us to fix two of the
renormalization parameters.

δv2 ¼ −
7

4π
ev; δðλe2Þ ¼ 17

16π

e3

v
: ðB11Þ

To fix the remaining renormalization of the charge, we
consider a different background field configuration. This
time we take ϕðxÞ ¼ v and AiðxÞ ¼ ~Vi. Repeating the same
procedure as before, we compute the effective potential
to be

v2A
2

j ~Vj2ðe2 þ δðe2ÞÞ þ VQð ~VÞ: ðB12Þ

We skip the details of the calculation of the quantum energy
VQð ~VÞ which is elaborate but straightforward. The coef-
ficient of j ~Vj2 turns out to be

−
e
4v

X
~k

ð‖~p‖2 þ 1Þ−3=2 ⟶ −
e3vA
8π

ðB13Þ

with ~p ¼ 2π~k=ðevÞ. The sum is convergent, and in the
large area limit tends to the expression on the right. Now
imposing the renormalization condition that the coefficient
of j ~Vj2 equals the classical result, we find

δe ¼ e2

8πv
ðB14Þ

which completes our renormalization of parameters. The
last step is to substitute these results onto the counterterm
contribution to the quantum energy:

ER ¼ qev
�
−
7

4
þ 17

32
ð1 − ϵÞ þ ϵ

8

�

¼ qev

�
−
39

32
− ϵ

13

32

�
≡ ER

ð0Þ þ ϵER
ð1Þ: ðB15Þ
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