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Within the left-right model contributions to the neutrino dipole magnetic moments coming from the
charged gauge bosons W�

1;2 and the singly charged Higgs bosons ~δð�Þ are considered. Calculations show
that the Higgs sector contributions to the dipole magnetic moments could exceed the contributions caused
by the charged gauge bosons. The resonance transitions in the light left-handed neutrino beam moving in a
matter and a magnetic field are investigated in two flavor approximations. Analysis leads to the conclusion
that the structure of the heavy neutrino sector admits only three possibilities: (i) the light-heavy neutrino
mixing angles θii (i ¼ 1; 2) are arbitrary but equal each other whereas the heavy neutrino masses are
quasidegenerate; (ii) the heavy neutrino masses are hierarchical (mN1

< mN2
) while the angles θii are equal

to zero; (iii) the light-heavy mixing angles θii are equal to each other and the heavy-heavy neutrino mixing
is maximal.
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I. INTRODUCTION

At the end of 2002 as a consequence of a series of
experiments with solar, atmospheric, and reactor neutrinos
the existence of the neutrino oscillations has been estab-
lished. This, in turn, meant that the neutrino has a mass and
the partial lepton flavor violation takes place. At the same
time monitoring of the Galaxy by the net of neutrino
telescopes aimed to detect a neutrino signal from the
expected galactic supernova explosion has been started.
Neutrinos also find a use for a solution of applied problems
as evidenced by the application of antineutrino detectors for
nuclear reactor monitoring in the “on-line” regime and the
appearance of a neutrino geotomography (for review see
[1]). All this puts forward the neutrino physics in the
forefront of natural sciences. However, in spite of achieved
progress, there is a series of unsolved problems in the
neutrino physics. Among these are the following: (i) the
smallness of the neutrino mass mν ≈ 10−6me (me is an
electron mass); (ii) electromagnetic neutrino properties;
(iii) the neutrino nature (Dirac or Majorana).
Models with the seesaw mechanism give successful

explanation of the first problem. In these models heavy
right-handed neutrinos being seesaw partners of light left-
handed neutrinos appear. The introduction of heavy neu-
trinos Ni (i ¼ 1; 2; 3) helps to solve some cosmological
problems as well. For example, these neutrinos are used for
explanation of the observed baryon asymmetry in the
Universe thanks to the leptogenesis [2].
The existence of nonzero neutrino multipole moments is

a theoretically interesting issue in neutrino physics.
Whether they are also experimentally relevant quantities
depends on their magnitudes. Our interest in electromag-
netic neutrino properties is primarily caused by the fact that

there exist plenty of astrophysical systems with intensive
magnetic fields where neutrino physics plays an important
part. Large magnetic fields are present in supernovas,
neutron stars, and white dwarfs, and fields as large as
Be ¼ m2

e=e≃ 4.41 × 1013G can arise in supernova explo-
sions or coalescing neutron stars. The remnants of such
astrophysical cataclysms are magnetars, young neutron
stars with magnetic fields 1014–1016 G. It has been sug-
gested that during the electroweak phase transition local
magnetic fields much stronger than those of a magnetar
could have existed, with field strength as high as
1022–1024 G [3]. Unveiling the interconnection between
the star magnetic field and its particle current flows could
shed new light on the question of the star evolution. Thus,
neutrinos drive supernova dynamics from beginning to end.
Neutrino emissions and interactions play a crucial role in
core collapse supernova. Their eventual emission from a
protoneutron star contains nearly all the energy released in
the star explosion. The neutrino behavior also explains the
tremendous pulsar velocity [4]. Therefore, investigation of
the neutrino electromagnetic properties will give very
important information for better understanding of particle
physics and cosmology.
In the SUð3Þc × SUð2ÞL ×Uð1ÞY standard model (SM)

neutrinos are massless particles and, as a result, the mixing
of neutrino states does not take place. Reconstruction of the
neutrino sector of the SM is usually achieved by introduc-
ing a right-handed neutrino singlet (minimally extended
SM) to make neutrinos massive Dirac particles. However,
as this takes place, the explanation of the neutrino mass
smallness is absent. Neutrino dipole magnetic moments
(DMMs) predicted by the SM are so small that they are not
of any physical interest. It also should be noted that in
the SM the satisfactory mechanism to produce a baryon
asymmetry in the universe is absent. All this taken together
provides strong evidence of physics beyond the SM.*boyarkin@front.ru
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The purpose of this work is to investigate neutrino
electromagnetic properties in the context of the left-right
model. In the next section a short description of the model
is given. In Sec. II the motion of the high-energy beam of
the left-handed neutrinos in a matter and a twisting
magnetic field is examined. In Sec. III contributions to
the neutrino DMMs coming both from charged gauge
bosons and from singly charged Higgs bosons are consid-
ered. Finally in Sec. IV we summarize the results obtained.

II. THE LEFT-RIGHT MODEL

For the first time the model based on the SUð2ÞL ×
SUð2ÞR ×Uð1ÞB−L gaugegroup (LRM)was proposed at the
beginning of the 1970s [5]. Then several versions of this
model, which are distinguished by the choice of the trans-
formation to the mass eigenstate basis in the space of neutral
gauge bosons [6–10], appeared. This choice is determined
both by the Higgs sector structure and by the gauge coupling
constant values of the SUð2ÞL, SUð2ÞR, andUð1ÞB−L gauge
groups. In Refs. [11,12] it was shown that all versions of the
LRMs can be unified into the so-called continuous LRM,
which is characterized by the orientation angle of the
SUð2ÞR generator in the group space.
There are two possibilities of defining the left-right (LR)

symmetry, namely, as a generalized parity P and as a
generalized charge conjugation C. In Ref. [13] these two
cases have been investigated in order to determine the
precise lower limit on the LR symmetry scale convention-
ally identified with the mass of the additional charged
gauge boson W�

2 . It was found that mW2
> 2.5 TeV if

LR ¼ C and mW2
> 4 TeV if LR ¼ P. Recall, for gR ≈ gL

there is the theoretical relation connecting the masses of the
additional charged and neutral gauge bosons

mZ2
≈ 1.7mW2

;

so that indirect limits via the bounds on theW�
2 boson mass

also yield more stringent constraints on the Z2 boson mass.
In the LRM quarks and leptons enter into the left- and

right-handed doublets
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ð1Þ

where i ¼ 1, 2, 3, α ¼ R;G; B, a ¼ e; μ; τ, in brackets the
values of SWL ; S

W
R and B − L are given, SWL (SWR ) is the weak

left (right) isospin while B and L are the baryon and lepton
numbers, respectively. The LRM has three gauge coupling
constants: gL, gR, and g0 for the SUð2ÞL, SUð2ÞR, and
Uð1ÞB−L groups, respectively. The Higgs sector structure of
the LRM determines the neutrino nature. The mandatory
element of the Higgs sector is the bidoublet Φð1=2; 1=2; 0Þ

Φ ¼
�
Φ0

1 Φþ
2

Φ−
1 Φ0

2

�
: ð2Þ

Its nonequal vacuum expectation values (VEVs) of the
electrically neutral components bring into existence
the masses of quarks and leptons. Then, to ensure that
the neutrino is a Majorana particle, the Higgs sector has to
contain two triplets ΔLð1; 0; 2Þ, ΔRð0; 1; 2Þ

ðσ · ΔLÞ ¼
�
δþL=

ffiffiffi
2

p
δþþ
L

δ0L −δþL=
ffiffiffi
2

p
�
;

ðσ · ΔRÞ ¼
�
δþR=

ffiffiffi
2

p
δþþ
R

δ0R −δþR=
ffiffiffi
2

p
�
: ð3Þ

For the neutrino to be a Dirac particle the Higgs
sector instead of ΔL and ΔR must include two doublets
χLð1=2; 0; 1Þ, χRð0; 1=2; 1Þ and one bidoublet
Φð1=2; 1=2; 0Þ. In what follows we shall consider the
LRM version with Majorana neutrinos.
The spontaneous symmetry breaking (SSB) according to

the chain

SUð2ÞL × SUð2ÞR × Uð1ÞB−L
→ SUð2ÞL × Uð1ÞY → Uð1ÞQ

is realized for the following choice of the VEVs:

hδ0L;Ri ¼
vL;Rffiffiffi
2

p ; hΦ0
1i ¼ k1; hΦ0

2i ¼ k2: ð4Þ

To achieve agreement with experimental data, it is neces-
sary to ensure fulfillment of the conditions

vL ≪ maxðk1; k2Þ ≪ vR: ð5Þ

The structure of the Higgs potential VH is the essential
element of the theory because it defines the physical states
basis of Higgs bosons, Higgs masses, and interactions
between Higgses. We shall use the most general form of VH
proposed in Ref. [14]. After the SSB we are left with 14
physical Higgs bosons: four doubly charged scalars Δð��Þ

1;2 ,
four singly charged scalars ~δð�Þ and hð�Þ, four neutral
scalars S1;2;3;4 (S1 is an analog of the SM Higgs boson), and
two neutral pseudoscalars P1;2. The detailed discussion of
the Higgs sector structure has been done in Ref. [15]. In the
third order of the perturbation theory contributions to the
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neutrino DMMs could give the singly-charged Higgs
bosons only. Let us concentrate our attention on them.
These bosons are defined as follows

hð�Þ ¼ bΦð�Þ
þ þ ak0

vR
δ�R þ dβk20

ðαþ ρ1 − ρ3=2Þv2R
δ�L ; ð6Þ

~δð�Þ ¼ aβk0
ðαþ ρ1 − ρ3=2ÞvR

δ�R − dδ�L ; ð7Þ

where

Φð�Þ
þ ¼ k1Φ

ð�Þ
1 þ k2Φ

ð�Þ
2

kþ
; k� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � k22

q
; k0 ¼

k2−ffiffiffi
2

p
kþ

; α ¼ α3k2þ
2k2−

; β ¼ k2þðβ1k1 þ 2β3k2Þ
2k2−k0

;

b ¼
�
1þ k20

v2R

�
−1=2

; a ¼
�
1þ

�
1þ β2

ðαþ ρ1 −
ρ3
2
Þ2
�
k20
v2R

�
−1=2

; d ¼
�
1þ β2k20

ðαþ ρ1 −
ρ3
2
Þ2v2R

�
−1=2

;

kþ ¼ 174 GeV, and β1; β3; α3; ρ1, ρ3 are the constants entering into the Higgs potential. The Lagrangians we need are as
follows (for details, see the book [1]):

Lh
l þ L~δ

l ¼ ½ανahlb l̄bðxÞð1 − γ5ÞνaðxÞ − αNahlb l̄bðxÞð1þ γ5ÞNaðxÞ�hðxÞ
− ½ανa ~δlb lcbðxÞð1 − γ5ÞνaðxÞ − αNa

~δlb
lcbðxÞð1þ γ5ÞNaðxÞ�~δ�ðxÞ þ H:c:; ð8Þ

Lh
γ þ L~δ

γ ¼ ief½∂μh�ðxÞhðxÞ − h�ðxÞ∂μhðxÞ�AμðxÞ þ ðhðxÞ ⟶ ~δðxÞÞg þ H:c: ð9Þ

Lh
Wγ þ L~δ

Wγ ¼ fiαWhγ½W1μðxÞ sin ξþW2μðxÞ cos ξ�h�ðxÞ þ ðhðxÞ ⟶ ~δðxÞÞgAμðxÞ þ H:c:; ð10Þ

Lcc
l ¼ gL

2
ffiffiffi
2

p l̄aðxÞγμð1 − γ5ÞνaðxÞWLμðxÞ þ
gR
2

ffiffiffi
2

p l̄aðxÞγμð1þ γ5ÞNaðxÞWRμðxÞ; ð11Þ

where

ανahlb ¼
h0abk2 − habk1

2kþ
; αNahlb ¼

habk2 − h0abk1
2kþ

; ανa ~δlb ¼
fabffiffiffi
2

p ; a; b¼ e;μ; τ; αNa
~δlb

¼ fabβ1kþ
2ðαþ ρ1 − ρ3=2ÞvR

;

αW ~δγ ¼ eβ1mW1
; α¼ α3k2þ

2k2−
; αWhγ ¼

emW1
ð1− tan2βÞðαþ ρ1 þ 1− ρ3=2Þ

1þ tan2β
;

W1 ¼WL cosξþWR sin ξ; W2 ¼ −WL sinξþWR cosξ;

fab are triplet Yukawa coupling constants, the superscript c means the charge conjugation operation, the symbols h.c.
describe Hermitian conjugate terms, tan β ¼ k1=k2. In the expressions (8) and (11) the connection between the flavor and
mass eigenstate bases, ΨfðxÞ and ΨmðxÞ, will look like

ΨfðxÞ ¼

0
BBBBBBBBBB@

νeðxÞ
νμðxÞ
ντðxÞ
NeðxÞ
NμðxÞ
NτðxÞ

1
CCCCCCCCCCA

¼ UΨmðxÞ ¼ U

0
BBBBBBBBBB@

ν1ðxÞ
ν2ðxÞ
ν3ðxÞ
N1ðxÞ
N2ðxÞ
N3ðxÞ

1
CCCCCCCCCCA

ð12Þ

or, in components

νa ¼ Uνa;iνi þ Uνa;iþ3Ni; Na ¼ UNaiνi þ UNaiþ3Ni; ði ¼ 1; 2; 3Þ;
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where

U ¼ MνN

�
Dνν 0

0 DNN

�
; MνN ¼

0
BBBBBBBB@

c11 0 0 s11 0 0

0 c22 0 0 s22 0

0 0 c33 0 0 s33
−s11 0 0 c11 0 0

0 −s22 0 0 c22 0

0 0 −s33 0 0 c33

1
CCCCCCCCA
;

Dηη ¼

0
B@

cη12c
η
13e

iαη sη12c
η
13e

iβη sη13e
−iδη

−ðsη12cη23 þ cη12s
η
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η
13e
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η
13e
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η
13

1
CA;

cii ¼ cos θii, sii ¼ sin θii, θii is the mixing angle between
the light and heavy neutrinos in the i generation (light-
heavy neutrino mixing), cηik ¼ cos θηik, s

η
ik ¼ sin θηik, θ

η
ik is

the mixing angle between the i and k generations in the
sector of the light η ¼ ν (heavy η ¼ N) neutrinos, δη are the
CP violating Dirac phases, while the phases αη, and βη are
known as Majorana phases. For the light neutrinos δν varies
between 0 and 2π while αν and βν vary between 0 and π.
The Dirac phases can lead to observable effects in oscil-
lation experiments, whereas the Majorana phases have no
effect in those experiments [16]. In its turn the Majorana
phases, for example, influence: (i) neutrinoless double-beta
decay; (ii) neutrino ↔ antineutrino oscillation, (iii) rare
leptonic decays of K and B mesons, such as K� → π∓l�l�
and similar modes for the B meson; (iv) leptogenesis in the
early universe, which may be responsible for the present
matter-antimatter asymmetry, and (v) values of neutrino
multipole moments.
The mass squared of the hð�Þ- and ~δð�Þ-bosons are

defined by the relations

m2
h ¼ αðv2R þ k20Þ þ

β2k20
αþ ρ1 − ρ3=2

; ð13Þ

m2
~δ
¼ ðρ3=2 − ρ1Þv2R −

β2k20
αþ ρ1 − ρ3=2

: ð14Þ

It is obvious that, depending on the values of the Higgs
potential parameters, the masses of the singly charged
Higgs bosons may lie on the electroweak scale (EWS) and
beyond it. In order for the hð�Þ-boson to lie on the EWS the
parameter αmust be much less than 1. However, among the
physical Higgs bosons there is the neutral Higgs boson S2

S2 ¼ −Φ0r
− sin θ0 þ Φ0rþ cos θ0; ð15Þ

where

Φ0
− ¼ k1Φ0

2 − k2Φ0
1

kþ
; Φ0þ ¼ k1Φ0

1 þ k2Φ0
2

kþ
;

θ0 is the mixing angle in the sector of the neutral Higgs
bosons (θ0 < k2þ=v2R) and the superscript r means the real
part of the corresponding quantity. The parameter α also
enters into the expression for mS2

m2
S2
¼ αv2R þ 4k4−½2ð2λ2 þ λ3Þk1k2=k2þ þ λ4�2

αv2R
: ð16Þ

Since the Lagrangian describing the interaction between
quarks and neutral Higgs bosons takes the form

Ln
q ¼ −

1ffiffiffi
2

p
kþ

X
i;k¼1;2;3

ūi

��
mui

�
cθ0 −

2k1k2
k2−

sθ0

�
S1 −mui

�
sθ0 þ

2k1k2
k2−

cθ0

�
S2 − imdiγ5P1

�
δik

þ k2þ
k2−

ðKMdK�ÞikðS1sθ0 þ S2cθ0

�
uk þ ðui → di; mui ↔ mdi ; γ5 → −γ5Þ; ð17Þ

where Mu (Md) is the diagonal matrix for the up (down)
quarks and K is the Cabibbo-Kobayashi-Maskawa matrix,
then in order to suppress large flavor changing neutral
currents caused by the S2-boson, we must demand [13]

mS2 ≥ 10 TeV: ð18Þ

Therefore, α must be a finite number and as a result the
scenario when the hð�Þ boson lies on the EWS is excluded.
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Sowe see that only the scenario when the ~δð�Þ boson lies on
the EWS while the hð�Þ boson occurs on Tev scale is
possible. It is realized under conditions

α ≈ 1; ðρ3=2 − ρ1Þ ≈
k2þ þ 3β2k20

3v2R
: ð19Þ

We draw attention to the fact that in this case two physical
Higgs bosons S4 and P2

S4 ¼ δ0rL ; P2 ¼ δ0iL

whose masses are as follows

m2
S4

¼ ðρ3=2 − ρ1Þv2R; m2
P2

¼ ðρ3=2 − ρ1Þv2R ð20Þ

lie on the EWS too. In what follows we shall consider this
very scenario.
In the LRM the Higgs sector proves to be connected with

the neutrino sector. In the case of two generations a and b,
in order to define ανa ~δla , αNa

~δla
, ανahla , and αNahla one should

use the formulas

faavR ¼ s211½ðcν12Þ2mν1 þ ðsν12Þ2mν2 � þ c211½ðcN12Þ2mN1
þ ðsN12Þ2mN2

�;
fbbvR ¼ faavRðθ11 ⟶ θ22; θ

ν;N
12 ⟶ θν;N12 þ π=2Þ;

�
ð21Þ

ανahla ¼
1þ tan2β

2kþð1 − tan2βÞ
�
ma

D −
2mla tan β

1þ tan2β

�
; αNahla ¼ ανahlaðmla ↔ −ma

DÞ; ð22Þ

where

ma
D ¼ caasaa½ðcNabÞ2mN1

þ ðsNabÞ2mN2
− ðcνabÞ2mν1 − ðsνabÞ2mν2 �;

mb
D ¼ ma

Dðθaa → θbb; θ
ν;N
ab → θν;Nab þ π=2Þ:

�
ð23Þ

with vR to be estimated by the relation

vR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

W2
−m2

W1
Þ cos 2ξ

g2L

s
: ð24Þ

III. NEUTRINO OSCILLATIONS IN MATTER
AND MAGNETIC FIELD

It is clear that some information about the neutrino sector
structure of the model under consideration could be

obtained under oscillation experiments. Let us examine
the motion of the high-energy beam of the left-handed
electron neutrinos in a matter and a twisting magnetic field

Bx � iBy ¼ B⊥ expf�iΦðzÞg: ð25Þ

In the two flavor approximation the object of our inves-
tigation represents the system with the wave functionΨT ¼
ðνeL; νμL; NeR; NμRÞ and with the mixing matrix of the form

U ¼

0
BBB@

cos θν12 sin θν12 0 0

− sin θν12 cos θν12 0 0

0 0 cos θN12 sin θN12
0 0 − sin θN12 cos θN12

1
CCCA
0
BBB@

cos θ11 0 sin θ11 0

0 cos θ22 0 sin θ22
− sin θ11 0 cos θ11 0

0 − sin θ22 0 cos θ22

1
CCCA: ð26Þ

The corresponding Hamiltonian is determined by the expression

H ¼
�
Hνν HνN

H†
νN HNN

�
; ð27Þ

where
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Hνν ¼
� c2θ11Δ

ν
c þ s2θ11Δ

N
c þ c2θ11Σþ VeL − _Φ=2 cθ11cθ22Δ

ν
s þ sθ11sθ22Δ

N
s þ μνeνμB⊥

cθ11cθ22Δ
ν
s þ sθ11sθ22Δ

N
s þ μνeνμB⊥ −c2θ22Δ

ν
c − s2θ22Δ

N
c þ c2θ22Σþ VμL − _Φ=2

�
;

HνN ¼
� s2θ11

2
ðΔN

c − Δν
c − 2ΣÞ þ μνeNe

B⊥ sθ11cθ22Δ
N
s − cθ11sθ22Δ

ν
s þ μνeNμ

B⊥
cθ11sθ22Δ

N
s − sθ11cθ22Δ

ν
s þ μνeNμ

B⊥
s2θ22
2

ðΔν
c − ΔN

c − 2ΣÞ þ μνμNμ
B⊥

�
;

HNN ¼ Hννðθ11 → θ11 þ
π

2
; θ22 → θ22 þ

π

2
; VeL → VeR; VμL → VμR; _Φ → − _ΦÞ; _Φ ¼ dΦ

dt
;

Δν
cðsÞ ¼

m2
ν2 −m2

ν1

4E
cos 2θν12ðsin 2θν12Þ; ΔN

cðsÞ ¼
m2

N2
−m2

N1

4E
cos 2θN12ðsin 2θN12Þ;

Σ ¼ m2
ν1 þm2

ν2 −m2
N1

−m2
N2

8E
; cθii ¼ cos θii; sθii ¼ sin θii; c2θii ¼ cos 2θii; i ¼ 1; 2;

μνeνμ ; μNeNμ
; μνeNe

, and μνeNμ
are transit dipole neutrino magnetic moments, VeL (VeR) and VμL (VμR) are the matter

potentials (MPs) describing the matter interaction with the left(right)-handed electron neutrino and muon neutrino,
respectively. In what follows we shall assume that Eν ≪ m2

W=2me, that is, we are constrained by energies to be no higher
than 6 × 104 GeV. Then, when calculating the MP by means of the Feynman diagrams, one may neglect the momentum
terms in the denominators of the gauge boson propagators. The calculations result in

VeL ¼ ffiffiffi
2

p
GFðNe − Nn=2Þ þ VH

eL; VμL ¼ −
ffiffiffi
2

p
GFNn=2þ VH

μL;

VeR ¼ g2RNe

4m2
W2

−
g2Rc

2
θW

Nn

8ðc2θW−s2θW Þm2
Z2

; VμR ¼ −
g2Rc

2
θW

Nn

8ðc2θW−s2θW Þm2
Z2

;

VH
aL ¼

�
α2νahe
2m2

h
−

α2
νa ~δe

2m2
~δ

�
Ne;

9>>>>>=
>>>>>;

ð28Þ

where Ne (Nn) is the density of electrons (neutrons),
cθW ¼ cos θW , sθW ¼ sin θW , θW is the Weinberg angle
and we have neglected the mixing in the gauge boson
sector. As it follows from (27) the sectors of the light and
heavy neutrinos prove to be connected. One may neglect
this connection only in the situation when

jHνN j ≪ jHννj and jHνN j ≪ jHNN j: ð29Þ

It is evident that in the simplest case the inequalities (28)
take place provided

θ11 ≈ θ22 ≈ 0; jμνlNl
B⊥j ≈ 0: ð30Þ

Equalling the corresponding elements of the
Hamiltonian (27), we can find all the totality of the
resonance conversions in the case under consideration.
Under fulfillment of the condition

VeL − VμL ¼ −ðc2θ22 þ c2θ11ÞΔν
c

− ðs2θ22 þ s2θ11ÞΔN
c þ ðc2θ22 − c2θ11ÞΣ ð31Þ

the νeL → νμL-resonance [Mikheyev-Smirnov-Wolfenstein
(MSW) resonance] occurs. Investigation of this resonance
with the solar and reactor neutrinos gives the information
concerning the mixing parameters of the electron and muon

neutrinos. Since the description of the MSW-resonance
within the SM is sufficiently successful, then corrections to
the SM predictions must be small in any SM extensions.
Then, from Eq. (31) it follows that only three versions of
the heavy neutrino sector structure are possible: (i) the
light-heavy neutrino mixing angles θ11 and θ22 are arbitrary
but equal each other whereas the heavy neutrino masses are
quasidegenerate (quasidegenerate masses—QDM), that is,
the following must take place

θ11 ¼ θ22 and VH
eL −VH

μL ¼m2
N1

−m2
N2

2E
cos2θN12sin

2θ11;

ð32Þ

(ii) the heavy neutrino masses are hierarchical (mN1
< mN2

)
while the angles θ11 and θ22 are equal to zero (no masses
degeneration—NMD); (iii) θ11 ¼ θ22 and the heavy-heavy
neutrino mixing is maximal, θN12 ¼ π=4, and as a result the
heavy neutrino masses are hierarchical (maximal heavy-
heavy mixing—MHHM).
We are also interested whether heavy right-handed

neutrinos can be produced at the expense of oscillations
in the high-energy beam of the left-handed light neutrinos.
To put this another way, whether the resonant conversions
from the light neutrino sector to the heavy one are possible.
With the help of the Hamiltonian (27) we conclude that the
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νeL → NeR resonance transition would take place under
fulfillment of the following condition

VeL − VeR − _Φ ¼ ðs2θ11 − c2θ11ÞðΔν
c − ΔN

c Þ − 2c2θ11Σ: ð33Þ

It is clear that the QDM-, NMD-, and MHHM-schemes do
not allow the existence of this resonance transition.
Analogously, production of the heavy muon neutrino
NμR due to the resonance transition νeL → NμR proves to
be forbidden since the condition of its existence

VeL − VeR − _Φ ¼ −ðc2θ11 þ s2θ22ÞΔν
c

− ðs2θ11 þ c2θ22ÞΔN
c − ðc2θ11 þ c2θ22ÞΣ

ð34Þ

cannot be realized in all three schemes. Sowe can infer that,
in spite of nonzero values of μνaNb

, in oscillation experi-
ments with the light neutrinos beam we have no chance to
observe the heavy neutrinos production even at ener-
gies Eν > mN .

IV. NEUTRINO DIPOLE MAGNETIC MOMENTS

Since a neutrino is a neutral particle then its total
Lagrangian does not incorporate any multipole moments.
These moments arise due to vacuum effects. The vacuum
structure, in turn, is governed by the choice of model
describing the elementary particle interactions.
Electromagnetic properties of a massive Dirac neutrino
are determined by four form factors. In this case the most
general form of the matrix element for the conserved
neutrino electromagnetic current Jemμ is given by the
expression [17]:

hνDi ðp0ÞjJemμ jνDj ðpÞi ¼ hνDi ðp0Þjiσμλqλ½FMðq2Þ
þ FEðq2Þγ5�
þ ðq2γμ − qμq̂Þ½FVðq2Þ
þ FAðq2Þγ5�jνDj ðpÞi; ð35Þ

where q ¼ p0 − p, FMðq2Þ, FEðq2Þ, FAðq2Þ, and FVðq2Þ
are the magnetic, electric, anapole and reduced Dirac form
factors, respectively. In the static limit (q2 ¼ 0) FMðq2Þ and
FEðq2Þ define (anomalous) dipole magnetic moment μij
and dipole electric moment dij, respectively. At i ¼ j and
q2 ¼ 0, FAðq2Þ represents the anapole neutrino moment.
As far as a Majorana neutrino jνMi i is concerned, the

CPT invariance demands that all the form factors, except
the axial one FA, are identically equal to zero [18].
Regarding nondiagonal elements, the situation depends
on the fact whether CP-parity is conserved or not. For the
CP noninvariant case all the four form factors are nonzero.
When CP invariance takes place and the jνMi i- and
jνMj i-states have identical (opposite) CP-parities, then

ðFEÞij and ðFAÞij [ðFMÞij and ðFVÞij] are different from
zero [19].
Let us briefly discuss the experimental bounds on the

neutrino DMMs. The most sensitive and established
method for the experimental investigation of the diagonal
neutrino DMMs is provided by direct laboratory measure-
ments of (anti)neutrino-electron elastic scattering. A
detailed description of such experiments could be found
in Ref. [20]. At the moment the world best limit on μν̄e is
coming from the GEMMA experiment at the Kalinin
nuclear power plant [21]

μν̄e ≤ 2.9 × 10−11μB ð90% C:L:Þ: ð36Þ

Several experiments at accelerators have searched for an
effect due to DMMs of νμ in νμ − e and ν̄μ − e elastic
scattering. The current best limit has been obtained in the
LSND experiment [22]

μνμ ≤ 6.8 × 10−10μB ð90% C:L:Þ ð37Þ

Investigating ντ − e and ν̄τ − e elastic scattering, the
DONUT collaboration has found the following bound [23]

μντ ≤ 3.9 × 10−7μB ð90% C:L:Þ: ð38Þ

As for a Majorana neutrino, the global fit of the reactor
and solar neutrino data gives the following values for transit
DMMs [24]

ðμννÞ12; ðμννÞ13; ðμννÞ23 ≤ 1.8 × 10−10μB: ð39Þ

Transit DMMs for the Dirac as well as Majorana neutrinos
could be determined under observation of the processes

νl þ e− → νl0 þ e−; ν̄l þ e− → ν̄l0 þ e−; l ≠ l0

ð40Þ

which proceed with the partial lepton flavor violation.
The theoretical predictions of the minimally extended

SM (in what follows we shall keep in mind just this version
of the SM) are very far from upper experimental bounds. In
the third order of the perturbation theory the contributions
to the DMM of a Dirac neutrino are defined by the
diagrams represented in Fig. 1. In the leading order on ϵa ¼
m2

a=m2
W the diagonal and nondiagonal matrix elements of

the neutrino DMMs are determined by the expressions [25]

μνi ≡ ðμννÞii ¼
3GFmemνi

4
ffiffiffi
2

p
π2

�
1 −

1

2

X
a

U†
iaUaiϵa

�
μB; ð41Þ

ðμννÞif ¼ −
3GFme

16
ffiffiffi
2

p
π2

ðmνi þmνfÞ
X
a

U†
faUaiϵaμB; ð42Þ
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where Uai is the neutrino mixing matrix in the SM and
i; f ¼ 1; 2; 3. From Eq. (41) it follows

μνi ¼ 3.2 × 10−19μB

�
mνi

1 eV

�
; ð43Þ

while Eq. (42) gives

ðμννÞif ≈ 10−4μνi : ð44Þ

So, in the case under consideration the neutrino DMMs are
negligibly small.
For Majorana neutrinos the diagrams of Fig. 1 must be

supplemented with those associated with the transitions
νci → νcfγ. Making use of the Majorana condition

νi ¼ λ⊙νci ; ð45Þ

where λ⊙ is the phase factor of the Majorana neutrino
production (jλ⊙j2 ¼ 1), the properties of γ-matrices under
the charge conjugation

CγμC−1 ¼ −γTμ ;

as well as the Hermiticity condition, we obtain the
following relation between the magnetic form factor and
the neutrino DMM

ðμννÞif ¼ 2iIm½FMð0Þ� ð46Þ

(the relation (46) could be derived using only the diagrams
of Fig. 1 and taking into account the fact that the vector
current is equal to zero for a Majorana neutrino [19]).
Calculations fulfilled in the leading order on ϵa again lead
to the negligibly small value for the neutrino DMMs [17]

ðμννÞif ¼ −
3iGFme

4
ffiffiffi
2

p
π2

ðmνi þmνfÞ
X
a

Im½U†
faUai�ϵaμB: ð47Þ

In the SM the smallness of μνi is caused by the fact that,
at the Feynman diagram describing the neutrino DMM
appearance, the W-boson interacts with left-handed cur-
rents only. Therefore, the chirality flip to be necessary for
nonzero values of μνi has to do on the external neutrino line
and, as a result, the DMM proves to be proportional to the
neutrino mass. It is obvious that a sizeable increase of the
DMM values would be expected in models with right-
handed currents and heavy neutrinos. The LRM possesses
the necessary properties.
Contributions to the neutrino DMMs coming from the

diagrams with the virtual charged gauge bosonsW1 andW2

(Fig. 1, where W → W1;W2) were found in Refs. [17,26].
The obtained expressions are divided into two groups. The
former describes the situation when in the initial and final
states are either only light or only heavy neutrinos,
that is, we are dealing with the vertices associated with
the νi → νfγ- and Ni → Nfγ-transitions, respectively. The
latter is connected with the Ni → νfγ-transitions. For the
DMMs of the first group the neutrino DMMs have the form

ðμννÞif ¼ −
3ig2Lmeðmνi þmνfÞμB

64π2
X
a

�
cos2ξ
m2

W1

ϵð1Þa þ sin2ξ
m2

W2

ϵð2Þa

�
× Im½ðDννÞ†faDνν

ai �; ð48Þ

ðμNNÞif ¼ μννifðgL → gR;Dνν
ai → DNN

ai ; mνi → mNi
; ξ → ξþ π=2Þ; ð49Þ

while the neutrino DMMs belonging to the second group are defined by the expression

ðμνNÞif ¼ −
igLgRmeμB

4π2
sin ξ cos ξ

X
a

ma

�X2
k¼1

ð−1Þk
m2

Wk

�
1þϵðkÞa

�
ln ϵðkÞa þ 9

8

���
× Im½e−iϕðDννÞ†faðDNNÞai�; ð50Þ

where

νa ¼ Dνν
aiνi; Na ¼ DNN

ai Ni; ϵðkÞa ¼ m2
a

m2
Wk

;

FIG. 1. The Feynman diagrams contributing to the neutrino
DMM in the SM.
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and CP violating phase ϕ has been introduced into the
charged gauge boson sector

WL ¼ W1 cos ξþW2eiϕ sin ξ;

WR ¼ −W1e−iϕ sin ξþW2 cos ξ:

In order to estimate the expressions (48)–(50) we need to
know the value of the WL −WR mixing angle ξ. The
current experimental limits on it are as follows [27]

6 × 10−4 < jξj < 5.6 × 10−2:

Now, supposing that

gL ¼ gR ¼ es−1θW ; mW2
¼ 2.5 TeV; ξ ¼ 2 × 10−2;

ð51Þ

and Ni, Nf are on the electroweak scale, we get

jðμννÞifj≃ 10−22μB; jðμNNÞifj≃ 3 × 10−15μB;

jðμνNÞifj≃ 2.7 × 10−11μB: ð52Þ

So, the found contributions of the charged gauge boson
sector to ðμννÞif and ðμNNÞif prove to be very small and are
of no physical interest. However, one important point to
remember is that in the above-mentioned works the mixing
of the light and heavy neutrinos inside generation (light-
heavy mixing) was not taken into account. Therefore, these
results hold for the NMD case only.
Let us find the additions to the DMMs caused by the

light-heavy neutrino mixing. The inclusion of this effect
results in

ðμννÞif → ðμννÞif þ ðμννÞaddif ; ðμNNÞif → ðμNNÞif þ ðμNNÞaddif ;

ðμνNÞif → ðμνNÞif þ ðμνNÞaddif ;

�
ð53Þ

where

ðμννÞaddif ¼ −
3ig2RmeðmNi

þmNf
ÞμB

64π2
X
a

�
sin2ξ
m2

W1

ϵð1Þa þ cos2ξ
m2

W2

ϵð2Þa

�
× Im½U†

f;Na
UNa;i�

−
igLgRmeμB

4π2
sin ξ cos ξ

X
a

ma

�X2
k¼1

ð−1Þk
m2

Wk

�
1 þ ϵðkÞa

�
ln ϵðkÞa þ 9

8

���
× Im½U†

f;Na
Uνa;i�;

ðμNNÞaddif ¼ −
3ig2Lmeðmνi þmνfÞμB

64π2
X
a

�
cos2ξ
m2

W1

ϵð1Þa þ sin2ξ
m2

W2

ϵð2Þa

�
× Im½U†

fþ3;νa
Uνa;iþ3�

−
igLgRmeμB

4π2
sin ξ cos ξ

X
a

ma

�X2
k¼1

ð−1Þk
m2

Wk

�
1 þ ϵðkÞa

�
ln ϵðkÞa þ 9

8

���
× Im½U†

fþ3;Na
Uνa;iþ3�;

ðμνNÞaddif ¼ −
3ig2Lmeðmνi þmNf

ÞμB
64π2

X
a

�
cos2ξ
m2

W1

ϵð1Þa þ sin2ξ
m2

W2

ϵð2Þa

�
× Im½U†

fþ3;νa
Uνa;i�

−
3ig2Rmeðmνi þmNf

ÞμB
64π2

X
a

�
sin2ξ
m2

W1

ϵð1Þa þ cos2ξ
m2

W2

ϵð2Þa

�
× Im½U†

fþ3;Na
UNa;i�:

When the mixing angles between the light and heavy
neutrinos are equal to zero then MνN becomes identity
matrix and, as a result, ðμννÞaddif ; ðμNNÞaddif , and ðμνNÞaddif
vanish. To make an estimate of the derived additions it
is necessary to have information concerning the value of
the light-heavy neutrino mixing. Up to date there are a
lot of papers devoted to the determination of exper-
imental bounds on these quantities (see for review [28]).
One way to find such bounds is connected with searches
for the neutrinoless double beta decay (0νββ) and
disentangle the heavy neutrino effect. Within the

LRM the analysis of the 0νββ gave the upper bound
on θ11 equal to 10−5 [29]. It should be stressed that this
result was obtained in the assumption mN1

≫ mN2
; mN3

,
that is, for the maximal heavy-heavy mixing case only.
However, there is the point of view that the 0νββ does
not give the reliable answer on the value of the light-
heavy mixing. Of course, the main uncertainties are
connected with the determination of nuclear matrix
elements. Furthermore, a number of approximations
has to be made. For example, in Ref. [29] it was
suggested that the Yukawa couplings of the triplets that
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define the Majorana mass terms for left-handed and
right-handed neutrinos are equal. It is clear that in
this case the Lagrangian, describing the interaction
between the doubly charged Higgs bosons (Δð��Þ

1;2 )
and charged leptons, has very specific form and differs
dramatically from the Lagrangian derived from the most
general renormalizable Higgs potential proposed in
Ref. [14].
The other way is to directly look for the presence of the

light-heavy neutrino mixing, which can manifest in several
ways, for example, (i) via departures from unitarity of the
neutrino mixing matrix, which could be investigated in
neutrino oscillation experiments as well as in lepton flavor
violation searches, and (ii) via their signatures in collider
experiments. The bounds obtained in this case prove to be
less severe. As an illustration, in Ref. [30] the final states
with same-sign dileptons plus two jets without missing
energy (l�l�jj), arising from pp collisions were

considered. This signal depends crucially on the light-
heavy mixing. Analysis of the channel

pþ p → N�
l l

� → l� þ l� þ 2j ð54Þ

led to the upper limit on θ11 equal to 2.23 × 10−2

(3.32 × 10−2) for mWR
¼ 3 TeV (mWR

¼ 4 TeV)
and mNl

¼ 100 GeV.
It is worth noting that, as was shown in Ref. [15], even at

the fulfillment of the seesaw relation

mνimNi
≈ ðma

DÞ2;

the mixing angles between the light and heavy neutrinos
belonging to the same generation θii may reach the values
3 × 10−2 provided vL ≠ 0 and the Higgs potential is chosen
in the form suggested in Ref. [14].
Further, for the sake of simplicity, we shall assume that

Im½U†
fþ3;Na

Uνa;i�≃ Im½U†
fþ3;Na

UNa;iþ3�≃ Im½U†
f;νa

Uνa;i�≃ 1;

Im½U†
fþ3;Na

Uνa;iþ3�≃ Im½U†
f;Na

UNa;iþ3�≃ Im½U†
f;νa

UNa;i�≃ sin θff;

Im½U†
f;Na

Uνa;iþ3�≃ Im½U†
fþ3;νa

UNa;i�≃ sin θii sin θff:

9>>>=
>>>;

ð55Þ

Supposing that sin θii ≃ sin θff ≃ 2 × 10−2 (it does not contradict the quasigenerate masses scheme), along with using
Eqs. (51) and (55), we obtain

jðμννÞaddif j ≈ jðμNNÞaddif j ≈ 5.7 × 10−13μB; jðμνNÞaddif j ≈ 1.5 × 10−13μB: ð56Þ

Decreasing θii up to 10−5 as is admitted by the maximal heavy-heavy mixing scheme, results in

jðμννÞaddif j ≈ jðμNNÞaddif j ≈ 2.85 × 10−16μB; jðμνNÞaddif j ≈ 0.75 × 10−16μB: ð57Þ

However in the LRM we also have contributions coming from the singly-charged Higgs bosons. Let us calculate them in
the third order of the perturbation theory. In Fig. 2 the Feynman diagrams caused by the Lagrangian L~δ

l are pictured.
Calculations lead to the results

ðμννÞif ¼ imeμB
2π2

X
a

fα2
νa ~δla

Ωνiνf
la ~δ

× Im½U†
f;νa

Uνa;i� þ α2
Na

~δla
ΩNiNf

la ~δ
× Im½U†

f;Na
UNa;i� þ ανa ~δlaαNa

~δla
ΩνiNf

la ~δ
× Im½U†

f;Na
Uνa;i�g;

ð58Þ

ðμNNÞif ¼ imeμB
2π2

X
a

fα2
Na

~δla
ΩNiNf

la ~δ
× Im½U†

fþ3;Na
UNa;iþ3� þ α2

νa ~δla
Ωνiνf

la ~δ
× Im½U†

fþ3;νa
Uνa;iþ3�

þ ανa ~δlaαNa
~δla
ΩνiNf

la ~δ
× Im½U†

fþ3;Na
Uνa;iþ3�g; ð59Þ

ðμνNÞif ¼ imeμB
2π2

X
a

fανa ~δlaαNa
~δla
ΩνiNf

la ~δ
× Im½U†

fþ3;Na
Uνa;i� þ α2

νa ~δla
Ωνiνf

la ~δ
× Im½U†

fþ3;νa
Uνa;i�

þ α2
Na

~δla
ΩνiNf

la ~δ
× Im½U†

fþ3;Na
UNa;i�g; ð60Þ
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where

Ωνiνf
la ~δ

¼
Z

1

0

xdx
ðmνi −mνfÞ

�
ln

����Mνi ~δ

Mνf ~δ

����þ ln

����Mνila

Mνfla

����
�
; ΩNiNf

la ~δ
¼ Ωνiνf

la ~δ
ðνi → Ni; νf → NfÞ;

ΩνiNf

la ~δ
¼ ma

Z
1

0

dx

�
x

m2
Nf
ð1 − xÞ þm2

νi x
ln

���� Mνila

MNfla

���� − 1

m2
Nf

ln

���� Mνi ~δ

MNf
~δ

����
�
;

Mνila ¼ ðm2
a −m2

νiÞxþm2
νix

2 þm2
~δ
ð1 − xÞ; MNila ¼ Mνilaðνi → NiÞ;

Mνi ~δ
¼ ðm2

~δ
−m2

νiÞxþm2
νi x

2 þm2
að1 − xÞ; MNi

~δ ¼ Mνi ~δ
ðνi → NiÞ:

In the NMD case the second and third terms in the expressions (58)–(60) turn into zero.
Expanding the expression for Ωνiνf

la ~δ
as a power series in m2

ν=m2
~δ
, we get

Ωνiνf
la ~δ

≃ −
mνi þmνf

2m2
~δ

: ð61Þ

Analogously, the expansion of ΩNiNf

la ~δ
as a power series in mla=mNi;f

results in

ΩNiNf

la ~δ
≃ 1

mNi
−mNf

�
2 ln

����m2
Ni

m2
Nf

����þ m2
~δ

m2
Ni

ln

���� m
2
~δ

m2
Ni

����þm2
Ni

−m2
~δ

m2
Ni

ln

����m
2
Ni

−m2
~δ

m2
Ni

����
−

m2
~δ

m2
Nf

ln

���� m
2
~δ

m2
Nf

���� −m2
Nf

−m2
~δ

m2
Nf

ln

����m
2
Nf

−m2
~δ

m2
Nf

����
�
: ð62Þ

In the QDM case the expression (62) takes the simple form

ΩNiNf

la ~δ
≃ 4m2

~δ
ðm2

Ni
−m2

Nf
Þ

m3
Ni
ðm2

~δ
−m2

Ni
Þ : ð63Þ

Taking into account the smallness ofmla compared withmN andm~δ, we could rewrite the expression forΩ
νiNf

la ~δ
as follows

ΩνiNf

la ~δ
≃ −

ma

m2
Ni

�
ln

����m
2
νf

m2
Ni

���� ln
���� m4

~δ

m2
la
mνfmNi

����þ 1

2

�
ln

����m2
la

m2
~δ

����
�2

þ ln

����m
2
Ni

−m2
~δ

m2
Ni

���� ln
���� m2

νf

m2
Ni

−m2
~δ

����
�
: ð64Þ

It is clear that in the QDM case the main contributions in
(58)–(60) are caused by the terms containing ΩνiNf

la ~δ
.

Let us give the numerical estimation of the expressions
(58)–(60) in the QDM and NMD cases. In doing so for the
singly charged Higgs boson mass we shall use the low
bound 78.6 GeV obtained in the LEP-experiments [31]

(note, that is the best model-independent limit). Regarding
the coupling constants, they should be estimated for the
QDM case and the NMD one separately. From Eq. (21) it
follows that in the former case we can obtain the reasonably
definite information about the faa value. Setting

mNe
≃mNτ

≃ 100 GeV; mW2
¼ 4 TeV; ð65Þ

we get

fee ≃ fττ ≃ 1.6 × 10−2

to form

ανe ~δe ≃ αντ ~δτ ≃ 1.2× 10−2; αNe
~δe ≃ αNτ

~δτ ≃ 4.6× 10−4:

ð66ÞFIG. 2. The Feynman diagrams induced by the Lagrangian L~δ
l .
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Then, using (65), (66) we find

jðμννÞifj≃ jðμNNÞifj≃
�
10−12μB; for θii ¼ 2 × 10−2;

10−15μB; for θii ¼ 10−5;

ð67Þ

and

jðμνNÞifj≃ 4 × 10−11μB: ð68Þ

It should be stressed that the value of ðμνNÞif is independent
of the light-heavy neutrino mixing (recall that U†

fþ3;Na
Uνa;i

does not hold sin θii).
In the NMD case the relations (21) lose their predictive

force. We must set the mixing angles in the heavy neutrino
sector and make additional assumptions about the heavy
neutrino mass differences. However, in any event the triplet
Yukawa coupling constants faa may not exceed their upper
bound obtained under investigating the direct and inverse
τ-lepton decays [32]

feefττ
m2

~δ

≃ 3.3 × 10−5 GeV−2:

Using this bound we obtain

ανe ~δe ≃ 0.33; αNe
~δe ≃ 1.3 × 10−2;

to give

jðμννÞifj≃ 10−18μB; jðμνNÞifj≃ 3 × 10−8μB;

jðμNNÞifj≃ 10−10μB: ð69Þ

Attention is drawn to the fact that both in the QDM case
and in the NMD one the expression for ðμνNÞif displays the
weak logarithmic growth on the ~δð�Þ-boson mass. For
example, the enhancement of m~δ from 78 GeV to 200 GeV
leads to the increase of ðμνNÞif of seven percent.
In the LRM there are contributions to the neutrino

DMMs caused by the Lagrangian L~δ
Wγ as well. The

corresponding Feynman diagrams are presented in
Fig. 3. Let us work in the unitary gauge. When in the
initial and final states the light neutrinos νi and νf present,

the matrix element corresponding to the first diagram of
Fig. 3 with the virtual Wþ

1 -boson has the form

Mλðp1; p2Þ

¼ −iegLαW ~δγ cos ξ sin ξffiffiffi
2

p ð2πÞ4
X
a

U†
f;νa

Uνa;iανa ~δlað1 − γ5Þ

×
Z k̂γσ½gλσ − ðp1 − kÞλðp1 − kÞσ=m2

W1
�d4k

ðk2 −m2
aÞ½ðp2 − kÞ2 −m2

~δ
�½ðp1 − kÞ2 −m2

W1
� :

ð70Þ

Like any theory with the SSB, the LRM represents a
renormalizable theory. Therefore, the matrix element (70)
must be finite. However, a naive counting of moment
degrees into the integrand indicates that Mλðp1; p2Þ has a
linear divergency (in fact the divergency is logarithmic).
Now, unlike the diagrams of Fig. 2, contributions to the
neutrino DMMs also give divergent parts of the matrix
element Mλðp1; p2Þ. Obviously, infinities appearing in
Mλðp1; p2Þ cancel out when we take into consideration all
divergent diagrams. In so doing one should keep in mind
that the finite part of a divergent diagram is also trans-
formed in the renormalization process, that is, one cannot
simply throw away the divergent part in the expression in
question. So, for the finite part of Mλðp1; p2Þ to be found,
we should choose a specific procedure for removing
infinities. In what follows we take advantage of Dyson’s
procedure [33], in which the expansion of the integrand in a
power series in external momenta is followed by the
substraction of divergent terms. Having done all the
necessary calculations, we get the following additions to
the neutrino DMMs

ðμ0ννÞif ¼ imeμB
8

ffiffiffi
2

p
π2

X
a

αW ~δγfgLανa ~δlaΛ
νiνf
W ~δ

× Im½U†
f;νa

Uνa;i� þ gRαNa
~δla
Λ
NiNf

W ~δ

× Im½U†
f;Na

UNa;i� þ ðgLαNa
~δla
Λ
νiNf

W ~δ
þ gRανa ~δlaΛ

Nfνi
W ~δ

Þ × Im½U†
f;Na

Uνa;i�g; ð71Þ

ðμ0NNÞif ¼
imeμB
8

ffiffiffi
2

p
π2

X
a

αW ~δγfgRαNa
~δla
Λ
NiNf

W ~δ
× Im½U†

fþ3;Na
UNa;iþ3�

þ gLανa ~δlaΛ
νiνf
W ~δ

× Im½U†
fþ3;νa

Uνa;iþ3� þ ðgLαNa
~δla
Λ
νiNf

W ~δ
þ gRανa ~δlaΛ

Nfνi
W ~δ

Þ × Im½U†
fþ3;Na

Uνa;iþ3�g; ð72Þ

FIG. 3. The Feynman diagrams induced by L~δ
Wγ.
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ðμ0νNÞif ¼ −
imeμB
8

ffiffiffi
2

p
π2

X
a

αW ~δγmafðgLαNa
~δla
Λ
νiNf

W ~δ
þ gRανa ~δlaΛ

Nfνi
W ~δ

Þ × Im½U†
fþ3;Na

Uνa;i�

þ gRαNa
~δla
Λ
NiNf

W ~δ
× Im½U†

fþ3;Na
UNa;i� þ gLανa ~δlaΛ

νiνf
W ~δ

× Im½U†
fþ3;νa

Uνa;i�g; ð73Þ

where

Λ
νiνf
W ~δ

¼ 1

2
sin 2ξ

�
1

m2
W1

Λ
νiνf
W1

~δ
þ 1

m2
W2

Λ
νiνf
W2

~δ

�
;

Λ
νiνf
W1

~δ
¼

Z
1

0

dx

��
1

Mνf ~δ
−MνiW1

ln

���� Mνf ~δ

MνiW1

����ðx2m2
W1

þ 2ð2x − 3x2ÞMνiW1
þ ðx3 − x4Þ

× ðm2
νi þm2

νfÞ þ x3ðm2
νi þmνimνfÞÞ þ 2ð3x2 − 2xÞ

�
ln

���� l
νf
~δ

Mνf ~δ

����þ lνiW1

l
νf
~δ
− lνiW1

ln

���� l
νf
~δ

lνiW1

����
��

þ ðνi ↔ νfÞ
�
;

lνiWk
¼ ðm2

Wk
−m2

νiÞxþm2
la
ð1 − xÞ; lNi

Wk
¼ lνiWk

ðνi → NiÞ;
lνi~δ ¼ ðm2

~δ
−m2

νiÞxþm2
la
ð1 − xÞ; lNi

~δ
¼ lνi~δ ðνi → NiÞ; MνiWk

¼ lνiWk
þm2

νi x
2;

Mνi ~δ
¼ lνi~δ þm2

νix
2; MNiWk

¼ MνiWk
ðνi → NiÞ; MNi

~δ ¼ lNi
~δ
þm2

Ni
x2

Λ
NiNf

W ~δ
¼

�
cos2ξ
m2

W2

Λ
NiNf

W2
~δ
−
sin2ξ
m2

W1

Λ
NiNf

W1
~δ

�
; Λ

NiNf

Wk
~δ
¼ Λ

νiνf
Wk

~δ
ðνi → Ni; νf → NfÞ;

Λ
νiNf

W ~δ
¼ 1

2
sin 2ξ

�
1

m2
W1

Λ
νiNf

W1
~δ
þ 1

m2
W2

Λ
νiNf

W2
~δ

�
;

Λ
νiNf

W1
~δ
¼

Z
1

0

dx
MNf

~δ −MνiW1

ln

���� MNf
~δ

MνiW1

����½x3ðmNf
þmνiÞ − x2ð3mνi þmNf

Þ þ 2xmνi �:

The approximate expressions for Λ
νiνf
Wk

~δ
and Λ

NiNf

Wk
~δ

have
the form

Λ
νiνf
Wk

~δ
≃ m2

Wk

m2
~δ
−m2

Wk

ln

���� m2
~δ

m2
Wk

����; ð74Þ

Λ
NiNf

W ~δ
≃ Λ

NiNf

W2
~δ

≃ m2
W2

m2
~δ
−m2

W2

×

�
ln

���� m2
~δ

m2
W2

����þ 4
m6

W2

m6
N
ln

���� m2
W2

m2
W2

−m2
N

���� − 4
m4

W2

m4
N

�
:

ð75Þ

The expansion (74) is valid both for all three schemes while
the expansion (75) holds for the QDM scheme only. As far
as the expression for Λ

νiνf
Wk

~δ
is concerned, there is no way to

produce it in the form similar to (74) or (75) because the
integral entering into it admits exclusively the numerical
integration.

The numerical estimations of the obtained expressions
demonstrate, that at the chosen values of the LRM
parameters the contributions to the neutrino DMMs coming
from the diagrams pictured in Fig. 3 are less than those
shown in Fig. 2.

V. CONCLUSION

In the context of the LRM electromagnetic properties of
Majorana neutrinos are studied. Investigation of the light
left-handed neutrino beam moving in a condensed matter
and a magnetic field has led to the conclusion that the
structure of the heavy neutrino sector admits only three
possibilities: (i) quasidegenerate masses case—the light-
heavy neutrino mixing angles θ11 and θ22 are arbitrary but
equal each other whereas the heavy neutrino masses are
quasidegenerate; (ii) no mass degeneration case—the heavy
neutrino masses are hierarchical (mN1

< mN2
) while the

angles θ11 and θ22 are equal to zero; (iii) maximal heavy-
heavy mixing case—mixing angles θ11 and θ22 are equal
and the heavy-heavy neutrino mixing is maximal to give
the hierarchy of the heavy neutrino masses. Investigation
has also revealed that the resonance transitions between the
sectors of the light and heavy neutrinos are forbidden.
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Contributions to the neutrino dipole magnetic moments
(DMMs) coming from the charged gauge bosons W�

1;2
and the singly charged Higgs bosons ~δð�Þ have been
considered. In so doing we have assumed that one of
three heavy right-handed neutrinos and the ~δð�Þ-boson are
on the electroweak scale. The expressions for the DMMs
are divided into two groups. The former is connected
with the νi → νfγ- and Ni → Nfγ-transitions, ðμννÞif and
ðμNNÞif, while the latter is associated with the Ni → νfγ-
transitions, ðμνNÞif. It was shown that contributions to

ðμννÞif and ðμNNÞif caused by the charged gauge bosons
are maximal in the quasidegenerate masses case. As for
the Higgs boson contributions to the DMMs, then, as the
estimations have demonstrated, they are maximal in the
no mass degeneration case and could exceed those caused
by the charged gauge bosons. For example, at the definite
values of the LRM parameters which are not contrary to
experiments the upper limits on the magnetic moments
ðμνNÞif and ðμNNÞif may reach the values of few ×
10−8μB and 10−10μB, respectively.
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